1
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, White K, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL induces cytokine production via the NFkB2 pathway promoting neutrophil chemotaxis and neutrophil-mediated immune-suppression in triple negative breast cancer cells. Cancer Lett 2025; 620:217692. [PMID: 40187604 PMCID: PMC12049148 DOI: 10.1016/j.canlet.2025.217692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown mechanisms modulating TRAIL activity in patients. We hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. RNAseq analysis of MDA-MB-231 cells along with validation in additional cell lines demonstrated that TRAIL induced cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, TRAIL dependent induction of the cytokines was predominantly mediated by death receptor 5, caspase-8 and the non-canonical NFKB2 pathway. These cytokines produced by TRAIL-treated TNBC cells enhanced chemotaxis of normal human donor isolated neutrophils. Using TNBC xenograft models, TRAIL induced activation of NFkB2 pathway, cytokine production and increased neutrophil recruitment into the tumors. Moreover, preincubation of neutrophils in supernatants from TRAIL-treated TNBC cells significantly impaired neutrophil function as measured by reduced respiratory burst and cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies showed that these neutrophils suppress T cell proliferation and augment Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and neutrophil-mediated immune suppression.
Collapse
Affiliation(s)
- Manjari Kundu
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yoshimi E Greer
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexei Lobanov
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Lisa Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Shashi Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Karley White
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Donna Voeller
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah Weltz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maggie Cam
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Espona-Fiedler M, Patthey C, Lindblad S, Sarró I, Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions. Biochem Pharmacol 2024; 229:116492. [PMID: 39153553 DOI: 10.1016/j.bcp.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer deaths by 2030 and this is mostly due to therapy failure. Limited treatment options and resistance to standard-of-care (SoC) therapies makes PDAC one of the cancer types with poorest prognosis and survival rates [1,2]. Pancreatic tumors are renowned for their poor response to therapeutic interventions including targeted therapies, chemotherapy and radiotherapy. Herein, we review hallmarks of therapy resistance in PDAC and current strategies aiming to tackle escape mechanisms and to re-sensitize cancer cells to therapy. We will further provide insights on recent advances in the field of drug discovery, nanomedicine, and disease models that are setting the ground for future research.
Collapse
Affiliation(s)
- Margarita Espona-Fiedler
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| | - Cedric Patthey
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden
| | - Stina Lindblad
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden
| | - Irina Sarró
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Universitat de Barcelona, Barcelona, Spain
| | - Daniel Öhlund
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| |
Collapse
|
3
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL-induced cytokine production via NFKB2 pathway promotes neutrophil chemotaxis and immune suppression in triple negative breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604341. [PMID: 39091795 PMCID: PMC11291031 DOI: 10.1101/2024.07.19.604341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown modulatory mechanisms responsible for the lack of TRAIL activity in patients. Here, we hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. To test this, we performed an RNAseq analysis of MDA-MB-231 cells treated with TRAIL, followed by validation in additional TNBC cell lines. TRAIL significantly induces expression of multiple cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, the induction of these cytokines was predominantly mediated by death receptor 5, caspase 8 (but not caspase 8 enzymatic activity), and the non-canonical NFKB2 pathway. The cytokines produced by the TRAIL-treated TNBC cells enhanced chemotaxis of healthy human donor isolated neutrophils. In vivo , TRAIL treated TNBC murine xenograft tumors showed activation of the NFKB2 pathway, elevated production of CXCLs and IL-6, and increased neutrophil recruitment into the tumors. Moreover, donor isolated neutrophils preincubated in supernatants from TRAIL-treated TNBC cells exhibited impaired cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies with these neutrophils confirmed their suppressive effect on T cell proliferation and an increase in Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and immune suppression.
Collapse
|
4
|
Sarkar S, Deyoung T, Ressler H, Chandler W. Brain Tumors: Development, Drug Resistance, and Sensitization - An Epigenetic Approach. Epigenetics 2023; 18:2237761. [PMID: 37499114 PMCID: PMC10376921 DOI: 10.1080/15592294.2023.2237761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
In this article, we describe contrasting developmental aspects of paediatric and adult brain tumours. We hypothesize that the formation of cancer progenitor cells, for both paediatric and adult, could be due to epigenetic events. However, the progression of adult brain tumours selectively involves more mutations compared to paediatric tumours. We further discuss epigenetic switches, comprising both histone modifications and DNA methylation, and how they can differentially regulate transcription and expression of oncogenes and tumour suppressor genes. Next, we summarize the currently available therapies for both types of brain tumours, explaining the merits and failures leading to drug resistance. We analyse different mechanisms of drug resistance and the role of epigenetics in this process. We then provide a rationale for combination therapy, which includes epigenetic drugs. In the end, we postulate a concept which describes how a combination therapy could be initiated. The timing, doses, and order of individual drug regimens will depend on the individual case. This type of combination therapy will be part of a personalized medicine which will differ from patient to patient.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Division of Biotechnology, Quincy College, Quincy, MA, USA
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
- Division of Biology, STEM, RC College Boston, Boston, MA, USA
| | - Tara Deyoung
- Division of Biotechnology, Quincy College, Quincy, MA, USA
| | - Hope Ressler
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
| | | |
Collapse
|
5
|
Lee KH. Primary cilia: a novel research approach to overcome anticancer drug resistance. Front Mol Biosci 2023; 10:1270639. [PMID: 37900915 PMCID: PMC10602908 DOI: 10.3389/fmolb.2023.1270639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Primary cilia are cellular organelles that consist of a microtubule skeleton surrounded by a membrane filled with cell signaling receptors. Many studies have shown that primary cilia are cellular antennas, which serve as signaling hubs and their assembly and disassembly are dynamically regulated throughout the cell cycle, playing an important role in regulating cellular homeostasis. Aberrant control of primary cilia dynamics causes a number of genetic disorders known as ciliopathies and is closely associated with tumorigenesis. Anticancer drug resistance is a primary cause of chemotherapy failure, although there is no apparent remedy. The recent identification of a relationship between anticancer drug resistance and primary ciliary dynamics has made primary cilia an important target subcellular organelle for overcoming anticancer drug resistance. Therefore, the research on primary ciliary dynamics may provide new strategies to overcome anticancer drug resistance, which is urgently needed. This review aims to summarize research on the relevance of primary cilia and anticancer drug resistance, as well as future possibilities for research on overcoming anticancer drug resistance utilizing primary cilia dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
6
|
Aboelella NS, Brandle C, Okoko O, Gazi MY, Ding ZC, Xu H, Gorman G, Bollag R, Davila ML, Bryan LJ, Munn DH, Piazza GA, Zhou G. Indomethacin-induced oxidative stress enhances death receptor 5 signaling and sensitizes tumor cells to adoptive T-cell therapy. J Immunother Cancer 2022; 10:e004938. [PMID: 35882449 PMCID: PMC9330341 DOI: 10.1136/jitc-2022-004938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) using genetically modified T cells has evolved into a promising treatment option for patients with cancer. However, even for the best-studied and clinically validated CD19-targeted chimeric antigen receptor (CAR) T-cell therapy, many patients face the challenge of lack of response or occurrence of relapse. There is increasing need to improve the efficacy of ACT so that durable, curative outcomes can be achieved in a broad patient population. METHODS Here, we investigated the impact of indomethacin (indo), a non-steroidal anti-inflammatory drug (NSAID), on the efficacy of ACT in multiple preclinical models. Mice with established B-cell lymphoma received various combinations of preconditioning chemotherapy, infusion of suboptimal dose of tumor-reactive T cells, and indo administration. Donor T cells used in the ACT models included CD4+ T cells expressing a tumor-specific T cell receptor (TCR) and T cells engineered to express CD19CAR. Mice were monitored for tumor growth and survival. The effects of indo on donor T cell phenotype and function were evaluated. The molecular mechanisms by which indo may influence the outcome of ACT were investigated. RESULTS ACT coupled with indo administration led to improved tumor growth control and prolonged mouse survival. Indo did not affect the activation status and tumor infiltration of the donor T cells. Moreover, the beneficial effect of indo in ACT did not rely on its inhibitory effect on the immunosuppressive cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) axis. Instead, indo-induced oxidative stress boosted the expression of death receptor 5 (DR5) in tumor cells, rendering them susceptible to donor T cells expressing TNF-related apoptosis-inducing ligand (TRAIL). Furthermore, the ACT-potentiating effect of indo was diminished against DR5-deficient tumors, but was amplified by donor T cells engineered to overexpress TRAIL. CONCLUSION Our results demonstrate that the pro-oxidative property of indo can be exploited to enhance death receptor signaling in cancer cells, providing rationale for combining indo with genetically modified T cells to intensify tumor cell killing through the TRAIL-DR5 axis. These findings implicate indo administration, and potentially similar use of other NSAIDs, as a readily applicable and cost-effective approach to augment the efficacy of ACT.
Collapse
Affiliation(s)
- Nada S Aboelella
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Caitlin Brandle
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Ogacheko Okoko
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Md Yeashin Gazi
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Zhi-Chun Ding
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Hongyan Xu
- Division of Biostatistics & Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gregory Gorman
- McWhorter School of Pharmacy, Samford University, Birmingham, Alabama, USA
| | - Roni Bollag
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Marco L Davila
- Blood and Marrow Transplant & Cellular Immunotherapy Department, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Locke J Bryan
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gary A Piazza
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
7
|
Elsaid HH, Badary OA, Shouman SA, Elmazar M, El-Khatib AS. Enhanced antitumor activity of combined methotrexate and histone deacetylase inhibitor valproic acid on mammary cancer in vitro and in vivo. Can J Physiol Pharmacol 2022; 100:915-925. [PMID: 35679619 DOI: 10.1139/cjpp-2021-0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) act as antiproliferative agents by promoting differentiation and inducing apoptosis. Valproic acid (VPA) is an HDACI that shows promising chemotherapeutic effect in several tumor cells. The present study aimed to investigate the inhibitory effect of VPA on the viability of mammary cancer cells and its enhancing effect with methotrexate (MTX) in vitro and in vivo. Treatment with VPA or MTX alone induced concentration-dependent cytotoxic effects in two breast cancer cell lines. VPA significantly increased the cytotoxicity of MTX 3 times against MCF7. VPA addition to MTX, however, did not produce any significant changes on MTX cytotoxicity against MDA-MB231. VPA (150 and 200 mg/kg) significantly inhibited the growth of IP and SC Ehrlich ascites carcinoma tumor mouse models and improved results were achieved for tumor inhibition when VPA was combined with MTX (1 and 2 mg/kg) in vivo. The antitumor activity was not associated with a significant increase in toxicity or mice mortality rate. All these findings suggest that the combination of MTX and VPA may have clinical and/or adjuvant therapeutic application in the treatment of mammary cancer.
Collapse
Affiliation(s)
- Hadia Hosny Elsaid
- The British University in Egypt, 120633, Department of Pharmacology and Biochemistry, El Shorouk, Cairo, Egypt;
| | - Osama A Badary
- The British University in Egypt, 120633, Department of Clinical Pharmacy Practice, El Shorouk, Cairo, Egypt;
| | - Samia A Shouman
- National Cancer Institute Cairo University, 68804, Cairo, Egypt;
| | - Mohey Elmazar
- The British University in Egypt, 120633, Department of Pharmacology and Biochemistry, Cairo,, Cairo, Egypt;
| | - Aiman S El-Khatib
- Cairo University Faculty of Pharmacy, 110154, Pharmacology and Toxicology, Cairo, Egypt;
| |
Collapse
|
8
|
Adhikari S, Bhattacharya A, Adhikary S, Singh V, Gadad S, Roy S, Das C. The paradigm of drug resistance in cancer: an epigenetic perspective. Biosci Rep 2022; 42:BSR20211812. [PMID: 35438143 PMCID: PMC9069444 DOI: 10.1042/bsr20211812] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shrikanth S. Gadad
- Department of Molecular and Translational Medicine, Center of Emphasis in Cancer, Texas Tech University Health Sciences Center El Paso, El Paso, TX, U.S.A
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, U.S.A
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
9
|
Ivanisenko NV, Seyrek K, Hillert-Richter LK, König C, Espe J, Bose K, Lavrik IN. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer 2021; 8:190-209. [PMID: 34973957 DOI: 10.1016/j.trecan.2021.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
The extrinsic pathway is mediated by death receptors (DRs), including CD95 (APO-1/Fas) or TRAILR-1/2. Defects in apoptosis regulation lead to cancer and other malignancies. The master regulator of the DR networks is the cellular FLICE inhibitory protein (c-FLIP). In addition to its key role in apoptosis, c-FLIP may exert other cellular functions, including control of necroptosis, pyroptosis, nuclear factor κB (NF-κB) activation, and tumorigenesis. To gain further insight into the molecular mechanisms of c-FLIP action in cancer networks, we focus on the structure, isoforms, interactions, and post-translational modifications of c-FLIP. We also discuss various avenues to target c-FLIP in cancer cells for therapeutic benefit.
Collapse
Affiliation(s)
- Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Laura K Hillert-Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Kakoli Bose
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Inna N Lavrik
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
10
|
Kaempferol sensitizes tumor necrosis factor-related apoptosis-inducing ligand-resistance chronic myelogenous leukemia cells to apoptosis. Mol Biol Rep 2021; 49:19-29. [PMID: 34820749 DOI: 10.1007/s11033-021-06778-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL, an apoptosis-inducing cytokine, has attracted much attention in the treatment of cancer for its selective toxicity to malignant rather than normal cells. However, the apoptosis-inducing ability of TRAIL is weaker than expected primarily due to cancer cell resistance. As one of the dietary flavonoids, kaempferol, has been shown to be antiproliferative and might have a protective effect against TRAIL resistance, particularly for hematologic malignancies. METHODS AND RESULTS Here, we studied the potential of kaempferol to enhance the TRAIL-induced cytotoxicity and apoptosis in human chronic myelogenous leukemia (CML) cell line K-562, as well as the expression of specific genes with impact on TRAIL signal regulation. Analysis of flowcytometry data showed that treatment with kaempferol did enhance sensitivity of CML cells to pro-apoptotic effects of anti-TRAIL antibody. Although the gene expression levels were heterogeneous, cFLIP, cIAP1 and cIAP2 expression were generally downregulated where co-treatment of kaempferol and TRAIL was employed and these effects appeared to be dose-dependent. We further demonstrated that the expression of death receptors 4 and 5 tended to increase subsequent to the combination treatment. CONCLUSIONS Consequently, it is reasonable to conclude that sensitization of chronic leukemia cells to TRAIL by kaempferol in vitro should be considered as a way of focusing clinical attention on leukemia therapy.
Collapse
|
11
|
Park SA, Han HR, Ahn S, Ryu CH, Jeun SS. Combination treatment with VPA and MSCs‑TRAIL could increase anti‑tumor effects against intracranial glioma. Oncol Rep 2021; 45:869-878. [PMID: 33469674 PMCID: PMC7859926 DOI: 10.3892/or.2021.7937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
Human bone marrow-derived mesenchymal stem cells secreting tumor necrosis factor-related apoptosis-inducing ligand (MSCs-TRAIL) have demonstrated effective anti-tumor activity against various tumors including lung, pancreatic and prostate tumors, although several tumor types are not responsive. In such case, other reagents may decrease tumor growth via TRAIL-mediated cell death. The present study aimed to examine the effectiveness of valproic acid (VPA) in enhancing the efficacy of TRAIL, which was delivered using MSCs. Moreover, the present study examined the induced tumor tropism of MSCs via cell viability and migration assays. Combination treatment with VPA and MSCs-TRAIL enhanced the glioma therapeutic effect by increasing death receptor 5 and caspase activation. Migration assays identified increased MSC migration in VPA and MSCs-TRAIL-treated glioma cells and in the tumor site in glioma-bearing mice compared with VPA or MSC-TRAIL treatment alone. In vivo experiments demonstrated that MSC-based TRAIL gene delivery to VPA-treated tumors had greater therapeutic efficacy compared with treatment with each agent alone. These findings suggested that VPA treatment increased the therapeutic efficacy of MSC-TRAIL via TRAIL-induced apoptosis and enhanced tropism of MSCs, which may offer a useful strategy for tumor gene therapy.
Collapse
Affiliation(s)
- Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Rim Han
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chung Heon Ryu
- Department of Clinical Laboratory Science, Daejeon Health Institute of Technology, Daejeon 34504, Republic of Korea
| | - Sin-Soo Jeun
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
12
|
Histone Deacetylase Inhibitors as Multitarget-Directed Epi-Drugs in Blocking PI3K Oncogenic Signaling: A Polypharmacology Approach. Int J Mol Sci 2020; 21:ijms21218198. [PMID: 33147762 PMCID: PMC7662987 DOI: 10.3390/ijms21218198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations and aberrant epigenetic alterations are the triggers for carcinogenesis. The emergence of the drugs targeting epigenetic aberrations has provided a better outlook for cancer treatment. Histone deacetylases (HDACs) are epigenetic modifiers playing critical roles in numerous key biological functions. Inappropriate expression of HDACs and dysregulation of PI3K signaling pathway are common aberrations observed in human diseases, particularly in cancers. Histone deacetylase inhibitors (HDACIs) are a class of epigenetic small-molecular therapeutics exhibiting promising applications in the treatment of hematological and solid malignancies, and in non-neoplastic diseases. Although HDACIs as single agents exhibit synergy by inhibiting HDAC and the PI3K pathway, resistance to HDACIs is frequently encountered due to activation of compensatory survival pathway. Targeted simultaneous inhibition of both HDACs and PI3Ks with their respective inhibitors in combination displayed synergistic therapeutic efficacy and encouraged the development of a single HDAC-PI3K hybrid molecule via polypharmacology strategy. This review provides an overview of HDACs and the evolution of HDACs-based epigenetic therapeutic approaches targeting the PI3K pathway.
Collapse
|
13
|
Shah K, Rawal RM. Genetic and Epigenetic Modulation of Drug Resistance in Cancer: Challenges and Opportunities. Curr Drug Metab 2020; 20:1114-1131. [PMID: 31902353 DOI: 10.2174/1389200221666200103111539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a complex disease that has the ability to develop resistance to traditional therapies. The current chemotherapeutic treatment has become increasingly sophisticated, yet it is not 100% effective against disseminated tumours. Anticancer drugs resistance is an intricate process that ascends from modifications in the drug targets suggesting the need for better targeted therapies in the therapeutic arsenal. Advances in the modern techniques such as DNA microarray, proteomics along with the development of newer targeted drug therapies might provide better strategies to overcome drug resistance. This drug resistance in tumours can be attributed to an individual's genetic differences, especially in tumoral somatic cells but acquired drug resistance is due to different mechanisms, such as cell death inhibition (apoptosis suppression) altered expression of drug transporters, alteration in drug metabolism epigenetic and drug targets, enhancing DNA repair and gene amplification. This review also focusses on the epigenetic modifications and microRNAs, which induce drug resistance and contributes to the formation of tumour progenitor cells that are not destroyed by conventional cancer therapies. Lastly, this review highlights different means to prevent the formation of drug resistant tumours and provides future directions for better treatment of these resistant tumours.
Collapse
Affiliation(s)
- Kanisha Shah
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
14
|
Quagliano A, Gopalakrishnapillai A, Barwe SP. Understanding the Mechanisms by Which Epigenetic Modifiers Avert Therapy Resistance in Cancer. Front Oncol 2020; 10:992. [PMID: 32670880 PMCID: PMC7326773 DOI: 10.3389/fonc.2020.00992] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
The development of resistance to anti-cancer therapeutics remains one of the core issues preventing the improvement of survival rates in cancer. Therapy resistance can arise in a multitude of ways, including the accumulation of epigenetic alterations in cancer cells. By remodeling DNA methylation patterns or modifying histone proteins during oncogenesis, cancer cells reorient their epigenomic landscapes in order to aggressively resist anti-cancer therapy. To combat these chemoresistant effects, epigenetic modifiers such as DNA hypomethylating agents, histone deacetylase inhibitors, histone demethylase inhibitors, along with others have been used. While these modifiers have achieved moderate success when used either alone or in combination with one another, the most positive outcomes were achieved when they were used in conjunction with conventional anti-cancer therapies. Epigenome modifying drugs have succeeded in sensitizing cancer cells to anti-cancer therapy via a variety of mechanisms: disrupting pro-survival/anti-apoptotic signaling, restoring cell cycle control and preventing DNA damage repair, suppressing immune system evasion, regulating altered metabolism, disengaging pro-survival microenvironmental interactions and increasing protein expression for targeted therapies. In this review, we explore different mechanisms by which epigenetic modifiers induce sensitivity to anti-cancer therapies and encourage the further identification of the specific genes involved with sensitization to facilitate development of clinical trials.
Collapse
Affiliation(s)
- Anthony Quagliano
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Anilkumar Gopalakrishnapillai
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Sonali P. Barwe
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
15
|
Pan J, Attia SA, Subhan MA, Filipczak N, Mendes LP, Li X, Kishan Yalamarty SS, Torchilin VP. Monoclonal Antibody 2C5-Modified Mixed Dendrimer Micelles for Tumor-Targeted Codelivery of Chemotherapeutics and siRNA. Mol Pharm 2020; 17:1638-1647. [PMID: 32233497 DOI: 10.1021/acs.molpharmaceut.0c00075] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Targeted delivery of chemotherapeutics to tumors has the potential to reach a high dose at the tumor while minimizing systemic exposure. Incorporation of antibody within a micellar platform represents a drug delivery system for tumor-targeted delivery of antitumor agents. Such modified immunomicelles can result in an increased accumulation of antitumor agents and enhanced cytotoxicity toward cancer cells. Here, mixed dendrimer micelles (MDM) composed of PEG2k-DOPE-conjugated generation 4 polyamidoamine dendrimer G4-PAMAM-PEG2k-DOPE and PEG5k-DOPE were coloaded with doxorubicin and siMDR-1. This formulation was further modified with monoclonal antibodies 2C5 with nucleosome-restricted specificity that effectively recognized cancer cells via the cell-surface-bound nucleosomes. Micelles with attached 2C5 antibodies significantly enhanced cellular association and tumor killing in both monolayer and spheroid tumor models as well as in vivo in experimental animals compared to the nontargeted formulations.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sara Aly Attia
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States
| | - Md Abdus Subhan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Livia Palmerston Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, Jiangxi, China
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia 119146
| |
Collapse
|
16
|
He XT, Hu XF, Zhu C, Zhou KX, Zhao WJ, Zhang C, Han X, Wu CL, Wei YY, Wang W, Deng JP, Chen FM, Gu ZX, Dong YL. Suppression of histone deacetylases by SAHA relieves bone cancer pain in rats via inhibiting activation of glial cells in spinal dorsal horn and dorsal root ganglia. J Neuroinflammation 2020; 17:125. [PMID: 32321538 PMCID: PMC7175547 DOI: 10.1186/s12974-020-01740-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Robust activation of glial cells has been reported to occur particularly during the pathogenesis of bone cancer pain (BCP). Researchers from our group and others have shown that histone deacetylases (HDACs) play a significant role in modulating glia-mediated immune responses; however, it still remains unclear whether HDACs are involved in the activation of glial cells during the development of BCP. METHODS BCP model was established by intra-tibia tumor cell inoculation (TCI). The expression levels and distribution sites of histone deacetylases (HDACs) in the spinal dorsal horn and dorsal root ganglia were evaluated by Western blot and immunofluorescent staining, respectively. Suberoylanilide hydroxamic acid (SAHA), a clinically used HDAC inhibitor, was then intraperitoneally and intrathecally injected to rescue the increased expression levels of HDAC1 and HDAC2. The analgesic effects of SAHA administration on BCP were then evaluated by measuring the paw withdrawal thresholds (PWTs). The effects of SAHA on activation of glial cells and expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in the spinal dorsal horn and dorsal root ganglia of TCI rats were further evaluated by immunofluorescent staining and Western blot analysis. Subsequently, the effects of SAHA administration on tumor growth and cancer cell-induced bone destruction were analyzed by hematoxylin and eosin (HE) staining and micro-CT scanning. RESULTS TCI caused rapid and long-lasting increased expression of HDAC1/HDAC2 in glial cells of the spinal dorsal horn and dorsal root ganglia. Inhibiting HDACs by SAHA not only reversed TCI-induced upregulation of HDACs but also inhibited the activation of glial cells in the spinal dorsal horn and dorsal root ganglia, and relieved TCI-induced mechanical allodynia. Further, we found that SAHA administration could not prevent cancer infiltration or bone destruction in the tibia, which indicated that the analgesic effects of SAHA were not due to its anti-tumor effects. Moreover, we found that SAHA administration could inhibit GSK3β activity in the spinal dorsal horn and dorsal root ganglia, which might contributed to the relief of BCP. CONCLUSION Our findings suggest that HDAC1 and HDAC2 are involved in the glia-mediated neuroinflammation in the spinal dorsal horn and dorsal root ganglia underlying the pathogenesis of BCP, which indicated that inhibiting HDACs by SAHA might be a potential strategy for pain relief of BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao-Fan Hu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chao Zhu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao Han
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chang-Le Wu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan-Yan Wei
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
17
|
Seyrek K, Ivanisenko NV, Richter M, Hillert LK, König C, Lavrik IN. Controlling Cell Death through Post-translational Modifications of DED Proteins. Trends Cell Biol 2020; 30:354-369. [PMID: 32302548 DOI: 10.1016/j.tcb.2020.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023]
Abstract
Apoptosis is a form of programmed cell death, deregulation of which occurs in multiple disorders, including neurodegenerative and autoimmune diseases as well as cancer. The formation of a death-inducing signaling complex (DISC) and death effector domain (DED) filaments are critical for initiation of the extrinsic apoptotic pathway. Post-translational modifications (PTMs) of DED-containing DISC components such as FADD, procaspase-8, and c-FLIP comprise an additional level of apoptosis regulation, which is necessary to overcome the threshold for apoptosis induction. In this review we discuss the influence of PTMs of FADD, procaspase-8, and c-FLIP on DED filament assembly and cell death induction, with a focus on the 3D organization of the DED filament.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Max Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Laura K Hillert
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
18
|
Sultana F, Manasa KL, Shaik SP, Bonam SR, Kamal A. Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Curr Med Chem 2020; 26:7212-7280. [PMID: 29852860 DOI: 10.2174/0929867325666180530094120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India
| | - Kesari Lakshmi Manasa
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India.,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India
| |
Collapse
|
19
|
Double-Edged Lipid Nanoparticles Combining Liposome-Bound TRAIL and Encapsulated Doxorubicin Showing an Extraordinary Synergistic Pro-Apoptotic Potential. Cancers (Basel) 2019; 11:cancers11121948. [PMID: 31817469 PMCID: PMC6966652 DOI: 10.3390/cancers11121948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/29/2022] Open
Abstract
Although TRAIL (TNF-related apoptosis-inducing ligand, also known as Apo2L) was described as capable of inducing apoptosis in transformed cells while sparing normal cells, limited results obtained in clinical trials has limited its use as an anti-tumor agent. Consequently, novel TRAIL formulations with enhanced bioactivity are necessary for overcoming resistance to conventional soluble TRAIL (sTRAIL) exhibited by many primary tumors. Our group has generated artificial liposomes with sTRAIL anchored on their surface (large unilamellar vesicle (LUV)-TRAIL), which have shown a greater cytotoxic activity both in vitro and in vivo when compared to sTRAIL against distinct hematologic and epithelial carcinoma cells. In this study, we have improved LUV-TRAIL by loading doxorubicin (DOX) in its liposomal lumen (LUVDOX-TRAIL) in order to improve their cytotoxic potential. LUVDOX-TRAIL killed not only to a higher extent, but also with a much faster kinetic than LUV-TRAIL. In addition, the concerted action of the liposomal DOX and TRAIL was specific of the liposomal DOX and was not observed when with soluble DOX. The cytotoxicity induced by LUVDOX-TRAIL was proven to rely on two processes due to different molecular mechanisms: a dynamin-mediated internalization of the doxorubicin-loaded particle, and the strong activation of caspase-8 exerted by the liposomal TRAIL. Finally, greater cytotoxic activity of LUVDOX-TRAIL was also observed in vivo in a tumor xenograft model. Therefore, we developed a novel double-edged nanoparticle combining the cytotoxic potential of DOX and TRAIL, showing an exceptional and remarkable synergistic effect between both agents.
Collapse
|
20
|
Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, Ngai SC. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019; 143:81-94. [PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
21
|
Kong WY, Yee ZY, Mai CW, Fang CM, Abdullah S, Ngai SC. Zebularine and trichostatin A sensitized human breast adenocarcinoma cells towards tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis. Heliyon 2019; 5:e02468. [PMID: 31687564 PMCID: PMC6819948 DOI: 10.1016/j.heliyon.2019.e02468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/12/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent due to its selective killing on cancer cells while sparing the normal cells. Nevertheless, breast adenocarcinoma cells can develop TRAIL resistance. Therefore, this project investigated the anti-cancer effects of the combination of epigenetic drugs zebularine and trichostatin A (ZT) with TRAIL (TZT) on the human breast adenocarcinoma cells. This treatment regimen was compared with the natural anti-cancer compound curcumin (Cur) and standard chemotherapeutic drug doxorubicin (Dox). As compared to TRAIL treatment, TZT treatment hampered the cell viability of human breast adenocarcinoma cells MDA-MB-231 significantly but not MCF-7 and immortalized non-cancerous human breast epithelial cells MCF10A. Unlike TZT, Cur and Dox treatments reduced cell viability in both human breast adenocarcinoma and epithelial cells significantly. Nevertheless, there were no changes in cell cycle in both TRAIL and TZT treatments in breast adenocarcinoma and normal epithelial cells. Intriguingly, Cur and Dox treatment generally induced G2/M arrest in MDA-MB-231, MCF-7 and MCF10A but Cur induced S phase arrest in MCF10A. The features of apoptosis such as morphological changes, apoptotic activity and the expression of cleaved poly (ADP) ribose polymerase (PARP) protein were more prominent in TRAIL and TZT-treated MDA-MB-231 as compared to MCF10A at 24 h post-treatment. Compared to TZT treatment, Cur and Dox treatments exhibited lesser apoptotic features in MDA-MB-231. Collectively, the sensitization using Zeb and TSA to augment TRAIL-induced apoptosis might be an alternative therapy towards human breast adenocarcinoma cells, without harming the normal human breast epithelial cells.
Collapse
Affiliation(s)
- Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Malaysia
| | - Zong Yang Yee
- School of Post-Graduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Chun Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Malaysia
| |
Collapse
|
22
|
Elmallah MIY, Micheau O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11060850. [PMID: 31248188 PMCID: PMC6627638 DOI: 10.3390/cancers11060850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology and recent advances in the development of HDACi will be presented and put into perspective as potential drugs synergizing with TRAIL's pro-apoptotic potential.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt.
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
| |
Collapse
|
23
|
Sallustio F, Gesualdo L, Gallone A. New findings showing how DNA methylation influences diseases. World J Biol Chem 2019; 10:1-6. [PMID: 30622680 PMCID: PMC6314879 DOI: 10.4331/wjbc.v10.i1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/01/2018] [Accepted: 12/05/2018] [Indexed: 02/05/2023] Open
Abstract
In 1975, Holliday and Pugh as well as Riggs independently hypothesized that DNA methylation in eukaryotes could act as a hereditary regulation mechanism that influences gene expression and cell differentiation. Interest in the study of epigenetic processes has been inspired by their reversibility as well as their potentially preventable or treatable consequences. Recently, we have begun to understand that the features of DNA methylation are not the same for all cells. Major differences have been found between differentiated cells and stem cells. Methylation influences various pathologies, and it is very important to improve the understanding of the pathogenic mechanisms. Epigenetic modifications may take place throughout life and have been related to cancer, brain aging, memory disturbances, changes in synaptic plasticity, and neurodegenerative diseases, such as Parkinson's disease and Huntington's disease. DNA methylation also has a very important role in tumor biology. Many oncogenes are activated by mutations in carcinogenesis. However, many genes with tumor-suppressor functions are "silenced" by the methylation of CpG sites in some of their regions. Moreover, the role of epigenetic alterations has been demonstrated in neurological diseases. In neuronal precursors, many genes associated with development and differentiation are silenced by CpG methylation. In addition, recent studies show that DNA methylation can also influence diseases that do not appear to be related to the environment, such as IgA nephropathy, thus affecting the expression of some genes involved in the T-cell receptor signaling. In conclusion, DNA methylation provides a whole series of fundamental information for the cell to regulate gene expression, including how and when the genes are read, and it does not depend on the DNA sequence.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Anna Gallone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari 70121, Italy
| |
Collapse
|
24
|
Sensitization of Drug Resistant Cancer Cells: A Matter of Combination Therapy. Cancers (Basel) 2018; 10:cancers10120483. [PMID: 30518036 PMCID: PMC6315347 DOI: 10.3390/cancers10120483] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer drug resistance is an enormous problem. It is responsible for most relapses in cancer patients following apparent remission after successful therapy. Understanding cancer relapse requires an understanding of the processes underlying cancer drug resistance. This article discusses the causes of cancer drug resistance, the current combination therapies, and the problems with the combination therapies. The rational design of combination therapy is warranted to improve the efficacy. These processes must be addressed by finding ways to sensitize the drug-resistant cancers cells to chemotherapy, and to prevent formation of drug resistant cancer cells. It is also necessary to prevent the formation of cancer progenitor cells by epigenetic mechanisms, as cancer progenitor cells are insensitive to standard therapies. In this article, we emphasize the role for the rational development of combination therapy, including epigenetic drugs, in achieving these goals.
Collapse
|
25
|
Choi SA, Lee C, Kwak PA, Park CK, Wang KC, Phi JH, Lee JY, Chong S, Kim SK. Histone deacetylase inhibitor panobinostat potentiates the anti-cancer effects of mesenchymal stem cell-based sTRAIL gene therapy against malignant glioma. Cancer Lett 2018; 442:161-169. [PMID: 30367915 DOI: 10.1016/j.canlet.2018.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Human adipose tissue-derived mesenchymal stem cells expressing the secreted form of the tumor necrosis factor-related apoptosis-inducing ligand (hAT-MSC.sTRAIL) have demonstrated therapeutic activity against various tumors in preclinical studies. However, the limited expression of TRAIL death receptors remains a challenge. We evaluated the therapeutic efficacy of panobinostat in enhancing the sensitivity of hAT-MSC.sTRAIL-mediated apoptosis in malignant glioma. Panobinostat effectively inhibited all malignant glioma cells (IC50, 0.03-0.23 μM), enhancing the expression of DRs, but not in hAT-MSCs. Combined treatment with hAT-MSC.sTRAIL and panobinostat significantly suppressed cell viability and enhanced apoptosis. In a diffuse intrinsic pontine glioma (DIPG) mouse model, the combined treatment induced decreases in tumor volume and prolonged survival. Our study demonstrates that panobinostat enhances the expression of TRAIL DRs and potentiates the anti-cancer effects of hAT-MSC.sTRAIL.
Collapse
Affiliation(s)
- Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chanhee Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pil Ae Kwak
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Anatomy, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sangjoon Chong
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Ponnusamy L, Mahalingaiah PKS, Chang YW, Singh KP. Reversal of epigenetic aberrations associated with the acquisition of doxorubicin resistance restores drug sensitivity in breast cancer cells. Eur J Pharm Sci 2018; 123:56-69. [DOI: 10.1016/j.ejps.2018.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/04/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
|
27
|
Torres-Collado AX, Knott J, Jazirehi AR. Reversal of Resistance in Targeted Therapy of Metastatic Melanoma: Lessons Learned from Vemurafenib (BRAF V600E-Specific Inhibitor). Cancers (Basel) 2018; 10:cancers10060157. [PMID: 29795041 PMCID: PMC6025215 DOI: 10.3390/cancers10060157] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Malignant melanoma is the most aggressive form of skin cancer and has a very low survival rate. Over 50% of melanomas harbor various BRAF mutations with the most common being the V600E. BRAFV600E mutation that causes constitutive activation of the MAPK pathway leading to drug-, immune-resistance, apoptosis evasion, proliferation, survival, and metastasis of melanomas. The ATP competitive BRAFV600E selective inhibitor, vemurafenib, has shown dramatic success in clinical trials; promoting tumor regression and an increase in overall survival of patients with metastatic melanoma. Regrettably, vemurafenib-resistance develops over an average of six months, which renders melanomas resistant to other therapeutic strategies. Elucidation of the underlying mechanism(s) of acquisition of vemurafenib-resistance and design of novel approaches to override resistance is the subject of intense clinical and basic research. In this review, we summarize recent developments in therapeutic approaches and clinical investigations on melanomas with BRAFV600E mutation to establish a new platform for the treatment of melanoma.
Collapse
Affiliation(s)
- Antoni Xavier Torres-Collado
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey Knott
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ali R Jazirehi
- Department of Surgery, Division of Surgical Oncology, and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Down‐regulation of intracellular anti‐apoptotic proteins, particularly c‐FLIP by therapeutic agents; the novel view to overcome resistance to TRAIL. J Cell Physiol 2018; 233:6470-6485. [PMID: 29741767 DOI: 10.1002/jcp.26585] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
29
|
Ding H, Peterson KL, Correia C, Koh B, Schneider PA, Nowakowski GS, Kaufmann SH. Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells. Leukemia 2016; 31:1593-1602. [PMID: 27890930 PMCID: PMC5474223 DOI: 10.1038/leu.2016.357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/29/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Histone deacetylase (HDAC) inhibitors, which are approved for the treatment of cutaneous T cell lymphoma and multiple myeloma, are undergoing evaluation in other lymphoid neoplasms. How they kill susceptible cells is incompletely understood. Here we show that trichostatin A, romidepsin, and panobinostat induce apoptosis across a panel of malignant B cell lines, including lines that are intrinsically resistant to bortezomib, etoposide, cytarabine, and BH3 mimetics. Further analysis traces the pro-apoptotic effects of HDAC inhibitors to increased acetylation of the chaperone heat shock protein 90 (HSP90), causing release and degradation of the HSP90 client proteins RASGRP1 and CRAF, which in turn leads to downregulation of mitogen activated protein kinase pathway signaling and upregulation of the pro-apoptotic BCL2 family member BIM in vitro and in vivo. Importantly, these pro-apoptotic effects are mimicked by RASGRP1 siRNA or HSP90 inhibition and reversed by overexpression of constitutively active MEK1 or siRNA-mediated downregulation of BIM. Collectively, these observations not only identify a new HSP90 client protein, RASGRP1, but also delineate a complete signaling pathway from HSP90 acetylation through RASGRP1 and CRAF degradation to BIM upregulation that contributes to selective cytotoxicity of HDAC inhibitors in lymphoid malignancies.
Collapse
Affiliation(s)
- H Ding
- Division of Oncology Research, Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - K L Peterson
- Division of Oncology Research, Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - C Correia
- Division of Oncology Research, Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - B Koh
- Division of Oncology Research, Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - P A Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - G S Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - S H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA.,Division of Hematology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
30
|
Turning on the Radio: Epigenetic Inhibitors as Potential Radiopriming Agents. Biomolecules 2016; 6:biom6030032. [PMID: 27384589 PMCID: PMC5039418 DOI: 10.3390/biom6030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/09/2016] [Accepted: 06/27/2016] [Indexed: 01/02/2023] Open
Abstract
First introduced during the late 1800s, radiation therapy is fundamental to the treatment of cancer. In developed countries, approximately 60% of all patients receive radiation therapy (also known as the sixty percenters), which makes radioresistance in cancer an important and, to date, unsolved, clinical problem. Unfortunately, the therapeutic refractoriness of solid tumors is the rule not the exception, and the ubiquity of resistance also extends to standard chemotherapy, molecularly targeted therapy and immunotherapy. Based on extrapolation from recent clinical inroads with epigenetic agents to prime refractory tumors for maximum sensitivity to concurrent or subsequent therapies, the radioresistant phenotype is potentially reversible, since aberrant epigenetic mechanisms are critical contributors to the evolution of resistant subpopulations of malignant cells. Within the framework of a syllogism, this review explores the emerging link between epigenetics and the development of radioresistance and makes the case that a strategy of pre- or co-treatment with epigenetic agents has the potential to, not only derepress inappropriately silenced genes, but also increase reactive oxygen species production, resulting in the restoration of radiosensitivity.
Collapse
|
31
|
Longacre M, Snyder NA, Housman G, Leary M, Lapinska K, Heerboth S, Willbanks A, Sarkar S. A Comparative Analysis of Genetic and Epigenetic Events of Breast and Ovarian Cancer Related to Tumorigenesis. Int J Mol Sci 2016; 17:E759. [PMID: 27213343 PMCID: PMC4881580 DOI: 10.3390/ijms17050759] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 01/02/2023] Open
Abstract
Breast cancer persists as the most common cause of cancer death in women worldwide. Ovarian cancer is also a significant source of morbidity and mortality, as the fifth leading cause of cancer death among women. This reflects the continued need for further understanding and innovation in cancer treatment. Though breast and ovarian cancer usually present as distinct clinical entities, the recent explosion of large-scale -omics research has uncovered many overlaps, particularly with respect to genetic and epigenetic alterations. We compared genetic, microenvironmental, stromal, and epigenetic changes common between breast and ovarian cancer cells, as well as the clinical relevance of these changes. Some of the most striking commonalities include genetic alterations of BRCA1 and 2, TP53, RB1, NF1, FAT3, MYC, PTEN, and PIK3CA; down regulation of miRNAs 9, 100, 125a, 125b, and 214; and epigenetic alterations such as H3K27me3, H3K9me2, H3K9me3, H4K20me3, and H3K4me. These parallels suggest shared features of pathogenesis. Furthermore, preliminary evidence suggests a shared epigenetic mechanism of oncogenesis. These similarities, warrant further investigation in order to ultimately inform development of more effective chemotherapeutics, as well as strategies to circumvent drug resistance.
Collapse
Affiliation(s)
| | - Nicole A Snyder
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA.
| | - Meghan Leary
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Karolina Lapinska
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sarah Heerboth
- School of Medicine, Vanderbilt University, Nashville, TN 37240, USA.
| | - Amber Willbanks
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sibaji Sarkar
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
- Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
32
|
Abstract
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) has tremendous promise in treating various forms of cancers. However, many cancer cells exhibit or develop resistance to TRAIL. Interestingly, many studies have identified several secondary agents that can overcome TRAIL resistance. To expand on these studies, we conducted an extensive drug-re-profiling screen to identify FDA-approved compounds that can be used clinically as TRAIL-sensitizing agents in a very malignant type of brain cancer, Glioblastoma Multiforme (GBM). Using selected isogenic GBM cell pairs with differential levels of TRAIL sensitivity, we revealed 26 TRAIL-sensitizing compounds, 13 of which were effective as single agents. Cardiac glycosides constituted a large group of TRAIL-sensitizing compounds, and they were also effective on GBM cells as single agents. We then explored a second class of TRAIL-sensitizing drugs, which were enhancers of TRAIL response without any effect on their own. One such drug, Mitoxantrone, a DNA-damaging agent, did not cause toxicity to non-malignant cells at the doses that synergized with TRAIL on tumor cells. We investigated the downstream changes in apoptosis pathway components upon Mitoxantrone treatment, and observed that Death Receptors (DR4 and DR5) expression was upregulated, and pro-apoptotic and anti-apoptotic gene expression patterns were altered in favor of apoptosis. Together, our results suggest that combination of Mitoxantrone and TRAIL can be a promising therapeutic approach for GBM patients.
Collapse
|
33
|
Kim EO, Kang SE, Im CR, Lee JH, Ahn KS, Yang WM, Um JY, Lee SG, Yun M. Tanshinone IIA induces TRAIL sensitization of human lung cancer cells through selective ER stress induction. Int J Oncol 2016; 48:2205-12. [PMID: 26983803 DOI: 10.3892/ijo.2016.3441] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
Abstract
Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promised anticancer medicine targeting only the tumor, most cancers show resistance to TRAIL-induced apoptosis. For this reason, new therapeutic strategies to overcome the TRAIL resistance are required for more effective tumor treatment. In the present study, potential of tanshinone IIA as a TRAIL sensitizer was evaluated in human non-small cell lung cancer (NSCLC) cells. NSCLC cells showed resistance to TRAIL-mediated cell death, but combination treatment of Tanshinone IIA and TRAIL synergistically decreased cell viability and increased apoptosis in TRAIL-resistant NSCLC cells. Tanshinone IIA greatly induced death receptor 5 (DR5), but not death receptor 4 (DR4). Furthermore, DR5 knockdown attenuated the combination treatment of tanshinone IIA with TRAIL-mediated cell death in human NSCLC cells. Tanshinone IIA also increased CHOP and activated the PERK-ATF4 pathway suggesting that tanshinone IIA increased DR5 and CHOP by activating the PERK-ATF4 pathway. Tanshinone IIA also downregulated phosphorylation of STAT3 and expression of survivin. Taken together, these results indicate that tanshinone IIA increases TRAIL-induced cell death via upregulating DR5 and downregulating survivin mediated by, respectively, selective activation of PERK/ATF4 and inhibition of STAT3, suggesting combinatorial intervention of tanshinone IIA and TRAIL as a new therapeutic strategy for human NSCLC.
Collapse
Affiliation(s)
- Eun-Ok Kim
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Shi Eun Kang
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Rak Im
- Department of Applied Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jun-Hee Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok-Geun Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Miyong Yun
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
34
|
Wang Y, Wang M, Chen H, Liu H, Zhang Q, Cheng Y. Fluorinated dendrimer for TRAIL gene therapy in cancer treatment. J Mater Chem B 2016; 4:1354-1360. [DOI: 10.1039/c5tb02712h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transfection of tumor necrosis factor-related apoptosis-inducing ligand gene by using fluorinated dendrimer is highly efficient and low toxic, resulting in efficient killing of cancer cells in vitro and suppressing tumor growth in vivo.
Collapse
Affiliation(s)
- Yitong Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Mingming Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Hongmei Liu
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
35
|
A Novel Pharmacological Method to Study the Chinese Medicinal Formula Hua-Zheng-Hui-Sheng-Dan. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:436807. [PMID: 26421050 PMCID: PMC4569805 DOI: 10.1155/2015/436807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 02/05/2023]
Abstract
Objectives. Hua-Zheng-Hui-Sheng-Dan (HZHSD) was used as an experimental model to explore research methods of large formulae in traditional Chinese medicine (TCM) using current molecular biology approaches. Materials and Methods. The trypan blue exclusion assay was used to determine cell viability and cell numbers. Flow cytometry was used to assess cell cycle distribution and apoptosis. The concentration of cyclin D1 was analyzed by enzyme-linked immunosorbent assay. The median effect principle was used in drug combination studies. An orthogonal experimental design was used to estimate the effects of each herb at different concentrations. The HeLa xenograft mouse model was used to compare the antitumor activity of drugs in vivo. Results. Among the 35 herbs that comprise HZHSD, Radix Rehmanniae Preparata (RRP), Caesalpinia sappan (CS), Evodia rutaecarpa (ER), Folium Artemisiae Argyi (FAA), Leonurus japonicus Houtt (LJH), Tumeric (Tu), Radix Paeoniae Alba (RPA), and Trogopterus Dung (TD) effectively inhibited the proliferation of HeLa and SKOV3 cells. Only RRR had an effect on HeLa and SKOV3 cell viability. According to the median effect principle, Angelica sinensis (Oliv.) (AS), Tabanus (Ta), and Pollen Typhae (PT), which were proven to have a significant synergistic inhibitory effect on the proliferation of HeLa cells, were added to the original eight positive herbs. The combination of RPA and AS had a synergistic effect on inducing cell cycle S phase arrest and decreasing intracellular cyclin D1 in HeLa cells. By orthogonal experimental design, LJH and Tu were considered unnecessary herbs. The small formula (SHZHSD) consisted of RPA, AS, RRR, Ta., TD, PT, ER, CS, and FAA and was able to inhibit cell proliferation and induce cell apoptosis. The antitumor effects of HZHSD and SHZHSD were also compared in vivo. Conclusions. Through molecular biology approaches both in vitro and in vivo, research into single drugs, and analysis using the median effect principle and orthogonal experimental design, the small formula (SHZHSD) was determined from the original formula (HZHSD). SHZHSD exhibited superior antitumor activity compared with the original formula both in vitro and in vivo.
Collapse
|
36
|
Carson R, Celtikci B, Fenning C, Javadi A, Crawford N, Carbonell LP, Lawler M, Longley DB, Johnston PG, Van Schaeybroeck S. HDAC Inhibition Overcomes Acute Resistance to MEK Inhibition in BRAF-Mutant Colorectal Cancer by Downregulation of c-FLIPL. Clin Cancer Res 2015; 21:3230-3240. [PMID: 25813020 PMCID: PMC4504978 DOI: 10.1158/1078-0432.ccr-14-2701] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/06/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Activating mutations in the BRAF oncogene are found in 8% to 15% of colorectal cancer patients and have been associated with poor survival. In contrast with BRAF-mutant (MT) melanoma, inhibition of the MAPK pathway is ineffective in the majority of BRAFMT colorectal cancer patients. Therefore, identification of novel therapies for BRAFMT colorectal cancer is urgently needed. EXPERIMENTAL DESIGN BRAFMT and wild-type (WT) colorectal cancer models were assessed in vitro and in vivo. Small-molecule inhibitors of MEK1/2, MET, and HDAC were used, overexpression and siRNA approaches were applied, and cell death was assessed by flow cytometry, Western blotting, cell viability, and caspase activity assays. RESULTS Increased c-MET-STAT3 signaling was identified as a novel adaptive resistance mechanism to MEK inhibitors (MEKi) in BRAFMT colorectal cancer models in vitro and in vivo. Moreover, MEKi treatment resulted in acute increases in transcription of the endogenous caspase-8 inhibitor c-FLIPL in BRAFMT cells, but not in BRAFWT cells, and inhibition of STAT3 activity abrogated MEKi-induced c-FLIPL expression. In addition, treatment with c-FLIP-specific siRNA or HDAC inhibitors abrogated MEKi-induced upregulation of c-FLIPL expression and resulted in significant increases in MEKi-induced cell death in BRAFMT colorectal cancer cells. Notably, combined HDAC inhibitor/MEKi treatment resulted in dramatically attenuated tumor growth in BRAFMT xenografts. CONCLUSIONS Our findings indicate that c-MET/STAT3-dependent upregulation of c-FLIPL expression is an important escape mechanism following MEKi treatment in BRAFMT colorectal cancer. Thus, combinations of MEKi with inhibitors of c-MET or c-FLIP (e.g., HDAC inhibitors) could be potential novel treatment strategies for BRAFMT colorectal cancer.
Collapse
Affiliation(s)
- Robbie Carson
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Basak Celtikci
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Cathy Fenning
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Arman Javadi
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Nyree Crawford
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Lucia Perez Carbonell
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Daniel B. Longley
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Patrick G. Johnston
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| |
Collapse
|
37
|
Yu XD, Guo ZS. Epigenetic drugs for cancer treatment and prevention: mechanisms of action. Biomol Concepts 2015; 1:239-51. [PMID: 25962000 DOI: 10.1515/bmc.2010.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review provides a brief overview of the basic principles of epigenetic gene regulation and then focuses on recent development of epigenetic drugs for cancer treatment and prevention with an emphasis on the molecular mechanisms of action. The approved epigenetic drugs are either inhibitors of DNA methyltransferases or histone deacetylases (HDACs). Future epigenetic drugs could include inhibitors for histone methyltransferases and histone demethylases and other epigenetic enzymes. Epigenetic drugs often function in two separate yet interrelated ways. First, as epigenetic drugs per se, they modulate the epigenomes of premalignant and malignant cells to reverse deregulated epigenetic mechanisms, leading to an effective therapeutic strategy (epigenetic therapy). Second, HDACs and other epigenetic enzymes also target non-histone proteins that have regulatory roles in cell proliferation, migration and cell death. Through these processes, these drugs induce cancer cell growth arrest, cell differentiation, inhibition of tumor angiogenesis, or cell death via apoptosis, necrosis, autophagy or mitotic catastrophe (chemotherapy). As they modulate genes which lead to enhanced chemosensitivity, immunogenicity or dampened innate antiviral response of cancer cells, epigenetic drugs often show better efficacy when combined with chemotherapy, immunotherapy or oncolytic virotherapy. In chemoprevention, dietary phytochemicals such as epigallocatechin-3-gallate and sulforaphane act as epigenetic agents and show efficacy by targeting both cancer cells and the tumor microenvironment. Further understanding of how epigenetic mechanisms function in carcinogenesis and cancer progression as well as in normal physiology will enable us to establish a new paradigm for intelligent drug design in the treatment and prevention of cancer.
Collapse
|
38
|
Delbridge ARD, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 2015; 22:1071-80. [PMID: 25952548 DOI: 10.1038/cdd.2015.50] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022] Open
Abstract
Escape from apoptosis is a key attribute of tumour cells and facilitates chemo-resistance. The 'BCL-2-regulated' or 'intrinsic' apoptotic pathway integrates stress and survival signalling to govern whether a cancer cell will live or die. Indeed, many pro-apoptotic members of the BCL-2 family have demonstrated tumour-suppression activity in mouse models of cancer and are lost or repressed in certain human cancers. Conversely, overexpression of pro-survival BCL-2 family members promotes tumorigenesis in humans and in mouse models. Many of the drugs currently used in the clinic mediate their therapeutic effects (at least in part) through the activation of the BCL-2-regulated apoptotic pathway. However, initiators of this apoptotic pathway, such as p53, are mutated, lost or silenced in many human cancers rendering them refractory to treatment. To counter such resistance mechanisms, a novel class of therapeutics, 'BH3-mimetics', has been developed. These drugs directly activate apoptosis by binding and inhibiting select antiapoptotic BCL-2 family members and thereby bypass the requirement for upstream initiators, such as p53. In this review, we discuss the role of the BCL-2 protein family in the development and treatment of cancer, with an emphasis on mechanistic studies using well-established mouse models of cancer, before describing the development and already recognised potential of the BH3-mimetic compounds.
Collapse
Affiliation(s)
- A R D Delbridge
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - A Strasser
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Abstract
Resveratrol is a natural polyphenol found in a wide variety of plants, including grapes, berries, and peanuts. Resveratrol can modulate a wide spectrum of molecular targets, including those involved in cancer signaling pathways. Here, we evaluated the role of resveratrol in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and examined the molecular mechanisms in the human hepatocellular carcinoma cell line HepG2. We used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay to assess cell viability, flow cytometry to analyze cell cycle and apoptosis, and immunoblotting to detect protein expression. Resveratrol decreased cell viability at a concentration of 100 μmol/l or higher. At a concentration of 50 μmol/l, resveratrol induced S phase arrest of the cell cycle without apoptosis. In addition, phospho-AMPK increased significantly in a dose-dependent manner. Resveratrol was found to synergistically augment TRAIL-induced apoptosis. The rates of early apoptosis were 3.4, 9.6, and 49.6% on treatment with 50 μmol/l resveratrol, 10 ng/ml TRAIL, and both reagents, respectively. Resveratrol significantly downregulated the expression of survivin in a dose-dependent manner. In conclusion, we found that that resveratrol could augment TRAIL sensitivity by downregulating survivin. These results suggest that combination resveratrol with TRAIL may be an effective new strategy for the treatment of hepatocellular carcinoma.
Collapse
|
40
|
Chatterjee N, Tenniswood M. The potential of histone deacetylase inhibitors in breast cancer therapy. BREAST CANCER MANAGEMENT 2015. [DOI: 10.2217/bmt.14.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Breast cancer is the second leading cause of cancer-related mortality in women. Despite improvements in prevention, detection and treatment, breast cancer will be responsible for nearly 40,000 deaths in 2014. The function of histone deacetylases (HDACs) and their potential as therapeutic targets has become an area of intense investigation and small molecule inhibitors of HDACs (HDACi) are now being investigated as potential chemotherapeutics for breast cancer. In addition to altering chromatin structure through stabilization of histone acetylation, HDACi treatment induces the accumulation of acetylated isoforms of many nonhistone proteins, altering their structure and function. These structural changes influence protein–protein interactions and cellular processes including cell cycle arrest, apoptosis, autophagy, induction of reactive oxygen species and mitotic catastrophe. While the usefulness of these compounds as single agents for treatment of breast cancer is still under investigation, cotreatment with other therapies is being evaluated in a number of clinical trials.
Collapse
Affiliation(s)
- Namita Chatterjee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Martin Tenniswood
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, 1 Discovery Drive, Rensselaer, NY 12144, USA
| |
Collapse
|
41
|
Byler S, Sarkar S. Do epigenetic drug treatments hold the key to killing cancer progenitor cells? Epigenomics 2015; 6:161-5. [PMID: 24811783 DOI: 10.2217/epi.14.4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Shannon Byler
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
42
|
Oronsky B, Oronsky N, Scicinski J, Fanger G, Lybeck M, Reid T. Rewriting the epigenetic code for tumor resensitization: a review. Transl Oncol 2014; 7:626-31. [PMID: 25389457 PMCID: PMC4225689 DOI: 10.1016/j.tranon.2014.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 01/13/2023] Open
Abstract
In cancer chemotherapy, one axiom, which has practically solidified into dogma, is that acquired resistance to antitumor agents or regimens, nearly inevitable in all patients with metastatic disease, remains unalterable and irreversible, rendering therapeutic rechallenge futile. However, the introduction of epigenetic therapies, including histone deacetylase inhibitors (HDACis) and DNA methyltransferase inhibitors (DNMTIs), provides oncologists, like computer programmers, with new techniques to “overwrite” the modifiable software pattern of gene expression in tumors and challenge the “one and done” treatment prescription. Taking the epigenetic code-as-software analogy a step further, if chemoresistance is the product of multiple nongenetic alterations, which develop and accumulate over time in response to treatment, then the possibility to hack or tweak the operating system and fall back on a “system restore” or “undo” feature, like the arrow icon in the Windows XP toolbar, reconfiguring the tumor to its baseline nonresistant state, holds tremendous promise for turning advanced, metastatic cancer from a fatal disease into a chronic, livable condition. This review aims 1) to explore the potential mechanisms by which a group of small molecule agents including HDACis (entinostat and vorinostat), DNMTIs (decitabine and 5-azacytidine), and redox modulators (RRx-001) may reprogram the tumor microenvironment from a refractory to a nonrefractory state, 2) highlight some recent findings, and 3) discuss whether the current “once burned forever spurned” paradigm in the treatment of metastatic disease should be revised to promote active resensitization attempts with formerly failed chemotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tony Reid
- UCSD Moores Cancer Center, La Jolla, CA 92093, USA
| |
Collapse
|
43
|
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Drug Resistance in Cancer: An Overview. Cancers (Basel) 2014. [DOI: 78495111110.3390/cancers6031769' target='_blank'>'"<>78495111110.3390/cancers6031769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.3390/cancers6031769','', '10.1073/pnas.0801868105')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
78495111110.3390/cancers6031769" />
|
44
|
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Drug resistance in cancer: an overview. Cancers (Basel) 2014; 6:1769-92. [PMID: 25198391 PMCID: PMC4190567 DOI: 10.3390/cancers6031769] [Citation(s) in RCA: 1671] [Impact Index Per Article: 151.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 02/06/2023] Open
Abstract
Cancers have the ability to develop resistance to traditional therapies, and the increasing prevalence of these drug resistant cancers necessitates further research and treatment development. This paper outlines the current knowledge of mechanisms that promote or enable drug resistance, such as drug inactivation, drug target alteration, drug efflux, DNA damage repair, cell death inhibition, and the epithelial-mesenchymal transition, as well as how inherent tumor cell heterogeneity plays a role in drug resistance. It also describes the epigenetic modifications that can induce drug resistance and considers how such epigenetic factors may contribute to the development of cancer progenitor cells, which are not killed by conventional cancer therapies. Lastly, this review concludes with a discussion on the best treatment options for existing drug resistant cancers, ways to prevent the formation of drug resistant cancers and cancer progenitor cells, and future directions of study.
Collapse
Affiliation(s)
- Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA.
| | - Shannon Byler
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sarah Heerboth
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Karolina Lapinska
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | - Nicole Snyder
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sibaji Sarkar
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
45
|
Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014; 13:673-91. [PMID: 25131830 DOI: 10.1038/nrd4360] [Citation(s) in RCA: 1216] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic aberrations, which are recognized as key drivers of several human diseases, are often caused by genetic defects that result in functional deregulation of epigenetic proteins, their altered expression and/or their atypical recruitment to certain gene promoters. Importantly, epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. This Review discusses the role of altered expression and/or function of one class of epigenetic regulators--histone deacetylases (HDACs)--and their role in cancer, neurological diseases and immune disorders. We highlight the development of small-molecule HDAC inhibitors and their use in the laboratory, in preclinical models and in the clinic.
Collapse
|
46
|
Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S. Use of epigenetic drugs in disease: an overview. GENETICS & EPIGENETICS 2014; 6:9-19. [PMID: 25512710 PMCID: PMC4251063 DOI: 10.4137/geg.s12270] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 11/26/2022]
Abstract
Epigenetic changes such as DNA methylation and histone methylation and acetylation alter gene expression at the level of transcription by upregulating, downregulating, or silencing genes completely. Dysregulation of epigenetic events can be pathological, leading to cardiovascular disease, neurological disorders, metabolic disorders, and cancer development. Therefore, identifying drugs that inhibit these epigenetic changes are of great clinical interest. In this review, we summarize the epigenetic events associated with different disorders and diseases including cardiovascular, neurological, and metabolic disorders, and cancer. Knowledge of the specific epigenetic changes associated with these types of diseases facilitates the development of specific inhibitors, which can be used as epigenetic drugs. In this review, we discuss the major classes of epigenetic drugs currently in use, such as DNA methylation inhibiting drugs, bromodomain inhibitors, histone acetyl transferase inhibitors, histone deacetylase inhibitors, protein methyltransferase inhibitors, and histone methylation inhibitors and their role in reversing epigenetic changes and treating disease.
Collapse
Affiliation(s)
- Sarah Heerboth
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Karolina Lapinska
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nicole Snyder
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Meghan Leary
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah Rollinson
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sibaji Sarkar
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
47
|
Sun S, Han Y, Liu J, Fang Y, Tian Y, Zhou J, Ma D, Wu P. Trichostatin A targets the mitochondrial respiratory chain, increasing mitochondrial reactive oxygen species production to trigger apoptosis in human breast cancer cells. PLoS One 2014; 9:e91610. [PMID: 24626188 PMCID: PMC3953478 DOI: 10.1371/journal.pone.0091610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/11/2014] [Indexed: 02/06/2023] Open
Abstract
AIM Histone deacetylase inhibitors (HDACIs)-based therapies have stimulated interest via their anti-tumor activities, including apoptosis induction, cell cycle arrest, cell differentiation, and autophagy. However, the mechanisms of HDACI-associated anti-tumor activity are not yet clearly defined. The aim of this study was to explore the key events of Trichostatin A (TSA), a classic HDACI agent, against breast cancer cells. METHODS The MCF-7, MDA-MB-231 and MCF-10A cell lines were evaluated with colony-forming and cell viability assays. Apoptosis and cell cycle distribution were detected by flow cytometry. Mitochondrial function was measured with biochemical assays, flow cytometry and transmission electron microscopy. RESULTS TSA inhibited breast cancer cell viability and proliferation, without affecting MCF-10A cell. TSA-induced breast cancer cell apoptosis was initiated by G2-M arrest and depended on mitochondrial reactive oxygen species (ROS) produced subsequent to reduced mitochondrial respiratory chain activity. The enhanced mitochondrial ROS production and apoptosis in cancer cells were markedly attenuated by antioxidants, such as N-acetyl cysteine (NAC), reduced glutathione (GSH) and Vitamin C. CONCLUSION The present study demonstrated that TSA-induced cell death by arresting cell cycle in G2-M phase and was dependent on production of mitochondria-derived ROS, which was derived from impaired mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Shujuan Sun
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingyan Han
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Fang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Tian
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DM); (PW)
| | - Peng Wu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DM); (PW)
| |
Collapse
|
48
|
Fröhlich LF, Mrakovcic M, Smole C, Lahiri P, Zatloukal K. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells. PLoS One 2014; 9:e91558. [PMID: 24618889 PMCID: PMC3950220 DOI: 10.1371/journal.pone.0091558] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/13/2014] [Indexed: 12/02/2022] Open
Abstract
The lack of knowledge about molecular pathology of uterine sarcomas with a representation of 3–7% of all malignant uterine tumors prevents the establishment of effective therapy protocols. Here, we explored advanced therapeutic options to the previously discovered antitumorigenic effects of the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) by combined treatment with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L). In addition, we investigated the uterine sarcoma cell lines, MES-SA and ESS-1, regarding the underlying molecular mechanisms of SAHA and TRAIL-induced apoptosis and their resistance towards TRAIL. Compared to single SAHA or TRAIL treatment, the combination of SAHA with TRAIL led to complete cell death of both tumor cell lines after 24 to 48 hours. In contrast to single SAHA treatment, apoptosis occured faster and was more pronounced in ESS-1 cells than in MES-SA cells. Induction of SAHA- and TRAIL-induced apoptosis was accompanied by upregulation of the intrinsic apoptotic pathway via reduction of mitochondrial membrane potential, caspase-3, -6, and -7 activation, and PARP cleavage, but was also found to be partially caspase-independent. Apoptosis resistance was caused by reduced expression of caspase-8 and DR 4/TRAIL-R1 in ESS-1 and MES-SA cells, respectively, due to epigenetic silencing by DNA hypermethylation of gene promoter sequences. Treatment with the demethylating agent 5-Aza-2'-deoxycytidine or gene transfer therefore restored gene expression and increased the sensitivity of both cell lines against TRAIL-induced apoptosis. Our data provide evidence that deregulation of epigenetic silencing by histone acetylation and DNA hypermethylation might play a fundamental role in the origin of uterine sarcomas. Therefore, tumor growth might be efficiently overcome by a cytotoxic combinatorial treatment of HDAC inhibitors with TRAIL.
Collapse
Affiliation(s)
- Leopold F. Fröhlich
- Molecular Pathology Laboratory, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Maria Mrakovcic
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Claudia Smole
- Molecular Pathology Laboratory, Medical University of Graz, Graz, Austria
| | - Pooja Lahiri
- Molecular Pathology Laboratory, Medical University of Graz, Graz, Austria
| | - Kurt Zatloukal
- Molecular Pathology Laboratory, Medical University of Graz, Graz, Austria
| |
Collapse
|
49
|
Liu J, Edagawa M, Goshima H, Inoue M, Yagita H, Liu Z, Kitajima S. Role of ATF3 in synergistic cancer cell killing by a combination of HDAC inhibitors and agonistic anti-DR5 antibody through ER stress in human colon cancer cells. Biochem Biophys Res Commun 2014; 445:320-6. [PMID: 24530917 DOI: 10.1016/j.bbrc.2014.01.184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/17/2023]
Abstract
Histone deacetylase inhibitors (HDACIs) are promising agents for cancer therapy. However, the mechanism(s) responsible for the efficacy of HDACIs have not yet to be fully elucidated. Death receptor 5 (DR5) is a transmembrane receptor containing death domain that triggers cell death upon binding to TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) or agonistic anti-DR5 monoclonal antibody, and the combination of TRAIL/agonistic anti-DR5 monoclonal antibody and agents that increase the expression of DR5 is expected as a novel anticancer therapeutic strategy. Here we report that six different HDACIs activated endoplasmic reticulum (ER) stress sensor PERK and eIF2α and induced the ATF4/ATF3/CHOP pathway in p53-deficient human colon cancer cells. This resulted in an increased expression of DR5 on the cell surface and sensitized cells to apoptosis by agonistic anti-DR5 monoclonal antibody. Stress response gene ATF3 was required for efficient DR5 induction by HDACIs, and DR5 reporter assay showed that ATF3 play crucial role for the HDACIs-induced activation of DR5 gene transcription. These provide important mechanistic insight into how HDACIs exhibit pro-apoptotic activity in clinical anti-cancer treatments when they are used in combination with other therapeutic strategies.
Collapse
Affiliation(s)
- Jia Liu
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China; Department of Thyroid Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Makoto Edagawa
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroto Goshima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Makoto Inoue
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Zhonghui Liu
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China.
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| |
Collapse
|
50
|
Riley JS, Hutchinson R, McArt DG, Crawford N, Holohan C, Paul I, Van Schaeybroeck S, Salto-Tellez M, Johnston PG, Fennell DA, Gately K, O'Byrne K, Cummins R, Kay E, Hamilton P, Stasik I, Longley DB. Prognostic and therapeutic relevance of FLIP and procaspase-8 overexpression in non-small cell lung cancer. Cell Death Dis 2013; 4:e951. [PMID: 24309938 PMCID: PMC3877552 DOI: 10.1038/cddis.2013.481] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 01/06/2023]
Abstract
Non-small cell lung carcinoma remains by far the leading cause of cancer-related deaths worldwide. Overexpression of FLIP, which blocks the extrinsic apoptotic pathway by inhibiting caspase-8 activation, has been identified in various cancers. We investigated FLIP and procaspase-8 expression in NSCLC and the effect of HDAC inhibitors on FLIP expression, activation of caspase-8 and drug resistance in NSCLC and normal lung cell line models. Immunohistochemical analysis of cytoplasmic and nuclear FLIP and procaspase-8 protein expression was carried out using a novel digital pathology approach. Both FLIP and procaspase-8 were found to be significantly overexpressed in tumours, and importantly, high cytoplasmic expression of FLIP significantly correlated with shorter overall survival. Treatment with HDAC inhibitors targeting HDAC1-3 downregulated FLIP expression predominantly via post-transcriptional mechanisms, and this resulted in death receptor- and caspase-8-dependent apoptosis in NSCLC cells, but not normal lung cells. In addition, HDAC inhibitors synergized with TRAIL and cisplatin in NSCLC cells in a FLIP- and caspase-8-dependent manner. Thus, FLIP and procaspase-8 are overexpressed in NSCLC, and high cytoplasmic FLIP expression is indicative of poor prognosis. Targeting high FLIP expression using HDAC1–3 selective inhibitors such as entinostat to exploit high procaspase-8 expression in NSCLC has promising therapeutic potential, particularly when used in combination with TRAIL receptor-targeted agents.
Collapse
Affiliation(s)
- J S Riley
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|