1
|
Lakhani S, Rojmala JV, Chotai NM, Waghela BN, Thakor P. Virtual screening and identification of potent phytoconstituents from Acorus calamus L. as inhibitors of Monkeypox virus infection. J Genet Eng Biotechnol 2025; 23:100487. [PMID: 40390486 PMCID: PMC12060457 DOI: 10.1016/j.jgeb.2025.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND The threat posed by the Monkeypox (Mpox) disease has re-emerged globally while the world strives to recover from the Corona Virus Disease -19 (COVID-19) pandemic. The World Health Organization has declared Mpox a global health emergency. Monkeypox virus (MPXV), the causative agent of Mpox disease, is a zoonotic, large, enveloped, double-stranded deoxyribonucleic acid (DNA) virus that belongs to the Orthopoxviridae genus. The Food and Drug Administration (FDA), USA has approved repurposed antiviral agents Cidofovir and Tecovirimat as the primary treatment options for Mpox, however, they project systemic toxicity and have underwhelming clinical data. A plethora of medicinal plant compounds including flavonoids, phenolics, terpenoids, and alkaloids have awide range of biological activities such as antimicrobial, antioxidant, antiulcer, antineoplastic, anti-inflammatory, and immuno-stimulating potentials. Since many of them are being studied in modern research to discover an active drug candidate, we turned to medicinal plants to explore potent antiviral compounds. METHODS In the present study, we aimed to screen phytoconstituents ofAcorus calamusL. (AC) against four essential virulence enabling proteins D8L, A48R, D13L, and A42R of MPXV byin silicoapproach. Further, we have elucidated pharmaceutical-relevant parameters of hit compounds through their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties as well as drug-likeness parameters. RESULTS Our results revealed that AC phytoconstituents such as β-Sitosterol against A42R and D8L, Lucenin-2 against D13L and Zingiberene against A48R showed the strongest binding affinities, respectively. Moreover, Galangin could prominently interact with all four proteins with lower binding energy and higher affinity. All top phytoconstituents obeyed Lipinski's RO5 and drug-likeness properties. CONCLUSIONS The phytoconstituents of AC can act as potent inhibitors of essential virulence enabling proteins of MPXV. Thus, we recommend further experimental investigations to validate the promising results of thepresent in silico study.
Collapse
Affiliation(s)
- Shivani Lakhani
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Janki V Rojmala
- Faculty of Science, Atmiya University, Kalawad Road, Rajkot, Gujarat, India
| | | | - Bhargav N Waghela
- Faculty of Science, Atmiya University, Kalawad Road, Rajkot, Gujarat, India.
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India.
| |
Collapse
|
2
|
Astakala RV, Preet G, Haj Hasan A, Desai R, Alfurayh M, Ebel R, Jaspars M. Computational repurposing of polyphenols for anti-Mpoxviral activity. In Silico Pharmacol 2025; 13:65. [PMID: 40255263 PMCID: PMC12006622 DOI: 10.1007/s40203-025-00345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/27/2025] [Indexed: 04/22/2025] Open
Abstract
Mpox is a globally prevalent disease that has triggered multiple epidemics over the past few decades, leading to moderate rates of hospitalisation and mortality. Recently, it has re-emerged in several countries, including the Democratic Republic of Congo, and appears to be spreading at an unprecedented pace. The disease is caused by zoonotic double-stranded DNA viruses. Due to its similarities with smallpox, distinguishing between the two can be challenging, though the smallpox vaccine typically provides immunity against Mpox. At the time of writing, no approved treatment for Mpox exists; however, several promising candidates have demonstrated the ability to inhibit viral replication, including resveratrol-a polyphenolic compound found in red wine. This study employs molecular docking and molecular dynamics simulations to assess the effectiveness and stability of nine resveratrol analogues. Additionally, 2D and 3D pharmacophore models were developed for the highest-ranked docked compounds, leading to a composite pharmacophore. A structure-activity relationship analysis was also conducted using these top-performing compounds. The findings suggest that two compounds- (9) [1,1'-biphenyl]-3,4',5-triol and (11) {3-hydroxy-5-[2-(4-hydroxyphenyl)ethenyl]phenyl}oxidanesulfonic acid-exhibit strong binding affinity, with compound 11 potentially forming a stable complex with the thymidylate kinase of the vaccinia virus. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00345-1.
Collapse
Affiliation(s)
| | - Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, AB24 3FX UK
| | - Ahlam Haj Hasan
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, AB24 3FX UK
- The Medicinal Chemistry and Pharmacognosy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid, 22110 Jordan
| | - Ria Desai
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, AB24 3FX UK
| | - Meshari Alfurayh
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, AB24 3FX UK
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, AB24 3FX UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, AB24 3FX UK
| |
Collapse
|
3
|
Suleman M, Khan A, Khan SU, Alissa M, Alghamdi SA, Alghamdi A, Abdullah Alamro A, Crovella S. Screening of medicinal phytocompounds with structure-based approaches to target key hotspot residues in tyrosyl-DNA phosphodiesterase 1: augmenting sensitivity of cancer cells to topoisomerase I inhibitors. J Biomol Struct Dyn 2025:1-16. [PMID: 40231415 DOI: 10.1080/07391102.2025.2490061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/07/2024] [Indexed: 04/16/2025]
Abstract
One of cancer's well-known hallmarks is DNA damage, yet it's intriguing that DNA damage has been explored as a therapeutic strategy against cancer. Tyrosyl-DNA phosphodiesterase 1, involved in DNA repair from topoisomerase I inhibitors, a chemotherapy class for cancer treatment. Inhibiting TDP1 can increase unresolved Top1 cleavage complexes in cancer cells, inducing DNA damage and cell death. TDP1's catalytic activity depends on His263 and His493 residues. Using molecular simulation, structure-based drug design, and free energy calculation, we identified potential drugs against TDP1. A multi-step screening of medicinal plant compound databases (North Africa, East Africa, Northeast Africa, and South Africa) identified the top four candidates. Docking scores for top hits 1-4 were -7.76, -7.37, -7.35, and -7.24 kcal/mol. Top hit 3 exhibited the highest potency, forming a strong bonding network with both His263 and His493 residues. All-atoms simulations showed consistent dynamics for top hits 1-4, indicating stability and potential for efficient interaction with interface residues. Minimal fluctuations in residue flexibility suggest these compounds can stabilize internal flexibility upon binding. The binding free energies of -35.11, -36.70, -31.38, and -23.85 kcal/mol were calculated for the top hit 1-4 complexes. Furthermore, the chosen compounds demonstrate outstanding ADMET characteristics, such as excellent water solubility, effective gastrointestinal absorption, and the absence of hepatotoxicity. Cytotoxicity analysis revealed top hit 2 higher probability of activity against 24 cancer cell lines. Our findings suggest that these compounds (top hits 1-4) hold promise for innovative drug therapies, suitable for both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amani Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abir Abdullah Alamro
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Moltrasio C, Moura RR, Brandão L, Tricarico PM, Suleman M, Maronese CA, Crovella S, Marzano AV. Keratin Variants in Pyoderma Gangrenosum: Pathogenetic Insights from a Whole-Exome Sequencing-Based Bioinformatic Analysis. J Invest Dermatol 2025:S0022-202X(25)00115-0. [PMID: 39983981 DOI: 10.1016/j.jid.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 02/23/2025]
Abstract
Pyoderma gangrenosum (PG) is an inflammatory skin disorder that belongs to the group of neutrophilic dermatoses. Clinically, it is typified by cutaneous ulcers with distinctive erythematoviolaceous borders and may occur alone or in association with other inflammatory, autoinflammatory, or neoplastic conditions. Although its pathophysiology remains incompletely understood, mounting evidence points toward a predisposing genetic background and dysregulation of both the innate and adaptive immune responses, with follicular or epidermal structures as putative initial targets. To investigate the genetic factors associated with PG susceptibility and severity (arbitrarily defined as unilesional or multilesional), whole-exome sequencing was performed on 11 unrelated patients with PG. Eight carried at least 1 variant of the keratin-encoding genes, including keratin (K)18 gene K18, K20, K23, K32, and K33B. Strikingly, a recurrent variant (rs77999286) of the K18 gene was identified in 5 of 6 patients with multilesional PG and 1 of 5 of those with unilesional PG. AlphaFold modeling and mutation analysis revealed the destabilizing effect of the K18 rs77999286 variant on protein structure. Furthermore, immunohistochemistry revealed undetectable K18 staining in lesional skin compared with that in healthy control skin. Overall, these findings suggest that keratin variants may play a role in PG pathogenesis and indicate that the K18 rs77999286 variant is a potential genetic factor linked to multilesional disease.
Collapse
Affiliation(s)
- Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ronald Rodrigues Moura
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo," Trieste, Italy
| | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Recife, Brazil
| | - Paola Maura Tricarico
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo," Trieste, Italy
| | - Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| | - Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar.
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Linani A, Benarous K, Erol E, Bou-Salah L, Serseg T, Yousfi M. In silico analysis of identified molecules using LC-HR/MS of Cupressus sempervirens L. ethyl acetate fraction against three monkeypox virus targets. J Biomol Struct Dyn 2025; 43:534-549. [PMID: 37982304 DOI: 10.1080/07391102.2023.2283149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Monkeypox virus is a viral disease transmitted to humans through contact with infected animals, such as monkeys and rodents, or through direct contact with the bodily fluids or lesions of infected humans. The aim of this study is to evaluate in silico the inhibition effect of eight Cupressus sempervirens L. ethyl acetate fraction identified molecules using LC-MS on three monkeypox targets such as the vaccinia virus thymidylate kinase (VTK), the viral profilin-like protein (VPP), and the viral RNA polymerase (VRP). The study consist of using molecular docking with AutoDock vina based on the lowest energy value in kcal/mol, pharmacokinetics prediction with pre-ADMET v2.0 server, and prediction of biological activity with the PASS server tool. The best complexes were subjected to molecular dynamics simulation (MD) study to confirm their stability using Desmond software. The used molecules were vitamin C, vanillic acid (Pol), Flav1 (Catechin), Flav2 (Epicatechin), Flav3 (Hyperoside), Flav4 (Luteolin), Flav5 (Taxifolin), and Flav6 (Quercetin). The results show that flavonoids are potent to VTK, VPP and effectively block the VRP channel with energy values ranging from -7.0 to -9.3 kcal/mol. Further, MD simulation supports Flav1 and, Flav2 for notable stability in the VTK binding pocket through hydrogen and hydrophobic interactions. PASS results predicted various biological activities with promising VTK and VRP inhibition activities. The studied molecules could constitute a safer alternative to current drugs, which often cause adverse side effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abderahmane Linani
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Khedidja Benarous
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Ebru Erol
- Faculty of Pharmacy, Department of Analytical Chemistry, Bezmialem Vakif University, Istanbul, Türkiye
| | - Leila Bou-Salah
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Talia Serseg
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
- Laboratoire de sciences appliquées et didactiques, Ecole Normale Supérieure de Laghouat, Laghouat, Algeria
| | - Mohamed Yousfi
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| |
Collapse
|
6
|
Duan H, Shi Q, Yue X, Zhang Z, Liu L, Wang Y, Cao Y, Ou Z, Liang L, Hu J, Shi H. Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs: A WEB prediction approach. PLoS One 2024; 19:e0303501. [PMID: 39642129 PMCID: PMC11623562 DOI: 10.1371/journal.pone.0303501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/03/2024] [Indexed: 12/08/2024] Open
Abstract
A new round of monkeypox virus has emerged in the United Kingdom since July 2022 and rapidly swept the world. Currently, despite numerous research groups are studying this virus and seeking effective treatments, the information on the open reading frame, inhibitors, and potential targets of monkeypox has not been updated in time, and the comprehension of monkeypox target ligand interactions remains a key challenge. Here, we first summarized and improved the open reading frame information of monkeypox, constructed the monkeypox inhibitor library and potential targets library by database research as well as literature search, combined with advanced protein modeling technologies (Sequence-based and AI algorithms-based homology modeling). In addition, we build monkeypox virus Docking Server, a web server to predict the binding mode between targets and substrate. The open reading frame information, monkeypox inhibitor library, and monkeypox potential targets library are used as the initial files for server docking, providing free interactive tools for predicting ligand interactions of monkeypox targets, potential drug screening, and potential targets search. In addition, the update of the three databases can also effectively promote the study of monkeypox drug inhibition mechanism and provide theoretical guidance for the development of drugs for monkeypox.
Collapse
Affiliation(s)
- Huaichuan Duan
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Quanshan Shi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zelan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yujie Cao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zuoxin Ou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
7
|
Rabaan AA, Alwashmi ASS, Mashraqi MM, Alshehri AA, Alawfi A, Alshengeti A, Najim MA, AlShehail BM, AlShahrani AJ, Garout M. Cheminformatics and machine learning approaches for repurposing anti-viral compounds against monkeypox virus thymidylate kinase. Mol Divers 2024; 28:2735-2748. [PMID: 37531040 DOI: 10.1007/s11030-023-10705-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
One of the emerging epidemic concerns is Monkeypox disease which is spreading globally. This disease is caused by the monkeypox virus (MPXV), with an increasing global incidence with an outbreak in 2022. One of the novel targets for monkeypox disease is thymidylate kinase, which is involved in pyrimidine metabolism. In this study, docking-based virtual screening and molecular dynamics techniques were employed in addition to the machine learning (ML) model to investigate the potential anti-viral natural small compounds to inhibit thymidylate kinase of MPXV. Several potential hits were identified through high-throughput virtual screening, and further top three candidates were selected, which ranked using the ML model. These three compounds were then examined under molecular dynamics simulation and MM/GBSA-binding free energy analysis. Among these, Chlorhexidine HCl showed high potential for binding to the thymidylate kinase with stable and consistent conformation with RMSD < 0.3 nm. The MM/GBSA analysis also showed the minimum binding free energy (ΔGTOTAL) of -62.41 kcal/mol for this compound. Overall, this study used structure-based drug design complemented by machine learning-guided ligand-based drug design to screen potential hit compounds from the anti-viral natural compound database.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, 41491, Medina, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, 41491, Medina, Saudi Arabia
- Department of Infection prevention and control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, 41491, Medina, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, 41411, Medina, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Abdullah J AlShahrani
- Department of Public Health, Health affairs, Ministry of Health, 62523, Asir, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, 21955, Mecca, Saudi Arabia.
| |
Collapse
|
8
|
Ali Y, Khan AA, Alanazi AM, Abdikakharovich SA, Shah JA, Ren ZG, Khattak S. Identification of the myxobacterial secondary metabolites Aurachin A and Soraphinol A as promising inhibitors of thymidylate kinase of the Monkeypox virus. Mol Divers 2024; 28:3349-3362. [PMID: 38183513 DOI: 10.1007/s11030-023-10764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 01/08/2024]
Abstract
Thymidylate kinase (TMPK) of monkeypox virus (MPXV) has emerged as a promising target for potential therapeutics due to its significant role in pyrimidine metabolism. While smallpox drugs are advised for treating monkeypox, the European Medicine Agency has sanctioned Tecovirimat due to its potent nanomolar activity. Nonetheless, there is a need for monkeypox-specific therapeutic options. In this work, we employed docking-based virtual screening and molecular dynamics (MD) simulations to identify myxobacterial secondary metabolites as promising anti-viral natural compounds capable of inhibiting thymidylate kinase. The computational pharmacokinetics and manual curation of top-scoring compounds identified six lead compounds that were compared in terms of protein-ligand contacts and protein-essential dynamics. The study shows that among the six candidates, Aurachin A and the Soraphinol analogues such as Soraphinol A and Soraphinol C remain very stable compared to other compounds, enabling the active site integrity via a stable dynamics pattern. We also show that other compounds such as Phenoxan, Phenylnannolone C, and 8E-Aurafuron B remain unstable and have a negative impact on the active site integrity and may not be suitable binders for TMPK protein. Analyzing the Aurachin A and Soraphinol A binding, the established hydrogen bonds with Arg93 and the conserved hydrophobic interaction with Tyr101 are consistent with previous experimental interactions. Additionally, a deeper insight into the indole and the aromatic ring interaction through π-π stacking and π-cation interactions, as well as the background of Aurachin A and Soraphinol A as a bioactive compound, has significant implications not only for its potential as a promising drug but also for directing future drug discovery efforts targeting the TMPK protein.
Collapse
Affiliation(s)
- Yasir Ali
- Institute of Chemistry, Slovak Academy of Sciences, 845 38, Bratislava, Slovakia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | | | - Junaid Ali Shah
- Ferghana Medical Institute of Public Health, 104100, Ferghana, Uzbekistan
| | - Zhi-Guang Ren
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| | - Saadullah Khattak
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
9
|
Hu Frisk J, Wang L. Molecular characterization of Drosophila melanogaster thymidylate kinase. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:734-742. [PMID: 38518117 DOI: 10.1080/15257770.2024.2332410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Drosophila has been used as an animal model to study pathogenic mechanism of neurological disorders. Thymidylate kinase (TMPK) is an essential enzyme in dTTP synthesis catalyzing the phosphorylation of dTMP to dTDP. Loss of function mutations in the DTYMK gene, coding for TMPK, cause severe microcephaly in human patients. In this study, Drosophila melanogaster TMPK (DmTMPK) was cloned, expressed, purified and characterized. Unlike human TMPK, DmTMPK phosphorylated not only dTMP and dUMP but also dGMP and dIMP although with low efficiency. ATP and dATP are the most efficient phosphate donor but at higher concentration (>1 mM) ATP inhibited DmTMPK activity. Sequence and structural model analysis explain why DmTMPK could phosphorylate purine nucleoside monophosphates. This study has laid a solid foundation for future study of TMPK function in Drosophila.
Collapse
Affiliation(s)
- Junmei Hu Frisk
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Alagarsamy V, Shyam Sundar P, Raja Solomon V, Narendhar B, Sulthana MT, Rohitha K, Dhanwar S, Dharshini Aishwarya A, Murugesan S. Pharmacophore modelling-based drug repurposing approaches for monkeypox therapeutics. J Biomol Struct Dyn 2023; 41:10678-10689. [PMID: 36905675 DOI: 10.1080/07391102.2023.2188428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 03/13/2023]
Abstract
Monkeypox is a zoonotic viral disease that mainly affects tropical rainforest regions of central and west Africa, with sporadic exportations to other places. Since there is no cure, treating monkeypox with an antiviral drug developed for smallpox is currently acceptable. Our study mainly focused on finding new therapeutics to target monkeypox from existing compounds or medications. It is a successful method for discovering or developing medicinal compounds with novel pharmacological or therapeutic applications. In this study, homology modelling developed the Monkeypox VarTMPK (IMNR) structure. Ligand-based pharmacophore was generated using the best docking pose of standard ticovirimat. Further, molecular docking analysis showed compounds, tetrahydroxycurcumin, procyanidin, rutin, vicenin-2, kaempferol 3-(6''-malonylglucoside) were the top five binding energy compounds against VarTMPK (1MNR). Furthermore, we carried out MD simulations for 100 ns for the six compounds, including reference based on the binding energies and interactions. MD studies revealed that as ticovirimat interacted with residues Lys17, Ser18, and Arg45, all the above five compounds interacted with the same amino acids at the active site during docking and simulation studies. Among all the compounds, ZINC4649679 (Tetrahydroxycurcumin) was shown to have the highest binding energy -9.7 kcal/mol and also observed stable protein-ligand complex during MD studies. ADMET profile estimation showed that the docked phytochemicals were safe. However, further biological assessment through a wet lab is essential to measure the efficacy and safety of the compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Alagarsamy
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - P Shyam Sundar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - V Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - B Narendhar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - M T Sulthana
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - Kotha Rohitha
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - Sangeeta Dhanwar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - A Dharshini Aishwarya
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - S Murugesan
- Department of Pharmacy, BITS, Pilani, Pilani, Rajasthan, India
| |
Collapse
|
11
|
Koirala S, Samanta S, Mahapatra S, Ursal KD, Poddar S, Kar P. Molecular level investigation for identifying potential inhibitors against thymidylate kinase of monkeypox through in silico approaches. J Biomol Struct Dyn 2023; 42:13247-13260. [PMID: 37909473 DOI: 10.1080/07391102.2023.2274982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The need for more advanced and effective monkeypox (Mpox) treatments has become evident with numerous Mpox virus (MPXV) outbreaks. Over the years, interest has increased in developing targeted medicines that are efficient, safe, and precise while avoiding adverse effects. Here, we screened 32409 compounds against thymidylate kinase (TMPK), an emerging target for Mpox treatment. We studied their pharmacological characteristics and analyzed those through all-atom molecular dynamics simulations followed by molecular mechanics Poisson Boltzmann surface area (MM-PBSA) based free energy calculations. According to our findings, the leads CID40777874 and CID28960001 had the highest binding affinities towards TMPK with ΔGbind of -8.04 and -5.58 kcal/mol, respectively, which outperformed our control drug cidofovir (ΔGbind = -2.92 kcal/mol) in terms of binding favourability. Additionally, we observed crucial TMPK dynamics brought on by ligand-binding and identified key residues such as Phe68 and Tyr101 as the critical points of the protein-ligand interaction. The DCCM analysis revealed the role of ligand binding in stabilizing TMPK's binding region, as indicated by residual correlation motions. Moreover, the PSN analysis revealed that the interaction with ligand induces changes in residual network properties, enhancing the stability of complexes. We successfully identified novel compounds that may serve as potential building blocks for constructing contemporary antivirals against MPXV and highlighted the molecular mechanisms underlying their binding with TMPK. Overall, our findings will play a significant role in advancing the development of new therapies against Mpox and facilitating a comprehensive understanding of their interaction patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Kapil Dattatray Ursal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| |
Collapse
|
12
|
Sahoo AK, Augusthian PD, Muralitharan I, Vivek-Ananth RP, Kumar K, Kumar G, Ranganathan G, Samal A. In silico identification of potential inhibitors of vital monkeypox virus proteins from FDA approved drugs. Mol Divers 2023; 27:2169-2184. [PMID: 36331784 PMCID: PMC9638297 DOI: 10.1007/s11030-022-10550-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The World Health Organization (WHO) recently declared the monkeypox outbreak 'A public health emergency of international concern'. The monkeypox virus belongs to the same Orthopoxvirus genus as smallpox. Although smallpox drugs are recommended for use against monkeypox, monkeypox-specific drugs are not yet available. Drug repurposing is a viable and efficient approach in the face of such an outbreak. Therefore, we present a computational drug repurposing study to identify the existing approved drugs which can be potential inhibitors of vital monkeypox virus proteins, thymidylate kinase and D9 decapping enzyme. The target protein structures of the monkeypox virus were modelled using the corresponding protein structures in the vaccinia virus. We identified four potential inhibitors namely, Tipranavir, Cefiderocol, Doxorubicin, and Dolutegravir as candidates for repurposing against monkeypox virus from a library of US FDA approved antiviral and antibiotic drugs using molecular docking and molecular dynamics simulations. The main goal of this in silico study is to identify potential inhibitors against monkeypox virus proteins that can be further experimentally validated for the discovery of novel therapeutic agents against monkeypox disease.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | | | | | - R P Vivek-Ananth
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Kishan Kumar
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | - Gaurav Kumar
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | | | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
13
|
Kaur M, Sharma A, Kaur H, Singh M, Devi B, Naresh Raj AR, Sood V, Pandey A, Gartia J, Kumar R, Suresh Babu AR, Singh G, Barnwal RP. Screening of potential inhibitors against structural proteins from Monkeypox and related viruses of Poxviridae family via docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 42:10978-10993. [PMID: 37776002 DOI: 10.1080/07391102.2023.2259489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023]
Abstract
Monkeypox virus (MPXV) is an orthopoxvirus which causes zoonotic infection in humans. Even though sporadic cases of this infection are limited to the African continent, but if the infection continues to increase unabated, it can be a cause of serious concern for the human populace. Smallpox vaccination has been in use against monkeypox infection but it only provides mild protection. In the current study, we have screened novel small molecules (estrone fused heterocycles (EH1-EH7)) exhibiting good binding with monkeypox virus protein and related proteins from Poxviridae family of viruses via computational approaches. EH1-7 series of small molecules selected for the work have been synthesized via cycloaddition methodology. Docking and Molecular Dynamics (MD) results highlight EH4 compound to have strong binding affinity towards monkeypox and other related viral proteins selected for the study. Thus, computational outcomes suggest EH4 as a good candidate against monkeypox. Currently, no antiviral medication has been approved against monkeypox and the treatment is only via therapeutics available for smallpox and related conditions that may be helpful against monkeypox. Our study is thus an attempt to screen novel compounds against monkeypox infection, which would, in turn, facilitate development of novel therapeutics against Poxviridae family. HIGHLIGHTSMonkeypox infection is a public health emergency and necessitates immediate drug discovery.Molecular docking study to screen estrone-fused heterocycles compounds against Monkeypox and other orthopoxviruses.Molecular dynamics simulations revealed interaction/high binding affinities among EH4 heterocyclic compound and profilin-like protein from the monkeypox virus.Estrone-fused heterocycles compounds are promising anti-viral agents as per our in silico analysis.Our study provides evidence for investigating estrone-fused heterocycles compounds for further pharmacological interventions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Harjeet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Manjari Singh
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Janeka Gartia
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP, India
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
14
|
Khan A, Shahab M, Nasir F, Waheed Y, Alshammari A, Mohammad A, Zichen G, Li R, Wei DQ. Exploring the Traditional Chinese Medicine (TCM) database chemical space to target I7L protease from monkeypox virus using molecular screening and simulation approaches. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:689-708. [PMID: 37675795 DOI: 10.1080/1062936x.2023.2250723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
In the current study, we used molecular screening and simulation approaches to target I7L protease from monkeypox virus (mpox) from the Traditional Chinese Medicines (TCM) database. Using molecular screening, only four hits TCM27763, TCM33057, TCM34450 and TCM31564 demonstrated better pharmacological potential than TTP6171 (control). Binding of these molecules targeted Trp168, Asn171, Arg196, Cys237, Ser240, Trp242, Glu325, Ser326, and Cys328 residues and may affect the function of I7L protease in in vitro assay. Moreover, molecular simulation revealed stable dynamics, tighter structural packing and less flexible behaviour for all the complexes. We further reported that the average hydrogen bonds in TCM27763, TCM33057, TCM34450 and TCM31564I7L complexes remained higher than the control drug. Finally, the BF energy results revealed -62.60 ± 0.65 for the controlI7L complex, for the TCM27763I7L complex -71.92 ± 0.70 kcal/mol, for the TCM33057I7L complex the BF energy was -70.94 ± 0.70 kcal/mol, for the TCM34450I7L the BF energy was -69.94 ± 0.85 kcal/mol while for the TCM31564I7L complex the BF energy was calculated to be -69.16 ± 0.80 kcal/mol. Although, we used stateoftheart computational methods, these are theoretical insights that need further experimental validation.
Collapse
Affiliation(s)
- A Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, P.R. China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - M Shahab
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| | - F Nasir
- Amna Inayat Medical College, Lahore, Pakistan
| | - Y Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - A Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - G Zichen
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - R Li
- Department of Flowers, college of Horticulture, China Agriculture University, Beijing, P.R. China
| | - D Q Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, P.R. China
- Peng Cheng Laboratory, Vanke Cloud City, Shenzhen, P.R China
| |
Collapse
|
15
|
Dsouza L, Pant A, Offei S, Priyamvada L, Pope B, Satheshkumar PS, Wang Z, Yang Z. Antiviral activities of two nucleos(t)ide analogs against vaccinia, mpox, and cowpox viruses in primary human fibroblasts. Antiviral Res 2023:105651. [PMID: 37270160 PMCID: PMC10234405 DOI: 10.1016/j.antiviral.2023.105651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Many poxviruses are significant human and animal pathogens, including viruses that cause smallpox and mpox (formerly monkeypox). Identifying novel and potent antiviral compounds is critical to successful drug development targeting poxviruses. Here we tested two compounds, nucleoside trifluridine, and nucleotide adefovir dipivoxil, for antiviral activities against vaccinia virus (VACV), mpox virus (MPXV), and cowpox virus (CPXV) in physiologically relevant primary human fibroblasts. Both compounds potently inhibited the replication of VACV, CPXV, and MPXV (MA001 2022 isolate) in plaque assays. In our recently developed assay based on a recombinant VACV expressing secreted Gaussia luciferase, they both exhibited high potency in inhibiting VACV replication with EC50s in the low nanomolar range. In addition, both trifluridine and adefovir dipivoxil inhibited VACV DNA replication and downstream viral gene expression. Our results characterized trifluridine and adefovir dipivoxil as strong poxvirus antiviral compounds and further validate the VACV Gaussia luciferase assay as a highly efficient and reliable reporter tool for identifying poxvirus inhibitors. Given that both compounds are FDA-approved drugs, and trifluridine is already used to treat ocular vaccinia, further development of trifluridine and adefovir dipivoxil holds great promise in treating poxvirus infections, including mpox.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Samuel Offei
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Zhilong Yang
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
16
|
Ajmal A, Mahmood A, Hayat C, Hakami MA, Alotaibi BS, Umair M, Abdalla AN, Li P, He P, Wadood A, Hu J. Computer-assisted drug repurposing for thymidylate kinase drug target in monkeypox virus. Front Cell Infect Microbiol 2023; 13:1159389. [PMID: 37313340 PMCID: PMC10258308 DOI: 10.3389/fcimb.2023.1159389] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Monkeypox is a zoonotic disease caused by brick-shaped enveloped monkeypox (Mpox) virus that belongs to the family of ancient viruses known as Poxviridae. Subsequently, the viruses have been reported in various countries. The virus is transmitted by respiratory droplets, skin lesions, and infected body fluids. The infected patients experience fluid-filled blisters, maculopapular rash, myalgia, and fever. Due to the lack of effective drugs or vaccines, there is a need to identify the most potent and effective drugs to reduce the spread of monkeypox. The current study aimed to use computational methods to quickly identify potentially effective drugs against the Mpox virus. Methods In our study, the Mpox protein thymidylate kinase (A48R) was targeted because it is a unique drug target. We screened a library of 9000 FDA-approved compounds of the DrugBank database by using various in silico approaches, such as molecular docking and molecular dynamic (MD) simulation. Results Based on docking score and interaction analysis, compounds DB12380, DB13276, DB13276, DB11740, DB14675, DB11978, DB08526, DB06573, DB15796, DB08223, DB11736, DB16250, and DB16335 were predicted as the most potent. To examine the dynamic behavior and stability of the docked complexes, three compounds-DB16335, DB15796, and DB16250 -along with the Apo state were simulated for 300ns. The results revealed that compound DB16335 revealed the best docking score (-9.57 kcal/mol) against the Mpox protein thymidylate kinase. Discussion Additionally, during the 300 ns MD simulation period, thymidylate kinase DB16335 showed great stability. Further, in vitro and in vivo study is recommended for the final predicted compounds.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chandni Hayat
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Muhammad Umair
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ping Li
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Pei He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Junjian Hu
- Department of Central Laboratory, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, China
| |
Collapse
|
17
|
Khan A, Adil S, Qudsia HA, Waheed Y, Alshabrmi FM, Wei DQ. Structure-based design of promising natural products to inhibit thymidylate kinase from Monkeypox virus and validation using free energy calculations. Comput Biol Med 2023; 158:106797. [PMID: 36966556 PMCID: PMC10029349 DOI: 10.1016/j.compbiomed.2023.106797] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 03/23/2023]
Abstract
Monkeypox (MPXV) is a globally growing public health concern with 80,328 active cases and 53 deaths have been reported. No specific vaccine or drug is available for the treatment of MPXV. Hence, the current study also employed structure-based drug designing, molecular simulation, and free energy calculation methods to identify potential hit molecules against the TMPK of MPXV, which is a replicatory protein that helps the virus to replicate its DNA and increase the number of DNAs in the host cell. The 3D structure of TMPK was modeled with AlphaFold and screening of multiple natural products libraries (4,71,470 compounds) identified TCM26463, TCM2079, and TCM29893 from traditional Chinese medicines database (TCM), SANC00240, SANC00984, and SANC00986 South African natural compounds database (SANCDB), NPC474409, NPC278434 and NPC158847 from NPASS (natural product activity and species source database) while CNP0404204, CNP0262936, and CNP0289137 were shortlisted from coconut database (collection of open natural products) as the best hits. These compounds interact with the key active site residues through hydrogen bonds, salt bridges, and pie-pie interactions. The structural dynamics and binding free energy results further revealed that these compounds possess stable dynamics with excellent binding free energy scores. Moreover, the dissociation constant (KD) and bioactivity analysis revealed stronger activity of these compounds exhibit stronger biological activity against MPXV and may inhibit it in in vitro conditions. All the results demonstrated that the designed novel compounds possess stronger inhibitory activity than the control complex (TPD-TMPK) from the vaccinia virus. The current study is the first to design small molecule inhibitors for the replication protein of MPXV which may help in controlling the current epidemic and also overcome the challenge of vaccine evasion.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Shoaib Adil
- Gujranwala Medical College, Gondlanwala Rd, Gujranwala, Punjab, Pakistan
| | | | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, 44000, Pakistan; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
18
|
Sib Tul Hassan Shah S, Naeem I. In-silico targeting TMPK from monkey pox virus: Molecular docking analysis, density functional theory studies and molecular dynamic simulation analysis. J Biomol Struct Dyn 2023; 41:14689-14701. [PMID: 36970852 DOI: 10.1080/07391102.2023.2193998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023]
Abstract
The World Health Organization (WHO) proclaimed the monkeypox epidemic a "public health emergency of worldwide significance" recently. The monkeypox virus is a member of the same Orthopoxvirus genus as the smallpox virus. Although smallpox medications are advised against monkeypox, no monkeypox-specific drugs are currently available. In the event of such an outbreak, in-silico medication identification is a practical and efficient strategy. As a result, we report a computational drug repurposing analysis to discover medicines that may be potential inhibitors of thymidylate kinase, a critical monkeypox viral enzyme. The target protein structure of the monkeypox virus was modeled using the vaccinia virus's homologous protein structure. Using molecular docking and density functional theory, we found 11 possible inhibitors of the monkeypox virus from an Asinex library of 261120 chemicals. The primary purpose of this in silico work is to find possible inhibitors of monkeypox viral proteins that can then be experimentally tested in order to develop innovative therapeutic medicines for monkeypox infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syed Sib Tul Hassan Shah
- Department of Life Science, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Iqra Naeem
- Department of Life Science, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
19
|
Sinha P, Yadav AK. Identification of novel potential inhibitor of thymidylate kinase from Variola virus. J Biomol Struct Dyn 2023; 41:14092-14102. [PMID: 36907647 DOI: 10.1080/07391102.2023.2188426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023]
Abstract
A hit compound was designed using Fragment Based Drug Designing (FBDD) approach, density functional theory (DFT) calculations were performed to find the structural and electronic properties. Additionally, pharmacokinetic properties were studied to understand the biological response of the compound. Docking studies were carried out with the protein structure of VrTMPK and HssTMPK with the reported hit compound. The favored docked complex was further carried to perform MD simulations; the RMSD plot and H-bond analysis was done for 200 ns. Also, MM-PBSA was done to understand the binding energy constituents and stability of the complex. A comparative study of the designed hit compound was done with FDA approved Tecovirimat. As a result, it was found that the reported compound (POX-A)is a potential selective inhibitor for Variola virus. Hence, it can be used to study further in vivo and in vitro behavior of the compound.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prashasti Sinha
- Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Yadav
- Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
20
|
Lokhande KB, Shrivastava A, Singh A. In silico
discovery of potent inhibitors against monkeypox's major structural proteins. J Biomol Struct Dyn 2023; 41:14259-14274. [PMID: 36841550 DOI: 10.1080/07391102.2023.2183342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Monkeypox virus (MPXV) outbreak in non-endemic countries is a worldwide public health emergency. An enveloped double-stranded DNA virus belongs to the genus Orth poxvirus. A viral zoonotic infection known as monkeypox has been a serious risk to public health, especially in Africa. However, it has recently spread to other continents, so it might soon become a worldwide problem. There is an increased risk of transmission of the virus because there is a lack of effective treatment that cures the disease. To stop the multi-country outbreak from spreading, it is important to discover effective medications urgently. The objective of the current study is to swiftly find new treatments for the monkeypox virus using advanced computational approaches. By investigating five potential MPXV targets (DNA ligase, Palmytilated Extracellular Enveloped Virus (EEV) membrane protein, Scaffold protein D13, Thymidylate Kinase, and Viral core cysteine proteinase), this research was carried out using cutting-edge computational techniques against human monkeypox virus infection. Here we present the accurate 3D structures and their binding cavities of the selected targets with higher confidence using AlphaFold 2 and SiteMap analysis. Molecular docking and MD simulation analysis revealed the top five potential lead compounds with higher binding affinity and stability toward selected targets. Binding free energy calculations and other essential dynamics analysis supports the finding. The selected lead compounds utilizing virtual screening and drug repurposing approach reported in this study are beneficial for medical scientists and experimental biologists in drug development for the treatment of human MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
21
|
Current Insights into Diagnosis, Prevention Strategies, Treatment, Therapeutic Targets, and Challenges of Monkeypox (Mpox) Infections in Human Populations. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010249. [PMID: 36676198 PMCID: PMC9863601 DOI: 10.3390/life13010249] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
In the wake of the emergence and worldwide respread of a viral infection called Monkeypox (Mpox), there is a serious threat to the health and safety of the global population. This viral infection was endemic to the western and central parts of Africa, but has recently spread out of this endemic area to various countries, including the United Kingdom (UK), Portugal, Spain, the United States of America (USA), Canada, Sweden, Belgium, Italy, Australia, Germany, France, the Netherlands, Israel, and Mexico. This is a timely review focusing on recent findings and developments in the epidemiology, clinical features, therapeutic targets, diagnosis, prevention mechanisms, research challenges and possible treatment for Mpox. To date (29 November 2022), there have been around 81,225 reported cases of Mpox. In most cases, this illness is mild; however, there is a fatality rate ranging from 1 to 10%, which might be increased due to associated complications and/or secondary infections. There is a real challenge in the diagnosis of Mpox, since its symptoms are very similar to those of other infections, including smallpox and chickenpox. Generally, to prevent/limit the risk and transmission of Mpox, the detection and isolation of infected individuals, as well as hand hygiene and cleanliness, are essential and effective approaches to control/combat this viral infection. Nevertheless, updated information about Mpox from different angles is lacking. Thus, this review provides updated and comprehensive information about the Mpox illness, which should highlight the global burden, pathogenicity, symptoms, diagnosis, prevention measures and possible treatment of this emerging disease.
Collapse
|
22
|
Rabaan AA, Abas AH, Tallei TE, Al-Zaher MA, Al-Sheef NM, Fatimawali, Al-Nass EZ, Al-Ebrahim EA, Effendi Y, Idroes R, Alhabib MF, Al-Fheid HA, Adam AA, Bin Emran T. Monkeypox outbreak 2022: What we know so far and its potential drug targets and management strategies. J Med Virol 2023; 95:e28306. [PMID: 36372558 DOI: 10.1002/jmv.28306] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Monkeypox is a rare zoonotic disease caused by infection with the monkeypox virus. The disease can result in flu-like symptoms, fever, and a persistent rash. The disease is currently spreading throughout the world and prevention and treatment efforts are being intensified. Although there is no treatment that has been specifically approved for monkeypox virus infection, infected patients may benefit from using certain antiviral medications that are typically prescribed for the treatment of smallpox. The drugs are tecovirimat, brincidofovir, and cidofovir, all of which are currently in short supply due to the spread of the monkeypox virus. Resistance is also a concern, as widespread replication of the monkeypox virus can lead to mutations that produce monkeypox viruses that are resistant to the currently available treatments. This article discusses monkeypox disease, potential drug targets, and management strategies to overcome monkeypox disease. With the discovery of new drugs, it is hoped that the problem of insufficient drugs will be resolved, and it is not anticipated that drug resistance will become a major issue in the near future.
Collapse
Affiliation(s)
- Ali A Rabaan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abdul Hawil Abas
- Faculty of Bioscience and Engineering, Ghent University, Ghent, Belgium
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Mona A Al-Zaher
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Noor M Al-Sheef
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Esraa Z Al-Nass
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Eba A Al-Ebrahim
- Department of Commitment management, Directorate of Health Affairs in the Eastern Province, Dammam, Saudi Arabia
| | - Yunus Effendi
- Department of Biology, Faculty of Science and Technology, Al-Azhar Indonesia University, Jakarta, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Mather F Alhabib
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam, Saudi Arabia
| | - Hussain A Al-Fheid
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam, Saudi Arabia
| | - Ahmad Akroman Adam
- Dentistry Study Program, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
23
|
Computational Repurposing of Mitoxantrone-Related Structures against Monkeypox Virus: A Molecular Docking and 3D Pharmacophore Study. Int J Mol Sci 2022; 23:ijms232214287. [PMID: 36430762 PMCID: PMC9695275 DOI: 10.3390/ijms232214287] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Monkeypox is caused by a DNA virus known as the monkeypox virus (MPXV) belonging to the Orthopoxvirus genus of the Poxviridae family. Monkeypox is a zoonotic disease where the primary significant hosts are rodents and non-human primates. There is an increasing global incidence with a 2022 outbreak that has spread to Europe in the middle of the COVID-19 pandemic. The new outbreak has novel, previously undiscovered mutations and variants. Currently, the US Food and Drug Administration (FDA) approved poxvirus treatment involving the use of tecovirimat. However, there has otherwise been limited research interest in monkeypox. Mitoxantrone (MXN), an anthracycline derivative, an FDA-approved therapeutic for treating cancer and multiple sclerosis, was previously reported to exhibit antiviral activity against the vaccinia virus and monkeypox virus. In this study, virtual screening, molecular docking analysis, and pharmacophore ligand-based modelling were employed on anthracene structures (1-13) closely related to MXN to explore the potential repurposing of multiple compounds from the PubChem library. Four chemical structures (2), (7), (10) and (12) show a predicted high binding potential to suppress viral replication.
Collapse
|
24
|
ORF-Interrupting Mutations in Monkeypox Virus Genomes from Washington and Ohio, 2022. Viruses 2022; 14:v14112393. [PMID: 36366490 PMCID: PMC9695478 DOI: 10.3390/v14112393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
Monkeypox virus, the causative agent of the 2022 monkeypox outbreak, is a double-stranded DNA virus in the Orthopoxvirus genus of the Poxviridae family. Genes in terminal regions of Orthopoxvirus genomes mostly code for host-pathogen interaction proteins and are prone to selective pressure and modification events. Using viral whole genome sequencing, we identified twenty-five total clinical samples with ORF-disrupting mutations, including twenty samples encoding nonsense mutations in MPXVgp001/191 (OPG001), MPXVgp004/188 (OPG015), MPXVgp010 (OPG023), MPXVgp030 (OPG042), MPXVgp159 (OPG0178), or MPXVgp161 (OPG181). Additional mutations include a frameshift leading to an alternative C-terminus in MPXVgp010 (OPG023) and an insertion in an adenine homopolymer at the beginning of the annotated ORF for MPXVgp153 (OPG151), encoding a subunit of the RNA polymerase, suggesting the virus may instead use the start codon that encodes Met9 as annotated. Finally, we detected three samples with large (>900 bp) deletions. These included a 913 bp deletion that truncates the C-terminus of MPXVgp010 (OPG023); a 4205 bp deletion that eliminates MPXVgp012 (OPG025), MPXVgp013 (OPG027), and MPXVgp014 (OPG029) and truncates MPXVgp011 (OPG024; D8L) and MPXVgp015 (OPG030); and a 6881 bp deletion that truncates MPXVgp182 (OPG210) and eliminates putative ORFs MPXVgp184, MPXVgp185 (OPG005), and MPXVgp186, as well as MPXVgp187 (OPG016), and MPXVgp188 (OPG015) from the 3' ITR only. MPXVgp182 encodes the monkeypox-specific, highly immunogenic surface glycoprotein B21R which has been proposed as a serological target. Overall, we find greater than one-tenth of our sequenced MPXV isolates have at least one gene inactivating mutation and these genes together comprised greater than one-tenth of annotated MPXV genes. Our findings highlight non-essential genes in monkeypox virus that may be evolving as a result of selective pressure in humans, as well as the limitations of targeting them for therapeutics and diagnostic testing.
Collapse
|
25
|
Lam HYI, Guan JS, Mu Y. In Silico Repurposed Drugs against Monkeypox Virus. Molecules 2022; 27:molecules27165277. [PMID: 36014515 PMCID: PMC9415168 DOI: 10.3390/molecules27165277] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
Monkeypox is an emerging epidemic of concern. The disease is caused by the monkeypox virus and an increasing global incidence with a 2022 outbreak that has spread to Europe amid the COVID-19 pandemic. The new outbreak is associated with novel, previously undiscovered mutations and variants. Currently, the US Food and Drug Administration (FDA) approved poxvirus treatment involves the use of tecovirimat. However, there is otherwise limited pharmacopoeia and research interest in monkeypox. In this study, virtual screening and molecular dynamics were employed to explore the potential repurposing of multiple drugs previously approved by the FDA or other jurisdictions for other applications. Several drugs are predicted to tightly bind to viral proteins, which are crucial in viral replication, including molecules which show high potential for binding the monkeypox D13L capsid protein, whose inhibition has previously been demonstrated to suppress viral replication.
Collapse
Affiliation(s)
- Hilbert Yuen In Lam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
- A*STAR Skin Research Labs, Agency of Science, Technology and Research, Singapore, 11 Mandalay Rd, #17-01, Singapore 308232, Singapore
| | - Jia Sheng Guan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
- Correspondence:
| |
Collapse
|
26
|
Garcia DR, Souza FR, Guimarães AP, Valis M, Pavelek Z, Kuca K, Ramalho TC, França TCC. In Silico Studies of Potential Selective Inhibitors of Thymidylate Kinase from Variola virus. Pharmaceuticals (Basel) 2021; 14:ph14101027. [PMID: 34681251 PMCID: PMC8537287 DOI: 10.3390/ph14101027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Continuing the work developed by our research group, in the present manuscript, we performed a theoretical study of 10 new structures derived from the antivirals cidofovir and ribavirin, as inhibitor prototypes for the enzyme thymidylate kinase from Variola virus (VarTMPK). The proposed structures were subjected to docking calculations, molecular dynamics simulations, and free energy calculations, using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, inside the active sites of VarTMPK and human TMPK (HssTMPK). The docking and molecular dynamic studies pointed to structures 2, 3, 4, 6, and 9 as more selective towards VarTMPK. In addition, the free energy data calculated through the MM-PBSA method, corroborated these results. This suggests that these compounds are potential selective inhibitors of VarTMPK and, thus, can be considered as template molecules to be synthesized and experimentally evaluated against smallpox.
Collapse
Affiliation(s)
- Danielle R. Garcia
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tiburcio 80, Urca, Rio de Janeiro 22290-270, Brazil;
| | - Felipe R. Souza
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil;
| | - Ana P. Guimarães
- Department of Chemistry, Federal University of Viçosa, Avenida P. H. Rolfs, s/n, Centro, Viçosa 36570-000, MG, Brazil;
| | - Martin Valis
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (M.V.); (Z.P.)
| | - Zbyšek Pavelek
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (M.V.); (Z.P.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
- Correspondence: (K.K.); (T.C.C.F.)
| | - Teodorico C. Ramalho
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Laboratory of Computational Chemistry, Department of Chemistry, UFLA, Lavras 37200-000, MG, Brazil
| | - Tanos C. C. França
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tiburcio 80, Urca, Rio de Janeiro 22290-270, Brazil;
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Correspondence: (K.K.); (T.C.C.F.)
| |
Collapse
|
27
|
Kirti A, Prashar V, Kumar A, Pandey S, Rajaram H. Thymidylate kinase (TMK) of the photosynthetic, nitrogen-fixing cyanobacterium Nostoc sp. strain PCC7120: Biophysical, biochemical and physiological characterisation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:416-426. [PMID: 34157604 DOI: 10.1016/j.plaphy.2021.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Thymidylate kinase (TMK/TMPK) is an important enzyme in DNA biosynthesis and catalyses the conversion of dTMP to dTDP. Due to its therapeutic potential, the focus has been on characterizing the TMK proteins of pathogens and human origin, with very little information available on the TMK proteins of photosynthetic organisms and agriculturally important nitrogen-fixing organisms. In this work we report the characterisation of TMK in an evolutionarily ancient organism, cyanobacteria. The TMK protein of the photosynthetic, nitrogen-fixing cyanobacterium Nostoc PCC7120 (AnTMK) was found to have low conformational stability, which related to its low Tm of ~46 °C confirmed by Differential Scanning Fluorimetry (DSF) and Differential Scanning Calorimetry (DSC) techniques. The AnTMK protein exhibited substrate specificity for dTMP and ATP with Km of 20.74 ± 1.47 μM and 20.17 ± 2.96 μM respectively. The enzyme kinetics data and the positive co-operativity observed between dTMP and ATP binding correlated well with the data obtained from Isothermal Titration Calorimetry (ITC). Homology model of the enzyme suggested that the binding mode of substrate nucleotides to the enzyme is conserved. When overexpressed constitutively in Nostoc PCC7120 (Antmk+), it supported faster growth measured in terms of chlorophyll a content under normal growth conditions, but exhibited lower photosynthetic efficiency. Compared to the vector control recombinant Nostoc AnpAM, the Antmk + cells exhibited higher photoinhibition at higher light irradiance with more open reaction centres and lower dissipation of heat, indicative of damage to photosynthetic machinery. This indicated that the TMK is likely to have a significant role in photosynthetic organisms.
Collapse
Affiliation(s)
- Anurag Kirti
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Vishal Prashar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| | - Arvind Kumar
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sarita Pandey
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Hema Rajaram
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
28
|
Khandelwal N, Chander Y, Kumar R, Riyesh T, Dedar RK, Kumar M, Gulati BR, Sharma S, Tripathi BN, Barua S, Kumar N. Antiviral activity of Apigenin against buffalopox: Novel mechanistic insights and drug-resistance considerations. Antiviral Res 2020; 181:104870. [PMID: 32707051 DOI: 10.1016/j.antiviral.2020.104870] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
We describe herein that Apigenin, which is a dietary flavonoid, exerts a strong in vitro and in ovo antiviral efficacy against buffalopox virus (BPXV). Apigenin treatment was shown to inhibit synthesis of viral DNA, mRNA and proteins, without affecting other steps of viral life cycle such as attachment, entry and budding. Although the major mode of antiviral action of Apigenin was shown to be mediated via targeting certain cellular factors, a modest inhibitory effect of Apigenin was also observed directly on viral polymerase. We also evaluated the selection of drug-resistant virus variants under long-term selection pressure of Apigenin. Wherein Apigenin-resistant mutants were not observed up to ~ P20 (passage 20), a significant resistance was observed to the antiviral action of Apigenin at ~ P30. However, a high degree resistance could not be observed even up to P60. To the best of our knowledge, this is the first report describing in vitro and in ovo antiviral efficacy of Apigenin against poxvirus infection. The study also provides mechanistic insights on the antiviral activity of Apigenin and selection of potential Apigenin-resistant mutants upon long-term culture.
Collapse
Affiliation(s)
- Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India; Department of Biotechnology, GLA University, Mathura, UP, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ramesh Kumar Dedar
- Equine Production Campus, ICAR-National Research Centre on Equines, Hisar, India
| | - Manoj Kumar
- Department of Mathematics and Statistics, College of Basic Science and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Baldev R Gulati
- Equine Health Unit, ICAR-National Research Centre on Equines, Hisar, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| |
Collapse
|
29
|
Fucci IJ, Sinha K, Rule GS. Stabilization of Active Site Dynamics Leads to Increased Activity with 3'-Azido-3'-deoxythymidine Monophosphate for F105Y Mutant Human Thymidylate Kinase. ACS OMEGA 2020; 5:2355-2367. [PMID: 32064397 PMCID: PMC7017412 DOI: 10.1021/acsomega.9b03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/10/2020] [Indexed: 05/04/2023]
Abstract
Thymidylate kinases are essential enzymes with roles in DNA synthesis and repair and have been the target of drug development for antimalarials, antifungals, HIV treatment, and cancer therapeutics. Human thymidylate kinase (hTMPK) conversion of the anti-HIV prodrug 3'-azido-3'-deoxythymidine (AZT or zidovudine) monophosphate to diphosphate is the rate-limiting step in the activation of AZT. A point mutant (F105Y) has been previously reported with significantly increased activity for the monophosphate form of the drug [3'-azidothymidine-5'-monophosphate (AZTMP)]. Using solution nuclear magnetic resonance (NMR) techniques, we show that while the wild-type (WT) and F105Y hTMPK adopt the same structure in solution, significant changes in dynamics may explain their different activities toward TMP and AZTMP. 13C spin-relaxation measurements show that there is little change in dynamics on the ps to ns time scale. In contrast, methyl 1H relaxation dispersion shows that AZTMP alters adenosine nucleotide handling in the WT protein but not in the mutant. Additionally, the F105Y mutant has reduced conformational flexibility, leading to an increase in affinity for the product ADP and a slower rate of phosphorylation of TMP. The dynamics at the catalytic center for F105Y bound to AZTMP are tuned to the same frequency as WT bound to TMP, which may explain the mutant's catalytic efficiency toward the prodrug.
Collapse
|
30
|
Chen MD, Fucci IJ, Sinha K, Rule GS. dGMP Binding to Thymidylate Kinase from Plasmodium falciparum Shows Half-Site Binding and Induces Protein Dynamics at the Dimer Interface. Biochemistry 2020; 59:694-703. [PMID: 31934749 DOI: 10.1021/acs.biochem.9b00898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum thymidylate kinase (PfTMK) is an essential enzyme for the growth of the organism because of its critical role in the de novo synthesis of deoxythymidine 5'-diphosphate (TDP), a precursor for TTP that is required for DNA replication and repair. The kinetics, thermodynamic parameters, and substrate binding properties of PfTMK for TMP, dGMP, ADP, and ATP were measured and characterized by steady-state kinetics and a combination of isothermal titration calorimetry, tryptophan fluorescence titration, and NMR. Mutational studies were performed to investigate residues that contribute to the unique ability of PfTMK to also utilize dGMP as a substrate. Isothermal titration calorimetry experiments revealed that dGMP binding exhibits a unique half-site binding mechanism. The occlusion of the empty site in the dGMP complex is supported by molecular mechanics calculations. Relaxation dispersion experiments show that the dGMP and enzyme complex is more dynamic at the dimer interface than the TMP complex on the μs-ms time scale. The unique properties of dGMP binding need to be considered in the design of guanosine-based PfTMK-specific inhibitors.
Collapse
Affiliation(s)
- Mengshen David Chen
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Ian J Fucci
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Kaustubh Sinha
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Gordon S Rule
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
31
|
Rodrigues Garcia D, Rodrigues de Souza F, Paula Guimarães A, Castro Ramalho T, Palermo de Aguiar A, Celmar Costa França T. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox: part II. J Biomol Struct Dyn 2019; 37:4569-4579. [PMID: 30488769 PMCID: PMC9491145 DOI: 10.1080/07391102.2018.1554510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/21/2023]
Abstract
Acknowledging the importance of studies toward the development of measures against terrorism and bioterrorism, this study aims to contribute to the design of new prototypes of potential drugs against smallpox. Based on a former study, nine synthetic feasible prototypes of selective inhibitors for thymidylate kinase from Variola virus (VarTMPK) were designed and submitted to molecular docking, molecular dynamics simulations and binding energy calculations. The compounds are simplifications of two more complex scaffolds, with a guanine connected to an amide or alcohol through a spacer containing ether and/or amide groups, formerly suggested as promising for the design of selective inhibitors of VarTMPK. Our study showed that, despite the structural simplifications, the compounds presented effective energy values in interactions with VarTMPK and HssTMPK and that the guanine could be replaced by a simpler imidazole ring linked to a -NH2 group, without compromising the affinity for VarTMPK. It was also observed that a positive charge in the imidazole ring is important for the selectivity toward VarTMPK and that an amide group in the spacer does not contribute to selectivity. Finally, prototype 3 was pointed as the most promising to be synthesized and experimentally evaluated. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Danielle Rodrigues Garcia
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Felipe Rodrigues de Souza
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | | | - Teodorico Castro Ramalho
- Laboratory of Computational Chemistry, Department of Chemistry, UFLA, Lavras, MG, Brazil
- Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Králové, Hradec Králove, Czech Republic
| | | | - Tanos Celmar Costa França
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
- Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Králové, Hradec Králove, Czech Republic
| |
Collapse
|
32
|
Ferey J, Da Silva D, Colas C, Lafite P, Topalis D, Roy V, Agrofoglio LA, Daniellou R, Maunit B. Monitoring of phosphorylation using immobilized kinases by on-line enzyme bioreactors hyphenated with High-Resolution Mass Spectrometry. Talanta 2019; 205:120120. [PMID: 31450426 DOI: 10.1016/j.talanta.2019.120120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/18/2022]
Abstract
Nucleosides analogues are the cornerstone of the treatment of several human diseases. They are especially at the forefront of antiviral therapy. Their therapeutic efficiency depends on their capacity to be converted to the active nucleoside triphosphate form through successive phosphorylation steps catalyzed by nucleoside/nucleotide kinases. In this context, it is mandatory to develop a rapid, reliable and sensitive enzyme activity test to evaluate their metabolic pathways. In this study, we report a proof of concept to directly monitor on-line nucleotide multiple phosphorylation. The methodology was developed by on-line enzyme bioreactors hyphenated with High-Resolution Mass Spectrometry detection. Human Thymidylate Kinase (hTMPK) and human Nucleoside Diphosphate Kinase (hNDPK) were covalently immobilized on functionalized silica beads, and packed into micro-bioreactors (40 μL). By continuous infusion of substrate into the bioreactors, the conversion of thymidine monophosphate (dTMP) into its di- (dTDP) and tri-phosphorylated (dTTP) forms was visualized by monitoring their Extracted Ion Chromatogram (EIC) of their [M - H]- ions. Both bioreactors were found to be robust and durable over 60 days (storage at 4 °C in ammonium acetate buffer), after 20 uses and more than 750 min of reaction, making them suitable for routine analysis. Each on-line conversion step was shown rapid (<5 min), efficient (conversion efficiency > 55%), precise and repeatable (CV < 3% for run-to-run analysis). The feasibility of the on-line multi-step conversion from dTMP to dTTP was also proved. In the context of selective antiviral therapy, this proof of concept was then applied to the monitoring of specificity of conversion of two synthesized Acyclic Nucleosides Phosphonates (ANPs), regarding human Thymidylate Kinase (hTMPK) and vaccina virus Thymidylate Kinase (vvTMPK).
Collapse
Affiliation(s)
- Justine Ferey
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France.
| | - David Da Silva
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France
| | - Cyril Colas
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France; CNRS, CBM, UPR 4301, Univ-Orléans, F-45071, Orléans, France
| | - Pierre Lafite
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France
| | - Dimitrios Topalis
- Rega Institute for Medical Research, KU Leuven, Herestraat 49 - Box 1043, 3000, Leuven, Belgium
| | - Vincent Roy
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France
| | | | | | - Benoît Maunit
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France
| |
Collapse
|
33
|
Gao J, Gigante C, Khmaladze E, Liu P, Tang S, Wilkins K, Zhao K, Davidson W, Nakazawa Y, Maghlakelidze G, Geleishvili M, Kokhreidze M, Carroll DS, Emerson G, Li Y. Genome Sequences of Akhmeta Virus, an Early Divergent Old World Orthopoxvirus. Viruses 2018; 10:v10050252. [PMID: 29757202 PMCID: PMC5977245 DOI: 10.3390/v10050252] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Annotated whole genome sequences of three isolates of the Akhmeta virus (AKMV), a novel species of orthopoxvirus (OPXV), isolated from the Akhmeta and Vani regions of the country Georgia, are presented and discussed. The AKMV genome is similar in genomic content and structure to that of the cowpox virus (CPXV), but a lower sequence identity was found between AKMV and Old World OPXVs than between other known species of Old World OPXVs. Phylogenetic analysis showed that AKMV diverged prior to other Old World OPXV. AKMV isolates formed a monophyletic clade in the OPXV phylogeny, yet the sequence variability between AKMV isolates was higher than between the monkeypox virus strains in the Congo basin and West Africa. An AKMV isolate from Vani contained approximately six kb sequence in the left terminal region that shared a higher similarity with CPXV than with other AKMV isolates, whereas the rest of the genome was most similar to AKMV, suggesting recombination between AKMV and CPXV in a region containing several host range and virulence genes.
Collapse
Affiliation(s)
- Jinxin Gao
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Crystal Gigante
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Ekaterine Khmaladze
- Laboratory of Molecular Epidemiology, National Center for Disease Control and Public Health of Georgia, 9 M. Asatiani Street, Tbilisi 0177, Georgia.
| | - Pengbo Liu
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Shiyuyun Tang
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Kimberly Wilkins
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Kun Zhao
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Whitni Davidson
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Yoshinori Nakazawa
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Giorgi Maghlakelidze
- Division of Global Health Protection (DGHP), Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Marika Geleishvili
- Division of Global Health Protection (DGHP), Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Maka Kokhreidze
- Laboratory of the Ministry of Agriculture of Georgia (LMA), Animal Disease Diagnostic Department, 49 Vaso Godziashvilis Street, Tbilisi 0159, Georgia.
| | - Darin S Carroll
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Ginny Emerson
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Yu Li
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| |
Collapse
|
34
|
Chen MD, Sinha K, Rule GS, Ly DH. Interaction of α-Thymidine Inhibitors with Thymidylate Kinase from Plasmodium falciparum. Biochemistry 2018; 57:2868-2875. [PMID: 29684273 DOI: 10.1021/acs.biochem.8b00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum thymidylate kinase (PfTMK) is a critical enzyme in the de novo biosynthesis pathway of pyrimidine nucleotides. N-(5'-Deoxy-α-thymidin-5'-yl)- N'-[4-(2-chlorobenzyloxy)phenyl]urea was developed as an inhibitor of PfTMK and has been reported as an effective inhibitor of P. falciparum growth with an EC50 of 28 nM [Cui, H., et al. (2012) J. Med. Chem. 55, 10948-10957]. Using this compound as a scaffold, a number of derivatives were developed and, along with the original compound, were characterized in terms of their enzyme inhibition ( Ki) and binding affinity ( KD). Furthermore, the binding site of the synthesized compounds was investigated by a combination of mutagenesis and docking simulations. Although the reported compound is indicated to be highly effective in its inhibition of parasite growth, we observed significantly lower binding affinity and weaker inhibition of PfTMK than expected from the reported EC50. This suggests that significant structural optimization will be required for the use of this scaffold as an effective PfTMK inhibitor and that the inhibition of parasite growth is due to an off-target effect.
Collapse
Affiliation(s)
- Mengshen David Chen
- Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Kaustubh Sinha
- Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Gordon S Rule
- Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Danith H Ly
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
35
|
Chaudhary SK, Jeyakanthan J, Sekar K. Structural and functional roles of dynamically correlated residues in thymidylate kinase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:341-354. [PMID: 29652261 DOI: 10.1107/s2059798318002267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/07/2018] [Indexed: 11/10/2022]
Abstract
Thymidylate kinase is an important enzyme in DNA synthesis. It catalyzes the conversion of thymidine monophosphate to thymidine diphosphate, with ATP as the preferred phosphoryl donor, in the presence of Mg2+. In this study, the dynamics of the active site and the communication paths between the substrates, ATP and TMP, are reported for thymidylate kinase from Thermus thermophilus. Conformational changes upon ligand binding and the path for communication between the substrates and the protein are important in understanding the catalytic mechanism of the enzyme. High-resolution X-ray crystal structures of thymidylate kinase in apo and ligand-bound states were solved. This is the first report of structures of binary and ternary complexes of thymidylate kinase with its natural substrates ATP and ATP-TMP, respectively. Distinct conformations of the active-site residues, the P-loop and the LID region observed in the apo and ligand-bound structures revealed that their concerted motion is required for the binding and proper positioning of the substrate TMP. Structural analyses provide an insight into the mode of substrate binding at the active site. The residues involved in communication between the substrates were identified through network analysis using molecular-dynamics simulations. The residues identified showed high sequence conservation across species. Biochemical analyses show that mutations of these residues either resulted in a loss of activity or affected the thermal stability of the protein. Further, molecular-dynamics analyses of mutants suggest that the proper positioning of TMP is important for catalysis. These data also provide an insight into the phosphoryl-transfer mechanism.
Collapse
Affiliation(s)
| | | | - Kanagaraj Sekar
- Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
36
|
Hajiebrahimi A, Ghasemi Y, Sakhteman A. FLIP: An assisting software in structure based drug design using fingerprint of protein-ligand interaction profiles. J Mol Graph Model 2017; 78:234-244. [PMID: 29121561 DOI: 10.1016/j.jmgm.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/29/2022]
Abstract
With the growing number of labor-intensive data in the pharmaceutical industries and public domain for protein-ligand complexes, a significant challenge is still remaining in managing and leveraging this vast information. Here, a standalone application is presented for analysis, organization, and illustration of structural data and molecular interactions for exploiting 3D-structures into simple 1D fingerprints. The utility of the approach was shown in unraveling a feasible solution for post-processing of docking results in parallel with providing fruitful analysis for users in order to investigate molecular interactions. Remarkably, all interaction possibilities including (hydrogen bond, water-bridged, electrostatic, and hydrophobic as well as π- π and cation-π interactions) are supported both in the form of fingerprints and compelling reports. These investigations are mainly considered based on right orientation, location, and geometry of the interacting pairs rather than the acquisition of the energy terms. The reasonable efficiency of our application in different models was comparable to recent methods It is clearly presented that FLIP provides a faster way to generate usable fingerprints for ligand and protein binding modes. FLIP is free for academic use and is available at: http://zistrayan.com/development/download/flip/package.zip.
Collapse
Affiliation(s)
- Ali Hajiebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Irwin CR, Hitt MM, Evans DH. Targeting Nucleotide Biosynthesis: A Strategy for Improving the Oncolytic Potential of DNA Viruses. Front Oncol 2017; 7:229. [PMID: 29018771 PMCID: PMC5622948 DOI: 10.3389/fonc.2017.00229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
The rapid growth of tumors depends upon elevated levels of dNTPs, and while dNTP concentrations are tightly regulated in normal cells, this control is often lost in transformed cells. This feature of cancer cells has been used to advantage to develop oncolytic DNA viruses. DNA viruses employ many different mechanisms to increase dNTP levels in infected cells, because the low concentration of dNTPs found in non-cycling cells can inhibit virus replication. By disrupting the virus-encoded gene(s) that normally promote dNTP biosynthesis, one can assemble oncolytic versions of these agents that replicate selectively in cancer cells. This review covers the pathways involved in dNTP production, how they are dysregulated in cancer cells, and the various approaches that have been used to exploit this biology to improve the tumor specificity of oncolytic viruses. In particular, we compare and contrast the ways that the different types of oncolytic virus candidates can directly modulate these processes. We limit our review to the large DNA viruses that naturally encode homologs of the cellular enzymes that catalyze dNTP biogenesis. Lastly, we consider how this knowledge might guide future development of oncolytic viruses.
Collapse
Affiliation(s)
- Chad R Irwin
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Mary M Hitt
- Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - David H Evans
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
38
|
Sinha K, Rule GS. The Structure of Thymidylate Kinase from Candida albicans Reveals a Unique Structural Element. Biochemistry 2017; 56:4360-4370. [DOI: 10.1021/acs.biochem.7b00498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaustubh Sinha
- Department of Biological
Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S. Rule
- Department of Biological
Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
39
|
Biswas A, Shukla A, Chaudhary SK, Santhosh R, Jeyakanthan J, Sekar K. Structural studies of a hyperthermophilic thymidylate kinase enzyme reveal conformational substates along the reaction coordinate. FEBS J 2017. [PMID: 28627020 DOI: 10.1111/febs.14140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thymidylate kinase (TMK) is a key enzyme which plays an important role in DNA synthesis. It belongs to the family of nucleoside monophosphate kinases, several of which undergo structure-encoded conformational changes to perform their function. However, the absence of three-dimensional structures for all the different reaction intermediates of a single TMK homolog hinders a clear understanding of its functional mechanism. We herein report the different conformational states along the reaction coordinate of a hyperthermophilic TMK from Aquifex aeolicus, determined via X-ray diffraction and further validated through normal-mode studies. The analyses implicate an arginine residue in the Lid region in catalysis, which was confirmed through site-directed mutagenesis and subsequent enzyme assays on the wild-type protein and mutants. Furthermore, the enzyme was found to exhibit broad specificity toward phosphate group acceptor nucleotides. Our comprehensive analyses of the conformational landscape of TMK, together with associated biochemical experiments, provide insights into the mechanistic details of TMK-driven catalysis, for example, the order of substrate binding and the reaction mechanism for phosphate transfer. Such a study has utility in the design of potent inhibitors for these enzymes. DATABASE Structural data are available in the PDB under the accession numbers 2PBR, 4S2E, 5H5B, 5XAI, 4S35, 5XB2, 5H56, 5XB3, 5H5K, 5XB5, and 5XBH.
Collapse
Affiliation(s)
- Ansuman Biswas
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Arpit Shukla
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
40
|
Biswas A, Jasti S, Jeyakanthan J, Sekar K. Role of sequence evolution and conformational dynamics in the substrate specificity and oligomerization mode of thymidylate kinases. J Biomol Struct Dyn 2016; 35:2136-2154. [PMID: 27376462 DOI: 10.1080/07391102.2016.1207563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thymidylate kinase (TMK) is a key enzyme for the synthesis of DNA, making it an important target for the development of anticancer, antibacterial, and antiparasitic drugs. TMK homologs exhibit significant variations in sequence, residue conformation, substrate specificity, and oligomerization mode. However, the influence of sequence evolution and conformational dynamics on its quaternary structure and function has not been studied before. Based on extensive sequence and structure analyses, our study detected several non-conserved residues which are linked by co-evolution and are implicated in the observed variations in flexibility, oligomeric assembly, and substrate specificity among the homologs. These lead to differences in the pattern of interactions at the active site in TMKs of different specificity. The method was further tested on TMK from Sulfolobus tokodaii (StTMK) which has substantial differences in sequence and structure compared to other TMKs. Our analyses pointed to a more flexible dTMP-binding site in StTMK compared to the other homologs. Binding assays proved that the protein can accommodate both purine and pyrimidine nucleotides at the dTMP binding site with comparable affinity. Additionally, the residues responsible for the narrow specificity of Brugia malayi TMK, whose three-dimensional structure is unavailable, were detected. Our study provides a residue-level understanding of the differences observed among TMK homologs in previous experiments. It also illustrates the correlation among sequence evolution, conformational dynamics, oligomerization mode, and substrate recognition in TMKs and detects co-evolving residues that affect binding, which should be taken into account while designing novel inhibitors.
Collapse
Affiliation(s)
- Ansuman Biswas
- a Department of Physics , Indian Institute of Science , Bangalore 560012 , India
| | - Subbarao Jasti
- b Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Biology and Regenerative Medicine , Bangalore 560065 , India
| | | | - Kanagaraj Sekar
- d Department of Computational and Data Sciences , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
41
|
Insights into the structure-function relationship of Brugia malayi thymidylate kinase (BmTMK). Int J Biol Macromol 2016; 88:565-71. [PMID: 27044348 DOI: 10.1016/j.ijbiomac.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/23/2022]
Abstract
Lymphatic filariasis is a debilitating disease caused by lymph dwelling nematodal parasites like Wuchereria bancrofti, Brugia malayi and Brugia timori. Thymidylate kinase of B. malayi is a key enzyme in the de novo and salvage pathways for thymidine 5'-triphosphate (dTTP) synthesis. Therefore, B. malayi thymidylate kinase (BmTMK) is an essential enzyme for DNA biosynthesis and an important drug target to rein in filariasis. In the present study, the structural and functional changes associated with recombinant BmTMK, in the presence of protein denaturant GdnHCl, urea and pH were studied. GdnHCl and urea induced unfolding of BmTMK is non-cooperative and influence the functional property of the enzyme much lower than their Cm values. The study delineate that BmTMK is more prone to ionic perturbation. The dimeric assembly of BmTMK is an absolute requirement for enzymatic acitivity and any subtle change in dimeric conformation due to denaturation leads to loss of enzymatic activity. The pH induced changes on structure and activity suggests that selective modification of active site microenvironment pertains to difference in activity profile. This study also envisages that chemical moieties which acts by modulating oligomeric assembly, could be used for better designing of inhibitors against BmTMK enzyme.
Collapse
|
42
|
A novel viral thymidylate kinase with dual kinase activity. J Bioenerg Biomembr 2015; 47:431-40. [PMID: 26315341 DOI: 10.1007/s10863-015-9622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Nucleotide phosphorylation is a key step in DNA replication and viral infections, since suitable levels of nucleotide triphosphates pool are required for this process. Deoxythymidine monophosphate (dTMP) is produced either by de novo or salvage pathways, which is further phosphorylated to deoxythymidine triphosphate (dTTP). Thymidyne monophosphate kinase (TMK) is the enzyme in the junction of both pathways, which phosphorylates dTMP to yield deoxythymidine diphosphate (dTDP) using adenosine triphosphate (ATP) as a phosphate donor. White spot syndrome virus (WSSV) genome contains an open reading frame (ORF454) that encodes a thymidine kinase and TMK domains in a single polypeptide. We overexpressed the TMK ORF454 domain (TMKwssv) and its specific activity was measured with dTMP and dTDP as phosphate acceptors. We found that TMKwssv can phosphorylate dTMP to yield dTDP and also is able to use dTDP as a substrate to produce dTTP. Kinetic parameters K M and k cat were calculated for dTMP (110 μM, 3.6 s(-1)), dTDP (251 μM, 0.9 s(-1)) and ATP (92 μM, 3.2 s(-1)) substrates, and TMKwssv showed a sequential ordered bi-bi reaction mechanism. The binding constants K d for dTMP (1.9 μM) and dTDP (10 μM) to TMKwssv were determined by Isothermal Titration Calorimetry. The affinity of the nucleotidic analog stavudine monophosphate was in the same order of magnitude (K d 3.6 μM) to the canonical substrate dTMP. These results suggest that nucleotide analogues such as stavudine could be a suitable antiviral strategy for the WSSV-associated disease.
Collapse
|
43
|
Kaci M, Uttaro JP, Lefort V, Mathé C, El Amri C, Périgaud C. Synthesis of {[5-(adenin-9-yl)-2-furyl]methoxy}methyl phosphonic acid and evaluations against human adenylate kinases. Bioorg Med Chem Lett 2014; 24:4227-30. [DOI: 10.1016/j.bmcl.2014.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 01/29/2023]
|
44
|
Kingsley LJ, Lill MA. Ensemble generation and the influence of protein flexibility on geometric tunnel prediction in cytochrome P450 enzymes. PLoS One 2014; 9:e99408. [PMID: 24956479 PMCID: PMC4067289 DOI: 10.1371/journal.pone.0099408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Computational prediction of ligand entry and egress paths in proteins has become an emerging topic in computational biology and has proven useful in fields such as protein engineering and drug design. Geometric tunnel prediction programs, such as Caver3.0 and MolAxis, are computationally efficient methods to identify potential ligand entry and egress routes in proteins. Although many geometric tunnel programs are designed to accommodate a single input structure, the increasingly recognized importance of protein flexibility in tunnel formation and behavior has led to the more widespread use of protein ensembles in tunnel prediction. However, there has not yet been an attempt to directly investigate the influence of ensemble size and composition on geometric tunnel prediction. In this study, we compared tunnels found in a single crystal structure to ensembles of various sizes generated using different methods on both the apo and holo forms of cytochrome P450 enzymes CYP119, CYP2C9, and CYP3A4. Several protein structure clustering methods were tested in an attempt to generate smaller ensembles that were capable of reproducing the data from larger ensembles. Ultimately, we found that by including members from both the apo and holo data sets, we could produce ensembles containing less than 15 members that were comparable to apo or holo ensembles containing over 100 members. Furthermore, we found that, in the absence of either apo or holo crystal structure data, pseudo-apo or -holo ensembles (e.g. adding ligand to apo protein throughout MD simulations) could be used to resemble the structural ensembles of the corresponding apo and holo ensembles, respectively. Our findings not only further highlight the importance of including protein flexibility in geometric tunnel prediction, but also suggest that smaller ensembles can be as capable as larger ensembles at capturing many of the protein motions important for tunnel prediction at a lower computational cost.
Collapse
Affiliation(s)
- Laura J. Kingsley
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - Markus A. Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
45
|
Offerman K, Carulei O, van der Walt AP, Douglass N, Williamson AL. The complete genome sequences of poxviruses isolated from a penguin and a pigeon in South Africa and comparison to other sequenced avipoxviruses. BMC Genomics 2014; 15:463. [PMID: 24919868 PMCID: PMC4229897 DOI: 10.1186/1471-2164-15-463] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/02/2014] [Indexed: 12/15/2022] Open
Abstract
Background Two novel avipoxviruses from South Africa have been sequenced, one from a Feral Pigeon (Columba livia) (FeP2) and the other from an African penguin (Spheniscus demersus) (PEPV). We present a purpose-designed bioinformatics pipeline for analysis of next generation sequence data of avian poxviruses and compare the different avipoxviruses sequenced to date with specific emphasis on their evolution and gene content. Results The FeP2 (282 kbp) and PEPV (306 kbp) genomes encode 271 and 284 open reading frames respectively and are more closely related to one another (94.4%) than to either fowlpox virus (FWPV) (85.3% and 84.0% respectively) or Canarypox virus (CNPV) (62.0% and 63.4% respectively). Overall, FeP2, PEPV and FWPV have syntenic gene arrangements; however, major differences exist throughout their genomes. The most striking difference between FeP2 and the FWPV-like avipoxviruses is a large deletion of ~16 kbp from the central region of the genome of FeP2 deleting a cc-chemokine-like gene, two Variola virus B22R orthologues, an N1R/p28-like gene and a V-type Ig domain family gene. FeP2 and PEPV both encode orthologues of vaccinia virus C7L and Interleukin 10. PEPV contains a 77 amino acid long orthologue of Ubiquitin sharing 97% amino acid identity to human ubiquitin. Conclusions The genome sequences of FeP2 and PEPV have greatly added to the limited repository of genomic information available for the Avipoxvirus genus. In the comparison of FeP2 and PEPV to existing sequences, FWPV and CNPV, we have established insights into African avipoxvirus evolution. Our data supports the independent evolution of these South African avipoxviruses from a common ancestral virus to FWPV and CNPV.
Collapse
Affiliation(s)
| | | | | | | | - Anna-Lise Williamson
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
46
|
KAY-2-41, a novel nucleoside analogue inhibitor of orthopoxviruses in vitro and in vivo. Antimicrob Agents Chemother 2013; 58:27-37. [PMID: 24126587 DOI: 10.1128/aac.01601-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The availability of adequate treatments for poxvirus infections would be valuable not only for human use but also for veterinary use. In the search for novel antiviral agents, a 1'-methyl-substituted 4'-thiothymidine nucleoside, designated KAY-2-41, emerged as an efficient inhibitor of poxviruses. In vitro, KAY-2-41 was active in the micromolar range against orthopoxviruses (OPVs) and against the parapoxvirus orf. The compound preserved its antiviral potency against OPVs resistant to the reference molecule cidofovir. KAY-2-41 had no noticeable toxicity on confluent monolayers, but a cytostatic effect was seen on growing cells. Genotyping of vaccinia virus (VACV), cowpox virus, and camelpox virus selected for resistance to KAY-2-41 revealed a nucleotide deletion(s) close to the ATP binding site or a nucleotide substitution close to the substrate binding site in the viral thymidine kinase (TK; J2R) gene. These mutations resulted in low levels of resistance to KAY-2-41 ranging from 2.7- to 6.0-fold and cross-resistance to 5-bromo-2'-deoxyuridine (5-BrdU) but not to cidofovir. The antiviral effect of KAY-2-41 relied, at least in part, on activation (phosphorylation) by the viral TK, as shown through enzymatic assays. The compound protected animals from disease and mortality after a lethal challenge with VACV, reduced viral loads in the serum, and abolished virus replication in tissues. In conclusion, KAY-2-41 is a promising nucleoside analogue for the treatment of poxvirus-induced diseases. Our findings warrant the evaluation of additional 1'-carbon-substituted 4'-thiothymidine derivatives as broad-spectrum antiviral agents, since this molecule also showed antiviral potency against herpes simplex virus 1 in earlier studies.
Collapse
|
47
|
Guimarães AP, Ramalho TC, França TCC. Preventing the return of smallpox: molecular modeling studies on thymidylate kinase fromVariola virus. J Biomol Struct Dyn 2013; 32:1601-12. [PMID: 23998201 PMCID: PMC9491126 DOI: 10.1080/07391102.2013.830578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Smallpox was one of the most devastating diseases in the human history and still represents a serious menace today due to its potential use by bioterrorists. Considering this threat and the non-existence of effective chemotherapy, we propose the enzyme thymidylate kinase from Variola virus (VarTMPK) as a potential target to the drug design against smallpox. We first built a homology model for VarTMPK and performed molecular docking studies on it in order to investigate the interactions with inhibitors of Vaccinia virus TMPK (VacTMPK). Subsequently, molecular dynamics (MD) simulations of these compounds inside VarTMPK and human TMPK (HssTMPK) were carried out in order to select the most promising and selective compounds as leads for the design of potential VarTMPK inhibitors. Results of the docking and MD simulations corroborated to each other, suggesting selectivity towards VarTMPK and, also, a good correlation with the experimental data.
Collapse
|
48
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
49
|
Heinrich JC, Tuukkanen A, Schroeder M, Fahrig T, Fahrig R. RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J Cancer Res Clin Oncol 2011; 137:1349-61. [PMID: 21833720 DOI: 10.1007/s00432-011-1005-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/04/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND Several reports describe the importance of the chaperone HSP27 (HSPB1) in cancer progression, and the demand for drugs that modulate HSPB1-activity is increasing rapidly. We reported earlier that RP101 (Bromovinyldeoxyuridine, BVDU, Brivudine) improves the efficacy of chemotherapy in pancreatic cancer. METHODS Chemistry: Binding of RP101 and HSPB1 was discovered by affinity chromatography. Molecular and cell biology: HSPB1 in vitro transcription/translation (TNT), Pull down using RP101-coupled magnetic beads, Immuno Co-precipitations, Structural modeling of HSP27 (HSPB1), Introduction of point mutations into linear expression templates by PCR, Heat shock, Tumor Invasion. Animal experiments: Treatment of AH13r Sarcomas in SD-rats. Clinical Studies with late-stage pancreatic cancer patients: Pilot study, Dose finding study, Phase II study (NCT00550004). RESULTS Here, we report that RP101 binds in vitro to the heat shock protein HSPB1 and inhibits interaction with its binding partners. As a result, more activated CASP9 was detected in RP101-treated cancer cells. We modeled HSPB1-structure and identified the RP101 binding site. When we tested RP101 as an anti-cancer drug in a rat model, we found that it improved chemotherapy. In clinical studies with late-stage pancreatic cancer patients, the dose of 500 mg/day was safe and efficient, but 760 mg/day turned out to be too high for lightweight patients. CONCLUSIONS The development of RP101 as a cancer drug represents a truly novel approach for prevention of chemoresistance and enhancement of chemosensitivity.
Collapse
|
50
|
Antiviral Activity of 4'-thioIDU and Thymidine Analogs against Orthopoxviruses. Viruses 2010; 2:1968-1983. [PMID: 21994716 PMCID: PMC3185742 DOI: 10.3390/v2091968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/20/2010] [Accepted: 09/07/2010] [Indexed: 11/17/2022] Open
Abstract
The search for effective therapies for orthopoxvirus infections has identified diverse classes of molecules with antiviral activity. Pyrimidine analogs, such as 5-iodo-2'-deoxyuridine (idoxuridine, IDU) were among the first compounds identified with antiviral activity against a number of orthopoxviruses and have been reported to be active both in vitro and in animal models of infection. More recently, additional analogs have been reported to have improved antiviral activity against orthopoxviruses including several derivatives of deoxyuridine with large substituents in the 5 position, as well as analogs with modifications in the deoxyribose moiety including (north)-methanocarbathymidine, and 5-iodo-4'-thio-2'-deoxyuridine (4'-thioIDU). The latter molecule has proven to have good antiviral activity against the orthopoxviruses both in vitro and in vivo and has the potential to be an effective therapy in humans.
Collapse
|