1
|
Shen S, Zhou Y, Yin M, Liu S, Sun H, Guan Y, Huan C, Zheng X. CitUNE1 inhibits (+)-valencene synthesis by regulating CsTPS1 in 'Newhall' sweet orange. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109854. [PMID: 40194505 DOI: 10.1016/j.plaphy.2025.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
(+)-Valencene is the characteristic volatile compound in 'Newhall' sweet orange, and CsTPS1 is the gene that codes for the (+)-valencene synthase. Here, four transcription factors, including CitUNE1, CitUNE3, CitSCL1, and CitSCL13, were screened as candidate proteins by yeast one-hybrid (Y1H) library screening with CsTPS1 promoter as the bait. Among them, CitUNE1 bound to the G-box on the promoter of CsTPS1 and suppressed CsTPS1 expression, confirmed by Y1H, dual-luciferase assay, point-mutation experiment and EMSA. The expression pattern of CitUNE1 showed a negative correlation with both the content of (+)-valencene and CsTPS1 transcripts level, both during fruit development and after ethylene treatment. Furthermore, the role of CitUNE1 in (+)-valencene synthesis was confirmed using the transient over-expression and silencing in 'Newhall' sweet orange. Transient over-expression of CitUNE1 inhibited CsTPS1 expression and reduced the accumulation of (+)-valencene, while silencing of CitUNE1 induced CsTPS1 expression and triggered (+)-valencene synthesis in 'Newhall' sweet orange.
Collapse
Affiliation(s)
- Shuling Shen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China; Zhejiang-UK Joint Laboratory of Food Sensory Science, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Yuwei Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Mengyao Yin
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Sijia Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Hui Sun
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Yue Guan
- Hangzhou Food Service Group, Hangzhou, 310001, PR China
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China; Zhejiang-UK Joint Laboratory of Food Sensory Science, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Zheng X, Cao L, Qin L, Zhang X, Tang J, Xie X, Tang C, Yang L, Xie S, Dong C. Integrated metabolome and transcriptome analyses reveal the formation of seed albinism in Nelumbo nucifera. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40317475 DOI: 10.1002/jsfa.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/11/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Albinism in plants causes slow growth, dwarfing and even death. Most albinism is mainly focused on leaf albinism. Studies of seed albinism are still lacking and scarcely studied in higher plants with asexual reproduction. RESULTS In this study, two seed albinism mutations (AM1 and AM2) in lotus were unable to survive in normal condition, exhibiting a decline in carotenoid and chlorophyll contents compared with wild type (WT). Metabolome analyses illustrated a total of 51 differentially changed metabolites (DCMs) in embryo of AM1 (AM1-E), AM2 (AM2-E) and WT (WT-E), along with 94 DCMs in cotyledon of AM1 (AM1-C), AM2 (AM2-C) and WT (WT-C). Forty-four DCMs were associated with metabolic pathways including flavonoid, lipid, photosynthesis and starch metabolism. Additionally, transcriptome analysis was performed to screen a total of 2060 differentially expressed genes (DEGs) in WT-E, AM1-E and AM2-E, as well as 104 DEGs in WT-C, AM1-C and AM2-C. These DEGs were highly enriched in metabolic pathways of flavonoid biosynthesis, lipid biosynthesis, chlorophyll biosynthesis, carotenoid biosynthesis and the tricarboxylic acid cycle. CONCLUSIONS A total of 21 key genes encoding transcription factors, 100 DEGs and 44 DCMs were selected to construct correlation networks. The results suggested that combined effects of basic helix-loop-helix, myeloblastosis viral oncogene homologs, basic leucine zipper and APETALA2/ethylene-responsive factor regulated the DEGs involved in carotenoid synthesis, flavonoid biosynthesis, photosynthesis and fatty acid synthesis, which further resulted in the etiolation of N. nucifera. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingwen Zheng
- White Lotus Industrial Development Center of Guangchang County, Guangchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Longyun Cao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Lili Qin
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Xiaoyuan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jiping Tang
- White Lotus Industrial Development Center of Guangchang County, Guangchang, China
| | - Xianfang Xie
- White Lotus Industrial Development Center of Guangchang County, Guangchang, China
| | - Chongzhong Tang
- White Lotus Industrial Development Center of Guangchang County, Guangchang, China
| | - Liangbo Yang
- White Lotus Industrial Development Center of Guangchang County, Guangchang, China
| | - Shiping Xie
- White Lotus Industrial Development Center of Guangchang County, Guangchang, China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
3
|
Xie L, Li Y, Sun W, Pu M, Zhou J, He Y, Peng Y, Zheng C, Jiang C, Xu X, Xie X. OsPIL15-Induced Delay in Rice Heading Date via Direct Binding to the OsLF Promoter is Dependent on Functional Phytochrome B. PLANT, CELL & ENVIRONMENT 2025; 48:3326-3336. [PMID: 39737650 DOI: 10.1111/pce.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Heading date of rice (Oryza sativa) is a key factor determining rice production and regional adaptability. We analysed the molecular mechanism of OsPIL15, encoding phytochrome-interacting factor-like protein, in delaying rice heading date. Overexpression of OsPIL15 delayed rice heading date by upregulating Hd1 and inhibiting Hd3a and RFT1 expression. OsLF, encoding one rice heading repressor, was found to be the putative candidate regulated by OsPIL15 through a chromatin immunoprecipitation sequencing assay and a transcriptome sequencing assay. OsPIL15 could directly bind to the OsLF promoter and activated its expression. Knocking-out OsLF in OsPIL15-overexpressing lines resulted in flowering 2-3 days earlier, partially rescuing the delayed phenotype. This indicates that overexpression of OsPIL15 overexpression delays heading date partially through OsLF. Protein-protein interaction assay of OsPIL15 or OsPIL15-∆APB (OsPIL15 lacking the active phytochrome B [phyB]-binding [APB] motif) with PHYB showed that the APB motif was required for the interaction between OsPIL15 and PHYB. Furthermore, overexpression of either OsPIL15-∆APB in the wild type or OsPIL15 in the phyB mutant did not delay rice heading date under natural long-day conditions, suggesting that phyB influences OsPIL15-mediated delay in rice heading date.
Collapse
Affiliation(s)
- Lixia Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yaping Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Sun
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Menglin Pu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jinjun Zhou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanan He
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongbin Peng
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chongke Zheng
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Conghui Jiang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaohui Xu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianzhi Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
4
|
Jafari F, Dolatabadian A. A critical review of the importance of Far-Related Sequence (FRS)- FRS-Related Factor (FRF) transcription factors in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112410. [PMID: 39900189 DOI: 10.1016/j.plantsci.2025.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Transposable elements have long been recognised as critical drivers of genetic diversity and evolution in plant genomes, influencing various physiological and developmental processes. The transcription factor family FAR-RED ELONGATED HYPOCOTYLS3 (FHY3), and its homologue FAR-RED IMPAIRED RESPONSE1 (FAR1), initially identified as key components of phytochrome A (phyA)-mediated far-red (FR) light signalling in Arabidopsis thaliana, are derived from transposases and are essential for light signal transduction, plant growth, and development. FHY3 and FAR1 are also the founding members of the FAR1-RELATED SEQUENCE (FRS) family, which is conserved across terrestrial plants. While the coding sequences of many putative FRS and FAR1-RELATED FACTOR (FRF) orthologs have been identified in various angiosperm clades, their physiological functions remain largely unexplored. The FRF genes are considered truncated forms of FRS proteins that compete with FRS for DNA binding sites, thereby regulating gene expression. This review highlights recent advances in characterising the molecular mechanisms of FHY3, FAR1, and other members of the FRS-FRF protein family. We examine their roles in key processes such as regulating flowering time, controlling branching, integrating leaf aging and senescence, modulating the circadian clock, maintaining meristem function, starch synthesis, seed germination, and responding to Starch synthesis and carbon starvation. Additionally, we explore their contributions to plant immunity under biotic and abiotic stresses. Finally, we suggest future directions for functional characterising other FRS-FRF family proteins in plants, which could provide deeper insights into their regulatory roles in plant biology.
Collapse
Affiliation(s)
- Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aria Dolatabadian
- School of Biological Sciences, The University of Western Australia, Crawley 6009, Australia.
| |
Collapse
|
5
|
Sun T, Hazra A, Lui A, Zeng S, Wang X, Rao S, Owens LA, Fei Z, Zhao Y, Mazourek M, Giovannoni JG, Li L. GLKs directly regulate carotenoid biosynthesis via interacting with GBFs in plants. THE NEW PHYTOLOGIST 2025; 246:645-665. [PMID: 39953697 DOI: 10.1111/nph.20457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
Carotenoids are vital photosynthetic pigments for plants. Golden2-like transcription factors (GLKs) are widely recognized as major regulators of Chl biosynthesis and chloroplast development. However, despite GLKs being subjected to intensive investigations, whether GLKs directly regulate carotenoid biosynthesis and the molecular mechanisms by which GLKs transcriptionally activate their target genes remain unclear. Here, we report that GLKs directly regulate carotenoid biosynthesis and activate their target genes in a G-box binding factor (GBF)-dependent manner in Arabidopsis. Both in vitro and in vivo studies reveal that GLKs physically interact with GBFs to activate transcription of phytoene synthase (PSY), the gene encoding a rate-limiting enzyme for carotenoid biosynthesis. While GLKs possess transactivation activity, they depend on GBFs to directly bind to the G-box motif to modulate PSY expression. Loss of GBFs impairs GLK function in regulating carotenoid and Chl biosynthesis. Since the G-box motif is an enriched motif in the promoters of GLK-regulated genes, the GLK-GBF regulatory module likely serves as a common mechanism underlying GLK-regulated photosynthetic pigment biosynthesis and chloroplast development. Our findings uncover a novel regulatory machinery of carotenoid biosynthesis, discover a molecular mechanism of transcriptional regulation by GLKs, and divulge GLKs as important regulators to coordinate photosynthetic pigment synthesis in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Abhijit Hazra
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Shaohua Zeng
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xin Wang
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren A Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - James G Giovannoni
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Liang X, Zhao C, Cui J, Liu Z, Han D, Chen Q, Yang M, Jiang Z. Genome-Wide Identification of GmPIF Family and Regulatory Pathway Analysis of GmPIF3g in Different Temperature Environments. Int J Mol Sci 2025; 26:551. [PMID: 39859267 PMCID: PMC11765412 DOI: 10.3390/ijms26020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs. Genome-wide collinearity analysis revealed that fragment duplication events play a dominant role in expanding the GmPIF gene family. Cis-acting element analysis revealed that the GmPIF gene family is involved in light response, hormone response, biotic-abiotic stress response elements, and plant growth and development. Gene expression analysis in different temperature environments showed that the GmPIF family was found to be induced by phytohormone treatments, with a significant increase in the expression level of GmPIF3g. GmPIF3g plays a key role in the regulation of the entire network, and in addition, 30 proteins interacting with the GmPIF3g promoter were identified through the use of a novel biofilm interference technique. This technique showed that the transcription factor Dof (DNA binding with one finger) binds to the GmPIF3g promoter, and Y1H assays indicated that Dof regulates its expression by binding to the PIF promoter. These results provide a theoretical basis for further studies on the regulatory network of GmPIF genes to improve the structure of soybean plants under shade environments, as well as a new method for analyzing regulatory elements that interact with gene promoters.
Collapse
Affiliation(s)
- Xuefeng Liang
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| | - Caitong Zhao
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| | - Jiayang Cui
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| | - Zhihua Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China;
| | - Dezhi Han
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China;
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| | - Zhenfeng Jiang
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China; (X.L.); (C.Z.); (J.C.); (Q.C.)
| |
Collapse
|
7
|
Peng Y, Jiang Y, Chen Q, Lin Y, Li M, Zhang Y, Wang Y, He W, Zhang Y, Wang X, Tang H, Luo Y. Comparative transcriptome and metabolomic analysis reveal key genes and mechanisms responsible for the dark-green leaf color of a strawberry mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109327. [PMID: 39608287 DOI: 10.1016/j.plaphy.2024.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Photosynthesis is a source of energy for various types of plant life activities and is essential for plant growth and development. Consequently, the study of photosynthetic mechanisms has been a hot spot. Leaf color mutants has always been ideal materials for exploring the mechanisms of chlorophyll metabolism and photosynthesis. In this study, we identified a leaf color mutant of 'Benihoppe' strawberry in the field, which exhibited a darker green leaf color compared with the wild type. The content of total chlorophyll and carotenoid in the mutant leaves was elevated by 7.44-20.23% and 8.9-21.92%, respectively, compared with that of the wild type. Additionally, net photosynthetic rate in the mutant increased by 20.13%. Further transcriptome analysis showed that significant upregulation of genes such as GLK1, PPR, and MORF9 in the mutant leaves, which promoted chloroplast development. The expression levels of UROD, PPOC, PORA, CHLG, and CPOX were significantly upregulated during chlorophyll synthesis, while the expression levels of HCAR and CYP89A9 were significantly downregulated during chlorophyll degradation, thus leading to the accumulation of chlorophyll in mutant leaves. The upregulation of gene expression levels such as PetM, AtpD, PGK, and RPI4 during photosynthesis promoted multiple stages of light and dark reaction, thereby enhancing the photosynthetic capacity of the mutant. And the changes in metabolites such as monogalactosyl monoacylglycerol (MGMG), glucuronosyldiacylglycerol (GlcADG), raffinose, etc. also indicate that the mutant has metabolic differences in chloroplast composition and photosynthesis compared to 'Benihoppe'. The above results not only deepen our understanding of the mechanism behind the dark-green leaf color in strawberry mutants but also provide potential genetic resources for cultivating strawberry varieties with enhanced photosynthetic capacity.
Collapse
Affiliation(s)
- Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China.
| |
Collapse
|
8
|
Swift J, Luginbuehl LH, Hua L, Schreier TB, Donald RM, Stanley S, Wang N, Lee TA, Nery JR, Ecker JR, Hibberd JM. Exaptation of ancestral cell-identity networks enables C 4 photosynthesis. Nature 2024; 636:143-150. [PMID: 39567684 PMCID: PMC11618092 DOI: 10.1038/s41586-024-08204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
C4 photosynthesis is used by the most productive plants on the planet, and compared with the ancestral C3 pathway, it confers a 50% increase in efficiency1. In more than 60 C4 lineages, CO2 fixation is compartmentalized between tissues, and bundle-sheath cells become photosynthetically activated2. How the bundle sheath acquires this alternate identity that allows efficient photosynthesis is unclear. Here we show that changes to bundle-sheath gene expression in C4 leaves are associated with the gain of a pre-existing cis-code found in the C3 leaf. From single-nucleus gene-expression and chromatin-accessibility atlases, we uncover DNA binding with one finger (DOF) motifs that define bundle-sheath identity in the major crops C3 rice and C4 sorghum. Photosynthesis genes that are rewired to be strongly expressed in the bundle-sheath cells of C4 sorghum acquire cis-elements that are recognized by DOFs. Our findings are consistent with a simple model in which C4 photosynthesis is based on the recruitment of an ancestral cis-code associated with bundle-sheath identity. Gain of such elements harnessed a stable patterning of transcription factors between cell types that are found in both C3 and C4 leaves to activate photosynthesis in the bundle sheath. Our findings provide molecular insights into the evolution of the complex C4 pathway, and might also guide the rational engineering of C4 photosynthesis in C3 crops to improve crop productivity and resilience3,4.
Collapse
Affiliation(s)
- Joseph Swift
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tina B Schreier
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Department of Biology, University of Oxford, Oxford, UK
| | - Ruth M Donald
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Susan Stanley
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Na Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Travis A Lee
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Liu Q, Wang B, Xu W, Yuan Y, Yu J, Cui G. Genome-wide investigation of the PIF gene family in alfalfa (Medicago sativa L.) expression profiles during development and stress. BMC Genom Data 2024; 25:79. [PMID: 39223486 PMCID: PMC11370104 DOI: 10.1186/s12863-024-01264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Phytochrome-interacting factors (PIFs) plays an important role in plants as hubs for intracellular signaling regulation. The PIF gene family has been identified and characterized in many plants, but alfalfa (Medicago sativa L.), an important perennial high-quality legume forage, has not been reported on the PIF gene family. RESULTS In this study, we presented the identification and characterization of five MsPIF genes in alfalfa (Medicago sativa L.). Phylogenetic analysis indicated that PIFs from alfalfa and other four plant species could be divided into three groups supported by similar motif analysis. The collinearity analysis of the MsPIF gene family showed the presence of two gene pairs, and the collinearity analysis with AtPIFs showed three gene pairs, indicating that the evolutionary process of this family is relatively conservative. Analysis of cis-acting elements in promoter regions of MsPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. Gene expression analyses demonstrated that MsPIFs were primarily expressed in the leaves and were induced by various abiotic stresses. CONCLUSION This study conducted genome-wide identification, evolution, synteny analysis, and expression analysis of the PIFs in alfalfa. Our study lays a foundation for the study of the biological functions of the PIF gene family and provides a useful reference for improving abiotic stress resistance in alfalfa.
Collapse
Affiliation(s)
- Qianning Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Baiji Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wen Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuying Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jinqiu Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
10
|
Li L, Ge S, He L, Liu R, Mei Y, Xia X, Yu J, Zhou Y. SlDELLA interacts with SlPIF4 to regulate arbuscular mycorrhizal symbiosis and phosphate uptake in tomato. HORTICULTURE RESEARCH 2024; 11:uhae195. [PMID: 39257536 PMCID: PMC11384114 DOI: 10.1093/hr/uhae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Arbuscular mycorrhizal symbiosis (AMS), a complex and delicate process, is precisely regulated by a multitude of transcription factors. PHYTOCHROME-INTERACTING FACTORS (PIFs) are critical in plant growth and stress responses. However, the involvement of PIFs in AMS and the molecular mechanisms underlying their regulator functions have not been well elucidated. Here, we show that SlPIF4 negatively regulates the arbuscular mycorrhizal fungi (AMF) colonization and AMS-induced phosphate uptake in tomato. Protein-protein interaction studies suggest that SlDELLA interacts with SlPIF4, reducing its protein stability and inhibiting its transcriptional activity towards downstream target genes. This interaction promotes the accumulation of strigolactones (SLs), facilitating AMS development and phosphate uptake. As a transcription factor, SlPIF4 directly transcriptionally regulates genes involved in SLs biosynthesis, including SlCCD7, SlCDD8, and SlMAX1, as well as the AMS-specific phosphate transporter genes PT4 and PT5. Collectively, our findings uncover a molecular mechanism by which the SlDELLA-SlPIF4 module regulates AMS and phosphate uptake in tomato. We clarify a molecular basis for how SlPIF4 interacts with SLs to regulate the AMS and propose a potential strategy to improve phosphate utilization efficiency by targeting the AMS-specific phosphate transporter genes PTs.
Collapse
Affiliation(s)
- Lan Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shibei Ge
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Liqun He
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ruicheng Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Yuhong Mei
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| |
Collapse
|
11
|
Gao L, Xu S, Zhang J, Kang J, Zhong S, Shi H. Promotion of seedling germination in Arabidopsis by B-box zinc-finger protein BBX32. Curr Biol 2024; 34:3152-3164.e6. [PMID: 38971148 DOI: 10.1016/j.cub.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Seed germination represents a determinant for plants to enter ecosystems and is thus regarded as a key ecological and agronomic trait. It is tightly regulated by a variety of environmental cues to ensure that seeds germinate under favorable conditions. Here, we characterize BBX32, a B-box zinc-finger protein, as an imbibition-stimulated positive regulator of seed germination. Belonging to subgroup V of the BBX family, BBX32 exhibits distinct characteristics compared with its close counterparts within the same subgroup. BBX32 is transiently induced at both the transcriptional and post-transcriptional levels in the embryo upon water absorption. Genetic evidence indicates that BBX32 acts upstream of the master transcription factor PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) to facilitate light-induced seed germination. BBX32 directly interacts with PIF1, suppressing its protein-interacting and DNA-binding capabilities, thereby relieving PIF1's repression on seed germination. Furthermore, the imbibition-stimulated BBX32 functions in parallel with the light-induced transcription regulator HFR1 to collectively attenuate the transcriptional activities of PIF1. The BBX32-PIF1 de-repression module serves as a molecular connection that enables plants to integrate signals of water availability and light exposure, effectively coordinating the initiation of seed germination.
Collapse
Affiliation(s)
- Lulu Gao
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Sheng Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinming Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Jing Kang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China.
| |
Collapse
|
12
|
Wang G, Mao J, Ji M, Wang W, Fu J. A comprehensive assessment of photosynthetic acclimation to shade in C4 grass (Cynodon dactylon (L.) Pers.). BMC PLANT BIOLOGY 2024; 24:591. [PMID: 38902617 PMCID: PMC11191358 DOI: 10.1186/s12870-024-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.
Collapse
Affiliation(s)
- Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Jinyan Mao
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
| | - Mingxia Ji
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
13
|
Zhu X, Wang H, Li Y, Rao D, Wang F, Gao Y, Zhong W, Zhao Y, Wu S, Chen X, Qiu H, Zhang W, Xia Z. A Novel 10-Base Pair Deletion in the First Exon of GmHY2a Promotes Hypocotyl Elongation, Induces Early Maturation, and Impairs Photosynthetic Performance in Soybean. Int J Mol Sci 2024; 25:6483. [PMID: 38928189 PMCID: PMC11203641 DOI: 10.3390/ijms25126483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Plants photoreceptors perceive changes in light quality and intensity and thereby regulate plant vegetative growth and reproductive development. By screening a γ irradiation-induced mutant library of the soybean (Glycine max) cultivar "Dongsheng 7", we identified Gmeny, a mutant with elongated nodes, yellowed leaves, decreased chlorophyll contents, altered photosynthetic performance, and early maturation. An analysis of bulked DNA and RNA data sampled from a population segregating for Gmeny, using the BVF-IGV pipeline established in our laboratory, identified a 10 bp deletion in the first exon of the candidate gene Glyma.02G304700. The causative mutation was verified by a variation analysis of over 500 genes in the candidate gene region and an association analysis, performed using two populations segregating for Gmeny. Glyma.02G304700 (GmHY2a) is a homolog of AtHY2a in Arabidopsis thaliana, which encodes a PΦB synthase involved in the biosynthesis of phytochrome. A transcriptome analysis of Gmeny using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed changes in multiple functional pathways, including photosynthesis, gibberellic acid (GA) signaling, and flowering time, which may explain the observed mutant phenotypes. Further studies on the function of GmHY2a and its homologs will help us to understand its profound regulatory effects on photosynthesis, photomorphogenesis, and flowering time.
Collapse
Affiliation(s)
- Xiaobin Zhu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yuzhuo Li
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Demin Rao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Feifei Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yi Gao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Weiyu Zhong
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yujing Zhao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Shihao Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (X.C.)
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (X.C.)
| | - Hongmei Qiu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Wei Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| |
Collapse
|
14
|
Zang Y, Wu K, Liu L, Ran F, Wang C, Wu S, Wang D, Guo J, Min Y. Transcriptomic study of the role of MeFtsZ2-1 in pigment accumulation in cassava leaves. BMC Genomics 2024; 25:448. [PMID: 38802758 PMCID: PMC11129481 DOI: 10.1186/s12864-024-10165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/27/2024] [Indexed: 05/29/2024] Open
Abstract
MeFtsZ2-1 is a key gene for plant plastid division, but the mechanism by which MeFtsZ2-1 affects pigment accumulation in cassava (Manihot esculenta Crantz) through plastids remains unclear. We found that MeFtsZ2-1 overexpression in cassava (OE) exhibited darker colors of leaves, with increased levels of anthocyanins and carotenoids. Further observation via Transmission Electron Microscopy (TEM) revealed no apparent defects in chloroplast structure but an increase in the number of plastoglobule in OE leaves. RNA-seq results showed 1582 differentially expressed genes (DEGs) in leaves of OE. KEGG pathway analysis indicated that these DEGs were enriched in pathways related to flavonoid, anthocyanin, and carotenoid biosynthesis. This study reveals the role of MeFtsZ2-1 in cassava pigment accumulation from a physiological and transcriptomic perspective, providing a theoretical basis for improving cassava quality.
Collapse
Affiliation(s)
- Yuwei Zang
- Department of Biosciences, School of Life and Health, Hainan University, Haikou, Hainan, 570228, China
| | - Kunlin Wu
- Department of Biosciences, School of Life and Health, Hainan University, Haikou, Hainan, 570228, China
| | - Liangwang Liu
- Department of Biosciences, School of Life and Health, Hainan University, Haikou, Hainan, 570228, China
| | - Fangfang Ran
- Department of Biosciences, School of Life and Health, Hainan University, Haikou, Hainan, 570228, China
| | - Changyi Wang
- Department of Biosciences, School of Life and Health, Hainan University, Haikou, Hainan, 570228, China
| | - Shuwen Wu
- Department of Biosciences, School of Life and Health, Hainan University, Haikou, Hainan, 570228, China
| | - Dayong Wang
- Department of Biosciences, School of Life and Health, Hainan University, Haikou, Hainan, 570228, China.
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences and Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou, Hainan, 570228, China.
| | - Jianchun Guo
- Institute of Tropical Biotechnology, Sanya Institute, Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572000, China.
| | - Yi Min
- Department of Biosciences, School of Life and Health, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
15
|
Zou Y, Huang Y, Zhang D, Chen H, Liang Y, Hao M, Yin Y. Molecular Mechanisms of Chlorophyll Deficiency in Ilex × attenuata 'Sunny Foster' Mutant. PLANTS (BASEL, SWITZERLAND) 2024; 13:1284. [PMID: 38794356 PMCID: PMC11124982 DOI: 10.3390/plants13101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Ilex × attenuata 'Sunny Foster' represents a yellow leaf mutant originating from I. × attenuata 'Foster#2', a popular ornamental woody cultivar. However, the molecular mechanisms underlying this leaf color mutation remain unclear. Using a comprehensive approach encompassing cytological, physiological, and transcriptomic methodologies, notable distinctions were discerned between the mutant specimen and its wild type. The mutant phenotype displayed aberrant chloroplast morphology, diminished chlorophyll content, heightened carotenoid/chlorophyll ratios, and a decelerated rate of plant development. Transcriptome analysis identified differentially expressed genes (DEGs) related to chlorophyll metabolism, carotenoid biosynthesis and photosynthesis. The up-regulation of CHLD and CHLI subunits leads to decreased magnesium chelatase activity, while the up-regulation of COX10 increases heme biosynthesis-both impair chlorophyll synthesis. Conversely, the down-regulation of HEMD hindered chlorophyll synthesis, and the up-regulation of SGR enhanced chlorophyll degradation, resulting in reduced chlorophyll content. Additionally, genes linked to carotenoid biosynthesis, flavonoid metabolism, and photosynthesis were significantly down-regulated. We also identified 311 putative differentially expressed transcription factors, including bHLHs and GLKs. These findings shed light on the molecular mechanisms underlying leaf color mutation in I. × attenuata 'Sunny Foster' and provide a substantial gene reservoir for enhancing leaf color through breeding techniques.
Collapse
Affiliation(s)
- Yiping Zou
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Qinghao Landscape Horticulture Co., Ltd., Nanjing 211225, China
| | - Yajian Huang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
| | - Donglin Zhang
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Hong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Youwang Liang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
| | - Mingzhuo Hao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
- Jiangsu Qinghao Landscape Horticulture Co., Ltd., Nanjing 211225, China
| | - Yunlong Yin
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
16
|
Shi Q, Xia Y, Xue N, Wang Q, Tao Q, Li M, Xu D, Wang X, Kong F, Zhang H, Li G. Modulation of starch synthesis in Arabidopsis via phytochrome B-mediated light signal transduction. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:973-985. [PMID: 38391049 DOI: 10.1111/jipb.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/06/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Starch is a major storage carbohydrate in plants and is critical in crop yield and quality. Starch synthesis is intricately regulated by internal metabolic processes and external environmental cues; however, the precise molecular mechanisms governing this process remain largely unknown. In this study, we revealed that high red to far-red (high R:FR) light significantly induces the synthesis of leaf starch and the expression of synthesis-related genes, whereas low R:FR light suppress these processes. Arabidopsis phytochrome B (phyB), the primary R and FR photoreceptor, was identified as a critical positive regulator in this process. Downstream of phyB, basic leucine zipper transcription factor ELONGATED HYPOCOTYL5 (HY5) was found to enhance starch synthesis, whereas the basic helix-loop-helix transcription factors PHYTOCHROME INTERACTING FACTORs (PIF3, PIF4, and PIF5) inhibit starch synthesis in Arabidopsis leaves. Notably, HY5 and PIFs directly compete for binding to a shared G-box cis-element in the promoter region of genes encoding starch synthases GBSS, SS3, and SS4, which leads to antagonistic regulation of their expression and, consequently, starch synthesis. Our findings highlight the vital role of phyB in enhancing starch synthesis by stabilizing HY5 and facilitating PIFs degradation under high R:FR light conditions. Conversely, under low R:FR light, PIFs predominantly inhibit starch synthesis. This study provides insight into the physiological and molecular functions of phyB and its downstream transcription factors HY5 and PIFs in starch synthesis regulation, shedding light on the regulatory mechanism by which plants synchronize dynamic light signals with metabolic cues to module starch synthesis.
Collapse
Affiliation(s)
- Qingbiao Shi
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Xia
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Na Xue
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qibin Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Qing Tao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Mingjing Li
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Di Xu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaofei Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Fanying Kong
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Haisen Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Gang Li
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
17
|
Park YJ, Nam BE, Park CM. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:865-882. [PMID: 38116738 DOI: 10.1111/jipb.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Bo Eun Nam
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
18
|
Chen W, Tang L, Li Q, Cai Y, Ahmad S, Wang Y, Tang S, Guo N, Wei X, Tang S, Shao G, Jiao G, Xie L, Hu S, Sheng Z, Hu P. YGL3 Encoding an IPP and DMAPP Synthase Interacts with OsPIL11 to Regulate Chloroplast Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:8. [PMID: 38228921 DOI: 10.1186/s12284-024-00687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
As the source of isoprenoid precursors, the plastidial methylerythritol phosphate (MEP) pathway plays an essential role in plant development. Here, we report a novel rice (Oryza sativa L.) mutant ygl3 (yellow-green leaf3) that exhibits yellow-green leaves and lower photosynthetic efficiency compared to the wild type due to abnormal chloroplast ultrastructure and reduced chlorophyll content. Map-based cloning showed that YGL3, one of the major genes involved in the MEP pathway, encodes 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, which is localized in the thylakoid membrane. A single base substitution in ygl3 plants resulted in lower 4-hydroxy-3-methylbut-2-enyl diphosphate reductase activity and lower contents of isopentenyl diphosphate (IPP) compared to the wild type. The transcript levels of genes involved in the syntheses of chlorophyll and thylakoid membrane proteins were significantly reduced in the ygl3 mutant compared to the wild type. The phytochrome interacting factor-like gene OsPIL11 regulated chlorophyll synthesis during the de-etiolation process by directly binding to the promoter of YGL3 to activate its expression. The findings provides a theoretical basis for understanding the molecular mechanisms by which the MEP pathway regulate chloroplast development in rice.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, P. R. China
| | - Liqun Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Qianlong Li
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yicong Cai
- Key Labora tory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Ministry of Education/Collaboration Center for Double-season Rice Modernization Production, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yakun Wang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shengjia Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Naihui Guo
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China.
| |
Collapse
|
19
|
Mu XR, Wang YB, Bao QX, Wei YT, Zhao ST, Tao WZ, Liu YX, Wang WN, Yu FH, Tong C, Wang JW, Gu CY, Wang QM, Liu XR, Sai N, Zhu JL, Zhang J, Loake GJ, Meng LS. Glucose status within dark-grown etiolated cotyledons determines seedling de-etiolation upon light irradiation. PLANT PHYSIOLOGY 2023; 194:391-407. [PMID: 37738410 DOI: 10.1093/plphys/kiad508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Exposure of dark-grown etiolated seedlings to light triggers the transition from skotomorphogenesis/etiolation to photomorphogenesis/de-etiolation. In the life cycle of plants, de-etiolation is essential for seedling development and plant survival. The mobilization of soluble sugars (glucose [Glc], sucrose, and fructose) derived from stored carbohydrates and lipids to target organs, including cotyledons, hypocotyls, and radicles, underpins de-etiolation. Therefore, dynamic carbohydrate biochemistry is a key feature of this phase transition. However, the molecular mechanisms coordinating carbohydrate status with the cellular machinery orchestrating de-etiolation remain largely opaque. Here, we show that the Glc sensor HEXOKINASE 1 (HXK1) interacts with GROWTH REGULATOR FACTOR5 (GRF5), a transcriptional activator and key plant growth regulator, in Arabidopsis (Arabidopsis thaliana). Subsequently, GRF5 directly binds to the promoter of phytochrome A (phyA), encoding a far-red light (FR) sensor/cotyledon greening inhibitor. We demonstrate that the status of Glc within dark-grown etiolated cotyledons determines the de-etiolation of seedlings when exposed to light irradiation by the HXK1-GRF5-phyA molecular module. Thus, following seed germination, accumulating Glc within dark-grown etiolated cotyledons stimulates a HXK1-dependent increase of GRF5 and an associated decrease of phyA, triggering the perception, amplification, and relay of HXK1-dependent Glc signaling, thereby facilitating the de-etiolation of seedlings following light irradiation. Our findings, therefore, establish how cotyledon carbohydrate signaling under subterranean darkness is sensed, amplified, and relayed, determining the phase transition from skotomorphogenesis to photomorphogenesis on exposure to light irradiation.
Collapse
Affiliation(s)
- Xin-Rong Mu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yi-Bo Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741600, People's Republic of China
| | - Qin-Xin Bao
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yu-Ting Wei
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Sheng-Ting Zhao
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Wen-Zhe Tao
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yu-Xin Liu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Wan-Ni Wang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Fu-Huan Yu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Chen Tong
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jing-Wen Wang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Cheng-Yue Gu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Qi-Meng Wang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Xin-Ran Liu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Na Sai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jin-Lei Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jian Zhang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Gary J Loake
- Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University-Edinburgh University, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, Edinburgh EH9 3JR, UK
| | - Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| |
Collapse
|
20
|
Gutkowska M, Buszewicz D, Zajbt-Łuczniewska M, Radkiewicz M, Nowakowska J, Swiezewska E, Surmacz L. Medium-chain-length polyprenol (C45-C55) formation in chloroplasts of Arabidopsis is brassinosteroid-dependent. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154126. [PMID: 37948907 DOI: 10.1016/j.jplph.2023.154126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Brassinosteroids are important plant hormones influencing, among other processes, chloroplast development, the electron transport chain during light reactions of photosynthesis, and the Calvin-Benson cycle. Medium-chain-length polyprenols built of 9-11 isoprenoid units (C45-C55 carbons) are a class of isoprenoid compounds present in abundance in thylakoid membranes. They are synthetized in chloroplast by CPT7 gene from Calvin cycle derived precursors on MEP (methylerythritol 4-phosphate) isoprenoid biosynthesis pathway. C45-C55 polyprenols affect thylakoid membrane ultra-structure and hence influence photosynthetic apparatus performance in plants such as Arabidopsis and tomato. So far nothing is known about the hormonal or environmental regulation of CPT7 gene expression. The aim of our study was to find out if medium-chain-length polyprenol biosynthesis in plants may be regulated by hormonal cues.We found that the CPT7 gene in Arabidopsis has a BZR1 binding element (brassinosteroid dependent) in its promoter. Brassinosteroid signaling mutants in Arabidopsis accumulate a lower amount of medium-chain-length C45-C55 polyprenols than control plants. At the same time carotenoid and chlorophyll content is increased, and the amount of PsbD1A protein coming from photosystem II does not undergo a significant change. On contrary, treatment of WT plants with epi-brassinolide increases C45-C55 polyprenols content. We also report decreased transcription of MEP enzymes (besides C45-C55 polyprenols, precursors of numerous isoprenoids, e.g. phytol, carotenoids are derived from this pathway) and genes encoding biosynthesis of medium-chain-length polyprenol enzymes in brassinosteroid perception mutant bri1-116. Taken together, we document that brassinosteroids affect biosynthetic pathway of C45-C55 polyprenols.
Collapse
Affiliation(s)
- Małgorzata Gutkowska
- Institute of Biology, Warsaw University of Life Sciences, ul. Nowoursynowska 159, bldg. 37, 02-776, Warsaw, Poland.
| | - Daniel Buszewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marta Zajbt-Łuczniewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Mateusz Radkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Julita Nowakowska
- Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
21
|
Li J, Chen S, Yin Y, Shan Q, Zheng C, Chen Y. Genome-Wide Analysis of bHLH Family Genes and Identification of Members Associated with Cold/Drought-Induced Photoinhibition in Kandelia obovata. Int J Mol Sci 2023; 24:15942. [PMID: 37958925 PMCID: PMC10647802 DOI: 10.3390/ijms242115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Plant basic helix-loop-helix (bHLH) transcription factors play pivotal roles in responding to stress, including cold and drought. However, it remains unclear how bHLH family genes respond to these stresses in Kandelia obovata. In this study, we identified 75 bHLH members in K. obovata, classified into 11 subfamilies and unevenly distributed across its 18 chromosomes. Collineation analysis revealed that segmental duplication primarily drove the expansion of KobHLH genes. The KobHLH promoters were enriched with elements associated with light response. Through RNA-seq, we identified several cold/drought-associated KobHLH genes. This correlated with decreased net photosynthetic rates (Pn) in the leaves of cold/drought-treated plants. Weighted gene co-expression network analysis (WGCNA) confirmed that 11 KobHLH genes were closely linked to photoinhibition in photosystem II (PS II). Among them, four Phytochrome Interacting Factors (PIFs) involved in chlorophyll metabolism were significantly down-regulated. Subcellular localization showed that KobHLH52 and KobHLH30 were located in the nucleus. Overall, we have comprehensively analyzed the KobHLH family and identified several members associated with photoinhibition under cold or drought stress, which may be helpfulfor further cold/drought-tolerance enhancement and molecular breeding through genetic engineering in K. obovata.
Collapse
Affiliation(s)
- Junjian Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siyi Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaxin Yin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qiaobo Shan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chunfang Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yan Chen
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
22
|
Yang M, Wan S, Chen J, Chen W, Wang Y, Li W, Wang M, Guan R. Mutation to a cytochrome P 450 -like gene alters the leaf color by affecting the heme and chlorophyll biosynthesis pathways in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:432-445. [PMID: 37421327 DOI: 10.1111/tpj.16382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
The regulated biosynthesis of chlorophyll is important because of its effects on plant photosynthesis and dry biomass production. In this study, a map-based cloning approach was used to isolate the cytochrome P450 -like gene BnaC08g34840D (BnCDE1) from a chlorophyll-deficient mutant (cde1) of Brassica napus obtained by ethyl methanesulfonate (EMS) mutagenization. Sequence analyses revealed that BnaC08g34840D in the cde1 mutant (BnCDE1I320T ) encodes a substitution at amino acid 320 (Ile320Thr) in the conserved region. The over-expression of BnCDE1I320T in ZS11 (i.e., gene-mapping parent with green leaves) recapitulated a yellow-green leaf phenotype. The CRISPR/Cas9 genome-editing system was used to design two single-guide RNAs (sgRNAs) targeting BnCDE1I320T in the cde1 mutant. The knockout of BnCDE1I320T in the cde1 mutant via a gene-editing method restored normal leaf coloration (i.e., green leaves). These results indicate that the substitution in BnaC08g34840D alters the leaf color. Physiological analyses showed that the over-expression of BnCDE1I320T leads to decreases in the number of chloroplasts per mesophyll cell and in the contents of the intermediates of the chlorophyll biosynthesis pathway in leaves, while it increases heme biosynthesis, thereby lowering the photosynthetic efficiency of the cde1 mutant. The Ile320Thr mutation in the highly conserved region of BnaC08g34840D inhibited chlorophyll biosynthesis and disrupted the balance between heme and chlorophyll biosynthesis. Our findings may further reveal how the proper balance between the chlorophyll and heme biosynthesis pathways is maintained.
Collapse
Affiliation(s)
- Mao Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubei Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenjing Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meihong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongzhan Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Sajib SA, Kandel M, Prity SA, Oukacine C, Gakière B, Merendino L. Role of plastids and mitochondria in the early development of seedlings in dark growth conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1272822. [PMID: 37841629 PMCID: PMC10570830 DOI: 10.3389/fpls.2023.1272822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Establishment of the seedlings is a crucial stage of the plant life cycle. The success of this process is essential for the growth of the mature plant. In Nature, when seeds germinate under the soil, seedlings follow a dark-specific program called skotomorphogenesis, which is characterized by small, non-green cotyledons, long hypocotyl, and an apical hook-protecting meristematic cells. These developmental structures are required for the seedlings to emerge quickly and safely through the soil and gain autotrophy before the complete depletion of seed resources. Due to the lack of photosynthesis during this period, the seed nutrient stocks are the primary energy source for seedling development. The energy is provided by the bioenergetic organelles, mitochondria, and etioplast (plastid in the dark), to the cell in the form of ATP through mitochondrial respiration and etio-respiration processes, respectively. Recent studies suggest that the limitation of the plastidial or mitochondrial gene expression induces a drastic reprogramming of the seedling morphology in the dark. Here, we discuss the dark signaling mechanisms involved during a regular skotomorphogenesis and how the dysfunction of the bioenergetic organelles is perceived by the nucleus leading to developmental changes. We also describe the probable involvement of several plastid retrograde pathways and the interconnection between plastid and mitochondria during seedling development. Understanding the integration mechanisms of organellar signals in the developmental program of seedlings can be utilized in the future for better emergence of crops through the soil.
Collapse
Affiliation(s)
- Salek Ahmed Sajib
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Margot Kandel
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Sadia Akter Prity
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Cylia Oukacine
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Bertrand Gakière
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Livia Merendino
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| |
Collapse
|
24
|
Ying J, Wang Y, Xu L, Yao S, Wang K, Dong J, Ma Y, Wang L, Xie Y, Yan K, Li J, Liu L. RsGLK2.1-RsNF-YA9a module positively regulates the chlorophyll biosynthesis by activating RsHEMA2 in green taproot of radish. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111768. [PMID: 37343602 DOI: 10.1016/j.plantsci.2023.111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Radish (Raphanus sativus L.) is an economically important and widely cultivated root vegetable crop. The coloration of the green skin and green flesh is an important trait influencing the nutrition and flavor quality in fruit radish. GOLDEN2-LIKEs (GLKs) play critically important roles in plastid development and chlorophyll biosynthesis in plants. However, the molecular mechanism underlying chlorophyll biosynthesis still remain elusive in green fruit radish taproot. Herein, the RsGLK2.1 gene exhibited higher expression level in taproot with a green skin (GS) and green flesh (GF) than that in taproot of the white or red radish genotypes. RsGLK2.1 is a nuclear transcription factor that has intrinsic transcriptional activation activity. Overexpression of RsGLK2.1 increased the total chlorophyll content of 20.68%-45.84% in radish leaves. Knockout of the RsGLK2.1 gene via CRISPR/Cas9 technology resulted in a significant decrease in the chlorophyll content. Overexpression of the RsGLK2.1 gene could restore the phenotype of the glk1glk2 mutant Arabidopsis. RsGLK2.1 was participated in regulating the chlorophyll biosynthesis by directly binding to the promoter of RsHEMA2 and activating its transcription. The interaction of RsNF-YA9a with RsGLK2.1 increased the transcriptional activity of the downstream gene RsHEMA2 under the light condition rather than the dark condition, indicating that both of them regulate the chlorophyll biosynthesis in a light-dependent manner of radish. Overall, these results provided insights into the molecular framework of the RsGLK2.1-RsNF-YA9a module, and could facilitate dissecting the regulatory mechanism underlying chlorophyll biosynthesis in green taproot of radish, and genetic improvement of quality traits in fruit radish breeding programs.
Collapse
Affiliation(s)
- Jiali Ying
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuqi Yao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yinbo Ma
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, PR China
| | - Lun Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kang Yan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingxue Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
25
|
Liu S, Zhang Y, Pan X, Li B, Yang Q, Yang C, Zhang J, Wu F, Yang A, Li Y. PIF1, a phytochrome-interacting factor negatively regulates drought tolerance and carotenoids biosynthesis in tobacco. Int J Biol Macromol 2023; 247:125693. [PMID: 37419268 DOI: 10.1016/j.ijbiomac.2023.125693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
The phytochrome-interacting factors (PIFs) function crucially in multiple physiological processes, but the biological functions of some PIFs remain elusive in some species. Here, a PIF transcription factor NtPIF1 was cloned and characterized in tobacco (Nicotiana tabacum L.). The transcript of NtPIF1 was significantly induced by drought stress treatments, and it localized in the nuclear. Knockout of NtPIF1 by CRISPR/Cas9 system led to the improved drought tolerance of tobacco with increased osmotic adjustment, antioxidant activity, photosynthetic efficiency and decreased water loss rate. On the contrary, NtPIF1-overexpression plants displays drought-sensitive phenotypes. In addition, NtPIF1 reduced the biosynthesis of abscisic acid (ABA) and its upstream carotenoids by regulating the expression of genes involved in ABA and carotenoids biosynthetic pathway upon drought stress. Electrophoretic mobility shift and dual-luciferase assays illustrated that, NtPIF1 directly bind to the E-box elements within the promoters of NtNCED3, NtABI5, NtZDS and Ntβ-LCY to repress their transcription. Overall, these data suggested that NtPIF1 negatively regulate tobacco adaptive response to drought stress and carotenoids biosynthesis; moreover, NtPIF1 has the potential to develop drought-tolerant tobacco plants using CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Shaohua Liu
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China; Shenzhen Yupeng Technology Co., Ltd, Shenzhen 518110, China
| | - Yinchao Zhang
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | - Xuhao Pan
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | - Bin Li
- Sichuan Tobacco Corporation, Chengdu 610014, China
| | - Qing Yang
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | - Changqing Yang
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | | | - Fengyan Wu
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | - Aiguo Yang
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China.
| | - Yiting Li
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China.
| |
Collapse
|
26
|
Xiong X, Li J, Su P, Duan H, Sun L, Xu S, Sun Y, Zhao H, Chen X, Ding D, Zhang X, Tang J. Genetic dissection of maize (Zea mays L.) chlorophyll content using multi-locus genome-wide association studies. BMC Genomics 2023; 24:384. [PMID: 37430212 DOI: 10.1186/s12864-023-09504-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The chlorophyll content (CC) is a key factor affecting maize photosynthetic efficiency and the final yield. However, its genetic basis remains unclear. The development of statistical methods has enabled researchers to design and apply various GWAS models, including MLM, MLMM, SUPER, FarmCPU, BLINK and 3VmrMLM. Comparative analysis of their results can lead to more effective mining of key genes. RESULTS The heritability of CC was 0.86. Six statistical models (MLM, BLINK, MLMM, FarmCPU, SUPER, and 3VmrMLM) and 1.25 million SNPs were used for the GWAS. A total of 140 quantitative trait nucleotides (QTNs) were detected, with 3VmrMLM and MLM detecting the most (118) and fewest (3) QTNs, respectively. The QTNs were associated with 481 genes and explained 0.29-10.28% of the phenotypic variation. Additionally, 10 co-located QTNs were detected by at least two different models or methods, three co-located QTNs were identified in at least two different environments, and six co-located QTNs were detected by different models or methods in different environments. Moreover, 69 candidate genes within or near these stable QTNs were screened based on the B73 (RefGen_v2) genome. GRMZM2G110408 (ZmCCS3) was identified by multiple models and in multiple environments. The functional characterization of this gene indicated the encoded protein likely contributes to chlorophyll biosynthesis. In addition, the CC differed significantly between the haplotypes of the significant QTN in this gene, and CC was higher for haplotype 1. CONCLUSION This study's results broaden our understanding of the genetic basis of CC, mining key genes related to CC and may be relevant for the ideotype-based breeding of new maize varieties with high photosynthetic efficiency.
Collapse
Affiliation(s)
- Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Pingping Su
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haidong Zhao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaoyang Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
27
|
Sharma A, Samtani H, Sahu K, Sharma AK, Khurana JP, Khurana P. Functions of Phytochrome-Interacting Factors (PIFs) in the regulation of plant growth and development: A comprehensive review. Int J Biol Macromol 2023:125234. [PMID: 37290549 DOI: 10.1016/j.ijbiomac.2023.125234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Transcription factors play important roles in governing plant responses upon changes in their ambient conditions. Any fluctuation in the supply of critical requirements for plants, such as optimum light, temperature, and water leads to the reprogramming of gene-signaling pathways. At the same time, plants also evaluate and shift their metabolism according to the various stages of development. Phytochrome-Interacting Factors are one of the most important classes of transcription factors that regulate both developmental and external stimuli-based growth of plants. This review focuses on the identification of PIFs in various organisms, regulation of PIFs by various proteins, functions of PIFs of Arabidopsis in diverse developmental pathways such as seed germination, photomorphogenesis, flowering, senescence, seed and fruit development, and external stimuli-induced plant responses such as shade avoidance response, thermomorphogenesis, and various abiotic stress responses. Recent advances related to the functional characterization of PIFs of crops such as rice, maize, and tomato have also been incorporated in this review, to ascertain the potential of PIFs as key regulators to enhance the agronomic traits of these crops. Thus, an attempt has been made to provide a holistic view of the function of PIFs in various processes in plants.
Collapse
Affiliation(s)
- Aishwarye Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Karishma Sahu
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Jitendra Paul Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
28
|
Li G, Cheng L, Li Z, Zhao Y, Wang Y. Over-expression of CcMYB24, encoding a R2R3-MYB transcription factor from a high-leaf-number mutant of Cymbidium, increases the number of leaves in Arabidopsis. PeerJ 2023; 11:e15490. [PMID: 37273531 PMCID: PMC10239231 DOI: 10.7717/peerj.15490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Ornamental foliage plants have long been cultivated for their attractive leaves. Variation in leaf traits of ornamental foliage plants is one of the goals in breeding. MYB transcription factors regulate many aspects of leaf development, and thus influence morphological traits of leaves. However, little is known about the function of MYB transcription factors in leaf development of Cymbidium, one of the most economically important ornamental plants in the world. In the present study, a MYB transcription factor, CcMYB24, was identified and the corresponding gene cloned from a new orchid mutant, TRIR-2, which produces more leaves than control plants. The CcMYB24 showed a higher expression level in 'TRIR-2' than in control plants, and the protein was located in the nucleus. The sequence of CcMYB24 showed a high similarity with RAX2-like genes which belong to the R2R3-MYB gene family in other Cymbidium plants. Overexpression of CcMYB24 resulted in a phenotype with an increased number of leaves, elevated chlorophyll content, and decreased contents of carotenoids and flavonoids in Arabidopsis. These results provide functional evidence for the role of CcMYB24 in promoting the production of leaves in 'TRIR-2'. Understanding the role of CcMYB24 in Cymbidium will be beneficial for the molecular breeding of ornamental foliage plants.
Collapse
|
29
|
Chen Y, Cai X, Tang B, Xie Q, Chen G, Chen X, Hu Z. SlERF.J2 reduces chlorophyll accumulation and inhibits chloroplast biogenesis and development in tomato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111578. [PMID: 36608875 DOI: 10.1016/j.plantsci.2022.111578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Chlorophyll metabolism and chloroplast biogenesis in tomato (Solanum lycopersicum) leaves contribute to photosynthesis; however, their molecular mechanisms are poorly understood. In this study, we found that overexpression of SlERF.J2 (ethylene transcription factor) resulted in a decrease in leaf chlorophyll content and reduced accumulation of starch and soluble sugar. The slerf.j2 knockout mutant showed no apparent change. Further observation of tissue sections and transmission electron microscopy (TEM) showed that SlERF.J2 was involved in chlorophyll accumulation and chloroplast formation. RNA-seq of mature SlERF.J2-OE leaves showed that many genes involved in chlorophyll biosynthesis and chloroplast formation were significantly downregulated compared with those in WT leaves. Genome global scanning of the ERF TF binding site combined with RNA-seq differential gene expression and qRT-PCR detection analysis showed that COP1 was a potential target gene of SlERF.J2. Tobacco transient expression technology, a dual-luciferase reporter system and Y1H technology were employed to verify that SlERF.J2 could bind to the COP1 promoter. Notably, overexpression of SlERF.J2 in Nr mutants resulted in impaired chloroplast biogenesis and development. Taken together, our findings demonstrated that SlERF.J2 plays an essential role in chlorophyll accumulation and chloroplast formation, laying a foundation for enhancing plant photosynthesis.
Collapse
Affiliation(s)
- Yanan Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xi Cai
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Boyan Tang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
30
|
Schiebelhut LM, Grosberg RK, Stachowicz JJ, Bay RA. Genomic responses to parallel temperature gradients in the eelgrass Zostera marina in adjacent bays. Mol Ecol 2023; 32:2835-2849. [PMID: 36814144 DOI: 10.1111/mec.16899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
The extent of parallel genomic responses to similar selective pressures depends on a complex array of environmental, demographic, and evolutionary forces. Laboratory experiments with replicated selective pressures yield mixed outcomes under controlled conditions and our understanding of genomic parallelism in the wild is limited to a few well-established systems. Here, we examine genomic signals of selection in the eelgrass Zostera marina across temperature gradients in adjacent embayments. Although we find many genomic regions with signals of selection within each bay there is very little overlap in signals of selection at the SNP level, despite most polymorphisms being shared across bays. We do find overlap at the gene level, potentially suggesting multiple mutational pathways to the same phenotype. Using polygenic models we find that some sets of candidate SNPs are able to predict temperature across both bays, suggesting that small but parallel shifts in allele frequencies may be missed by independent genome scans. Together, these results highlight the continuous rather than binary nature of parallel evolution in polygenic traits and the complexity of evolutionary predictability.
Collapse
Affiliation(s)
- Lauren M Schiebelhut
- Life and Environmental Sciences, University of California, Merced, California, USA
| | - Richard K Grosberg
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Rachael A Bay
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
31
|
Li Y, Liu H, Ma T, Li J, Yuan J, Xu YC, Sun R, Zhang X, Jing Y, Guo YL, Lin R. Arabidopsis EXECUTER1 interacts with WRKY transcription factors to mediate plastid-to-nucleus singlet oxygen signaling. THE PLANT CELL 2023; 35:827-851. [PMID: 36423342 PMCID: PMC9940883 DOI: 10.1093/plcell/koac330] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Chloroplasts produce singlet oxygen (1O2), which causes changes in nuclear gene expression through plastid-to-nucleus retrograde signaling to increase plant fitness. However, the identity of this 1O2-triggered pathway remains unclear. Here, we identify mutations in GENOMES UNCOUPLED4 (GUN4) and GUN5 as suppressors of phytochrome-interacting factor1 (pif1) pif3 in regulating the photo-oxidative response in Arabidopsis thaliana. GUN4 and GUN5 specifically interact with EXECUTER1 (EX1) and EX2 in plastids, and this interaction is alleviated by treatment with Rose Bengal (RB) or white light. Impaired expression of GUN4, GUN5, EX1, or EX2 leads to insensitivity to excess light and overexpression of EX1 triggers photo-oxidative responses. Strikingly, upon light irradiation or RB treatment, EX1 transiently accumulates in the nucleus and the nuclear fraction of EX1 shows a similar molecular weight as the plastid-located protein. Point mutagenesis analysis indicated that nuclear localization of EX1 is required for its function. EX1 acts as a transcriptional co-activator and interacts with the transcription factors WRKY18 and WRKY40 to promote the expression of 1O2-responsive genes. This study suggests that EX1 may act in plastid-to-nucleus signaling and establishes a 1O2-triggered retrograde signaling pathway that allows plants adapt to changing light environments during chloroplast development.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanhong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jiarui Yuan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ran Sun
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ya-Long Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Harbart V, Frede K, Fitzner M, Baldermann S. Regulation of carotenoid and flavonoid biosynthetic pathways in Lactuca sativa var capitate L. in protected cultivation. FRONTIERS IN PLANT SCIENCE 2023; 14:1124750. [PMID: 36866364 PMCID: PMC9971571 DOI: 10.3389/fpls.2023.1124750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
In the face of a growing world population and limited land, there is an urgent demand for higher productivity of food crops, and cultivation systems must be adapted to future needs. Sustainable crop production should aim for not only high yields, but also high nutritional values. In particular, the consumption of bioactive compounds such as carotenoids and flavonoids is associated with a reduced incidence of non-transmissible diseases. Modulating environmental conditions by improving cultivation systems can lead to the adaption of plant metabolisms and the accumulation of bioactive compounds. The present study investigates the regulation of carotenoid and flavonoid metabolisms in lettuce (Lactuca sativa var capitate L.) grown in a protected environment (polytunnels) compared to plants grown without polytunnels. Carotenoid, flavonoid and phytohormone (ABA) contents were determined using HPLC-MS and transcript levels of key metabolic genes were analyzed by RT-qPCR. In this study, we observed inverse contents of flavonoids and carotenoids in lettuce grown without or under polytunnels. Flavonoid contents on a total and individual level were significantly lower, while total carotenoid content was higher in lettuce plants grown under polytunnels compared to without. However, the adaptation was specific to the level of individual carotenoids. For instance, the accumulation of the main carotenoids lutein and neoxanthin was induced while the β-carotene content remained unchanged. In addition, our findings suggest that the flavonoid content of lettuce depends on transcript levels of the key biosynthetic enzyme, which is modulated by UV light. A regulatory influence can be assumed based on the relation between the concentration of the phytohormone ABA and the flavonoid content in lettuce. In contrast, the carotenoid content is not reflected in transcript levels of the key enzyme of either the biosynthetic or the degradation pathway. Nevertheless, the carotenoid metabolic flux determined using norflurazon was higher in lettuce grown under polytunnels, suggesting posttranscriptional regulation of carotenoid accumulation, which should be an integral part of future studies. Therefore, a balance needs to be found between the individual environmental factors, including light and temperature, in order to optimize the carotenoid or flavonoid contents and to obtain nutritionally highly valuable crops in protected cultivation.
Collapse
Affiliation(s)
- Vanessa Harbart
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Katja Frede
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Maria Fitzner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Susanne Baldermann
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
- Faculty of Life Sciences: Food, Nutrition and Health, Food Metabolome, University of Bayreuth, Kulmbach, Germany
| |
Collapse
|
33
|
Xiang N, Qi X, Hu J, Wang S, Guo X. l-Tryptophan synergistically increased carotenoid accumulation with blue light in maize ( Zea mays L.) sprouts. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100161. [PMID: 36691663 PMCID: PMC9860360 DOI: 10.1016/j.fochms.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
In the present study, l-tryptophan was applied in combination with blue light to modulate carotenoid biosynthesis in maize sprouts. The profiles of carotenoids, chlorophylls, and relative genes in carotenoid biosynthesis and light signaling pathways were studied. l-tryptophan and blue light both promoted the accumulation of carotenoids, and their combination further increased carotenoid content by 120%. l-tryptophan exerted auxin-like effects and stimulated PSY expression in blue light exposure maize sprouts, resulting in increased α- and β- carotenes. l-tryptophan could also play a photoprotective role through the xanthophyll cycle under blue light. In addition, CRY in the light signaling pathway was critical for carotenoid biosynthesis. These findings provide new insights into the regulation of carotenoid biosynthesis and l-tryptophan could be used in conjunction with blue light to fortify carotenoids in maize sprouts.
Collapse
Key Words
- Blue light
- CHYB, beta-carotene 3-hydroxylase
- CHYE, carotenoid epsilon hydroxylase
- COP1, constitutive photomorphogenic 1
- CRTISO, carotenoid isomerase
- CRY, cryptochrome
- Carotenoid
- FAD, flavin adenine dinucleotide
- FKF1, flavin-binding kelch repeat F-box protein 1
- GGDP, Geranylgeranyl diphosphate
- HPLC, high-performance liquid chromatography
- HY5, protein long hypocotyl 5
- LCYB, lycopene beta-cyclase
- LCYE, lycopene epsilon-cyclase
- LUT5, LUTEIN DEFICIENT 5
- Light signal
- Maize sprouts
- NXD1, NEOXANTHIN-DEFICIENT 1
- NXS, neoxanthin synthase
- OCP, Orange Carotenoid Protein
- PDS, 15-cis-phytoene desaturase
- PHOT1, phototropin 1
- PIF, phytochrome-interacting factor
- PSY, 15-cis-phytoene synthase
- VDE, violaxanthin de-epoxidase
- Z-ISO, zeta-carotene isomerase
- ZDS, zeta-carotene desaturase
- ZEP, zeaxanthin epoxidase
- l-Tryptophan
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China
| | - Xitao Qi
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Siyun Wang
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China,Corresponding author.
| |
Collapse
|
34
|
Guillou MC, Balliau T, Vergne E, Canut H, Chourré J, Herrera-León C, Ramos-Martín F, Ahmadi-Afzadi M, D’Amelio N, Ruelland E, Zivy M, Renou JP, Jamet E, Aubourg S. The PROSCOOP10 Gene Encodes Two Extracellular Hydroxylated Peptides and Impacts Flowering Time in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3554. [PMID: 36559666 PMCID: PMC9784617 DOI: 10.3390/plants11243554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The Arabidopsis PROSCOOP genes belong to a family predicted to encode secreted pro-peptides, which undergo maturation steps to produce peptides named SCOOP. Some of them are involved in defence signalling through their perception by a receptor complex including MIK2, BAK1 and BKK1. Here, we focused on the PROSCOOP10 gene, which is highly and constitutively expressed in aerial organs. The MS/MS analyses of leaf apoplastic fluids allowed the identification of two distinct peptides (named SCOOP10#1 and SCOOP10#2) covering two different regions of PROSCOOP10. They both possess the canonical S-X-S family motif and have hydroxylated prolines. This identification in apoplastic fluids confirms the biological reality of SCOOP peptides for the first time. NMR and molecular dynamics studies showed that the SCOOP10 peptides, although largely unstructured in solution, tend to assume a hairpin-like fold, exposing the two serine residues previously identified as essential for the peptide activity. Furthermore, PROSCOOP10 mutations led to an early-flowering phenotype and increased expression of the floral integrators SOC1 and LEAFY, consistent with the de-regulated transcription of PROSCOOP10 in several other mutants displaying early- or late-flowering phenotypes. These results suggest a role for PROSCOOP10 in flowering time, highlighting the functional diversity within the PROSCOOP family.
Collapse
Affiliation(s)
| | - Thierry Balliau
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, F-91190 Gif-sur-Yvette, France
| | - Emilie Vergne
- Institut Agro, SFR QUASAV, IRHS, Université Angers, INRAE, F-49000 Angers, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, Toulouse INP, CNRS, F-31320 Auzeville-Tolosane, France
| | - Josiane Chourré
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, Toulouse INP, CNRS, F-31320 Auzeville-Tolosane, France
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, F-80039 Amiens, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, F-80039 Amiens, France
| | - Masoud Ahmadi-Afzadi
- Institut Agro, SFR QUASAV, IRHS, Université Angers, INRAE, F-49000 Angers, France
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 117-76315, Iran
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, F-80039 Amiens, France
| | - Eric Ruelland
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Technologie de Compiègne, F-60203 Compiègne, France
| | - Michel Zivy
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, F-91190 Gif-sur-Yvette, France
| | - Jean-Pierre Renou
- Institut Agro, SFR QUASAV, IRHS, Université Angers, INRAE, F-49000 Angers, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, Toulouse INP, CNRS, F-31320 Auzeville-Tolosane, France
| | - Sébastien Aubourg
- Institut Agro, SFR QUASAV, IRHS, Université Angers, INRAE, F-49000 Angers, France
| |
Collapse
|
35
|
Ding B, Xie H, Zhang K, Li H, Gao Y, Zhang J, Xu B, Peng L, Yang G, Wang GL, Gill U, Wang ZY, Chai M. Nuclear EPL-HAM complex is essential for the development of chloroplasts. J Genet Genomics 2022; 49:1165-1168. [PMID: 35489697 DOI: 10.1016/j.jgg.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Bo Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Hongli Xie
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Kangning Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - He Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yushi Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jing Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bin Xu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lianwei Peng
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Guofeng Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Zeng-Yu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Maofeng Chai
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
36
|
Wang R, Li Y, Gao M, Han M, Liu H. Genome-wide identification and characterization of the bHLH gene family and analysis of their potential relevance to chlorophyll metabolism in Raphanus sativus L. BMC Genomics 2022; 23:548. [PMID: 35915410 DOI: 10.1186/s12864-022-08782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Green-fleshed radish (Raphanus sativus L.) is an economically important root vegetable of the Brassicaceae family, and chlorophyll accumulates in its root tissues. It was reported that the basic helix-loop-helix (bHLH) transcription factors play vital roles in the process of chlorophyll metabolism. Nevertheless, a comprehensive study on the bHLH gene family has not been performed in Raphanus sativus L. RESULTS In this study, a total of 213 Raphanus sativus L. bHLH (RsbHLH) genes were screened in the radish genome, which were grouped into 22 subfamilies. 204 RsbHLH genes were unevenly distributed on nine chromosomes, and nine RsbHLH genes were located on the scaffolds. Gene structure analysis showed that 25 RsbHLH genes were intron-less. Collineation analysis revealed the syntenic orthologous bHLH gene pairs between radish and Arabidopsis thaliana/Brassica rapa/Brassica oleracea. 162 RsbHLH genes were duplicated and retained from the whole genome duplication event, indicating that the whole genome duplication contributed to the expansion of the RsbHLH gene family. RNA-seq results revealed that RsbHLH genes had a variety of expression patterns at five development stages of green-fleshed radish and white-fleshed radish. In addition, the weighted gene co-expression network analysis confirmed four RsbHLH genes closely related to chlorophyll content. CONCLUSIONS A total of 213 RsbHLH genes were identified, and we systematically analyzed their gene structure, evolutionary and collineation relationships, conserved motifs, gene duplication, cis-regulatory elements and expression patterns. Finally, four bHLH genes closely involved in chlorophyll content were identified, which may be associated with the photosynthesis of the green-fleshed radish. The current study would provide valuable information for further functional exploration of RsbHLH genes, and facilitate clarifying the molecular mechanism underlying photosynthesis process in green-fleshed radish.
Collapse
Affiliation(s)
- Ruihua Wang
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Yuanyuan Li
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China.
| | - Minggang Gao
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Min Han
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| | - Huilian Liu
- Key Laboratory of Biochemistry and Molecular Biology, Biological and Agricultural College, Weifang University, Weifang, Shandong, China
| |
Collapse
|
37
|
Photosystem stoichiometry adjustment is a photoreceptor-mediated process in Arabidopsis. Sci Rep 2022; 12:10982. [PMID: 35768472 PMCID: PMC9243065 DOI: 10.1038/s41598-022-14967-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Plant growth under spectrally-enriched low light conditions leads to adjustment in the relative abundance of the two photosystems in an acclimatory response known as photosystem stoichiometry adjustment. Adjustment of photosystem stoichiometry improves the quantum efficiency of photosynthesis but how this process perceives light quality changes and how photosystem amount is regulated remain largely unknown. By using a label-free quantitative mass spectrometry approach in Arabidopsis here we show that photosystem stoichiometry adjustment is primarily driven by the regulation of photosystem I content and that this forms the major thylakoid proteomic response under light quality. Using light and redox signaling mutants, we further show that the light quality-responsive accumulation of photosystem I gene transcripts and proteins requires phytochrome B photoreceptor but not plastoquinone redox signaling as previously suggested. In far-red light, the increased acceptor side limitation might deplete active photosystem I pool, further contributing to the adjustment of photosystem stoichiometry.
Collapse
|
38
|
Li J, Gong J, Zhang L, Shen H, Chen G, Xie Q, Hu Z. Overexpression of SlPRE5, an atypical bHLH transcription factor, affects plant morphology and chlorophyll accumulation in tomato. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153698. [PMID: 35461174 DOI: 10.1016/j.jplph.2022.153698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 05/22/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors play vital regulatory roles in a series of metabolic, physiological, and developmental processes of plants. Here, SlPRE5, an atypical bHLH gene, was isolated from tomato. SlPRE5 was noticeably expressed in young leaves, sepals, and flowers. SlPRE5-overexpressing plants exhibited rolling leaves with reduced chlorophyll content, increased stem internode length, leaf angle, and compound leaf length. The water loss rate of mature leaves and the content of starch were significantly reduced, while the content of gibberellin was significantly increased in transgenic plants. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) showed that SlPRE5 could interact with SlAIF1, SlAIF2, and SlPAR1. qRT-PCR and RNA-seq results revealed that the expression levels of genes related to chloroplast development, chlorophyll metabolism, gibberellin metabolism and signal transduction, starch, photosynthesis, and cell expansion were significantly altered in SlPRE5-overexpression plants. Collectively, our results suggest that SlPRE5 is a crucial transcription factor involved in plant morphology and chlorophyll accumulation in tomato leaves.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jun Gong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Lincheng Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
39
|
Castro PH, Couto D, Santos MÂ, Freitas S, Lourenço T, Dias E, Huguet S, Marques da Silva J, Tavares RM, Bejarano ER, Azevedo H. SUMO E3 ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:934-954. [PMID: 35238389 PMCID: PMC9157161 DOI: 10.1093/plphys/kiac085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitin-like modifying peptide SMALL UBIQUITIN-LIKE MODIFIER (SUMO) has become a known modulator of the plant response to multiple environmental stimuli. A common feature of many of these external stresses is the production of reactive oxygen species (ROS). Taking into account that SUMO conjugates rapidly accumulate in response to an external oxidative stimulus, it is likely that ROS and sumoylation converge at the molecular and regulatory levels. In this study, we explored the SUMO-ROS relationship, using as a model the Arabidopsis (Arabidopsis thaliana) null mutant of the major SUMO-conjugation enhancer, the E3 ligase SAP AND MIZ 1 (SIZ1). We showed that SIZ1 is involved in SUMO conjugate increase when primed with both exogenous and endogenous ROS. In siz1, seedlings were sensitive to oxidative stress imposition, and mutants accumulated different ROS throughout development. We demonstrated that the deregulation in hydrogen peroxide and superoxide homeostasis, but not of singlet O2 (1O2), was partially due to SA accumulation in siz1. Furthermore, transcriptomic analysis highlighted a transcriptional signature that implicated siz1 with 1O2 homeostasis. Subsequently, we observed that siz1 displayed chloroplast morphological defects and altered energy dissipation activity and established a link between the chlorophyll precursor protochlorophyllide and deregulation of PROTOCHLOROPHYLLIDE OXIDOREDUCTASE A (PORA), which is known to drive overproduction of 1O2. Ultimately, network analysis uncovered known and additional associations between transcriptional control of PORA and SIZ1-dependent sumoylation. Our study connects sumoylation, and specifically SIZ1, to the control of chloroplast functions and places sumoylation as a molecular mechanism involved in ROS homeostatic and signaling events.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Daniel Couto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Miguel Ângelo Santos
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Sara Freitas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Tiago Lourenço
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Eva Dias
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Jorge Marques da Silva
- Biosystems and Integrative Sciences Institute (BioISI) and Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Rui Manuel Tavares
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Department of Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga 29071, Spain
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4099-002, Portugal
| |
Collapse
|
40
|
High Nitric Oxide Concentration Inhibits Photosynthetic Pigment Biosynthesis by Promoting the Degradation of Transcription Factor HY5 in Tomato. Int J Mol Sci 2022; 23:ijms23116027. [PMID: 35682704 PMCID: PMC9181159 DOI: 10.3390/ijms23116027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Photosynthetic pigments in higher plants, including chlorophyll and carotenoid, are crucial for photosynthesis and photoprotection. Previous studies have shown that nitric oxide (NO) plays a dual role in plant photosynthesis. However, how pigment biosynthesis is suppressed by NO remains unclear. In this study, we generated NO-accumulated gsnor mutants, applied exogenous NO donors, and used a series of methods, including reverse transcription quantitative PCR, immunoblotting, chromatin immunoprecipitation, electrophoretic mobility shift, dual-luciferase, and NO content assays, to explore the regulation of photosynthetic pigment biosynthesis by NO in tomato. We established that both endogenous and exogenous NO inhibited pigment accumulation and photosynthetic capacities. High levels of NO stimulated the degradation of LONG HYPOCOTYL 5 (HY5) protein and further inactivated the transcription of genes encoding protochlorophyllide oxidoreductase C (PORC) and phytoene synthase 2 (PSY2)—two enzymes that catalyze the rate-limiting steps in chlorophyll and carotenoid biosynthesis. Our findings provide a new insight into the mechanism of NO signaling in modulating HY5-mediated photosynthetic pigment biosynthesis at the transcriptional level in tomato plants.
Collapse
|
41
|
Sun T, Zhang J, Zhang Q, Li X, Li M, Yang Y, Zhou J, Wei Q, Zhou B. Methylome and transcriptome analyses of three different degrees of albinism in apple seedlings. BMC Genomics 2022; 23:310. [PMID: 35439938 PMCID: PMC9016989 DOI: 10.1186/s12864-022-08535-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leaf colour mutations are universally expressed at the seedling stage and are ideal materials for exploring the chlorophyll biosynthesis pathway, carotenoid metabolism and the flavonoid biosynthesis pathway in plants. RESULTS In this research, we analysed the different degrees of albinism in apple (Malus domestica) seedlings, including white-leaf mutants (WM), piebald leaf mutants (PM), light-green leaf mutants (LM) and normal leaves (NL) using bisulfite sequencing (BS-seq) and RNA sequencing (RNA-seq). There were 61,755, 79,824, and 74,899 differentially methylated regions (DMRs) and 7566, 3660, and 3546 differentially expressed genes (DEGs) identified in the WM/NL, PM/NL and LM/NL comparisons, respectively. CONCLUSION The analysis of the methylome and transcriptome showed that 9 DMR-associated DEGs were involved in the carotenoid metabolism and flavonoid biosynthesis pathway. The expression of different transcription factors (TFs) may also influence the chlorophyll biosynthesis pathway, carotenoid metabolism and the flavonoid biosynthesis pathway in apple leaf mutants. This study provides a new method for understanding the differences in the formation of apple seedlings with different degrees of albinism.
Collapse
Affiliation(s)
- Tingting Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Junke Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Qiang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Xingliang Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Minji Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Yuzhang Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Jia Zhou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Qinping Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China.
| | - Beibei Zhou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China.
| |
Collapse
|
42
|
Mu XR, Tong C, Fang XT, Bao QX, Xue LN, Meng WY, Liu CY, Loake GJ, Cao XY, Jiang JH, Meng LS. Feedback loop promotes sucrose accumulation in cotyledons to facilitate sugar-ethylene signaling-mediated, etiolated-seedling greening. Cell Rep 2022; 38:110529. [PMID: 35294871 DOI: 10.1016/j.celrep.2022.110529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/01/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
De-etiolation is indispensable for seedling survival and development. However, how sugars regulate de-etiolation and how sugars induce ethylene (ET) for seedlings to grow out of soil remain elusive. Here, we reveal how a sucrose (Suc) feedback loop promotes de-etiolation by inducing ET biosynthesis. Under darkness, Suc in germinating seeds preferentially induces 1-amino-cyclopropane-1-carboxylate synthase (ACS7; encoding a key ET biosynthesis enzyme) and associated ET biosynthesis, thereby activating ET core component ETHYLENE-INSENSITIVE3 (EIN3). Activated EIN3 directly inhibits the function of Suc transporter 2 (SUC2; a major Suc transporter) to block Suc export from cotyledons and thereby elevate Suc accumulation of cotyledons to induce ET. Under light, ET-activated EIN3 directly inhibits the function of phytochrome A (phyA; a de-etiolation inhibitor) to promote de-etiolation. We therefore propose that under darkness, the Suc feedback loop (Suc-ACS7-EIN3-|SUC2-Suc) promotes Suc accumulation in cotyledons to guarantee ET biosynthesis, facilitate de-etiolation, and enable seedlings to grow out of soil.
Collapse
Affiliation(s)
- Xin-Rong Mu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Chen Tong
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Xing-Tang Fang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Qin-Xin Bao
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Li-Na Xue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Wei-Ying Meng
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Chang-Yue Liu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Gary J Loake
- Jiangsu Normal University, Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu 221116, People's Republic of China; Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Xiao-Ying Cao
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China.
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China.
| | - Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China.
| |
Collapse
|
43
|
Cackett L, Luginbuehl LH, Schreier TB, Lopez-Juez E, Hibberd JM. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. THE NEW PHYTOLOGIST 2022; 233:2000-2016. [PMID: 34729790 DOI: 10.1111/nph.17839] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/09/2021] [Indexed: 05/20/2023]
Abstract
Chloroplasts are best known for their role in photosynthesis, but they also allow nitrogen and sulphur assimilation, amino acid, fatty acid, nucleotide and hormone synthesis. How chloroplasts develop is therefore relevant to these diverse and fundamental biological processes, but also to attempts at their rational redesign. Light is strictly required for chloroplast formation in all angiosperms and directly regulates the expression of hundreds of chloroplast-related genes. Light also modulates the levels of several hormones including brassinosteriods, cytokinins, auxins and gibberellins, which themselves control chloroplast development particularly during early stages of plant development. Transcription factors such as GOLDENLIKE1&2 (GLK1&2), GATA NITRATE-INDUCIBLE CARBON METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1) act downstream of both light and phytohormone signalling to regulate chloroplast development. Thus, in green tissues transcription factors, light signalling and hormone signalling form a complex network regulating the transcription of chloroplast- and photosynthesis-related genes to control the development and number of chloroplasts per cell. We use this conceptual framework to identify points of regulation that could be harnessed to modulate chloroplast abundance and increase photosynthetic efficiency of crops, and to highlight future avenues to overcome gaps in current knowledge.
Collapse
Affiliation(s)
- Lee Cackett
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Leonie H Luginbuehl
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Tina B Schreier
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Enrique Lopez-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
44
|
Zhang L, He G, Li Y, Yang Z, Liu T, Xie X, Kong X, Sun J. PIL transcription factors directly interact with SPLs and repress tillering/branching in plants. THE NEW PHYTOLOGIST 2022; 233:1414-1425. [PMID: 34800046 DOI: 10.1111/nph.17872] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/14/2021] [Indexed: 05/27/2023]
Abstract
Tillering is an important parameter of plant architecture in cereal crops. In this study, we identified the PHYTOCHROME-INTERACTING FACTOR-LIKE (PIL) family transcription factors as new repressors of tillering in cereal crops. Using biochemical and genetic approaches, we explore the roles of TaPIL1 in regulating wheat plant architecture. We found that the PIL protein TaPIL1 controls tiller number in wheat. Overexpression of TaPIL1 reduces wheat tiller number; additionally, overexpression of TaPIL1-SUPERMAN repression domain increases wheat tiller number. Furthermore, we show that TaPIL1 activates the transcriptional expression of wheat TEOSINTE BRANCHED1 (TaTB1); moreover, TaPIL1 physically interacts with wheat SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (TaSPL)3/17, which are activators of TaTB1 transcription. In rice, overexpression and loss-of-function mutations of OsPIL11 reduce or increase tiller number by regulating the expression of OsTB1. In Arabidopsis, we demonstrate that PHYTOCHROME-INTERACTING FACTOR 4 interacts with SPL9 to inhibit shoot branching. This study reveals that PIL family transcription factors directly interact with SPLs and play an important role in repressing tillering/branching in plants.
Collapse
Affiliation(s)
- Lichao Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanhua He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaping Li
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ziyi Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianqi Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianzhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiuying Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
45
|
Bano N, Fakhrah S, Nayak SP, Bag SK, Mohanty CS. Identification of miRNA and their target genes in Cestrum nocturnum L. and Cestrum diurnum L. in stress responses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:31-49. [PMID: 35221570 PMCID: PMC8847519 DOI: 10.1007/s12298-022-01127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED MicroRNAs (miRNAs) are small, highly conserved non-coding RNA molecules and products of primary miRNAs that regulate the target gene expression. Homology-based approaches were employed to identify miRNAs and their targets in Cestrum nocturnum L. and Cestrum diurnum L. A total of 32 and 12 miRNA candidates were identified in C. nocturnum and C. diurnum. These miRNAs belong to 26 and 10 miRNA families and regulate 1024 and 1007 target genes in C. nocturnum, and C. diurnum, respectively. The functional roles of these miRNAs have not been earlier elucidated in Cestrum. MiR815a, miR849, miR1089 and miR172 have a strong propensity to target genes controlling phytochrome-interacting factor 1 (PIF1), ubiquitin-specific protease 12 (UBP12), leucine-rich repeat (LRR) protein kinase and GAI, RGA, SCR (GRAS) family transcription factor in C. nocturnum. While miR5205a, miR1436 and miR530 regulate PATATIN-like protein 6 (PLP6), PHD finger transcription factor and myb domain protein 48 (MYB48) in C. diurnum. Overall, these miRNAs have regulatory responses in biotic and abiotic stresses in both plant species. Eight putative miRNAs and their target genes were selected for qRT-PCR validation. The validated results suggested the importance of miR815a, miR849, miR5205a, miR1089, miR172, miR1436, and miR530 in exerting control over stress responses in C. nocturnum and C. diurnum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01127-1.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Shafquat Fakhrah
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh 226007 India
| | - Sagar Prasad Nayak
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Chandra Sekhar Mohanty
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
46
|
Yue C, Wang Z, Yang P. Review: the effect of light on the key pigment compounds of photosensitive etiolated tea plant. BOTANICAL STUDIES 2021; 62:21. [PMID: 34897570 PMCID: PMC8665957 DOI: 10.1186/s40529-021-00329-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/20/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Light is the ultimate energy source of plant photosynthesis, which has an important impact on the growth, development, physiology and biochemistry of tea plant. Photosensitive etiolated tea plant belongs to a kind of colored leaf plant, which is a physiological response to light intensity. Compared with conventional green bud and leaf of tea plant, the accumulation of pigment compounds (chlorophyll and carotenoids, etc.) closely related to a series of reactions of photosynthesis in photosensitive etiolated tea plant is reduced, resulting in the difference of leaf color of tea. This specific tea resource has high application value, among which high amino acid is one of its advantages. It can be used to process high-quality green tea with delicious taste and attractive aroma, which has been widely attention. The mechanism of the color presentation of the etiolated mutant tea leaves has been given a high topic and attention, especially, what changes have taken place in the pigment compounds of tea leaves caused by light, which makes the leaves so yellow. At present, there have been a lot of research and reports. PURPOSE OF THE REVIEW We describe the metabolism and differential accumulation of key pigment compounds affecting the leaf color of photosensitive etiolated tea that are triggered by light, and discuss the different metabolism and key regulatory sites of these pigments in different light environments in order to understand the "discoloration" matrix and mechanism of etiolated tea resources, answer the scientific question between leaf color and light. It provides an important strategy for artificial intervention of discoloration of colored tea plant. CONCLUSION The differential accumulation of pigment compounds in tea plant can be induced phytochrome in response to the change of light signal. The synthesis of chlorophyll in photoetiolated tea plants is hindered by strong light, among which, the sites regulated by coproporphyrinogen III oxidase and chlorophyllide a oxidase is sensitive to light and can be inhibited by strong light, resulting in the aggravation of leaf etiolation. The phenomenon can be disappeared or weakened by shading or reducing light intensity, and the leaf color is greenish, but the increase of chlorophyll-b accumulation is more than that of chlorophyll-a. The synthesis of carotenoids is inhibited strong light, and high the accumulation of carotenoids is reduced by shading. Most of the genes regulating carotenoids are up-regulated by moderate shading and down-regulated by excessive shading. Therefore, the accumulation of these two types of pigments in photosensitive etiolated tea plants is closely related to the light environment, and the leaf color phenotype shape of photosensitive etiolated tea plants can be changed by different light conditions, which provides an important strategy for the production and management of tea plant.
Collapse
Affiliation(s)
- Cuinan Yue
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330043, China
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang, 330203, China
| | - Zhihui Wang
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330043, China
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang, 330203, China
| | - Puxiang Yang
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330043, China.
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang, 330203, China.
| |
Collapse
|
47
|
Chen J, Wu S, Dong F, Li J, Zeng L, Tang J, Gu D. Mechanism Underlying the Shading-Induced Chlorophyll Accumulation in Tea Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:779819. [PMID: 34925423 PMCID: PMC8675639 DOI: 10.3389/fpls.2021.779819] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Besides aroma and taste, the color of dry tea leaves, tea infusion, and infused tea leaves is also an important index for tea quality. Shading can significantly increase the chlorophyll content of tea leaves, leading to enhanced tea leaf coloration. However, the underlying regulatory mechanism remains unclear. In this study, we revealed that the expressions of chlorophyll synthesis genes were significantly induced by shading, specially, the gene encoding protochlorophyllide oxidoreductase (CsPOR). Indoor control experiment showed that decreased light intensity could significantly induce the expression of CsPOR, and thus cause the increase of chlorophyll content. Subsequently, we explored the light signaling pathway transcription factors regulating chlorophyll synthesis, including CsPIFs and CsHY5. Through expression level and subcellular localization analysis, we found that CsPIF3-2, CsPIF7-1, and CsHY5 may be candidate transcriptional regulators. Transcriptional activation experiments proved that CsHY5 inhibits CsPORL-2 transcription. In summary, we concluded that shading might promote the expression of CsPORL-2 by inhibiting the expression of CsHY5, leading to high accumulation of chlorophyll in tea leaves. The results of this study provide insights into the mechanism regulating the improvements to tea plant quality caused by shading.
Collapse
Affiliation(s)
- Jiaming Chen
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuhua Wu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Dong
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Jianlong Li
- Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key, Guangzhou, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jinchi Tang
- Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key, Guangzhou, China
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
48
|
Identification, Molecular Characteristic, and Expression Analysis of PIFs Related to Chlorophyll Metabolism in Tea Plant ( Camellia sinensis). Int J Mol Sci 2021; 22:ijms222010949. [PMID: 34681609 PMCID: PMC8539375 DOI: 10.3390/ijms222010949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023] Open
Abstract
The phytochrome-interacting factors (PIFs) proteins belong to the subfamily of basic helix–loop–helix (bHLH) transcription factors and play important roles in chloroplast development and chlorophyll biosynthesis. Currently, knowledge about the PIF gene family in Camellia sinensis remains very limited. In this study, seven PIF members were identified in the C. sinensis genome and named based on homology with AtPIF genes in Arabidopsis thaliana. All C. sinensis PIF (CsPIF) proteins have both the conserved active PHYB binding (APB) and bHLH domains. Phylogenetic analysis revealed that CsPIFs were clustered into four groups—PIF1, PIF3, PIF7, and PIF8—and most CsPIFs were clustered in pairs with their corresponding orthologs in Populus tremula. CsPIF members in the same group tended to display uniform or similar exon–intron distribution patterns and motif compositions. CsPIF genes were differentially expressed in C. sinensis with various leaf colors and strongly correlated with the expression of genes involved in the chlorophyll metabolism pathway. Promoter analysis of structural genes related to chlorophyll metabolism found DNA-binding sites of PIFs were abundant in the promoter regions. Protein–protein interaction networks of CsPIFs demonstrated a close association with phytochrome, PIF4, HY5, TOC1, COP1, and PTAC12 proteins. Additionally, subcellular localization and transcriptional activity analysis suggested that CsPIF3b was nuclear localized protein and possessed transcriptional activity. We also found that CsPIF3b could activate the transcription of CsHEMA and CsPOR in Nicotiana benthamiana leaves. This work provides comprehensive research of CsPIFs and would be helpful to further promote the regulation mechanism of PIF on chlorophyll metabolism in C. sinensis.
Collapse
|
49
|
Islam MT, Wang LC, Chen IJ, Lo KL, Lo WS. Arabidopsis JMJ17 promotes cotyledon greening during de-etiolation by repressing genes involved in tetrapyrrole biosynthesis in etiolated seedlings. THE NEW PHYTOLOGIST 2021; 231:1023-1039. [PMID: 33666236 DOI: 10.1111/nph.17327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Arabidopsis histone H3 lysine 4 (H3K4) demethylases play crucial roles in several developmental processes, but their involvement in seedling establishment remain unexplored. Here, we show that Arabidopsis JUMONJI DOMAIN-CONTAINING PROTEIN17 (JMJ17), an H3K4me3 demethylase, is involved in cotyledon greening during seedling establishment. Dark-grown seedlings of jmj17 accumulated a high concentration of protochlorophyllide, an intermediate metabolite in the tetrapyrrole biosynthesis (TPB) pathway that generates chlorophyll (Chl) during photomorphogenesis. Upon light irradiation, jmj17 mutants displayed decreased cotyledon greening and reduced Chl level compared with the wild-type; overexpression of JMJ17 completely rescued the jmj17-5 phenotype. Transcriptomics analysis uncovered that several genes encoding key enzymes involved in TPB were upregulated in etiolated jmj17 seedlings. Consistently, chromatin immunoprecipitation-quantitative PCR revealed elevated H3K4me3 level at the promoters of target genes. Chromatin association of JMJ17 was diminished upon light exposure. Furthermore, JMJ17 interacted with PHYTOCHROME INTERACTING FACTOR1 in the yeast two-hybrid assay. JMJ17 binds directly to gene promoters to demethylate H3K4me3 to suppress PROTOCHLOROPHYLLIDE OXIDOREDUCTASE C expression and TPB in the dark. Light results in de-repression of gene expression to modulate seedling greening during de-etiolation. Our study reveals a new role for histone demethylase JMJ17 in controlling cotyledon greening in etiolated seedlings during the dark-to-light transition.
Collapse
Affiliation(s)
- Md Torikul Islam
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Long-Chi Wang
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - I-Ju Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Lin Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wan-Sheng Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
| |
Collapse
|
50
|
Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic Helix-Loop-Helix (bHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis. Int J Mol Sci 2021; 22:ijms22137152. [PMID: 34281206 PMCID: PMC8267941 DOI: 10.3390/ijms22137152] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/30/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.
Collapse
|