1
|
Zenker M, Wolf CM. Cardiovascular aspects of Noonan syndrome and related disorders. MED GENET-BERLIN 2025; 37:113-124. [PMID: 40207038 PMCID: PMC11976402 DOI: 10.1515/medgen-2025-2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Noonan syndrome and other RASopathies constitute an important group of disorders to be considered in the differential diagnosis in individuals with congenital heart defects and hypertrophic cardiomyopathy. The cardiovascular phenotype of RASopathies is complex and comprises a spectrum of abnormalities, including not only congenital defects but also abnormalities affecting the lymphovascular system and other anomalies of the vascular system, which may emerge over the course of an individual's lifetime. Affected individuals typically present with a syndromic phenotype, exhibiting additional physical symptoms outside of the cardiovascular system and neuropsychological deficits. Genetic testing of the established disease genes for RASopathies is an effective method for identifying the underlying genetic variant in the majority of cases. This approach is strongly recommended to facilitate a more precise prognosis and the potential for personalized targeted therapies. Screening for RASopathy-associated gene variants in individuals with isolated CHDs, HCM, or other isolated cardiovascular features outside the NS spectrum appears to have limited clinical utility. However, it should be noted that the RASopathy phenotype may be challenging to discern in cases of mild or oligosymptomatic involvement, or it may be obscured by the presence of severe medical conditions, particularly in very young children.
Collapse
Affiliation(s)
- Martin Zenker
- University Hospital MagdeburgInstitute of Human GeneticsLeipziger Str. 4439120MagdeburgGermany
| | - Cordula M. Wolf
- German Centre for Cardiovascular ResearchLazarettstr. 3680636MünchenGermany
| |
Collapse
|
2
|
Chennappan S, Kontaridis MI. RASopathies in Cardiac Disease. Annu Rev Med 2025; 76:301-314. [PMID: 39576684 DOI: 10.1146/annurev-med-042823-013552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
RASopathies are a group of clinically overlapping autosomal dominant disorders caused primarily by mutations in genes that reside along the canonical Ras-mitogen-activated protein kinase signaling cascade. Though individually rare, collectively, these disorders constitute one of the largest families of congenital disorders worldwide, particularly for infantile hypertrophic cardiomyopathy. Significantly, despite almost five decades of RASopathy research, therapeutic options remain limited and focused primarily on treating symptoms rather than disease etiology. Targeting the genes causal to these disorders, and the nodal pathways critical for their regulation, however, has been challenging. In this review, we highlight these challenges, particularly with respect to congenital heart defects and cardiac diseases and discuss limitations and future directions for approaches to new therapeutic strategies.
Collapse
Affiliation(s)
- Saravanakkumar Chennappan
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York, USA;
| | - Maria Irene Kontaridis
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York, USA;
| |
Collapse
|
3
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
4
|
Zhang X, Zhang Q, Yu M, Zhang Y, He T, Qiu Z, Qiu Y, Wang W. Integrating serum pharmacochemistry and network pharmacology to explore the molecular mechanisms of Acanthopanax senticosus (Rupr. & Maxim.) Harms on attenuating doxorubicin-induced myocardial injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117349. [PMID: 38380572 DOI: 10.1016/j.jep.2023.117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 02/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthopanax senticosus (Rupr. & Maxim.) Harms (AS), also known as Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. or Siberian ginseng, has a rich history of use as an adaptogen, a substance believed to increase the body's resistance to stress, fatigue, and infectious diseases. As a traditional Chinese medicine, AS is popular for its cardioprotective effects which can protect the cardiovascular system from hazardous conditions. Doxorubicin (DOX), on the other hand, is a first-line chemotherapeutic agent against a variety of cancers, including breast cancer, lung cancer, gastric cancer, and leukemia, etc. Despite its effectiveness, the clinical use of DOX is limited by its side effects, the most serious of which is cardiotoxicity. Considering AS could be applied as an adjuvant to anticancer agents, the combination of AS and DOX might exert synergistic effects on certain malignancies with mitigated cardiotoxicity. Given this, it is necessary and meaningful to confirm whether AS would neutralize the DOX-induced cardiotoxicity and its underlying molecular mechanisms. AIM OF THE STUDY This paper aims to validate the cardioprotective effects of AS against DOX-induced myocardial injury (MI) while deciphering the molecular mechanisms underlying such effects. MATERIALS AND METHODS Firstly, the cardioprotective effects of AS against DOX-induced MI were confirmed both in vitro and in vivo. Secondly, serum pharmacochemistry and network pharmacology were orchestrated to explore the in vivo active compounds of AS and predict their ways of functioning in the treatment of DOX-induced MI. Finally, the predicted mechanisms were validated by Western blot analysis during in vivo experiments. RESULTS The results demonstrated that AS possessed excellent antioxidative ability, and could alleviate the apoptosis of H9C2 cells and the damage to mitochondria induced by DOX. In vivo experiments indicated that AS could restore the conduction abnormalities and ameliorate histopathological changes according to the electrocardiogram and cardiac morphology. Meanwhile, it markedly downregulated the inflammatory factors (TNF-α, IL-6, and IL-1β), decreased plasma ALT, AST, LDH, CK, CK-MB, and MDA levels, as well as increased SOD and GSH levels compared to the model group, which collectively substantiate the effectiveness of AS. Afterward, 14 compounds were identified from different batches of AS-dosed serum and selected for mechanism prediction through HPLC-HRMS analysis and network pharmacology. Consequently, the MAPKs and caspase cascade were confirmed as primary targets among which the interplay between the JNK/Caspase 3 feedback loop and the phosphorylation of ERK1/2 were highlighted. CONCLUSIONS In conclusion, the integrated approach employed in this paper illuminated the molecular mechanism of AS against DOX-induced MI, whilst providing a valuable strategy to elucidate the therapeutic effects of complicated TCM systems more reliably and efficiently.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Menghan Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yanfei Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China; School of Pharmacy, Jilin Medical University, Jilin, 132013, China.
| | - Tianzhu He
- School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
5
|
Yi JS, Perla S, Bennett AM. An Assessment of the Therapeutic Landscape for the Treatment of Heart Disease in the RASopathies. Cardiovasc Drugs Ther 2023; 37:1193-1204. [PMID: 35156148 PMCID: PMC11726350 DOI: 10.1007/s10557-022-07324-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
The RAS/mitogen-activated protein kinase (MAPK) pathway controls a plethora of developmental and post-developmental processes. It is now clear that mutations in the RAS-MAPK pathway cause developmental diseases collectively referred to as the RASopathies. The RASopathies include Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous syndrome, neurofibromatosis type 1, and Costello syndrome. RASopathy patients exhibit a wide spectrum of congenital heart defects (CHD), such as valvular abnormalities and hypertrophic cardiomyopathy (HCM). Since the cardiovascular defects are the most serious and recurrent cause of mortality in RASopathy patients, it is critical to understand the pathological signaling mechanisms that drive the disease. Therapies for the treatment of HCM and other RASopathy-associated comorbidities have yet to be fully realized. Recent developments have shown promise for the use of repurposed antineoplastic drugs that target the RAS-MAPK pathway for the treatment of RASopathy-associated HCM. However, given the impact of the RAS-MAPK pathway in post-developmental physiology, establishing safety and evaluating risk when treating children will be paramount. As such insight provided by preclinical and clinical information will be critical. This review will highlight the cardiovascular manifestations caused by the RASopathies and will discuss the emerging therapies for treatment.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA.
- Yale Center for Molecular and Systems Metabolism, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
6
|
Luo H, Yang Z, Li J, Jin H, Jiang M, Shan C. Deletion of PDK 1 Caused Cardiac Malmorphogenesis and Heart Defects Due to Profound Protein Phosphorylation Changes Mediated by SHP 2. J Cardiovasc Transl Res 2023; 16:1220-1231. [PMID: 36988860 DOI: 10.1007/s12265-023-10380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Phosphoinositide-dependent protein kinase-1 (PDK1), a master kinase and involved in multiple signaling transduction, participates in regulating embryonic cardiac development and postnatal cardiac remodeling. Germline PDK1 knockout mice displayed no heart development; in this article, we deleted PDK1 in heart tissue with different cre to characterize the temporospatial features and find the relevance with congenital heart disease(CHD), furthermore to investigate the underlying mechanism. Knocking out PDK1 with Nkx2.5-cre, the heart showed prominent pulmonic stenosis. Ablated PDK1 with Mef2cSHF-cre, the second heart field (SHF) exhibited severe hypoplasia. And deleted PDK1 with αMHC-cre, the mice displayed dilated heart disease, protein analysis indicated PI3K and ERK were activated; meanwhile, PDK1-AKT-GSK3, and S6K-S6 were disrupted; phosphorylation level of Akt473, S6k421/424, and Gsk3α21 enhanced; however, Akt308, S6k389, and Gsk3β9 decreased. In mechanism investigation, we found SHP2 membrane localization and phosphorylation level of SHP2542 elevated, which suggested SHP2 likely mediated the disruption.
Collapse
Affiliation(s)
- Hongmei Luo
- Guangdong Medical University, Guangdong Dongguan, 523808, China.
- Model Animal Research Center, Nanjing University, Jiangsu Nanjing, 210028, China.
| | - Zhongzhou Yang
- Model Animal Research Center, Nanjing University, Jiangsu Nanjing, 210028, China
| | - Jie Li
- Model Animal Research Center, Nanjing University, Jiangsu Nanjing, 210028, China
| | - Hengwei Jin
- Model Animal Research Center, Nanjing University, Jiangsu Nanjing, 210028, China
| | - Mingyang Jiang
- Model Animal Research Center, Nanjing University, Jiangsu Nanjing, 210028, China
| | - Congjia Shan
- Model Animal Research Center, Nanjing University, Jiangsu Nanjing, 210028, China
| |
Collapse
|
7
|
Eboreime J, Choi SK, Yoon SR, Sadybekov A, Katritch V, Calabrese P, Arnheim N. Germline selection of PTPN11 (HGNC:9644) variants make a major contribution to both Noonan syndrome's high birth rate and the transmission of sporadic cancer variants resulting in fetal abnormality. Hum Mutat 2022; 43:2205-2221. [PMID: 36349709 PMCID: PMC10099774 DOI: 10.1002/humu.24493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
Abstract
Some spontaneous germline gain-of-function mutations promote spermatogonial stem cell clonal expansion and disproportionate variant sperm production leading to unexpectedly high transmission rates for some human genetic conditions. To measure the frequency and spatial distribution of de novo mutations we divided three testes into 192 pieces each and used error-corrected deep-sequencing on each piece. We focused on PTPN11 (HGNC:9644) Exon 3 that contains 30 different PTPN11 Noonan syndrome (NS) mutation sites. We found 14 of these variants formed clusters among the testes; one testis had 11 different variant clusters. The mutation frequencies of these different clusters were not correlated with their case-recurrence rates nor were case recurrence rates of PTPN11 variants correlated with their tyrosine phosphatase levels thereby confusing PTPN11's role in germline clonal expansion. Six of the PTPN11 exon 3 de novo variants associated with somatic mutation-induced sporadic cancers (but not NS) also formed testis clusters. Further, three of these six variants were observed among fetuses that underwent prenatal ultrasound screening for NS-like features. Mathematical modeling showed that germline selection can explain both the mutation clusters and the high incidence of NS (1/1000-1/2500).
Collapse
Affiliation(s)
- Jordan Eboreime
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Soo-Kyung Choi
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Song-Ro Yoon
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Anastasiia Sadybekov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California, USA
| | - Vsevolod Katritch
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California, USA
| | - Peter Calabrese
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Norman Arnheim
- Department of Biological Sciences, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
9
|
Wu W, Liu S, Wu H, Chen M, Gao L, Zhao B, Liu B, Pang Q. DjPtpn11 is an essential modulator of planarian (Dugesia japonica) regeneration. Int J Biol Macromol 2022; 209:1054-1064. [PMID: 35452697 DOI: 10.1016/j.ijbiomac.2022.04.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
Abstract
Freshwater planarian Dugesia japonica is an excellent model organism for investigating stem cell behavior during regeneration. Despite studies showing that numerous genetic factors are involved in regeneration, much more research is required to fully understand the molecular mechanisms that orchestrate regeneration. In this study, we identified an evolutionarily conserved gene DjPtpn11(DjShp2). DjPtpn11 transcripts are expressed in neoblasts and some differentiated cells, with a high expression at the newly formed blastema. Its silencing by RNA interference (RNAi) affected anterior regeneration and inhibited the regeneration of posterior regions, including cholinergic and serotonergic neuron regeneration. In adult planarians, DjPtpn11 knockdown did not affect neoblast survival and proliferation but might prevent the stem cell migration and differentiation through ERK signaling. DjPtpn11 was demonstrated to be necessary for the anterior blastema cell differentiation partially via regulating ERK-DjMkpA activity. DjPtpn11 also influenced posterior specification via DjIslet, suggesting that DjPtpn11 may be involved in regulating the Wnt signaling pathway during the development of posterior blastema. Together, these data identified that DjPtpn11 is an essential modulator for the regeneration of planarians, and it may influence the appropriate differentiation of blastema cells.
Collapse
Affiliation(s)
- Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Shuo Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Hao Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Meishan Chen
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Baohua Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.; Shenzhen University of Health Science Center, Shenzhen 518060, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.; Laboratory of Developmental and Evolutionary Biology, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
10
|
PTPN11 Gene Mutations and Its Association with the Risk of Congenital Heart Disease. DISEASE MARKERS 2022; 2022:8290779. [PMID: 35440950 PMCID: PMC9013483 DOI: 10.1155/2022/8290779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
Congenital heart disease (CHD) is the most common congenital birth defect, with a prevalence of 8.98‰ of all live births in China. PTPN11 has been known to be closely involved in heart developments. In this research, we carried out whole-exome sequencing in nine CHD families and identified eight rare deleterious missense variants of PTPN11 gene in nine probands by stringently filtering criteria. Sanger sequencing of these probands and their unaffected familiar members revealed that six damaging variants were de novo in seven CHD families. Then, targeted sequencing was used to assess the PTPN11 exon variants in 672 sporadic CHD cases and 399 unrelated controls and identified 7 deleterious missense variants in 8 patients. Fisher's exact test reveals a significant association of PTPN11 variations with CHD (P = 0.0289). We observed the distribution of different subtypes in CHD patients with PTPN11 variants and found atrial septal defect (ASD) is a prominent phenotype (58.8%, 10/17). In vitro functional assays revealed that the predicted PTPN11 variants disturb RAS-mitogen-activated protein kinase signaling activity by influencing the phosphorylation level of pathway proteins and increasing the proliferation and migration abilities of cardiomyocytes to different extents. Our findings demonstrated that PTPN11 variants were associated with increased risk of CHD development and may be served as an important susceptible genetic event for CHD, especially the ASD subphenotype.
Collapse
|
11
|
Friend or foe? Unraveling the complex roles of protein tyrosine phosphatases in cardiac disease and development. Cell Signal 2022; 93:110297. [PMID: 35259455 PMCID: PMC9038168 DOI: 10.1016/j.cellsig.2022.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
Abstract
Regulation of protein tyrosine phosphorylation is critical for most, if not all, fundamental cellular processes. However, we still do not fully understand the complex and tissue-specific roles of protein tyrosine phosphatases in the normal heart or in cardiac pathology. This review compares and contrasts the various roles of protein tyrosine phosphatases known to date in the context of cardiac disease and development. In particular, it will be considered how specific protein tyrosine phosphatases control cardiac hypertrophy and cardiomyocyte contractility, how protein tyrosine phosphatases contribute to or ameliorate injury induced by ischaemia / reperfusion or hypoxia / reoxygenation, and how protein tyrosine phosphatases are involved in normal heart development and congenital heart disease. This review delves into the newest developments and current challenges in the field, and highlights knowledge gaps and emerging opportunities for future research.
Collapse
|
12
|
Leoni C, Blandino R, Delogu AB, De Rosa G, Onesimo R, Verusio V, Marino MV, Lanza GA, Rigante D, Tartaglia M, Zampino G. Genotype-cardiac phenotype correlations in a large single-center cohort of patients affected by RASopathies: Clinical implications and literature review. Am J Med Genet A 2022; 188:431-445. [PMID: 34643321 DOI: 10.1002/ajmg.a.62529] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 11/07/2022]
Abstract
Congenital heart disease (CHD) and hypertrophic cardiomyopathy (HCM) are common features in patients affected by RASopathies. The aim of this study was to assess genotype- phenotype correlations, focusing on the cardiac features and outcomes of interventions for cardiac conditions, in a single-center cohort of 116 patients with molecularly confirmed diagnosis of RASopathy, and compare these findings with previously published data. All enrolled patients underwent a comprehensive echocardiographic examination. Relevant information was also retrospectively collected through the analysis of clinical records. As expected, significant associations were found between PTPN11 mutations and pulmonary stenosis (both valvular and supravalvular) and pulmonary valve dysplasia, and between SOS1 mutations and valvular defects. Similarly, HRAS mutations were significantly associated with HCM. Potential associations between less prevalent mutations and cardiac defects were also observed, including RIT1 mutations and HCM, SOS2 mutations and septal defects, and SHOC2 mutations and septal and valve abnormalities. Patients with PTPN11 mutations were the most likely to require both a primary treatment (transcatheter or surgical) and surgical reintervention. Other cardiac anomalies less reported until recently in this population, such as isolated functional and structural mitral valve diseases, as well as a sigmoid-shaped interventricular septum in the absence of HCM, were also reported. In conclusion, our study confirms previous data but also provides new insights on cardiac involvement in RASopathies. Further research concerning genotype/phenotype associations in RASopathies could lead to a more rational approach to surgery and the consideration of drug therapy in patients at higher risk due to age, severity, anatomy, and comorbidities.
Collapse
Affiliation(s)
- Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Rita Blandino
- Unit of Pediatrics, Pediatric Cardiology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angelica Bibiana Delogu
- Unit of Pediatrics, Pediatric Cardiology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriella De Rosa
- Unit of Pediatrics, Pediatric Cardiology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Valeria Verusio
- Unit of Pediatrics, Pediatric Cardiology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Vittoria Marino
- Unit of Pediatrics, Pediatric Cardiology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Antonio Lanza
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Donato Rigante
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
13
|
Holter MC, Hewitt LT, Nishimura KJ, Knowles SJ, Bjorklund GR, Shah S, Fry NR, Rees KP, Gupta TA, Daniels CW, Li G, Marsh S, Treiman DM, Olive MF, Anderson TR, Sanabria F, Snider WD, Newbern JM. Hyperactive MEK1 Signaling in Cortical GABAergic Neurons Promotes Embryonic Parvalbumin Neuron Loss and Defects in Behavioral Inhibition. Cereb Cortex 2021; 31:3064-3081. [PMID: 33570093 DOI: 10.1093/cercor/bhaa413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.
Collapse
Affiliation(s)
- Michael C Holter
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Lauren T Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Interdepartmental Neuroscience Graduate Program, University of Texas, Austin, TX 78712, USA
| | - Kenji J Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Interdepartmental Neuroscience Graduate Program, University of Texas, Austin, TX 78712, USA
| | - Sara J Knowles
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Shiv Shah
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Noah R Fry
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Tanya A Gupta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Carter W Daniels
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA.,Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Guohui Li
- College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Steven Marsh
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | | | - Trent R Anderson
- College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Federico Sanabria
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - William D Snider
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Abstract
Lack of an ideal patch material for cardiac repairs continues to challenge congenital heart surgeons. The current materials are unable to grow and result in scarring, contraction, and arrhythmias. An acellular extracellular matrix (ECM) patch derived from porcine small intestinal submucosa has demonstrated remodeling potential when used to repair various tissues. This study investigated the in vivo electrophysiologic, mechanical, and histological properties of an ECM patch used to repair a right-ventricular (RV) wall defect in a growing ovine model. A full-thickness, 2 × 2 cm RV defect was created in 11 juvenile sheep and repaired with an ECM patch. Longitudinal RV three-dimensional-electrical mapping, magnetic resonance imaging (MRI), and histological analysis were performed at 3, 6, 9, and 12 months. Three-dimensional mapping demonstrated consistent conduction across the patch with little to no difference in voltage, but conduction velocity was consistently less than native myocardium. Magnetic resonance imaging revealed changing strain properties of the patch which by 9-12 months resembled native tissue. Histologic analysis at 3 months demonstrates cardiomyocyte degeneration and partial replacement via proliferation of connective tissue cells that were predominately fibroblasts and smooth muscle cells. There was marked neovascularization and an absence of calcification at 12 months. Over time, the ECM patch remained viable with stable muscle at the edges. In growing sheep, an ECM patch becomes a viable tissue and remains so up to at least a year. Although ECM demonstrates some functional aspects of remodeling to native myocardium, histologically it remained immature.
Collapse
|
15
|
Tomasovic A, Brand T, Schanbacher C, Kramer S, Hümmert MW, Godoy P, Schmidt-Heck W, Nordbeck P, Ludwig J, Homann S, Wiegering A, Shaykhutdinov T, Kratz C, Knüchel R, Müller-Hermelink HK, Rosenwald A, Frey N, Eichler J, Dobrev D, El-Armouche A, Hengstler JG, Müller OJ, Hinrichs K, Cuello F, Zernecke A, Lorenz K. Interference with ERK-dimerization at the nucleocytosolic interface targets pathological ERK1/2 signaling without cardiotoxic side-effects. Nat Commun 2020; 11:1733. [PMID: 32265441 PMCID: PMC7138859 DOI: 10.1038/s41467-020-15505-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of extracellular signal-regulated kinases (ERK1/2) is linked to several diseases including heart failure, genetic syndromes and cancer. Inhibition of ERK1/2, however, can cause severe cardiac side-effects, precluding its wide therapeutic application. ERKT188-autophosphorylation was identified to cause pathological cardiac hypertrophy. Here we report that interference with ERK-dimerization, a prerequisite for ERKT188-phosphorylation, minimizes cardiac hypertrophy without inducing cardiac adverse effects: an ERK-dimerization inhibitory peptide (EDI) prevents ERKT188-phosphorylation, nuclear ERK1/2-signaling and cardiomyocyte hypertrophy, protecting from pressure-overload-induced heart failure in mice whilst preserving ERK1/2-activity and cytosolic survival signaling. We also examine this alternative ERK1/2-targeting strategy in cancer: indeed, ERKT188-phosphorylation is strongly upregulated in cancer and EDI efficiently suppresses cancer cell proliferation without causing cardiotoxicity. This powerful cardio-safe strategy of interfering with ERK-dimerization thus combats pathological ERK1/2-signaling in heart and cancer, and may potentially expand therapeutic options for ERK1/2-related diseases, such as heart failure and genetic syndromes. Drugs targeting dysregulated ERK1/2 signaling can cause severe cardiac side effects, precluding their wide therapeutic application. Here, a new and cardio-safe targeting strategy is presented that interferes with ERK dimerization to prevent pathological ERK1/2 signaling in the heart and cancer.
Collapse
Affiliation(s)
- Angela Tomasovic
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 44139, Dortmund, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 44139, Dortmund, Germany
| | - Constanze Schanbacher
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 44139, Dortmund, Germany
| | - Sofia Kramer
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany
| | - Martin W Hümmert
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany.,Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139, Dortmund, Germany
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology -Hans Knoell Institute-, 07745, Jena, Germany
| | - Peter Nordbeck
- Comprehensive Heart Failure Center, 97078, Würzburg, Germany
| | - Jonas Ludwig
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Susanne Homann
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany
| | - Armin Wiegering
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Timur Shaykhutdinov
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 12489, Berlin, Germany
| | - Christoph Kratz
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 12489, Berlin, Germany
| | - Ruth Knüchel
- Institute of Pathology, University Hospital Aachen, RWTH Aachen, 52074, Aachen, Germany
| | | | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, 97080, Würzburg, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, 24105, Kiel, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, 45147, Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, TU Dresden, 01307, Dresden, Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139, Dortmund, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, 24105, Kiel, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Karsten Hinrichs
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 12489, Berlin, Germany
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, University of Würzburg, 97080, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078, Würzburg, Germany. .,Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., 44139, Dortmund, Germany. .,Comprehensive Heart Failure Center, 97078, Würzburg, Germany.
| |
Collapse
|
16
|
Tajan M, Pernin-Grandjean J, Beton N, Gennero I, Capilla F, Neel BG, Araki T, Valet P, Tauber M, Salles JP, Yart A, Edouard T. Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth. Hum Mol Genet 2019; 27:2276-2289. [PMID: 29659837 DOI: 10.1093/hmg/ddy133] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/09/2018] [Indexed: 01/30/2023] Open
Abstract
Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins. In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC)
| | - Julie Pernin-Grandjean
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Nicolas Beton
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Isabelle Gennero
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Florence Capilla
- INSERM, US006, ANEXPLO/CREFRE, Histopathology Unit, Purpan Hospital, Toulouse, France
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, NY 10016, USA
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, NY 10016, USA
| | - Philippe Valet
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC)
| | - Maithé Tauber
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.,Pediatric Department, Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Jean-Pierre Salles
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.,Pediatric Department, Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC)
| | - Thomas Edouard
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.,Pediatric Department, Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
17
|
Toomer K, Sauls K, Fulmer D, Guo L, Moore K, Glover J, Stairley R, Bischoff J, Levine RA, Norris RA. Filamin-A as a Balance between Erk/Smad Activities During Cardiac Valve Development. Anat Rec (Hoboken) 2018; 302:117-124. [PMID: 30288957 PMCID: PMC6312478 DOI: 10.1002/ar.23911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 11/10/2022]
Abstract
Mitral valve prolapse (MVP) affects 2.4% of the population and has poorly understood etiology. Recent genetic studies have begun to unravel the complexities of MVP and through these efforts, mutations in the FLNA (Filamin-A) gene were identified as disease causing. Our in vivo and in vitro studies have validated these genetic findings and have revealed FLNA as a central regulator of valve morphogenesis. The mechanisms by which FLNA mutations result in myxomatous mitral valve disease are currently unknown, but may involve proteins previously associated with mutated regions of the FLNA protein, such as the small GTPase signaling protein, R-Ras. Herein, we report that Filamin-A is required for R-Ras expression and activation of the Ras-Mek-Erk pathway. Loss of the Ras/Erk pathway correlated with hyperactivation of pSmad2/3, increased extracellular matrix (ECM) production and enlarged mitral valves. Analyses of integrin receptors in the mitral valve revealed that Filamin-A was required for β1-integrin expression and provided a potential mechanism for impaired ECM compaction and valve enlargement. Our data support Filamin-A as a protein that regulates the balance between Erk and Smad activation and an inability of Filamin-A deficient valve interstitial cells to effectively remodel the increased ECM production through a β1-integrin mechanism. As a consequence, loss of Filamin-A function results in increased ECM production and generation of a myxomatous phenotype characterized by improperly compacted mitral valve tissue. Anat Rec, 302:117-124, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katelynn Toomer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Kimberly Sauls
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Diana Fulmer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Lilong Guo
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Kelsey Moore
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Janiece Glover
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Rebecca Stairley
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Russell A Norris
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
18
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
19
|
Al-Aama JY, Banaganapalli B, Aljeaid D, Bakhur K, Verma PK, Al-Ata J, Elango R, Shaik NA. Targeted Molecular Sequencing Revealed Allelic Heterogeneity of BRAF and PTPN11 Genes among Arab Noonan Syndrome Patients. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418080033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Abstract
RASopathies are a heterogeneous group of genetic syndromes characterized by mutations in genes that regulate cellular processes, including proliferation, differentiation, survival, migration, and metabolism. Excluding congenital heart defects, hypertrophic cardiomyopathy is the most frequent cardiovascular defect in patients affected by RASopathies. A worse outcome (in terms of surgical risk and/or mortality) has been described in a specific subset of Rasopathy patients with early onset, severe hypertrophic cardiomyopathy presenting with heart failure. New short-term therapy with a mammalian target of rapamycin inhibitor has recently been used to prevent heart failure in these patients with a severe form of hypertrophic cardiomyopathy.
Collapse
|
21
|
Munjal C, Jegga AG, Opoka AM, Stoilov I, Norris RA, Thomas CJ, Smith JM, Mecham RP, Bressan GM, Hinton RB. Inhibition of MAPK-Erk pathway in vivo attenuates aortic valve disease processes in Emilin1-deficient mouse model. Physiol Rep 2017; 5:5/5/e13152. [PMID: 28270590 PMCID: PMC5350168 DOI: 10.14814/phy2.13152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
Aortic valve disease (AVD) is a common condition with a progressive natural history, and presently, there are no pharmacologic treatment strategies. Elastic fiber fragmentation (EFF) is a hallmark of AVD, and increasing evidence implicates developmental elastic fiber assembly defects. Emilin1 is a glycoprotein necessary for elastic fiber assembly that is present in both developing and mature human and mouse aortic valves. The Emilin1‐deficient mouse (Emilin1−/−) is a model of latent AVD, characterized by activated TGFβ/MEK/p‐Erk signaling and upregulated elastase activity. Emilin1−/− aortic valves demonstrate early EFF and aberrant angiogenesis followed by late neovascularization and fibrosis. The objective of this study was to test the effectiveness of three different targeted therapies. Aged (12–14 months) Emilin1−/− mice were treated with refametinib (RDEA‐119, MEK1/2 inhibitor), doxycycline (elastase inhibitor), or G6‐31 (anti‐VEGF‐A mouse antibody) for 4 weeks. Refametinib‐ and doxycycline‐treated Emilin1−/− mice markedly reduced MEK/p‐Erk activation in valve tissue. Furthermore, both refametinib and doxycycline attenuated elastolytic cathepsin K, L, MMP‐2, and MMP‐9 activation, and abrogated macrophage and neutrophil infiltration in Emilin1−/− aortic valves. RNAseq analysis was performed in aortic valve tissue from adult (4 months) and aged (14 months) Emilin1−/− and age‐matched wild‐type control mice, and demonstrated upregulation of genes associated with MAPK/MEK/p‐Erk signaling and elastases at the adult stage and inflammatory pathways at the aged stage controlling for age. These results suggest that Erk1/2 signaling is an important modulator of early elastase activation, and pharmacological inhibition using refametinib may be a promising treatment to halt AVD progression
Collapse
Affiliation(s)
- Charu Munjal
- Divisions of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anil G Jegga
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Amy M Opoka
- Divisions of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ivan Stoilov
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Ohio
| | - Russell A Norris
- Department of Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Craig J Thomas
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences National Institutes of Health, Bethesda, Maryland
| | - J Michael Smith
- TriHealth Heart Institute, Cardio-Thoracic Surgery, Cincinnati, Ohio
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Ohio
| | - Giorgio M Bressan
- The Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Robert B Hinton
- Divisions of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
22
|
Schuhmacher AJ, Hernández-Porras I, García-Medina R, Guerra C. Noonan syndrome: lessons learned from genetically modified mouse models. Expert Rev Endocrinol Metab 2017; 12:367-378. [PMID: 30058892 DOI: 10.1080/17446651.2017.1361821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Noonan syndrome is a RASopathy that results from activating mutations in different members of the RAS/MAPK signaling pathway. At least eleven members of this pathway have been found mutated, PTPN11 being the most frequently mutated gene affecting about 50% of the patients, followed by SOS1 (10%), RAF1 (10%) and KRAS (5%). Recently, even more infrequent mutations have been newly identified by next generation sequencing. This spectrum of mutations leads to a broad variety of clinical symptoms such as cardiopathies, short stature, facial dysmorphia and neurocognitive impairment. The genetic variability of this syndrome makes it difficult to establish a genotype-phenotype correlation, which will greatly help in the clinical management of the patients. Areas covered: Studies performed with different genetically engineered mouse models (GEMMs) developed up to date. Expert commentary: GEMMs have helped us understand the role of some genes and the effect of the different mutations in the development of the syndrome. However, few models have been developed and more characterization of the existing ones should be performed to learn about the impact of the different modifiers in the phenotypes, the potential cancer risk in patients, as well as preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Alberto J Schuhmacher
- a Instituto de Investigación Sanitaria Aragón , Centro de Investigación Biomédica de Aragón , Zaragoza , Spain
| | - Isabel Hernández-Porras
- b Molecular Oncology Programs , Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| | - Raquel García-Medina
- b Molecular Oncology Programs , Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| | - Carmen Guerra
- b Molecular Oncology Programs , Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| |
Collapse
|
23
|
Molkentin JD, Bugg D, Ghearing N, Dorn LE, Kim P, Sargent MA, Gunaje J, Otsu K, Davis J. Fibroblast-Specific Genetic Manipulation of p38 Mitogen-Activated Protein Kinase In Vivo Reveals Its Central Regulatory Role in Fibrosis. Circulation 2017; 136:549-561. [PMID: 28356446 DOI: 10.1161/circulationaha.116.026238] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND In the heart, acute injury induces a fibrotic healing response that generates collagen-rich scarring that is at first protective but if inappropriately sustained can worsen heart disease. The fibrotic process is initiated by cytokines, neuroendocrine effectors, and mechanical strain that promote resident fibroblast differentiation into contractile and extracellular matrix-producing myofibroblasts. The mitogen-activated protein kinase p38α (Mapk14 gene) is known to influence the cardiac injury response, but its direct role in orchestrating programmed fibroblast differentiation and fibrosis in vivo is unknown. METHODS A conditional Mapk14 allele was used to delete the p38α encoding gene specifically in cardiac fibroblasts or myofibroblasts with 2 different tamoxifen-inducible Cre recombinase-expressing gene-targeted mouse lines. Mice were subjected to ischemic injury or chronic neurohumoral stimulation and monitored for survival, cardiac function, and fibrotic remodeling. Antithetically, mice with fibroblast-specific transgenic overexpression of activated mitogen-activated protein kinase kinase 6, a direct inducer of p38, were generated to investigate whether this pathway can directly drive myofibroblast formation and the cardiac fibrotic response. RESULTS In mice, loss of Mapk14 blocked cardiac fibroblast differentiation into myofibroblasts and ensuing fibrosis in response to ischemic injury or chronic neurohumoral stimulation. A similar inhibition of myofibroblast formation and healing was also observed in a dermal wounding model with deletion of Mapk14. Transgenic mice with fibroblast-specific activation of mitogen-activated protein kinase kinase 6-p38 developed interstitial and perivascular fibrosis in the heart, lung, and kidney as a result of enhanced myofibroblast numbers. Mechanistic experiments show that p38 transduces cytokine and mechanical signals into myofibroblast differentiation through the transcription factor serum response factor and the signaling effector calcineurin. CONCLUSIONS These findings suggest that signals from diverse modes of injury converge on p38α mitogen-activated protein kinase within the fibroblast to program the fibrotic response and myofibroblast formation in vivo, suggesting a novel therapeutic approach with p38 inhibitors for future clinical application.
Collapse
Affiliation(s)
- Jeffery D Molkentin
- From Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M., N.G., L.E.D., M.A.S.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, OH (J.D.M); Department of Bioengineering, University of Washington, Seattle (D.B., P.K., J.G. J.D.); and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.).
| | - Darrian Bugg
- From Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M., N.G., L.E.D., M.A.S.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, OH (J.D.M); Department of Bioengineering, University of Washington, Seattle (D.B., P.K., J.G. J.D.); and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Natasha Ghearing
- From Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M., N.G., L.E.D., M.A.S.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, OH (J.D.M); Department of Bioengineering, University of Washington, Seattle (D.B., P.K., J.G. J.D.); and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Lisa E Dorn
- From Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M., N.G., L.E.D., M.A.S.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, OH (J.D.M); Department of Bioengineering, University of Washington, Seattle (D.B., P.K., J.G. J.D.); and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Peter Kim
- From Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M., N.G., L.E.D., M.A.S.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, OH (J.D.M); Department of Bioengineering, University of Washington, Seattle (D.B., P.K., J.G. J.D.); and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Michelle A Sargent
- From Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M., N.G., L.E.D., M.A.S.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, OH (J.D.M); Department of Bioengineering, University of Washington, Seattle (D.B., P.K., J.G. J.D.); and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Jagadambika Gunaje
- From Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M., N.G., L.E.D., M.A.S.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, OH (J.D.M); Department of Bioengineering, University of Washington, Seattle (D.B., P.K., J.G. J.D.); and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Kinya Otsu
- From Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M., N.G., L.E.D., M.A.S.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, OH (J.D.M); Department of Bioengineering, University of Washington, Seattle (D.B., P.K., J.G. J.D.); and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.)
| | - Jennifer Davis
- From Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M., N.G., L.E.D., M.A.S.); Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, OH (J.D.M); Department of Bioengineering, University of Washington, Seattle (D.B., P.K., J.G. J.D.); and Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, United Kingdom (K.O.).
| |
Collapse
|
24
|
Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy. PLoS Genet 2017; 13:e1006684. [PMID: 28346493 PMCID: PMC5386306 DOI: 10.1371/journal.pgen.1006684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/10/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022] Open
Abstract
Noonan syndrome (NS) is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity-induced signaling and regulation of gene expression in Ptpn11D61Y mice and suggests that these deficits contribute to the pathophysiology of cognitive impairments in NS.
Collapse
|
25
|
Midgett M, López CS, David L, Maloyan A, Rugonyi S. Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition. Front Physiol 2017; 8:56. [PMID: 28228731 PMCID: PMC5296359 DOI: 10.3389/fphys.2017.00056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease. However, the progressive detrimental remodeling processes that relate altered blood flow to cardiac defects remain unclear. Endothelial-mesenchymal cell transition is one of the many complex developmental events involved in transforming the early embryonic outflow tract into the aorta, pulmonary trunk, interventricular septum, and semilunar valves. This study elucidated the effects of increased hemodynamic load on endothelial-mesenchymal transition remodeling of the outflow tract cushions in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24. Increased hemodynamic load induced increased cell density in outflow tract cushions, fewer cells along the endocardial lining, endocardium junction disruption, and altered periostin expression as measured by confocal microscopy analysis. In addition, 3D focused ion beam scanning electron microscopy analysis determined that a portion of endocardial cells adopted a migratory shape after outflow tract banding that is more irregular, elongated, and with extensive cellular projections compared to normal cells. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with a more active stage of endothelial-mesenchymal transition. Outflow tract banding enhances the endothelial-mesenchymal transition phenotype during formation of the outflow tract cushions, suggesting that endothelial-mesenchymal transition is a critical developmental process that when disturbed by altered blood flow gives rise to cardiac malformation and defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| | - Claudia S López
- Biomedical Engineering, Oregon Health and Science UniversityPortland, OR, USA; Multiscale Microscopy Core, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science UniversityPortland, OR, USA
| | - Larry David
- Proteomics Core, Oregon Health and Science University Portland, OR, USA
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
26
|
Abstract
The RAS/MAPK signaling pathway plays key roles in development, cell survival and proliferation, as well as in cancer pathogenesis. Molecular genetic studies have identified a group of developmental syndromes, the RASopathies, caused by germ line mutations in this pathway. The syndromes included within this classification are neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML, formerly known as LEOPARD syndrome), Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS, NF1-like syndrome), capillary malformation-arteriovenous malformation syndrome (CM-AVM), and hereditary gingival fibromatosis (HGF) type 1. Although these syndromes present specific molecular alterations, they are characterized by a large spectrum of functional and morphological abnormalities, which include heart defects, short stature, neurocognitive impairment, craniofacial malformations, and, in some cases, cancer predisposition. The development of genetically modified animals, such as mice (Mus musculus), flies (Drosophila melanogaster), and zebrafish (Danio rerio), has been instrumental in elucidating the molecular and cellular bases of these syndromes. Moreover, these models can also be used to determine tumor predisposition, the impact of different genetic backgrounds on the variable phenotypes found among the patients and to evaluate preventative and therapeutic strategies. Here, we review a wide range of genetically modified mouse models used in the study of RASopathies and the potential application of novel technologies, which hopefully will help us resolve open questions in the field.
Collapse
|
27
|
Lauriol J, Cabrera JR, Roy A, Keith K, Hough SM, Damilano F, Wang B, Segarra GC, Flessa ME, Miller LE, Das S, Bronson R, Lee KH, Kontaridis MI. Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines. J Clin Invest 2016; 126:2989-3005. [PMID: 27348588 PMCID: PMC4966304 DOI: 10.1172/jci80396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/09/2016] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy.
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Janel R. Cabrera
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ashbeel Roy
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kimberly Keith
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sara M. Hough
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Federico Damilano
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Bonnie Wang
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Gabriel C. Segarra
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Meaghan E. Flessa
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren E. Miller
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Saumya Das
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Kyu-Ho Lee
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Maria I. Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Cessans C, Ehlinger V, Arnaud C, Yart A, Capri Y, Barat P, Cammas B, Lacombe D, Coutant R, David A, Baron S, Weill J, Leheup B, Nicolino M, Salles JP, Verloes A, Tauber M, Cavé H, Edouard T. Growth patterns of patients with Noonan syndrome: correlation with age and genotype. Eur J Endocrinol 2016; 174:641-50. [PMID: 26903553 DOI: 10.1530/eje-15-0922] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/22/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Growth patterns of patients with Noonan syndrome (NS) were established before the involved genes were identified. OBJECTIVE The goal of this study was to compare growth parameters according to genotype in patients with NS. SUBJECTS AND METHODS The study population included 420 patients (176 females and 244 males) harboring mutations in the PTPN11, SOS1, RAF1, or KRAS genes. NS-associated PTPN11 mutations (NS-PTPN11) and NS with multiple lentigines-associated PTPN11 mutations (NSML-PTPN11) were distinguished. Birth measures and height and body mass index (BMI) measures at 2, 5, 10 years, and adulthood were compared with the general population and between genotypes. RESULTS Patients with NS were shorter at birth (mean birth length standard deviation score (SDS): -1.0 ± 1.4; P < 0.001) and throughout childhood than the healthy population, with height SDS being -2.1 ± 1.3 at 2 years, and -2.1 ± 1.2 at 5 and 10 years and adulthood (P < 0.001). At birth, patients with NS-PTPN11 were significantly shorter and thinner than patients with NSML-PTPN11, SOS1, or KRAS. Growth retardation was significantly less severe and less frequent at 2 years in patients with NSML-PTPN11 and SOS1 than in patients with NS-PTPN11 (P < 0.001 and P = 0.002 respectively). Patients with NS had lower BMI at 10 years (P < 0.001). No difference between genotypes was demonstrated. CONCLUSION Determining the growth patterns of patients with NS according to genotype should better inform clinicians about the natural course of growth in NS so that they can optimize the follow-up and management of these patients.
Collapse
Affiliation(s)
- Catie Cessans
- EndocrineBone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Virginie Ehlinger
- UMR 1027 INSERMUniversity of Toulouse Paul Sabatier, Toulouse, France
| | - Catherine Arnaud
- UMR 1027 INSERMUniversity of Toulouse Paul Sabatier, Toulouse, France Clinical Epidemiology UnitToulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Yline Capri
- Departments of GeneticsRobert-Debré University Hospital, APHP, Paris, France
| | - Pascal Barat
- Pediatric Endocrinology DepartmentClinical investigation Centre (CIC 1401), Bordeaux University Hospital, Bordeaux, France
| | - Benoit Cammas
- Pediatric Endocrinology DepartmentClinical investigation Centre (CIC 1401), Bordeaux University Hospital, Bordeaux, France
| | - Didier Lacombe
- Genetics DepartmentBordeaux University Hospital, EA4576, Bordeaux, France
| | - Régis Coutant
- Pediatric Endocrinology DepartmentAngers University Hospital, Angers, France
| | - Albert David
- Genetics DepartmentNantes University Hospital, Nantes, France
| | - Sabine Baron
- Pediatric Endocrine UnitNantes University Hospital, Nantes, France
| | - Jacques Weill
- Pediatric Endocrine UnitLille University Hospital, Lille, France
| | - Bruno Leheup
- Pediatric and Genetics UnitNancy University Hospital, Vandoeuvre, France
| | - Marc Nicolino
- Pediatric Endocrinology DepartmentLyon University Pediatric Hospital, INSERM U.1060/UCBL/HCL, France
| | - Jean-Pierre Salles
- EndocrineBone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France INSERM UMR 1043Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Alain Verloes
- Departments of GeneticsRobert-Debré University Hospital, APHP, Paris, France
| | - Maithé Tauber
- EndocrineBone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France INSERM UMR 1043Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Hélène Cavé
- Departments of GeneticsRobert-Debré University Hospital, APHP, Paris, France
| | - Thomas Edouard
- EndocrineBone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France INSERM UMR 1043Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
29
|
Jindal GA, Goyal Y, Burdine RD, Rauen KA, Shvartsman SY. RASopathies: unraveling mechanisms with animal models. Dis Model Mech 2016. [PMID: 26203125 PMCID: PMC4527292 DOI: 10.1242/dmm.020339] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment. Summary: Developmental disorders caused by germline mutations in the Ras-MAPK pathway are called RASopathies. Studies with animal models, including mice, zebrafish and Drosophila, continue to enhance our understanding of these diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katherine A Rauen
- Department of Pediatrics, MIND Institute, Division of Genomic Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
30
|
Bosada FM, Devasthali V, Jones KA, Stankunas K. Wnt/β-catenin signaling enables developmental transitions during valvulogenesis. Development 2016; 143:1041-54. [PMID: 26893350 DOI: 10.1242/dev.130575] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/31/2016] [Indexed: 01/12/2023]
Abstract
Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector β-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/β-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/β-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/β-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects.
Collapse
Affiliation(s)
- Fernanda M Bosada
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA Department of Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Vidusha Devasthali
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Kimberly A Jones
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA Department of Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA Department of Biology, University of Oregon, Eugene, OR 97403-1229, USA
| |
Collapse
|
31
|
Xing L, Larsen RS, Bjorklund GR, Li X, Wu Y, Philpot BD, Snider WD, Newbern JM. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex. eLife 2016; 5. [PMID: 26848828 PMCID: PMC4758957 DOI: 10.7554/elife.11123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability. DOI:http://dx.doi.org/10.7554/eLife.11123.001 In the nervous system, cells called neurons form networks that relay information in the form of electrical signals around the brain and the rest of the body. Typically, an electrical signal travels from branch-like structures at one end of the cell, through the cell body and then along a long fiber called an axon to reach junctions with another neurons. The connections between neurons start to form as the nervous system develops in the embryo, and any errors or delays in this process can cause severe neurological disorders and intellectual disabilities. For example, genetic mutations affecting a communication system within cells known as the ERK/MAPK pathway can lead to a family of syndromes called the “RASopathies”. Abnormalities in this pathway may also contribute to certain types of autism. However, it is not clear how alterations to the ERK/MAPK pathway cause these conditions. Xing et al. investigated whether ERK/MAPK signaling regulates the formation of connections between neurons and the activity of neurons in mouse brains. The experiments showed that the growth of axons that extend from an area of the brain called the cerebral cortex towards the spinal cord are particularly sensitive to changes in the level of signaling through the ERK/MAPK pathway. On the other hand, inhibiting the pathway has relatively little effect on the growth of axons within the cerebral cortex. Further experiments showed that many neurons in the cerebral cortex require the ERK/MAPK pathway to activate genes that alter neuronal activity and the strength of the connections between neurons. Xing et al.’s findings suggest that defects in the connections between the cerebral cortex and different regions of the nervous system may contribute to the symptoms observed in patients with conditions linked to alterations in ERK/MAPK activity. Future studies will focus on understanding the molecular mechanisms by which ERK/MAPK pathway influences the organization and activity of neuron circuits during the development of the nervous system. DOI:http://dx.doi.org/10.7554/eLife.11123.002
Collapse
Affiliation(s)
- Lei Xing
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Rylan S Larsen
- Allen Institute for Brain Science, Seattle, United States
| | | | - Xiaoyan Li
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Yaohong Wu
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Benjamin D Philpot
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - William D Snider
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
32
|
Tien SC, Lee HH, Yang YC, Lin MH, Chen YJ, Chang ZF. The Shp2-induced epithelial disorganization defect is reversed by HDAC6 inhibition independent of Cdc42. Nat Commun 2016; 7:10420. [PMID: 26783207 PMCID: PMC4735695 DOI: 10.1038/ncomms10420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022] Open
Abstract
Regulation of Shp2, a tyrosine phosphatase, critically influences the development of various diseases. Its role in epithelial lumenogenesis is not clear. Here we show that oncogenic Shp2 dephosphorylates Tuba to decrease Cdc42 activation, leading to the abnormal multi-lumen formation of epithelial cells. HDAC6 suppression reverses oncogenic Shp2-induced multiple apical domains and spindle mis-orientation during division in cysts to acquire normal lumenogenesis. Intriguingly, Cdc42 activity is not restored in this rescued process. We present evidence that simultaneous reduction in myosin II and ERK1/2 activity by HDAC6 inhibition is responsible for the reversion. In HER2-positive breast cancer cells, Shp2 also mediates Cdc42 repression, and HDAC6 inhibition or co-suppression of ERK/myosin II promotes normal epithelial lumen phenotype without increasing Cdc42 activity. Our data suggest a mechanism of epithelial disorganization by Shp2 deregulation, and reveal the cellular context where HDAC6 suppression is capable of establishing normal epithelial lumenogenesis independent of Cdc42. Cdc42 activity is important for apical-basal epithelial polarity. Here, the authors show that Shp2 disrupts Cdc42 activation, and by reducing the expression of histone deactylase 6, restores epithelial lumen formation in a cdc42-independent manner.
Collapse
Affiliation(s)
- Sui-Chih Tien
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Linong Street,Taipei 11221, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, No. 155, Section 2, Linong Street,Taipei 11221, Taiwan
| | - Ya-Chi Yang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Linong Street,Taipei 11221, Taiwan
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Linong Street,Taipei 11221, Taiwan
| |
Collapse
|
33
|
SHP2 sails from physiology to pathology. Eur J Med Genet 2015; 58:509-25. [PMID: 26341048 DOI: 10.1016/j.ejmg.2015.08.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023]
Abstract
Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases.
Collapse
|
34
|
Burmeister BT, Wang L, Gold MG, Skidgel RA, O'Bryan JP, Carnegie GK. Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity. J Biol Chem 2015; 290:12058-67. [PMID: 25802336 PMCID: PMC4424342 DOI: 10.1074/jbc.m115.642983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 01/10/2023] Open
Abstract
Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response.
Collapse
Affiliation(s)
| | - Li Wang
- From the Department of Pharmacology
| | - Matthew G Gold
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom, and
| | | | - John P O'Bryan
- From the Department of Pharmacology, University of Illinois Cancer Center, and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60612, the Jessie Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612
| | | |
Collapse
|
35
|
Tian E, Stevens SR, Guan Y, Springer DA, Anderson SA, Starost MF, Patel V, Ten Hagen KG, Tabak LA. Galnt1 is required for normal heart valve development and cardiac function. PLoS One 2015; 10:e0115861. [PMID: 25615642 PMCID: PMC4304789 DOI: 10.1371/journal.pone.0115861] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
Congenital heart valve defects in humans occur in approximately 2% of live births and are a major source of compromised cardiac function. In this study we demonstrate that normal heart valve development and cardiac function are dependent upon Galnt1, the gene that encodes a member of the family of glycosyltransferases (GalNAc-Ts) responsible for the initiation of mucin-type O-glycosylation. In the adult mouse, compromised cardiac function that mimics human congenital heart disease, including aortic and pulmonary valve stenosis and regurgitation; altered ejection fraction; and cardiac dilation, was observed in Galnt1 null animals. The underlying phenotype is aberrant valve formation caused by increased cell proliferation within the outflow tract cushion of developing hearts, which is first detected at developmental stage E11.5. Developing valves from Galnt1 deficient animals displayed reduced levels of the proteases ADAMTS1 and ADAMTS5, decreased cleavage of the proteoglycan versican and increased levels of other extracellular matrix proteins. We also observed increased BMP and MAPK signaling. Taken together, the ablation of Galnt1 appears to disrupt the formation/remodeling of the extracellular matrix and alters conserved signaling pathways that regulate cell proliferation. Our study provides insight into the role of this conserved protein modification in cardiac valve development and may represent a new model for idiopathic valve disease.
Collapse
Affiliation(s)
- E Tian
- Developmental Glycobiology Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, United States of America
| | - Sharon R. Stevens
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, United States of America
| | - Yu Guan
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, United States of America
| | - Danielle A. Springer
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States of America
| | - Stasia A. Anderson
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States of America
| | - Matthew F. Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, United States of America
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, United States of America
| | - Kelly G. Ten Hagen
- Developmental Glycobiology Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, United States of America
| | - Lawrence A. Tabak
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, United States of America
| |
Collapse
|
36
|
Edwards MA, Crombie K, Schramm C, Krenz M. The Q510E mutation in Shp2 perturbs heart valve development by increasing cell migration. J Appl Physiol (1985) 2014; 118:124-31. [PMID: 25359717 DOI: 10.1152/japplphysiol.00008.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tightly regulated cellular signaling is critical for correct heart valve development, but how and why signaling is dysregulated in congenital heart disease is not very well known. We focused on protein tyrosine phosphatase Shp2, because mutations in this signaling modulator frequently cause valve malformations associated with Noonan syndrome or Noonan syndrome with multiple lentigines (NSML). To model NSML-associated valve disease, we targeted overexpression of Q510E-Shp2 to mouse endocardial cushions (ECs) using a Tie2-Cre-based approach. At midgestation, Q510E-Shp2 expression increased the size of atrioventricular ECs by 80%. To dissect the underlying cellular mechanisms, we explanted ECs from chick embryonic hearts and induced Q510E-Shp2 expression using adenoviral vectors. Valve cell outgrowth from cultured EC explants into surrounding matrix was significantly increased by Q510E-Shp2 expression. Because focal adhesion kinase (FAK) is a critical regulator of cell migration, we tested whether FAK inhibition counteracts the Q510E-Shp2-induced effects in explanted ECs. The FAK/src inhibitor PP2 normalized valve cell outgrowth from Q510E-Shp2-expressing ECs. Next, chick ECs were further dissociated to assess cell proliferation and migration. Valve cell proliferation was not increased by Q510E-Shp2 as determined by label incorporation. In contrast, valve cell migration as reflected in a wound-healing assay was increased by Q510E-Shp2 expression, indicating that increased migration is the predominant effect of Q510E-Shp2 expression in ECs. In conclusion, PP2-sensitive signaling mediates the pathogenic effects of Q510E-Shp2 on cell migration in EC explant cultures. This suggests a central role for FAK and provides new mechanistic insight into the molecular basis of valve defects in NSML.
Collapse
Affiliation(s)
- Michelle A Edwards
- Department of Medical Pharmacology & Physiology and the Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia Missouri
| | - Kathryn Crombie
- Department of Medical Pharmacology & Physiology and the Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia Missouri
| | - Christine Schramm
- Department of Medical Pharmacology & Physiology and the Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia Missouri
| | - Maike Krenz
- Department of Medical Pharmacology & Physiology and the Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia Missouri
| |
Collapse
|
37
|
Lauriol J, Jaffré F, Kontaridis MI. The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Semin Cell Dev Biol 2014; 37:73-81. [PMID: 25256404 DOI: 10.1016/j.semcdb.2014.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
Congenital heart disease is the most common human developmental disorder, affecting ∼1:100 newborns, and is the primary cause of birth-defect related deaths worldwide. As a major regulator of receptor tyrosine kinase (RTK), cytokine and G-protein coupled receptor signaling, the non-receptor protein tyrosine phosphatase SHP2 plays a critical role in normal cardiac development and function. Indeed, SHP2 participates in a wide variety of cellular functions, including proliferation, survival, differentiation, migration, and cell-cell communication. Moreover, human activating and inactivating mutations of SHP2 are responsible for two related developmental disorders called Noonan and LEOPARD Syndromes, respectively, which are both characterized, in part, by congenital heart defects. Structural, enzymologic, biochemical, and SHP2 mouse model studies have together greatly enriched our knowledge of SHP2 and, as such, have also uncovered the diverse roles for SHP2 in cardiac development, including its contribution to progenitor cell specification, cardiac morphogenesis, and maturation of cardiac valves and myocardial chambers. By delineating the precise mechanisms by which SHP2 is involved in regulating these processes, we can begin to better understand the pathogenesis of cardiac disease and find more strategic and effective therapies for treatment of patients with congenital heart disorders.
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Fabrice Jaffré
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Maria I Kontaridis
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
38
|
Inoue SI, Moriya M, Watanabe Y, Miyagawa-Tomita S, Niihori T, Oba D, Ono M, Kure S, Ogura T, Matsubara Y, Aoki Y. New BRAF knockin mice provide a pathogenetic mechanism of developmental defects and a therapeutic approach in cardio-facio-cutaneous syndrome. Hum Mol Genet 2014; 23:6553-66. [PMID: 25035421 DOI: 10.1093/hmg/ddu376] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cardio-facio-cutaneous (CFC) syndrome is one of the 'RASopathies', a group of phenotypically overlapping syndromes caused by germline mutations that encode components of the RAS-MAPK pathway. Germline mutations in BRAF cause CFC syndrome, which is characterized by heart defects, distinctive facial features and ectodermal abnormalities. To define the pathogenesis and to develop a potential therapeutic approach in CFC syndrome, we here generated new knockin mice (here Braf(Q241R/+)) expressing the Braf Q241R mutation, which corresponds to the most frequent mutation in CFC syndrome, Q257R. Braf(Q241R/+) mice manifested embryonic/neonatal lethality, showing liver necrosis, edema and craniofacial abnormalities. Histological analysis revealed multiple heart defects, including cardiomegaly, enlarged cardiac valves, ventricular noncompaction and ventricular septal defects. Braf(Q241R/+) embryos also showed massively distended jugular lymphatic sacs and subcutaneous lymphatic vessels, demonstrating lymphatic defects in RASopathy knockin mice for the first time. Prenatal treatment with a MEK inhibitor, PD0325901, rescued the embryonic lethality with amelioration of craniofacial abnormalities and edema in Braf(Q241R/+) embryos. Unexpectedly, one surviving pup was obtained after treatment with a histone 3 demethylase inhibitor, GSK-J4, or NCDM-32b. Combination treatment with PD0325901 and GSK-J4 further increased the rescue from embryonic lethality, ameliorating enlarged cardiac valves. These results suggest that our new Braf knockin mice recapitulate major features of RASopathies and that epigenetic modulation as well as the inhibition of the ERK pathway will be a potential therapeutic strategy for the treatment of CFC syndrome.
Collapse
Affiliation(s)
| | | | - Yusuke Watanabe
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sachiko Miyagawa-Tomita
- Department of Pediatric Cardiology, Division of Cardiovascular Development and Differentiation, Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan and
| | | | | | | | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoichi Matsubara
- Department of Medical Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
39
|
The protein tyrosine phosphatase Shp2 is required for the generation of oligodendrocyte progenitor cells and myelination in the mouse telencephalon. J Neurosci 2014; 34:3767-78. [PMID: 24599474 DOI: 10.1523/jneurosci.3515-13.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The protein tyrosine phosphatase Shp2 (PTPN11) is crucial for normal brain development and has been implicated in dorsal telencephalic neuronal and astroglia cell fate decisions. However, its roles in the ventral telencephalon and during oligodendrogenesis in the telencephalon remain largely unknown. Shp2 gain-of-function (GOF) mutations are observed in Noonan syndrome, a type of RASopathy associated with multiple phenotypes, including cardiovascular, craniofacial, and neurocognitive abnormalities. To gain insight into requirements for Shp2 (LOF) and the impact of abnormal Shp2 GOF mutations, we used a Shp2 conditional mutant allele (LOF) and a cre inducible Shp2-Q79R GOF transgenic mouse in combination with Olig2(cre/+) mice to target embryonic ventral telencephalic progenitors and the oligodendrocyte lineage. In the absence of Shp2 (LOF), neuronal cell types originating from progenitors in the ventral telencephalon were generated, but oligodendrocyte progenitor cell (OPC) generation was severely impaired. Late embryonic and postnatal Shp2 cKOs showed defects in the generation of OPCs throughout the telencephalon and subsequent reductions in white matter myelination. Conversely, transgenic expression of the Shp2 GOF Noonan syndrome mutation resulted in elevated OPC numbers in the embryo and postnatal brain. Interestingly, expression of this mutation negatively influenced myelination as mice displayed abnormal myelination and fewer myelinated axons in the white matter despite elevated OPC numbers. Increased proliferating OPCs and elevated MAPK activity were also observed during oligodendrogenesis after expression of Shp2 GOF mutation. These results support the notion that appropriate Shp2 activity levels control the number as well as the differentiation of oligodendrocytes during development.
Collapse
|
40
|
SHP-2 deletion in postmigratory neural crest cells results in impaired cardiac sympathetic innervation. Proc Natl Acad Sci U S A 2014; 111:E1374-82. [PMID: 24706815 DOI: 10.1073/pnas.1319208111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autonomic innervation is an essential component of cardiovascular regulation that is first established from the neural crest (NC) lineage in utero and continues developing postnatally. Although in vitro studies have indicated that SH2-containing protein tyrosine phosphatase 2 (SHP-2) is a signaling factor critical for regulating sympathetic neuron differentiation, this has yet to be shown in the complex in vivo environment of cardiac autonomic innervation. Targeting SHP-2 within postmigratory NC lineages resulted in a fully penetrant mouse model of diminished sympathetic cardiac innervation and concomitant bradycardia. Immunohistochemistry of the sympathetic nerve marker tyrosine hydroxylase revealed a progressive loss of adrenergic ganglionic neurons and reduction of cardiac sympathetic axon density in Shp2 cKOs. Molecularly, Shp2 cKOs exhibit lineage-specific suppression of activated phospo-ERK1/2 signaling but not of other downstream targets of SHP-2 such as pAKT. Genetic restoration of the phosphorylated-extracellular signal-regulated kinase (pERK) deficiency via lineage-specific expression of constitutively active MEK1 was sufficient to rescue the sympathetic innervation deficit and its physiological consequences. These data indicate that SHP-2 signaling specifically through pERK in postmigratory NC lineages is essential for development and maintenance of sympathetic cardiac innervation postnatally.
Collapse
|
41
|
Qiu W, Wang X, Romanov V, Hutchinson A, Lin A, Ruzanov M, Battaile KP, Pai EF, Neel BG, Chirgadze NY. Structural insights into Noonan/LEOPARD syndrome-related mutants of protein-tyrosine phosphatase SHP2 (PTPN11). BMC STRUCTURAL BIOLOGY 2014; 14:10. [PMID: 24628801 PMCID: PMC4007598 DOI: 10.1186/1472-6807-14-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
Abstract
Background The ubiquitous non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) plays a key role in RAS/ERK signaling downstream of most, if not all growth factors, cytokines and integrins, although its major substrates remain controversial. Mutations in PTPN11 lead to several distinct human diseases. Germ-line PTPN11 mutations cause about 50% of Noonan Syndrome (NS), which is among the most common autosomal dominant disorders. LEOPARD Syndrome (LS) is an acronym for its major syndromic manifestations: multiple Lentigines, Electrocardiographic abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormalities of genitalia, Retardation of growth, and sensorineural Deafness. Frequently, LS patients have hypertrophic cardiomyopathy, and they might also have an increased risk of neuroblastoma (NS) and acute myeloid leukemia (AML). Consistent with the distinct pathogenesis of NS and LS, different types of PTPN11 mutations cause these disorders. Results Although multiple studies have reported the biochemical and biological consequences of NS- and LS-associated PTPN11 mutations, their structural consequences have not been analyzed fully. Here we report the crystal structures of WT SHP2 and five NS/LS-associated SHP2 mutants. These findings enable direct structural comparisons of the local conformational changes caused by each mutation. Conclusions Our structural analysis agrees with, and provides additional mechanistic insight into, the previously reported catalytic properties of these mutants. The results of our research provide new information regarding the structure-function relationship of this medically important target, and should serve as a solid foundation for structure-based drug discovery programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Benjamin G Neel
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, M5G 2C4, Canada.
| | | |
Collapse
|
42
|
Ulm S, Liu W, Zi M, Tsui H, Chowdhury SK, Endo S, Satoh Y, Prehar S, Wang R, Cartwright EJ, Wang X. Targeted deletion of ERK2 in cardiomyocytes attenuates hypertrophic response but provokes pathological stress induced cardiac dysfunction. J Mol Cell Cardiol 2014; 72:104-16. [PMID: 24631771 PMCID: PMC4046245 DOI: 10.1016/j.yjmcc.2014.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 11/16/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are involved in the regulation of cardiac hypertrophy and myocyte survival. Extracellular signal regulated protein kinase 1 and 2 (ERK1/2) are key components in the MAPK signaling pathways. Dysfunction of ERK1/2 in congenital heart diseases (Noonan syndrome and LEOPARD syndrome) leads to cardiac hypertrophy. ERK2 contributes 70% of protein content to total ERK1/2 content in myocardium; however, the specific role of ERK2 in regulating cardiac hypertrophy is yet to be further defined. To investigate the specific role of ERK2 played in the cardiomyocytes, we generated and examined mice with cardiomyocyte-specific deletion of the erk2 gene (ERK2cko mice). Following short-term pathological hypertrophic stresses, the mutant mice showed attenuated hypertrophic remodeling characterized by a blunted increase in the cross-sectional area of individual myocytes, downregulation of hypertrophic foetal gene markers (ANP and BNP), and less interstitial fibrosis. However, increased cardiomyocyte apoptosis was observed. Upon prolonged stimulation, ERK2cko mice developed deterioration in cardiac function. However, absence of ERK2 did not affect physiological hypertrophy induced by 4 weeks of swimming exercise. These results revealed an essential role for ERK2 in cardiomyocytes in the development of pathological hypertrophic remodeling and resistance to cell death. ERK2 is required for pathological cardiac hypertrophy. ERK2 is essential for cardiomyocyte survival through preventing apoptosis. ERK2 deficiency in cardiomyocytes accelerates heart failure progress. ERK2 is unlikely to be involved in the regulation of physiological hypertrophy.
Collapse
Affiliation(s)
- Susanne Ulm
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9NT, UK
| | - Wei Liu
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9NT, UK.
| | - Min Zi
- Faculty of Medical and Human Sciences, The University of Manchester, Manchester M13 9NT, UK
| | - Hoyee Tsui
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9NT, UK
| | - Sanjoy K Chowdhury
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9NT, UK
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Yasushi Satoh
- Department of Anesthesiology, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Sukhpal Prehar
- Faculty of Medical and Human Sciences, The University of Manchester, Manchester M13 9NT, UK
| | - Ruoxi Wang
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9NT, UK
| | - Elizabeth J Cartwright
- Faculty of Medical and Human Sciences, The University of Manchester, Manchester M13 9NT, UK
| | - Xin Wang
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
43
|
Yu L, Daniels J, Glaser AE, Wolf MJ. Raf-mediated cardiac hypertrophy in adult Drosophila. Dis Model Mech 2013; 6:964-76. [PMID: 23580199 PMCID: PMC3701216 DOI: 10.1242/dmm.011361] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK) signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr) RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf-mediated cardiac hypertrophy.
Collapse
Affiliation(s)
- Lin Yu
- Duke University Medical Center, 321 Sands Building, Research Drive, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
44
|
Yu ZH, Xu J, Walls CD, Chen L, Zhang S, Zhang R, Wu L, Wang L, Liu S, Zhang ZY. Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J Biol Chem 2013; 288:10472-82. [PMID: 23457302 DOI: 10.1074/jbc.m113.450023] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
SHP2 is an allosteric phosphatase essential for growth factor-mediated Ras activation. Germ-line mutations in SHP2 cause clinically similar LEOPARD and Noonan syndromes, two of several autosomal-dominant conditions characterized by gain-of-function mutations in the Ras pathway. Interestingly, Noonan syndrome SHP2 mutants are constitutively active, whereas LEOPARD syndrome SHP2 mutants exhibit reduced phosphatase activity. How do catalytically impaired LEOPARD syndrome mutants engender gain-of-function phenotypes? Our study reveals that LEOPARD syndrome mutations weaken the intramolecular interaction between the N-SH2 and phosphatase domains, leading to a change in SHP2 molecular switching mechanism. Consequently, LEOPARD syndrome SHP2 mutants bind upstream activators preferentially and are hypersensitive to growth factor stimulation. They also stay longer with scaffolding adapters, thus prolonging substrate turnover, which compensates for the reduced phosphatase activity. The study provides a solid framework for understanding how individual SHP2 mutations cause diseases.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M. A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem 2013; 288:11216-32. [PMID: 23447532 DOI: 10.1074/jbc.m112.442384] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Understanding the regulation of cardiomyocyte growth is crucial for the management of adverse ventricular remodeling and heart failure. MicroRNA-378 (miR-378) is a newly described member of the cardiac-enriched miRNAs, which is expressed only in cardiac myocytes and not in cardiac fibroblasts. We have previously shown that miR-378 regulates cardiac growth during the postnatal period by direct targeting of IGF1R (Knezevic, I., Patel, A., Sundaresan, N. R., Gupta, M. P., Solaro, R. J., Nagalingam, R. S., and Gupta, M. (2012) J. Biol. Chem. 287, 12913-12926). Here, we report that miR-378 is an endogenous negative regulator of cardiac hypertrophy, and its levels are down-regulated during hypertrophic growth of the heart and during heart failure. In primary cultures of cardiomyocytes, overexpression of miR-378 blocked phenylephrine (PE)-stimulated Ras activity and also prevented activation of two major growth-promoting signaling pathways, PI3K-AKT and Raf1-MEK1-ERK1/2, acting downstream of Ras signaling. Overexpression of miR-378 suppressed PE-induced phosphorylation of S6 ribosomal kinase, pERK1/2, pAKT, pGSK-3β, and nuclear accumulation of NFAT. There was also suppression of the fetal gene program that was induced by PE. Experiments carried out to delineate the mechanism behind the suppression of Ras, led us to identify Grb2, an upstream component of Ras signaling, as a bona fide direct target of miR-378-mediated regulation. Deficiency of miR-378 alone was sufficient to induce fetal gene expression, which was prevented by knocking down Grb2 expression and blocking Ras activation, thus suggesting that miR-378 interferes with Ras activation by targeting Grb2. Our study demonstrates that miR-378 is an endogenous negative regulator of Ras signaling and cardiac hypertrophy and its deficiency contributes to the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Raghu S Nagalingam
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
46
|
Tautz L, Critton DA, Grotegut S. Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol Biol 2013; 1053:179-221. [PMID: 23860656 DOI: 10.1007/978-1-62703-562-0_13] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein tyrosine phosphorylation is a key regulatory mechanism in eukaryotic cell physiology. Aberrant expression or function of protein tyrosine kinases and protein tyrosine phosphatases can lead to serious human diseases, including cancer, diabetes, as well as cardiovascular, infectious, autoimmune, and neuropsychiatric disorders. Here, we give an overview of the protein tyrosine phosphatase superfamily with its over 100 members in humans. We review their structure, function, and implications in human diseases, and discuss their potential as novel drug targets, as well as current challenges and possible solutions to developing therapeutics based on these enzymes.
Collapse
Affiliation(s)
- Lutz Tautz
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
47
|
Abstract
We have defined functions of MEK in regulating gliogenesis in developing cerebral cortex using loss- and gain-of-function mouse genetics. Radial progenitors deficient in both Mek1 and Mek2 fail to transition to the gliogenic mode in late embryogenesis, and astrocyte and oligodendroglial precursors fail to appear. In exploring mechanisms, we found that the key cytokine-regulated gliogenic pathway is attenuated. Further, the Ets transcription family member Etv5/Erm is strongly regulated by MEK and Erm overexpression can rescue the gliogenic potential of Mek-deleted progenitors. Remarkably, Mek1/2-deleted mice surviving postnatally exhibit cortices almost devoid of astrocytes and oligodendroglia and exhibit neurodegeneration. Conversely, expression of constitutively active MEK1 leads to a major increase in numbers of astrocytes in the adult brain. We conclude that MEK is essential for acquisition of gliogenic competence by radial progenitors and that levels of MEK activity regulate gliogenesis in the developing cortex.
Collapse
|
48
|
Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:917-22. [PMID: 23078978 DOI: 10.1016/j.bbamcr.2012.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 11/23/2022]
Abstract
The cardiac valves are targets of both congenital and acquired diseases. The formation of valves during embryogenesis (i.e., valvulogenesis) originates from endocardial cells lining the myocardium. These cells undergo an endothelial-mesenchymal transition, proliferate and migrate within an extracellular matrix. This leads to the formation of bilateral cardiac cushions in both the atrioventricular canal and the outflow tract. The embryonic origin of both the endocardium and prospective valve cells is still elusive. Endocardial and myocardial lineages are segregated early during embryogenesis and such a cell fate decision can be recapitulated in vitro by embryonic stem cells (ESC). Besides genetically modified mice and ex vivo heart explants, ESCs provide a cellular model to study the early steps of valve development and might constitute a human therapeutic cell source for decellularized tissue-engineered valves. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
|
49
|
Burmeister BT, Taglieri DM, Wang L, Carnegie GK. Src homology 2 domain-containing phosphatase 2 (Shp2) is a component of the A-kinase-anchoring protein (AKAP)-Lbc complex and is inhibited by protein kinase A (PKA) under pathological hypertrophic conditions in the heart. J Biol Chem 2012; 287:40535-46. [PMID: 23045525 DOI: 10.1074/jbc.m112.385641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AKAP-Lbc is a scaffold protein that coordinates cardiac hypertrophic signaling. RESULTS AKAP-Lbc interacts with Shp2, facilitating its regulation by PKA. CONCLUSION AKAP-Lbc integrates PKA and Shp2 signaling in the heart. Under pathological hypertrophic conditions Shp2 is phosphorylated by PKA, and phosphatase activity is inhibited. SIGNIFICANCE Inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote pathological cardiac hypertrophy. Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Our results identify a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that the tyrosine phosphatase, Shp2, is a component of the A-kinase-anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits its protein-tyrosine phosphatase activity. Given the important cardiac roles of both AKAP-Lbc and Shp2, we investigated the AKAP-Lbc-Shp2 interaction in the heart. AKAP-Lbc-tethered PKA is implicated in cardiac hypertrophic signaling; however, mechanism of PKA action is unknown. Mutations resulting in loss of Shp2 catalytic activity are also associated with cardiac hypertrophy and congenital heart defects. Our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Thus, while induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote compensatory cardiac hypertrophy.
Collapse
Affiliation(s)
- Brian T Burmeister
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
50
|
Lauriol J, Kontaridis MI. PTPN11-associated mutations in the heart: has LEOPARD changed Its RASpots? Trends Cardiovasc Med 2012; 21:97-104. [PMID: 22681964 DOI: 10.1016/j.tcm.2012.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this review, we focus on elucidating the cardiac function of germline mutations in the PTPN11 gene, encoding the Src homology-2 (SH2) domain-containing protein tyrosine phosphatase SHP2. PTPN11 mutations cause LEOPARD syndrome (LS) and Noonan syndrome (NS), two disorders that are part of a newly classified family of autosomal dominant syndromes termed "RASopathies," which are caused by germline mutations in components of the RAS/RAF/MEK/ERK mitogen activating protein kinase pathway. LS and NS mutants have opposing biochemical properties, and yet, in patients, these mutations produce similar cardiac abnormalities. Precisely how LS and NS mutations lead to such similar disease etiology remains largely unknown. Recent complementary in vitro, ex vivo, and in vivo analyses reveal new insights into the functions of SHP2 in normal and pathological cardiac development. These findings also reveal the need for individualized therapeutic approaches in the treatment of patients with LS and NS and, more broadly, patients with the other "RASopathy" gene mutations as well.
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | |
Collapse
|