1
|
Liao C, Hu L, Zhang Q. Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma. Nat Rev Urol 2024; 21:662-675. [PMID: 38698165 DOI: 10.1038/s41585-024-00876-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The distinct pathological and molecular features of kidney cancer in adaptation to oxygen homeostasis render this malignancy an attractive model for investigating hypoxia signalling and potentially developing potent targeted therapies. Hypoxia signalling has a pivotal role in kidney cancer, particularly within the most prevalent subtype, known as renal cell carcinoma (RCC). Hypoxia promotes various crucial pathological processes, such as hypoxia-inducible factor (HIF) activation, angiogenesis, proliferation, metabolic reprogramming and drug resistance, all of which contribute to kidney cancer development, growth or metastasis formation. A substantial portion of kidney cancers, in particular clear cell RCC (ccRCC), are characterized by a loss of function of Von Hippel-Lindau tumour suppressor (VHL), leading to the accumulation of HIF proteins, especially HIF2α, a crucial driver of ccRCC. Thus, therapeutic strategies targeting pVHL-HIF signalling have been explored in ccRCC, culminating in the successful development of HIF2α-specific antagonists such as belzutifan (PT2977), an FDA-approved drug to treat VHL-associated diseases including advanced-stage ccRCC. An increased understanding of hypoxia signalling in kidney cancer came from the discovery of novel VHL protein (pVHL) targets, and mechanisms of synthetic lethality with VHL mutations. These breakthroughs can pave the way for the development of innovative and potent combination therapies in kidney cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Bertlin JAC, Pauzaite T, Liang Q, Wit N, Williamson JC, Sia JJ, Matheson NJ, Ortmann BM, Mitchell TJ, Speak AO, Zhang Q, Nathan JA. VHL synthetic lethality screens uncover CBF-β as a negative regulator of STING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610968. [PMID: 39282259 PMCID: PMC11398426 DOI: 10.1101/2024.09.03.610968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer and is typified by biallelic inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene. Here, we undertake genome-wide CRISPR/Cas9 screening to reveal synthetic lethal interactors of VHL, and uncover that loss of Core Binding Factor β (CBF-β) causes cell death in VHL-null ccRCC cell lines and impairs tumour establishment and growth in vivo. This synthetic relationship is independent of the elevated activity of hypoxia inducible factors (HIFs) in VHL-null cells, but does involve the RUNX transcription factors that are known binding partners of CBF-β. Mechanistically, CBF-β loss leads to upregulation of type I interferon signalling, and we uncover a direct inhibitory role for CBF-β at the STING locus controlling Interferon Stimulated Gene expression. Targeting CBF-β in kidney cancer both selectively induces tumour cell lethality and promotes activation of type I interferon signalling.
Collapse
Affiliation(s)
- James A C Bertlin
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qian Liang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James C Williamson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Jia Jhing Sia
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Mitchell
- Early Cancer Institute and Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anneliese O Speak
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qing Zhang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| |
Collapse
|
3
|
Ortmann BM. Hypoxia-inducible factor in cancer: from pathway regulation to therapeutic opportunity. BMJ ONCOLOGY 2024; 3:e000154. [PMID: 39886164 PMCID: PMC11203102 DOI: 10.1136/bmjonc-2023-000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Cancer remains one of the most formidable challenges in modern medicine, due to its complex and dynamic nature, which demands innovative therapeutic approaches. One major challenge to cancer treatment is the tumour microenvironment and in particular tumour hypoxia (low oxygen levels), which contributes to tumour progression and immune evasion. At the cellular level, this is primarily governed by hypoxia-inducible factor (HIF). HIF is a transcription factor that orchestrates cellular responses to low oxygen levels, driving angiogenesis, metabolic adaptation and immune regulation. HIF's dysregulation is frequently observed in various cancer types and correlates with increased aggressiveness, metastasis, resistance to therapy and poor patient prognosis. Consequently, understanding the cellular mechanisms underlying HIF activation and its downstream effects has become crucial to developing targeted cancer therapies for improving cancer patient outcomes and represents a key step towards precision medicine. Recent advancements in drug development have led to the emergence of HIF inhibitors, which aim to disrupt HIF-driven processes in cancer providing therapeutic benefit. Here, we provide a review of the molecular mechanisms through which HIF promotes tumour growth and resistance, emphasising the potential clinical benefits of HIF-targeted therapies. This review will discuss the challenges and opportunities associated with translating HIF inhibition into clinical practice, including ongoing clinical trials and future directions in the development of HIF-based cancer treatments.
Collapse
Affiliation(s)
- Brian M Ortmann
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
4
|
Domański P, Jarosińska J, Kruczyk B, Piętak M, Mydlak A, Demkow T, Kuncman Ł, Darewicz M, Sikora-Kupis B, Dumnicka P, Kucharz J. Activity of cabozantinib in further line treatment of metastatic clear cell renal cell carcinoma. Real-world experience in a single-center retrospective study. Contemp Oncol (Pozn) 2023; 27:190-197. [PMID: 38239858 PMCID: PMC10793615 DOI: 10.5114/wo.2023.133545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/07/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Cabozantinib is an oral inhibitor of MET, AXL, and vascular endothelial growth factor receptors. It has an immunomodulatory effect and may influence the tumor's microenvironment and make mutated cells more sensitive to immune-mediated killing. These properties have made cabozantinib an effective drug for first-line or subsequent-line treatment after progression of metastatic renal cell carcinoma (mRCC), even after immunotherapy. Material and methods Seventy-one patients with mRCC were treated with second or further lines of cabozantinib at the Department of Genitourinary Oncology, Maria Sklodowska-Curie National Research Institute of Oncology. This study retrospectively evaluated the effectiveness of cabozantinib in subsequent lines of treatment. Progression-free survival (PFS) and overall survival (OS) were the primary endpoints. The best overall response (BOR) to cabozantinib was the secondary endpoint. For this purpose, Cox's proportional hazard model was used. Results The median PFS was 11 months (5; 23) and the median OS was 16 months (10; 42) and differed significantly in the second and further lines of treatment. Progression in the second and further lines was observed in 28 (93%) and 27 (66%) patients, respectively (p = 0.006). Partial response as the BOR was observed in one patient (3%) in the second line and 13 patients (32%) in the further lines (p = 0.012). Conclusions Cabozantinib has antitumor effects in the second and further lines of treatment. In this study we observed high efficiency of cabozantinib in further lines of treatment.
Collapse
Affiliation(s)
- Piotr Domański
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Experimental Immunotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jadwiga Jarosińska
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Kruczyk
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Piętak
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Mydlak
- Department of Experimental Immunotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz Demkow
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Łukasz Kuncman
- Department of Radiotherapy, Medical University of Łódź, Poland
- Department of External Beam Radiotherapy, Nicolaus Copernicus Multidisciplinary Center for Oncology and Traumatology, Łódź, Poland
| | - Marta Darewicz
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Bożena Sikora-Kupis
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Dumnicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Jakub Kucharz
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
5
|
Martin HL, Turner AL, Higgins J, Tang AA, Tiede C, Taylor T, Siripanthong S, Adams TL, Manfield IW, Bell SM, Morrison EE, Bond J, Trinh CH, Hurst CD, Knowles MA, Bayliss RW, Tomlinson DC. Affimer-mediated locking of p21-activated kinase 5 in an intermediate activation state results in kinase inhibition. Cell Rep 2023; 42:113184. [PMID: 37776520 DOI: 10.1016/j.celrep.2023.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
Kinases are important therapeutic targets, and their inhibitors are classified according to their mechanism of action, which range from blocking ATP binding to covalent inhibition. Here, a mechanism of inhibition is highlighted by capturing p21-activated kinase 5 (PAK5) in an intermediate state of activation using an Affimer reagent that binds in the P+1 pocket. PAK5 was identified from a non-hypothesis-driven high-content imaging RNAi screen in urothelial cancer cells. Silencing of PAK5 resulted in reduced cell number, G1/S arrest, and enlargement of cells, suggesting it to be important in urothelial cancer cell line survival and proliferation. Affimer reagents were isolated to identify mechanisms of inhibition. The Affimer PAK5-Af17 recapitulated the phenotype seen with siRNA. Co-crystallization revealed that PAK5-Af17 bound in the P+1 pocket of PAK5, locking the kinase into a partial activation state. This mechanism of inhibition indicates that another class of kinase inhibitors is possible.
Collapse
Affiliation(s)
- Heather L Martin
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy L Turner
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Julie Higgins
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Anna A Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Taylor
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sitthinon Siripanthong
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas L Adams
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Iain W Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sandra M Bell
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Ewan E Morrison
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Jacquelyn Bond
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Chi H Trinh
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Richard W Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Darren C Tomlinson
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Shirole NH, Kaelin WG. von-Hippel Lindau and Hypoxia-Inducible Factor at the Center of Renal Cell Carcinoma Biology. Hematol Oncol Clin North Am 2023; 37:809-825. [PMID: 37270382 PMCID: PMC11315268 DOI: 10.1016/j.hoc.2023.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The most common form of kidney cancer is clear cell renal cell carcinoma (ccRCC). Biallelic VHL tumor suppressor gene inactivation is the usual initiating event in both hereditary (VHL Disease) and sporadic ccRCCs. The VHL protein, pVHL, earmarks the alpha subunits of the HIF transcription factor for destruction in an oxygen-dependent manner. Deregulation of HIF2 drives ccRCC pathogenesis. Drugs inhibiting the HIF2-responsive growth factor VEGF are now mainstays of ccRCC treatment. A first-in-class allosteric HIF2 inhibitor was recently approved for treating VHL Disease-associated neoplasms and appears active against sporadic ccRCC in early clinical trials.
Collapse
Affiliation(s)
- Nitin H Shirole
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - William G Kaelin
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Brigham and Women's Hospital, Harvard Medical School; Howard Hughes Medical Institute.
| |
Collapse
|
7
|
Tang S, Gökbağ B, Fan K, Shao S, Huo Y, Wu X, Cheng L, Li L. Synthetic lethal gene pairs: Experimental approaches and predictive models. Front Genet 2022; 13:961611. [PMID: 36531238 PMCID: PMC9751344 DOI: 10.3389/fgene.2022.961611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/07/2022] [Indexed: 03/27/2024] Open
Abstract
Synthetic lethality (SL) refers to a genetic interaction in which the simultaneous perturbation of two genes leads to cell or organism death, whereas viability is maintained when only one of the pair is altered. The experimental exploration of these pairs and predictive modeling in computational biology contribute to our understanding of cancer biology and the development of cancer therapies. We extensively reviewed experimental technologies, public data sources, and predictive models in the study of synthetic lethal gene pairs and herein detail biological assumptions, experimental data, statistical models, and computational schemes of various predictive models, speculate regarding their influence on individual sample- and population-based synthetic lethal interactions, discuss the pros and cons of existing SL data and models, and highlight potential research directions in SL discovery.
Collapse
Affiliation(s)
- Shan Tang
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Birkan Gökbağ
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Kunjie Fan
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Shuai Shao
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Yang Huo
- Indiana University, Bloomington, IN, United States
| | - Xue Wu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Lijun Cheng
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Kim HB, Bacik JP, Wu R, Jha RK, Hebron M, Triandafillou C, McCown JE, Baek NI, Kim JH, Kim YJ, Goulding CW, Strauss CEM, Schmidt JG, Shetye GS, Ryoo S, Jo EK, Jeon YH, Hung LW, Terwilliger TC, Kim CY. Label-free affinity screening, design and synthesis of inhibitors targeting the Mycobacterium tuberculosis L-alanine dehydrogenase. PLoS One 2022; 17:e0277670. [PMID: 36395154 PMCID: PMC9671377 DOI: 10.1371/journal.pone.0277670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist in its host may enable an evolutionary advantage for drug resistant variants to emerge. A potential strategy to prevent persistence and gain drug efficacy is to directly target the activity of enzymes that are crucial for persistence. We present a method for expedited discovery and structure-based design of lead compounds by targeting the hypoxia-associated enzyme L-alanine dehydrogenase (AlaDH). Biochemical and structural analyses of AlaDH confirmed binding of nucleoside derivatives and showed a site adjacent to the nucleoside binding pocket that can confer specificity to putative inhibitors. Using a combination of dye-ligand affinity chromatography, enzyme kinetics and protein crystallographic studies, we show the development and validation of drug prototypes. Crystal structures of AlaDH-inhibitor complexes with variations at the N6 position of the adenyl-moiety of the inhibitor provide insight into the molecular basis for the specificity of these compounds. We describe a drug-designing pipeline that aims to block Mtb to proliferate upon re-oxygenation by specifically blocking NAD accessibility to AlaDH. The collective approach to drug discovery was further evaluated through in silico analyses providing additional insight into an efficient drug development strategy that can be further assessed with the incorporation of in vivo studies.
Collapse
Affiliation(s)
- Heung-Bok Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John-Paul Bacik
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
| | - Ruilian Wu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Michaeline Hebron
- Georgetown University Medical Center, Washington, D.C., United States of America
| | - Catherine Triandafillou
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, Illinois, United States of America
| | - Joseph E. McCown
- Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung-Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jeong Han Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Charlie E. M. Strauss
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jurgen G. Schmidt
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Gauri S. Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois, Chicago, Illinois, United States of America
| | - Sungweon Ryoo
- Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon-si, Gyeongsangnam-do, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | | - Chang-Yub Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
9
|
Suzuki K, Tange M, Yamagishi R, Hanada H, Mukai S, Sato T, Tanaka T, Akashi T, Kadomatsu K, Maeda T, Miida T, Takeuchi I, Murakami H, Sekido Y, Murakami-Tonami Y. SMG6 regulates DNA damage and cell survival in Hippo pathway kinase LATS2-inactivated malignant mesothelioma. Cell Death Dis 2022; 8:446. [PMID: 36335095 PMCID: PMC9637146 DOI: 10.1038/s41420-022-01232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Many genes responsible for Malignant mesothelioma (MM) have been identified as tumor suppressor genes and it is difficult to target these genes directly at a molecular level. We searched for the gene which showed synthetic lethal phenotype with LATS2, one of the MM causative genes and one of the kinases in the Hippo pathway. Here we showed that knockdown of SMG6 results in synthetic lethality in LATS2-inactivated cells. We found that this synthetic lethality required the nuclear translocation of YAP1 and TAZ. Both are downstream factors of the Hippo pathway. We also demonstrated that this synthetic lethality did not require SMG6 in nonsense-mediated mRNA decay (NMD) but in regulating telomerase reverse transcriptase (TERT) activity. In addition, the RNA-dependent DNA polymerase (RdDP) activity of TERT was required for this synthetic lethal phenotype. We confirmed the inhibitory effects of LATS2 and SMG6 on cell proliferation in vivo. The result suggests an interaction between the Hippo and TERT signaling pathways. We also propose that SMG6 and TERT are novel molecular target candidates for LATS2-inactivated cancers such as MM.
Collapse
Affiliation(s)
- Koya Suzuki
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Masaki Tange
- grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan
| | - Ryota Yamagishi
- grid.258799.80000 0004 0372 2033Department of Pathophysiology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroyuki Hanada
- grid.7597.c0000000094465255Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Satomi Mukai
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tatsuhiro Sato
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Tomohiro Akashi
- grid.27476.300000 0001 0943 978XDepartment of Integrative Cellular Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- grid.27476.300000 0001 0943 978XDepartment of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.27476.300000 0001 0943 978XInstitute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Tohru Maeda
- grid.411042.20000 0004 0371 5415College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Takashi Miida
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ichiro Takeuchi
- grid.7597.c0000000094465255Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan ,grid.27476.300000 0001 0943 978XGraduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroshi Murakami
- grid.443595.a0000 0001 2323 0843Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Yoshitaka Sekido
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDivision of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Murakami-Tonami
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan ,grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
10
|
Guo L, Dou Y, Xia D, Yin Z, Xiang Y, Luo L, Zhang Y, Wang J, Liang T. SLOAD: a comprehensive database of cancer-specific synthetic lethal interactions for precision cancer therapy via multi-omics analysis. Database (Oxford) 2022; 2022:6677988. [PMID: 36029479 PMCID: PMC9419874 DOI: 10.1093/database/baac075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Synthetic lethality has been widely concerned because of its potential role in cancer treatment, which can be harnessed to selectively kill cancer cells via identifying inactive genes in a specific cancer type and further targeting the corresponding synthetic lethal partners. Herein, to obtain cancer-specific synthetic lethal interactions, we aimed to predict genetic interactions via a pan-cancer analysis from multiple molecular levels using random forest and then develop a user-friendly database. First, based on collected public gene pairs with synthetic lethal interactions, candidate gene pairs were analyzed via integrating multi-omics data, mainly including DNA mutation, copy number variation, methylation and mRNA expression data. Then, integrated features were used to predict cancer-specific synthetic lethal interactions using random forest. Finally, SLOAD (http://www.tmliang.cn/SLOAD) was constructed via integrating these findings, which was a user-friendly database for data searching, browsing, downloading and analyzing. These results can provide candidate cancer-specific synthetic lethal interactions, which will contribute to drug designing in cancer treatment that can promote therapy strategies based on the principle of synthetic lethality.
Database URL http://www.tmliang.cn/SLOAD/
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yuyang Dou
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Daoliang Xia
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Zibo Yin
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yangyang Xiang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University , No. 1, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yuting Zhang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jun Wang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , No. 9, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University , No. 1, Wenyuan Road, Qixia District, Nanjing, Jiangsu 210023, China
| |
Collapse
|
11
|
Sager RA, Backe SJ, Ahanin E, Smith G, Nsouli I, Woodford MR, Bratslavsky G, Bourboulia D, Mollapour M. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat Rev Urol 2022; 19:305-320. [PMID: 35264774 PMCID: PMC9306014 DOI: 10.1038/s41585-022-00571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The treatment of advanced and metastatic kidney cancer has entered a golden era with the addition of more therapeutic options, improved survival and new targeted therapies. Tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and immune checkpoint blockade have all been shown to be promising strategies in the treatment of renal cell carcinoma (RCC). However, little is known about the best therapeutic approach for individual patients with RCC and how to combat therapeutic resistance. Cancers, including RCC, rely on sustained replicative potential. The cyclin-dependent kinases CDK4 and CDK6 are involved in cell-cycle regulation with additional roles in metabolism, immunogenicity and antitumour immune response. Inhibitors of CDK4 and CDK6 are now commonly used as approved and investigative treatments in breast cancer, as well as several other tumours. Furthermore, CDK4/6 inhibitors have been shown to work synergistically with other kinase inhibitors, including mTOR inhibitors, as well as with immune checkpoint inhibitors in preclinical cancer models. The effect of CDK4/6 inhibitors in kidney cancer is relatively understudied compared with other cancers, but the preclinical studies available are promising. Collectively, growing evidence suggests that targeting CDK4 and CDK6 in kidney cancer, alone and in combination with current therapeutics including mTOR and immune checkpoint inhibitors, might have therapeutic benefit and should be further explored.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Garrett Smith
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Syracuse VA Medical Center, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Syracuse VA Medical Center, Syracuse, NY, USA.
| |
Collapse
|
12
|
Nelson LJ, Castro KE, Xu B, Li J, Dinh NB, Thompson JM, Woytash J, Kipp KR, Razorenova OV. Synthetic lethality of cyclin-dependent kinase inhibitor Dinaciclib with VHL-deficiency allows for selective targeting of clear cell renal cell carcinoma. Cell Cycle 2022; 21:1103-1119. [PMID: 35240916 PMCID: PMC9037521 DOI: 10.1080/15384101.2022.2041783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clear cell renal cell carcinoma (CC-RCC) remains one of the most deadly forms of kidney cancer despite recent advancements in targeted therapeutics, including tyrosine kinase and immune checkpoint inhibitors. Unfortunately, these therapies have not been able to show better than a 16% complete response rate. In this study we evaluated a cyclin-dependent kinase inhibitor, Dinaciclib, as a potential new targeted therapeutic for CC-RCC. In vitro, Dinaciclib showed anti-proliferative and pro-apoptotic effects on CC-RCC cell lines in Cell Titer Glo, Crystal Violet, FACS-based cell cycle analysis, and TUNEL assays. Additionally, these responses were accompanied by a reduction in phospho-Rb and pro-survival MCL-1 cell signaling responses, as well as the induction of caspase 3 and PARP cleavage. In vivo, Dinaciclib efficiently inhibited primary tumor growth in an orthotopic, patient-derived xenograft-based CC-RCC mouse model. Importantly, Dinaciclib targeted both CD105+ cancer stem cells (CSCs) and CD105− non-CSCs in vivo. Moreover, normal cell lines, as well as a CC-RCC cell line with re-expressed von-Hippel Lindau (VHL) tumor suppressor gene, were protected from Dinaciclib-induced cytotoxicity when not actively dividing, indicating an effective therapeutic window due to synthetic lethality of Dinaciclib treatment with VHL loss. Thus, Dinaciclib represents a novel potential therapeutic for CC-RCC.
Collapse
Affiliation(s)
- Luke J Nelson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Kyleen E Castro
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Binzhi Xu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Junyi Li
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Nguyen B Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Jordan M Thompson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Jordan Woytash
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | | | - Olga V Razorenova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
13
|
Cyclin-dependent kinases-based synthetic lethality: Evidence, concept, and strategy. Acta Pharm Sin B 2021; 11:2738-2748. [PMID: 34589394 PMCID: PMC8463275 DOI: 10.1016/j.apsb.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Synthetic lethality is a proven effective antitumor strategy that has attracted great attention. Large-scale screening has revealed many synthetic lethal genetic phenotypes, and relevant small-molecule drugs have also been implemented in clinical practice. Increasing evidence suggests that CDKs, constituting a kinase family predominantly involved in cell cycle control, are synthetic lethal factors when combined with certain oncogenes, such as MYC, TP53, and RAS, which facilitate numerous antitumor treatment options based on CDK-related synthetic lethality. In this review, we focus on the synthetic lethal phenotype and mechanism related to CDKs and summarize the preclinical and clinical discoveries of CDK inhibitors to explore the prospect of CDK inhibitors as antitumor compounds for strategic synthesis lethality in the future.
Collapse
|
14
|
Shulman M, Shi R, Zhang Q. Von Hippel-Lindau tumor suppressor pathways & corresponding therapeutics in kidney cancer. J Genet Genomics 2021; 48:552-559. [PMID: 34376376 PMCID: PMC8453047 DOI: 10.1016/j.jgg.2021.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
The identification and application of the Von Hippel-Lindau (VHL) gene is a seminal breakthrough in kidney cancer research. VHL and its protein pVHL are the root cause of most kidney cancers, and the cascading pathway below them is crucial for understanding hypoxia, in addition to the aforementioned tumorigenesis routes and treatments. We reviewed the history and functions of VHL/pVHL and Hypoxia-inducible factor (HIF), their well-known activities under low-oxygen environments as an E3 ubiquitin ligase and as a transcription factor, respectively, as well as their non-canonical functions revealed recently. Additionally, we discussed how their dysregulation promotes tumorigenesis: beginning with chromosome 3 p-arm (3p) loss/epigenetic methylation, followed by two-allele knockout, before the loss of complimentary tumor suppressor genes leads cells down predictable oncological paths. These different pathways can ultimately determine the grade, outcome, and severity of the deadliest genitourinary cancer. We finished by investigating current and proposed schemes to therapeutically treat clear cell renal cell carcinoma (ccRCC) by manipulating the hypoxic pathway utilizing Vascular Endothelial Growth Factor (VEGF) inhibitors, mammalian target of rapamycin complex 1 (mTORC1) inhibitors, small molecule HIF inhibitors, immune checkpoint blockade therapy, and synthetic lethality.
Collapse
Affiliation(s)
- Maxwell Shulman
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachel Shi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Ortmann BM, Nathan JA. Genetic approaches to understand cellular responses to oxygen availability. FEBS J 2021; 289:5396-5412. [PMID: 34125486 DOI: 10.1111/febs.16072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
Oxygen-sensing mechanisms have evolved to allow organisms to respond and adapt to oxygen availability. In metazoans, oxygen-sensing is predominantly mediated by the hypoxia inducible factors (HIFs). These transcription factors are stabilised when oxygen is limiting, activating genes involved in angiogenesis, cell growth, pH regulation and metabolism to reset cell function and adapt to the cellular environment. However, the recognition that other cellular pathways and enzymes can also respond to changes in oxygen abundance provides further complexity. Dissecting this interplay of oxygen-sensing mechanisms has been a key research goal. Here, we review how genetic approaches have contributed to our knowledge of oxygen-sensing pathways which to date have been predominantly focused on the HIF pathway. We discuss how genetic studies have advanced the field and outline the implications and limitations of such approaches for the development of therapies targeting oxygen-sensing mechanisms in human disease.
Collapse
Affiliation(s)
- Brian M Ortmann
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| |
Collapse
|
16
|
Coalescing lessons from oxygen sensing, tumor metabolism, and epigenetics to target VHL loss in kidney cancer. Semin Cancer Biol 2020; 67:34-42. [DOI: 10.1016/j.semcancer.2020.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023]
|
17
|
Peng S, Zhang J, Tan X, Huang Y, Xu J, Silk N, Zhang D, Liu Q, Jiang J. The VHL/HIF Axis in the Development and Treatment of Pheochromocytoma/Paraganglioma. Front Endocrinol (Lausanne) 2020; 11:586857. [PMID: 33329393 PMCID: PMC7732471 DOI: 10.3389/fendo.2020.586857] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors originating from chromaffin cells in the adrenal medulla (PCCs) or extra-adrenal sympathetic or parasympathetic paraganglia (PGLs). About 40% of PPGLs result from germline mutations and therefore they are highly inheritable. Although dysfunction of any one of a panel of more than 20 genes can lead to PPGLs, mutations in genes involved in the VHL/HIF axis including PHD, VHL, HIF-2A (EPAS1), and SDHx are more frequently found in PPGLs. Multiple lines of evidence indicate that pseudohypoxia plays a crucial role in the tumorigenesis of PPGLs, and therefore PPGLs are also known as metabolic diseases. However, the interplay between VHL/HIF-mediated pseudohypoxia and metabolic disorder in PPGLs cells is not well-defined. In this review, we will first discuss the VHL/HIF axis and genetic alterations in this axis. Then, we will dissect the underlying mechanisms in VHL/HIF axis-driven PPGL pathogenesis, with special attention paid to the interplay between the VHL/HIF axis and cancer cell metabolism. Finally, we will summarize the currently available compounds/drugs targeting this axis which could be potentially used as PPGLs treatment, as well as their underlying pharmacological mechanisms. The overall goal of this review is to better understand the role of VHL/HIF axis in PPGLs development, to establish more accurate tools in PPGLs diagnosis, and to pave the road toward efficacious therapeutics against metastatic PPGLs.
Collapse
Affiliation(s)
- Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xintao Tan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Natalie Silk
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Choueiri TK, Kaelin WG. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med 2020; 26:1519-1530. [PMID: 33020645 DOI: 10.1038/s41591-020-1093-z] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Insights into the role of the tumor suppressor pVHL in oxygen sensing motivated the testing of drugs that target the transcription factor HIF or HIF-responsive growth factors, such as VEGF, for the treatment of cancers caused by VHL inactivation, such as clear-cell renal cell carcinoma (ccRCC). Multiple VEGF inhibitors are now approved for the treatment of ccRCC, and a HIF2α inhibitor has advanced to phase 3 development for this disease. These inhibitors are now also increasingly combined with immune-checkpoint blockers. In this Perspective, we describe the understanding of the mechanisms of oxygen sensing and hypoxia signaling that resulted in the development of HIF2α-targeted therapies for patients with VHL-associated tumors. We also present future directions for extending the use of these therapies to other cancers.
Collapse
Affiliation(s)
- Toni K Choueiri
- Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - William G Kaelin
- Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
19
|
Beyond Synthetic Lethality: Charting the Landscape of Pairwise Gene Expression States Associated with Survival in Cancer. Cell Rep 2020; 28:938-948.e6. [PMID: 31340155 DOI: 10.1016/j.celrep.2019.06.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
The phenotypic effect of perturbing a gene's activity depends on the activity level of other genes, reflecting the notion that phenotypes are emergent properties of a network of functionally interacting genes. In the context of cancer, contemporary investigations have primarily focused on just one type of functional relationship between two genes-synthetic lethality (SL). Here, we define the more general concept of "survival-associated pairwise gene expression states" (SPAGEs) as gene pairs whose joint expression levels are associated with survival. We describe a data-driven approach called SPAGE-finder that when applied to The Cancer Genome Atlas (TCGA) data identified 71,946 SPAGEs spanning 12 distinct types, only a minority of which are SLs. The detected SPAGEs explain cancer driver genes' tissue specificity and differences in patients' response to drugs and stratify breast cancer tumors into refined subtypes. These results expand the scope of cancer SPAGEs and lay a conceptual basis for future studies of SPAGEs and their translational applications.
Collapse
|
20
|
Hu L, Xie H, Liu X, Potjewyd F, James LI, Wilkerson EM, Herring LE, Xie L, Chen X, Cabrera JC, Hong K, Liao C, Tan X, Baldwin AS, Gong K, Zhang Q. TBK1 Is a Synthetic Lethal Target in Cancer with VHL Loss. Cancer Discov 2020; 10:460-475. [PMID: 31810986 PMCID: PMC7058506 DOI: 10.1158/2159-8290.cd-19-0837] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/25/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022]
Abstract
TANK binding kinase 1 (TBK1) is an important kinase involved in the innate immune response. Here we discover that TBK1 is hyperactivated by von Hippel-Lindau (VHL) loss or hypoxia in cancer cells. Tumors from patients with kidney cancer with VHL loss display elevated TBK1 phosphorylation. Loss of TBK1 via genetic ablation, pharmacologic inhibition, or a new cereblon-based proteolysis targeting chimera specifically inhibits VHL-deficient kidney cancer cell growth, while leaving VHL wild-type cells intact. TBK1 depletion also significantly blunts kidney tumorigenesis in an orthotopic xenograft model in vivo. Mechanistically, TBK1 hydroxylation on Proline 48 triggers VHL as well as the phosphatase PPM1B binding that leads to decreased TBK1 phosphorylation. We identify that TBK1 phosphorylates p62/SQSTM1 on Ser366, which is essential for p62 stability and kidney cancer cell proliferation. Our results establish that TBK1, distinct from its role in innate immune signaling, is a synthetic lethal target in cancer with VHL loss. SIGNIFICANCE: The mechanisms that lead to TBK1 activation in cancer and whether this activation is connected to its role in innate immunity remain unclear. Here, we discover that TBK1, distinct from its role in innate immunity, is activated by VHL loss or hypoxia in cancer.See related commentary by Bakouny and Barbie, p. 348.This article is highlighted in the In This Issue feature, p. 327.
Collapse
Affiliation(s)
- Lianxin Hu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haibiao Xie
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Frances Potjewyd
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Lindsey I James
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Emily M Wilkerson
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Johnny Castillo Cabrera
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kai Hong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chengheng Liao
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xianming Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Abstract
The discovery of the von Hippel-Lindau (VHL) gene marked a milestone in our understanding of clear cell renal cell carcinoma (ccRCC) pathogenesis. VHL inactivation is not only a defining feature of ccRCC, but also the initiating event. Herein, we discuss canonical and noncanonical pVHL functions, as well as breakthroughs shaping our understanding of ccRCC evolution and evolutionary subtypes. We conclude by presenting evolving strategies to therapeutically exploit effector mechanisms downstream of pVHL.
Collapse
|
22
|
Prisciandaro M, Ratta R, Massari F, Fornarini G, Caponnetto S, Iacovelli R, De Giorgi U, Facchini G, Scagliarini S, Sabbatini R, Caserta C, Peverelli G, Mennitto A, Verzoni E, Procopio G. Safety and Efficacy of Cabozantinib for Metastatic Nonclear Renal Cell Carcinoma: Real-world Data From an Italian Managed Access Program. Am J Clin Oncol 2019; 42:42-45. [PMID: 30204614 DOI: 10.1097/coc.0000000000000478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The activity of cabozantinib in nonclear cell histologies has not been evaluated. MATERIALS AND METHODS Data were collected across 24 Italian hospitals. Patients were aged 18 years and older with advanced nonclear cell renal cell carcinoma (RCC), with an Eastern Cooperative Oncology Group Performance Status 0 to 2, who had relapsed after previous systemic treatments for metastatic disease. Cabozantinib was administered orally at 60 mg once a day in 28 days cycles. Dose reductions to 40 or 20 mg were made due to toxicity. Adverse events (AEs) were monitored using CTCAE version 4.0. RESULTS Seventeen patients were enrolled. Three (18%) patients were diagnosed type I papillary RCC, 9 (53%) type II papillary, 3 (18%) chromophobe, and 2 (11%) with Bellini duct carcinoma. In total, 11 patients started with 60 mg. Six patients started a lower dose of 40 mg. Median progression-free survival was 7.83 months (0.4 to 13.4 mo), while median overall survival was not reached but 1-year overall survival was about 60%. Six patients (35%) experienced a partial response to treatment and 6 patients (35%) showed a stable disease. In the remaining 5 (30%), we observed a progressive disease. Grade 3 and 4 AEs were observed in 41% of patients. Among 20 patients, only 1 (6%) discontinued treatment due to AEs. Asthenia (41%), diarrhea (35%), aminotransferase increasing (35%), mucosal inflammation (35%), hand and foot syndrome (24%), and hypothyroidism (24%) were the most frequently AEs. CONCLUSIONS Our data showed that, cabozantinib is a active and feasible treatment in patient with nonclear cell RCC.
Collapse
Affiliation(s)
- Michele Prisciandaro
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - Raffaele Ratta
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | | | - Giuseppe Fornarini
- Medical Oncology Department, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova
| | - Salvatore Caponnetto
- Department of Medical Oncology B, Policlinico Umberto I "Sapienza" University of Rome, Rome
| | - Roberto Iacovelli
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata (AOUI), University of Verona, Verona
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola
| | - Gaetano Facchini
- Department of Uro-Gynaecological Oncology, Division of Medical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale (IRCCS)
| | | | - Roberto Sabbatini
- Department of Oncology and Haematology and Respiratory Disease, University Hospital, Modena
| | | | - Giorgia Peverelli
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - Alessia Mennitto
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - Elena Verzoni
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - Giuseppe Procopio
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| |
Collapse
|
23
|
Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov 2019; 19:23-38. [DOI: 10.1038/s41573-019-0046-z] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
|
24
|
Deng X, Das S, Valdez K, Camphausen K, Shankavaram U. SL-BioDP: Multi-Cancer Interactive Tool for Prediction of Synthetic Lethality and Response to Cancer Treatment. Cancers (Basel) 2019; 11:cancers11111682. [PMID: 31671773 PMCID: PMC6895978 DOI: 10.3390/cancers11111682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Synthetic lethality exploits the phenomenon that a mutation in a cancer gene is often associated with new vulnerability which can be uniquely targeted therapeutically, leading to a significant increase in favorable outcome. DNA damage and survival pathways are among the most commonly mutated networks in human cancers. Recent data suggest that synthetic lethal interactions between a tumor defect and a DNA repair pathway can be used to preferentially kill tumor cells. We recently published a method, DiscoverSL, using multi-omic cancer data, that can predict synthetic lethal interactions of potential clinical relevance. Here, we apply the generality of our models in a comprehensive web tool called Synthetic Lethality Bio Discovery Portal (SL-BioDP) and extend the cancer types to 18 cancer genome atlas cohorts. SL-BioDP enables a data-driven computational approach to predict synthetic lethal interactions from hallmark cancer pathways by mining cancer’s genomic and chemical interactions. Our tool provides queries and visualizations for exploring potentially targetable synthetic lethal interactions, shows Kaplan–Meier plots of clinical relevance, and provides in silico validation using short hairpin RNA (shRNA) and drug efficacy data. Our method would thus shed light on mechanisms of synthetic lethal interactions and lead to the discovery of novel anticancer drugs.
Collapse
Affiliation(s)
- Xiang Deng
- Bioinformatics core facility, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA.
| | - Shaoli Das
- Bioinformatics core facility, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kristin Valdez
- Bioinformatics core facility, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA.
| | - Kevin Camphausen
- Bioinformatics core facility, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Uma Shankavaram
- Bioinformatics core facility, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Nicholson HE, Tariq Z, Housden BE, Jennings RB, Stransky LA, Perrimon N, Signoretti S, Kaelin WG. HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Sci Signal 2019; 12:12/601/eaay0482. [PMID: 31575731 DOI: 10.1126/scisignal.aay0482] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inactivation of the VHL tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and VHL inactivation in two species (human and Drosophila) and across diverse human ccRCC cell lines in culture and xenografts. Although HIF-2α transcriptionally induced the CDK4/6 partner cyclin D1, HIF-2α was not required for the increased CDK4/6 requirement of VHL-/- ccRCC cells. Accordingly, the antiproliferative effects of CDK4/6 inhibition were synergistic with HIF-2α inhibition in HIF-2α-dependent VHL-/- ccRCC cells and not antagonistic with HIF-2α inhibition in HIF-2α-independent cells. These findings support testing CDK4/6 inhibitors as treatments for ccRCC, alone and in combination with HIF-2α inhibitors.
Collapse
Affiliation(s)
- Hilary E Nicholson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Zeshan Tariq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Rebecca B Jennings
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laura A Stransky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
26
|
Sun N, Petiwala S, Lu C, Hutti JE, Hu M, Hu M, Domanus MH, Mitra D, Addo SN, Miller CP, Chung N. VHL Synthetic Lethality Signatures Uncovered by Genotype-Specific CRISPR-Cas9 Screens. CRISPR J 2019; 2:230-245. [DOI: 10.1089/crispr.2019.0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ning Sun
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | - Min Hu
- AbbVie Inc., North Chicago, Illinois
| | - Mufeng Hu
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
27
|
Ochoa S, Martínez-Pérez E, Zea DJ, Molina-Vila MA, Marino-Buslje C. Comutation and exclusion analysis in human tumors: A tool for cancer biology studies and for rational selection of multitargeted therapeutic approaches. Hum Mutat 2019; 40:413-425. [PMID: 30629309 DOI: 10.1002/humu.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 11/11/2022]
Abstract
Malignant tumors originate from somatic mutations and other genomic and epigenomic alterations, which lead to loss of control of the cellular circuitry. These alterations present patterns of co-occurrence and mutual exclusivity that can influence prognosis and modify response to drugs, highlighting the need for multitargeted therapies. Studies in this area have generally focused in particular malignancies and considered whole genes instead of specific mutations, ignoring the fact that different alterations in the same gene can have widely different effects. Here, we present a comprehensive analysis of co-dependencies of individual somatic mutations in the whole spectrum of human tumors. Combining multitesting with conditional and expected mutational probabilities, we have discovered rules governing the codependencies of driver and nondriver mutations. We also uncovered pairs and networks of comutations and exclusions, some of them restricted to certain cancer types and others widespread. These pairs and networks are not only of basic but also of clinical interest, and can be of help in the selection of multitargeted antitumor therapies. In this respect, recurrent driver comutations suggest combinations of drugs that might be effective in the clinical setting, while recurrent exclusions indicate combinations unlikely to be useful.
Collapse
Affiliation(s)
- Soledad Ochoa
- Fundación Instituto Leloir, Avda. Patricias Argentinas 435, Buenos Aires, Argentina
| | | | - Diego Javier Zea
- Fundación Instituto Leloir, Avda. Patricias Argentinas 435, Buenos Aires, Argentina
| | - Miguel Angel Molina-Vila
- Laboratory of Onchology, Hospital Universitario Quirón Dexeus, C/Sabino Arana 5-19, 08028, Barcelona, Spain
| | | |
Collapse
|
28
|
Elias R, Sharma A, Singla N, Brugarolas J. Next Generation Sequencing in Renal Cell Carcinoma: Towards Precision Medicine. KIDNEY CANCER JOURNAL : OFFICIAL JOURNAL OF THE KIDNEY CANCER ASSOCIATION 2019; 17:94-104. [PMID: 32206160 PMCID: PMC7089604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Roy Elias
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
- Department of Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - Akanksha Sharma
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - Nirmish Singla
- Department of Urology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| | - James Brugarolas
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
- Department of Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX, 75390
| |
Collapse
|
29
|
Parameswaran S, Kundapur D, Vizeacoumar FS, Freywald A, Uppalapati M, Vizeacoumar FJ. A Road Map to Personalizing Targeted Cancer Therapies Using Synthetic Lethality. Trends Cancer 2018; 5:11-29. [PMID: 30616753 DOI: 10.1016/j.trecan.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/28/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Targeted therapies rely on the genetic and epigenetic status of the tumor cells and are seen as the most promising approach to treat cancer today. However, current targeted therapies focus on directly inhibiting those molecules that are altered in tumor cells. Unfortunately, targeting these molecules, even with specific inhibitors, is challenging as tumor cells rewire their genetic circuitry to eliminate genetic dependency on these targets. Here, we describe how synthetic lethality approaches can be used to identify genetic dependencies and develop personalized targeted therapies. We also discuss strategies to specifically target these genetic dependencies, using small molecule and biologic drugs.
Collapse
Affiliation(s)
- Sreejit Parameswaran
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada; These authors contributed equally
| | - Deeksha Kundapur
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada; These authors contributed equally
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada.
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada.
| | - Franco J Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada; Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, S7N 5E5, Canada.
| |
Collapse
|
30
|
McDermott DF, Carducci M. Progress in Kidney Cancer Outcomes Through Collaboration, Innovation, and Discovery. J Clin Oncol 2018; 36:JCO1801198. [PMID: 30372393 PMCID: PMC6299339 DOI: 10.1200/jco.18.01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Affiliation(s)
- David F. McDermott
- David F. McDermott, Dana-Farber/Harvard Cancer Center, Boston, MA; and Michael Carducci, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD
| | - Michael Carducci
- David F. McDermott, Dana-Farber/Harvard Cancer Center, Boston, MA; and Michael Carducci, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD
| |
Collapse
|
31
|
Thompson JM, Alvarez A, Singha MK, Pavesic MW, Nguyen QH, Nelson LJ, Fruman DA, Razorenova OV. Targeting the Mevalonate Pathway Suppresses VHL-Deficient CC-RCC through an HIF-Dependent Mechanism. Mol Cancer Ther 2018; 17:1781-1792. [PMID: 29720560 PMCID: PMC6072609 DOI: 10.1158/1535-7163.mct-17-1076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/19/2017] [Accepted: 04/24/2018] [Indexed: 01/05/2023]
Abstract
Clear cell renal cell carcinoma (CC-RCC) is a devastating disease with limited therapeutic options available for advanced stages. The objective of this study was to investigate HMG-CoA reductase inhibitors, also known as statins, as potential therapeutics for CC-RCC. Importantly, treatment with statins was found to be synthetically lethal with the loss of the von Hippel-Lindau (VHL) tumor suppressor gene, which occurs in 90% of CC-RCC driving the disease. This effect has been confirmed in three different CC-RCC cell lines with three different lipophilic statins. Inhibition of mevalonate synthesis by statins causes a profound cytostatic effect at nanomolar concentrations and becomes cytotoxic at low micromolar concentrations in VHL-deficient CC-RCC. The synthetic lethal effect can be fully rescued by both mevalonate and geranylgeranylpyrophosphate, but not by squalene, indicating that the effect is due to disruption of small GTPase isoprenylation and not the inhibition of cholesterol synthesis. Inhibition of Rho and Rho kinase (ROCK) signaling contributes to the synthetic lethality effect, and overactivation of hypoxia-inducible factor signaling resulting from VHL loss is required. Finally, statin treatment is able to inhibit both tumor initiation and progression of subcutaneous 786-OT1-based CC-RCC tumors in mice. Thus, statins represent potential therapeutics for the treatment of VHL-deficient CC-RCC. Mol Cancer Ther; 17(8); 1781-92. ©2018 AACR.
Collapse
Affiliation(s)
- Jordan M Thompson
- Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, California
| | - Alejandro Alvarez
- Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, California
| | - Monika K Singha
- Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, California
| | - Matthew W Pavesic
- Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, California
| | - Quy H Nguyen
- Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, California
| | - Luke J Nelson
- Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, California
| | - David A Fruman
- Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, California
| | - Olga V Razorenova
- Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, California.
| |
Collapse
|
32
|
Procopio G, Prisciandaro M, Iacovelli R, Cortesi E, Fornarini G, Facchini G, Cartenì G, Sabbatini R, Del Bene G, Galli L, Caserta C, Multari AG, Bregni M, Massari F, Buti S, De Giorgi U, Zustovich F, Milella M, Calabrò F, Mancini ML, Tortora G, Vernieri C, Santini D, Sorarù M, Ricotta R, Masini C, Tucci M, Fedeli SL, Ortega C, Mecozzi A, Ratta R, Sternberg CN, Verzoni E. Safety and Efficacy of Cabozantinib in Metastatic Renal-Cell Carcinoma: Real-World Data From an Italian Managed Access Program. Clin Genitourin Cancer 2018; 16:e945-e951. [DOI: 10.1016/j.clgc.2018.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
|
33
|
Lee JS, Das A, Jerby-Arnon L, Arafeh R, Auslander N, Davidson M, McGarry L, James D, Amzallag A, Park SG, Cheng K, Robinson W, Atias D, Stossel C, Buzhor E, Stein G, Waterfall JJ, Meltzer PS, Golan T, Hannenhalli S, Gottlieb E, Benes CH, Samuels Y, Shanks E, Ruppin E. Harnessing synthetic lethality to predict the response to cancer treatment. Nat Commun 2018; 9:2546. [PMID: 29959327 PMCID: PMC6026173 DOI: 10.1038/s41467-018-04647-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
While synthetic lethality (SL) holds promise in developing effective cancer therapies, SL candidates found via experimental screens often have limited translational value. Here we present a data-driven approach, ISLE (identification of clinically relevant synthetic lethality), that mines TCGA cohort to identify the most likely clinically relevant SL interactions (cSLi) from a given candidate set of lab-screened SLi. We first validate ISLE via a benchmark of large-scale drug response screens and by predicting drug efficacy in mouse xenograft models. We then experimentally test a select set of predicted cSLi via new screening experiments, validating their predicted context-specific sensitivity in hypoxic vs normoxic conditions and demonstrating cSLi's utility in predicting synergistic drug combinations. We show that cSLi can successfully predict patients' drug treatment response and provide patient stratification signatures. ISLE thus complements existing actionable mutation-based methods for precision cancer therapy, offering an opportunity to expand its scope to the whole genome.
Collapse
Affiliation(s)
- Joo Sang Lee
- Center for Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Science (UMIACS) & Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Avinash Das
- Center for Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Science (UMIACS) & Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
| | - Livnat Jerby-Arnon
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Rand Arafeh
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, 7610001, Israel
| | - Noam Auslander
- Center for Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Science (UMIACS) & Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Matthew Davidson
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow, G61 1BD, Scotland, UK
| | - Lynn McGarry
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow, G61 1BD, Scotland, UK
| | - Daniel James
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow, G61 1BD, Scotland, UK
| | - Arnaud Amzallag
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
- PatientsLikeMe, 160 Second Street, Cambridge, MA, 02142, USA
| | - Seung Gu Park
- Center for Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Science (UMIACS) & Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
| | - Kuoyuan Cheng
- Center for Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Science (UMIACS) & Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Welles Robinson
- Center for Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Science (UMIACS) & Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Dikla Atias
- Division of Oncology, Sheba Medical Center Tel Hashomer, Ramat-Gan, 5262100, Israel
| | - Chani Stossel
- Division of Oncology, Sheba Medical Center Tel Hashomer, Ramat-Gan, 5262100, Israel
| | - Ella Buzhor
- Division of Oncology, Sheba Medical Center Tel Hashomer, Ramat-Gan, 5262100, Israel
| | - Gidi Stein
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Joshua J Waterfall
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul S Meltzer
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Talia Golan
- Division of Oncology, Sheba Medical Center Tel Hashomer, Ramat-Gan, 5262100, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Sridhar Hannenhalli
- Center for Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Science (UMIACS) & Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
| | - Eyal Gottlieb
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow, G61 1BD, Scotland, UK
| | - Cyril H Benes
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, 7610001, Israel
| | - Emma Shanks
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow, G61 1BD, Scotland, UK
| | - Eytan Ruppin
- Center for Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Science (UMIACS) & Department of Computer Science, University of Maryland, College Park, MD, 20742, USA.
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA.
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 6997801, Israel.
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
34
|
Lacy S, Nielsen J, Yang B, Miles D, Nguyen L, Hutmacher M. Population exposure-response analysis of cabozantinib efficacy and safety endpoints in patients with renal cell carcinoma. Cancer Chemother Pharmacol 2018; 81:1061-1070. [PMID: 29667066 PMCID: PMC5973957 DOI: 10.1007/s00280-018-3579-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/02/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND In the phase III METEOR trial, tyrosine kinase inhibitor cabozantinib significantly improved progression-free survival (PFS), objective response rate (ORR), and overall survival compared to everolimus in patients with advanced renal cell carcinoma (RCC) who had received prior VEGFR inhibitor therapy. In METEOR, RCC patients started at a daily 60-mg cabozantinib tablet (Cabometyx™) dose but could reduce to 40- or 20-mg to achieve a tolerated exposure. OBJECTIVES AND METHODS Exposure-response (ER) models were developed to characterize the relationship between cabozantinib at clinically relevant exposures in RCC patients enrolled in METEOR and efficacy (PFS and tumor response) and safety endpoints. RESULTS Compared to the average steady-state cabozantinib concentration for a 60-mg dose, exposures at simulated 40- and 20-mg starting doses were predicted to result in higher risk of disease progression or death [hazard ratios (HRs) of 1.10 and 1.39, respectively], lower maximal median reduction in tumor size (- 11.9 vs - 9.1 and - 4.5%, respectively), and lower ORR (19.1 vs 15.6 and 8.7%, respectively). The 60-mg exposure was also associated with higher risk for selected adverse events (AEs) palmar-plantar erythrodysesthesia syndrome (grade ≥ 1), fatigue/asthenia (grade ≥ 3), diarrhea (grade ≥ 3), and hypertension (predicted HRs of 2.21, 2.01, 1.78, and 1.85, respectively) relative to the predicted average steady-state cabozantinib concentration for a 20-mg starting dose. CONCLUSION ER modeling predicted that cabozantinib exposures in RCC patients at the 60-mg starting dose would provide greater anti-tumor activity relative to exposures at simulated 40- and 20-mg starting doses that were associated with decreased rates of clinically relevant AEs.
Collapse
Affiliation(s)
- Steven Lacy
- Exelixis Inc., 210 East Grand Avenue, South San Francisco, CA, 94080-0511, USA.
| | - Jace Nielsen
- Ann Arbor Pharmacometrics Group, Inc., Ann Arbor, MI, USA
| | - Bei Yang
- Ann Arbor Pharmacometrics Group, Inc., Ann Arbor, MI, USA
| | - Dale Miles
- Exelixis Inc., 210 East Grand Avenue, South San Francisco, CA, 94080-0511, USA
| | - Linh Nguyen
- Exelixis Inc., 210 East Grand Avenue, South San Francisco, CA, 94080-0511, USA
| | - Matt Hutmacher
- Ann Arbor Pharmacometrics Group, Inc., Ann Arbor, MI, USA
| |
Collapse
|
35
|
Zhang J, Zhang Q. VHL and Hypoxia Signaling: Beyond HIF in Cancer. Biomedicines 2018; 6:biomedicines6010035. [PMID: 29562667 PMCID: PMC5874692 DOI: 10.3390/biomedicines6010035] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Von Hippel-Lindau (VHL) is an important tumor suppressor that is lost in the majority of clear cell carcinoma of renal cancer (ccRCC). Its regulatory pathway involves the activity of E3 ligase, which targets hypoxia inducible factor α (including HIF1α and HIF2α) for proteasome degradation. In recent years, emerging literature suggests that VHL also possesses other HIF-independent functions. This review will focus on VHL-mediated signaling pathways involving the latest identified substrates/binding partners, including N-Myc downstream-regulated gene 3 (NDRG3), AKT, and G9a, etc., and their physiological roles in hypoxia signaling and cancer. We will also discuss the crosstalk between VHL and NF-κB signaling. Lastly, we will review the latest findings on targeting VHL signaling in cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Qing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
36
|
Abstract
The von Hippel–Lindau (VHL) gene is a two-hit tumor suppressor gene and is linked to the development of the most common form of kidney cancer, clear cell renal carcinoma; blood vessel tumors of the retina, cerebellum, and spinal cord called hemangioblastomas; and tumors of the sympathoadrenal nervous system called paragangliomas. The VHL gene product, pVHL, is the substrate recognition subunit of a cullin-dependent ubiquitin ligase that targets the α subunits of hypoxia-inducible factor (HIF) for destruction when oxygen is plentiful. Mounting evidence implicates HIF2 in the pathogenesis of pVHL-defective tumors and has provided a conceptual foundation for the development of drugs to treat them that inhibit HIF2-responsive gene products such as VEGF and, more recently, HIF2 itself. pVHL has additional, noncanonical functions that are cancer relevant, including roles related to the primary cilium, chromosome stability, extracellular matrix formation, and survival signaling.
Collapse
Affiliation(s)
- William G. Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
37
|
Di Giovanni C, Novellino E, Chilin A, Lavecchia A, Marzaro G. Investigational drugs targeting cyclin-dependent kinases for the treatment of cancer: an update on recent findings (2013-2016). Expert Opin Investig Drugs 2017; 25:1215-30. [PMID: 27606939 DOI: 10.1080/13543784.2016.1234603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cell cycle and gene transcription are under the control of cyclin-dependent kinases (CDKs), whose activity depends on the binding with cyclins. Deregulated CDK activities have been reported in a majority of human cancers, representing potential therapeutic targets. AREAS COVERED This review provides preclinical and clinical (phase I/II) updates of promising therapeutic compounds targeting CDKs published between 2013 and 2016 EXPERT OPINION: First generation pan-CDK inhibitors showed marked toxicity in clinical trials and most compounds were discontinued. Despite their failure was ascribed also to inadequate patient selection rules, novel pan-CDK inhibitors have entered clinical trials with still poorly defined selection strategies. The most interesting results have been obtained with dual CDK4/6 inhibitors and through a more accurate evaluation of predictive biomarkers, suggesting the usefulness of CDK inhibitors for personalized treatment. The increased knowledge on the roles of CDKs in cell cycle and gene transcription suggests to review also the anticancer potential of first generation CDK inhibitors by defining more appropriate rules for patients engagement. Recent findings has highlighted CDK8 as a novel target for cancer treatment. Indeed some biomarkers for CDK8 inhibition sensitivity have already been proposed. CDK8 inhibition is also supposed to prevent cancer metastasis.
Collapse
Affiliation(s)
- Carmen Di Giovanni
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Ettore Novellino
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Adriana Chilin
- b Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| | - Antonio Lavecchia
- a Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Giovanni Marzaro
- b Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , Italy
| |
Collapse
|
38
|
Beijersbergen RL, Wessels LF, Bernards R. Synthetic Lethality in Cancer Therapeutics. ANNUAL REVIEW OF CANCER BIOLOGY 2017. [DOI: 10.1146/annurev-cancerbio-042016-073434] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Treatment with targeted drugs has primarily focused on the genes and pathways that are mutated in cancer, which severely limits the repertoire of drug targets. Synthetic lethality exploits the notion that the presence of a mutation in a cancer gene is often associated with a new vulnerability that can be targeted therapeutically, thus greatly expanding the arsenal of potential drug targets. Here we discuss both the experimental and the computational biology tools that can be used to identify synthetic lethal interactions. We also discuss strategies for using synthetic lethality to discover new drug targets and in the rational design of more potent drug combinations. We review the progress made and future opportunities offered by synthetic lethal approaches to treating cancer more effectively.
Collapse
Affiliation(s)
- Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Lodewyk F.A. Wessels
- Division of Molecular Carcinogenesis and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
39
|
Cho H, Kaelin WG. Targeting HIF2 in Clear Cell Renal Cell Carcinoma. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:113-121. [PMID: 27932568 DOI: 10.1101/sqb.2016.81.030833] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Inactivation of the von Hippel-Lindau tumor-suppressor protein (pVHL) is the signature "truncal" event in clear cell renal cell carcinoma, which is the most common form of kidney cancer. pVHL is part of a ubiquitin ligase the targets the α subunit of the hypoxia-inducible factor (HIF) transcription factor for destruction when oxygen is available. Preclinical studies strongly suggest that deregulation of HIF, and particularly HIF2, drives pVHL-defective renal carcinogenesis. Although HIF2α was classically considered undruggable, structural and chemical work by Rick Bruick and Kevin Gardner at University of Texas Southwestern laid the foundation for the development of small molecule direct HIF2α antagonists (PT2385 and the related tool compound PT2399) by Peloton Therapeutics that block the dimerization of HIF2α with its partner protein ARNT1. These compounds inhibit clear cell renal cell carcinoma growth in preclinical models, and PT2385 has now entered the clinic. Nonetheless, the availability of such compounds, together with clustered regularly interspaced short palindromic repeat (CRISPR)-based gene editing approaches, has revealed a previously unappreciated heterogeneity among clear cell renal carcinomas and patient-derived xenografts with respect to HIF2 dependence, suggesting that predictive biomarkers will be needed to optimize the use of such agents in the clinic.
Collapse
Affiliation(s)
- Hyejin Cho
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 022145
| | - William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 022145
| |
Collapse
|
40
|
Thompson JM, Nguyen QH, Singh M, Pavesic MW, Nesterenko I, Nelson LJ, Liao AC, Razorenova OV. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene 2016; 36:1080-1089. [PMID: 27841867 PMCID: PMC5323317 DOI: 10.1038/onc.2016.272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Clear Cell Renal Cell Carcinoma (CC-RCC) is the most lethal of all genitourinary cancers. The functional loss of the von Hippel-Lindau (VHL) gene occurs in 90% of CC-RCC, driving cancer progression. The objective of this study was to identify chemical compounds that are synthetically lethal with VHL deficiency in CC-RCC. An annotated chemical library, the Library of Pharmacologically Active Compounds (LOPAC), was screened in parallel on VHL-deficient RCC4 cells and RCC4VHL cells with re-introduced VHL cDNA. The ROCK inhibitor, Y-27632, was identified and validated for selective targeting of VHL-deficient CC-RCC in multiple genetic backgrounds by clonogenic assays. Downregulation of ROCK1 by siRNA selectively reduced the colony forming ability of VHL-deficient CC-RCC, thus mimicking the effect of Y-27632 treatment, whereas downregulation of ROCK2 had no effect. In addition, two other ROCK inhibitors, RKI 1447 and GSK 429286, selectively targeted VHL-deficient CC-RCC. CC-RCC treatment with ROCK inhibitors is cytotoxic and cytostatic based on BrdU assay, Propidium Iodide (PI) staining, and growth curves; and blocks cell migration based on transwell assay. Importantly, knockdown of Hypoxia Inducible Factor (HIF) β in the VHL-deficient CC-RCC had a protective effect against Y-27632 treatment, mimicking VHL reintroduction. On the other hand, CC-RCCVHL cells were sensitized to Y-27632 treatment in hypoxia (2% O2). These results suggest that synthetic lethality between ROCK inhibition and VHL deficiency is dependent on HIF activation. Moreover, HIF1α or HIF2α overexpression in CC-RCCVHL cells is sufficient to sensitize them to ROCK inhibition. Finally, Y-27632 treatment inhibited growth of subcutaneous 786-OT1 CC-RCC tumors in mice. Thus, ROCK inhibitors represent potential therapeutics for VHL-deficient CC-RCC.
Collapse
Affiliation(s)
- J M Thompson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Q H Nguyen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - M Singh
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - M W Pavesic
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - I Nesterenko
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - L J Nelson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - A C Liao
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - O V Razorenova
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
41
|
Choueiri TK, Halabi S, Sanford BL, Hahn O, Michaelson MD, Walsh MK, Feldman DR, Olencki T, Picus J, Small EJ, Dakhil S, George DJ, Morris MJ. Cabozantinib Versus Sunitinib As Initial Targeted Therapy for Patients With Metastatic Renal Cell Carcinoma of Poor or Intermediate Risk: The Alliance A031203 CABOSUN Trial. J Clin Oncol 2016; 35:591-597. [PMID: 28199818 DOI: 10.1200/jco.2016.70.7398] [Citation(s) in RCA: 557] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Cabozantinib is an oral potent inhibitor of vascular endothelial growth factor receptor 2, MET, and AXL and is a standard second-line therapy for metastatic renal cell carcinoma (mRCC). This randomized phase II multicenter trial evaluated cabozantinib compared with sunitinib as first-line therapy in patients with mRCC. Patients and Methods Eligible patients had untreated clear cell mRCC and Eastern Cooperative Oncology Group performance status of 0 to 2 and were intermediate or poor risk per International Metastatic Renal Cell Carcinoma Database Consortium criteria. Patients were randomly assigned at a one-to-one ratio to cabozantinib (60 mg once per day) or sunitinib (50 mg once per day; 4 weeks on, 2 weeks off). Progression-free survival (PFS) was the primary end point. Objective response rate (ORR), overall survival, and safety were secondary end points. Results From July 2013 to April 2015, 157 patients were randomly assigned (cabozantinib, n = 79; sunitinib, n = 78). Compared with sunitinib, cabozantinib treatment significantly increased median PFS (8.2 v 5.6 months) and was associated with a 34% reduction in rate of progression or death (adjusted hazard ratio, 0.66; 95% CI, 0.46 to 0.95; one-sided P = .012). ORR was 33% (95% CI, 23 to 44) for cabozantinib versus 12% (95% CI, 5.4 to 21) for sunitinib. All-causality grade 3 or 4 adverse events were 67% for cabozantinib and 68% for sunitinib and included diarrhea (cabozantinib, 10% v sunitinib, 11%), fatigue (6% v 15%), hypertension (28% v 22%), palmar-plantar erythrodysesthesia (8% v 4%), and hematologic adverse events (3% v 22%). Conclusion Cabozantinib demonstrated a significant clinical benefit in PFS and ORR over standard-of-care sunitinib as first-line therapy in patients with intermediate- or poor-risk mRCC.
Collapse
Affiliation(s)
- Toni K Choueiri
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Susan Halabi
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Ben L Sanford
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Olwen Hahn
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - M Dror Michaelson
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Meghara K Walsh
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Darren R Feldman
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Thomas Olencki
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Joel Picus
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Eric J Small
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Shaker Dakhil
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Daniel J George
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| | - Michael J Morris
- Toni K. Choueiri and Meghara K. Walsh, Dana-Farber Cancer Institute; M. Dror Michaelson, Massachusetts General Hospital Cancer Center, Boston, MA; Susan Halabi and Ben L. Sanford, Alliance Statistics and Data Center and Duke University; Daniel J. George, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Olwen Hahn, Alliance Protocol Operations Office, Chicago, IL; Darren R. Feldman and Michael J. Morris, Memorial Sloan Kettering Cancer Center, New York, NY; Thomas Olencki, Ohio State University Medical Center, Columbus, OH; Joel Picus, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Eric J. Small, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA; and Shaker Dakhil, University of Kansas Wichita, Wichita, KS
| |
Collapse
|
42
|
Chen L, Xia G, Qiu F, Wu C, Denmon AP, Zi X. Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through down-regulation of HIF-2α and inhibits tumor growth. Sci Rep 2016; 6:32582. [PMID: 27581364 PMCID: PMC5007653 DOI: 10.1038/srep32582] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
We have purified physapubescin, a predominant steroidal lactone, from medicinal plant Physalis pubescens L., commonly named as "hairy groundcherry" in English and "Deng-Long-Cao" in Chinese. Von Hippel-Lindau (VHL)-null 786-O, RCC4 and A498 Renal Cell Carcinoma (RCC) cell lines expressing high levels of Hypoxia Inducible Factor (HIF)-2α are more sensitive to physapubescin-mediated apoptosis and growth inhibitory effect than VHL wild-type Caki-2 and ACHN RCC cell lines. Restoration of VHL in RCC4 cells attenuated the growth inhibitory effect of physapubescin. Physapubescin decreases the expression of HIF-2α and increases the expression of CCAAT/enhancer-binding protein homologus protein (CHOP), which leads to up-regulation of death receptor 5 (DR5), activation of caspase-8 and -3, cleavage of poly (ADP-Ribose) polymerase (PARP) and apoptosis. Under hypoxia conditions, the apoptotic and growth inhibitory effects of physapubescin are further enhanced. Additionally, physapubescin synergizes with TNF-related apoptosis-inducing ligand (TRAIL) for markedly enhanced induction of apoptosis in VHL-null 786-O cells but not in VHL wild-type Caki-2 cells. Physapubescin significantly inhibited in vivo angiogenesis in the 786-O xenograft. Physapubescin as a novel agent for elimination of VHL-null RCC cells via apoptosis is warranted for further investigation.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 8/genetics
- Caspase 8/metabolism
- Cell Line, Tumor
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia/drug therapy
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Physalis/chemistry
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Signal Transduction
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
- Transcription Factor CHOP/agonists
- Transcription Factor CHOP/genetics
- Transcription Factor CHOP/metabolism
- Tumor Burden/drug effects
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
- Withanolides/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lixia Chen
- Departments of Urology and Pharmacology, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Guiyang Xia
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Feng Qiu
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Chunli Wu
- Departments of Urology and Pharmacology, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
- Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety and School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Andria P. Denmon
- Departments of Urology and Pharmacology, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Departments of Urology and Pharmacology, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| |
Collapse
|
43
|
Ruiz-Morales JM, Heng DYC. Cabozantinib in the treatment of advanced renal cell carcinoma: clinical trial evidence and experience. Ther Adv Urol 2016; 8:338-347. [PMID: 27904650 DOI: 10.1177/1756287216663073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The treatment of metastatic renal cell carcinoma (mRCC) is rapidly changing. During first-line treatment with targeted therapy, patients ultimately develop resistance to therapy and the disease progresses. Recently, cabozantinib has demonstrated a better response rate, progression-free survival and overall survival compared with everolimus after failure of prior targeted therapy in patients with advanced or metastatic renal cell carcinoma (RCC). Cabozantinib is a small-molecule tyrosine kinase inhibitor (TKI). It exerts inhibition of MET, vascular endothelial growth factor receptor type 2, AXL, and many other receptor tyrosine kinases that are also implicated in tumor pathobiology, including RET, KIT, and FLT3. MET drives tumor survival, invasion, angiogenesis, and metastasis through several downstream signaling pathways. AXL has recently been described as an essential mediator of cancer metastasis that mediates crosstalk and resistance to TKIs. MET and AXL are thought to be anti-vascular endothelial growth factor receptor (VEGF) resistance pathways and thus cabozantinib represents a logical choice after progression on initial VEGF therapy. Subgroup analyses examining those with good performance status or visceral and bone metastases indicate that the hazard ratios may be better when using cabozantinib versus everolimus. However, there were no clear statistically significant differences between any subgroups.
Collapse
Affiliation(s)
- Jose Manuel Ruiz-Morales
- Tom Baker Cancer Center, Alberta Health Services Cancer Care, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Y C Heng
- Tom Baker Cancer Center, Alberta Health Services Cancer Care, University of Calgary, 1331 29th St NW, Calgary, Alberta, Canada T2N 4N2
| |
Collapse
|
44
|
Grassi P, Verzoni E, Ratta R, Mennitto A, de Braud F, Procopio G. Cabozantinib in the treatment of advanced renal cell carcinoma: design, development, and potential place in the therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2167-72. [PMID: 27462141 PMCID: PMC4939993 DOI: 10.2147/dddt.s104225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The treatment of metastatic renal cell carcinoma (mRCC) has markedly improved over the last few years with the introduction of several targeted agents in clinical practice. Nevertheless, either primary or secondary resistance to inhibition of VEGF and mTOR pathways has limited the clinical benefit of these systemic treatments. Recently, a better understanding of the involvement of MET and its ligand HGF in many biological processes made this signaling pathway an attractive therapeutic target in oncology, particularly in mRCC. Herein, we review the development of cabozantinib, a recently approved inhibitor of multiple tyrosine kinase receptors, including MET, VEGFRs, and AXL, which has proven to increase progression-free survival and overall survival when compared to everolimus in mRCC patients who had progressed after VEGFR-targeted therapy. Finally, we discuss the potential role of cabozantinib within the current treatment landscape for mRCC.
Collapse
Affiliation(s)
- Paolo Grassi
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto nazionale Tumori, Milan, Italy
| | - Elena Verzoni
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto nazionale Tumori, Milan, Italy
| | - Raffaele Ratta
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto nazionale Tumori, Milan, Italy
| | - Alessia Mennitto
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto nazionale Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto nazionale Tumori, Milan, Italy
| | - Giuseppe Procopio
- Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto nazionale Tumori, Milan, Italy
| |
Collapse
|
45
|
Wolff NC, Pavía-Jiménez A, Tcheuyap VT, Alexander S, Vishwanath M, Christie A, Xie XJ, Williams NS, Kapur P, Posner B, McKay RM, Brugarolas J. High-throughput simultaneous screen and counterscreen identifies homoharringtonine as synthetic lethal with von Hippel-Lindau loss in renal cell carcinoma. Oncotarget 2016. [PMID: 26219258 PMCID: PMC4627284 DOI: 10.18632/oncotarget.4773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) accounts for 85% of primary renal neoplasms, and is rarely curable when metastatic. Approximately 70% of RCCs are clear-cell type (ccRCC), and in >80% the von Hippel-Lindau (VHL) gene is mutated or silenced. We developed a novel, high-content, screening strategy for the identification of small molecules that are synthetic lethal with genes mutated in cancer. In this strategy, the screen and counterscreen are conducted simultaneously by differentially labeling mutant and reconstituted isogenic tumor cell line pairs with different fluorochromes and using a highly sensitive high-throughput imaging-based platform. This approach minimizes confounding factors from sequential screening, and more accurately replicates the in vivo cancer setting where cancer cells are adjacent to normal cells. A screen of ~12,800 small molecules identified homoharringtonine (HHT), an FDA-approved drug for treating chronic myeloid leukemia, as a VHL-synthetic lethal agent in ccRCC. HHT induced apoptosis in VHL-mutant, but not VHL-reconstituted, ccRCC cells, and inhibited tumor growth in 30% of VHL-mutant patient-derived ccRCC tumorgraft lines tested. Building on a novel screening strategy and utilizing a validated RCC tumorgraft model recapitulating the genetics and drug responsiveness of human RCC, these studies identify HHT as a potential therapeutic agent for a subset of VHL-deficient ccRCCs.
Collapse
Affiliation(s)
- Nicholas C Wolff
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine - Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrea Pavía-Jiménez
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine - Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine - Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shane Alexander
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine - Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mridula Vishwanath
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,BioTek Instruments, Winooski, VT, USA
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xian-Jin Xie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Noelle S Williams
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Renée M McKay
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine - Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
46
|
Abstract
Over the past decade, rapid advances in genomics, proteomics and functional genomics technologies that enable in-depth interrogation of cancer genomes and proteomes and high-throughput analysis of gene function have enabled characterization of the kinome 'at large' in human cancers, providing crucial insights into how members of the protein kinase superfamily are dysregulated in malignancy, the context-dependent functional role of specific kinases in cancer and how kinome remodelling modulates sensitivity to anticancer drugs. The power of these complementary approaches, and the insights gained from them, form the basis of this Analysis article.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Department of Medical Oncology, Radboud University Medical Centre, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Luxi Zhang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianmin Wu
- Cancer Division, Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
47
|
Zhan T, Boutros M. Towards a compendium of essential genes - From model organisms to synthetic lethality in cancer cells. Crit Rev Biochem Mol Biol 2015; 51:74-85. [PMID: 26627871 PMCID: PMC4819810 DOI: 10.3109/10409238.2015.1117053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Essential genes are defined by their requirement to sustain life in cells or whole organisms. The systematic identification of essential gene sets not only allows insights into the fundamental building blocks of life, but may also provide novel therapeutic targets in oncology. The discovery of essential genes has been tightly linked to the development and deployment of various screening technologies. Here, we describe how gene essentiality was addressed in different eukaryotic model organisms, covering a range of organisms from yeast to mouse. We describe how increasing knowledge of evolutionarily divergent genomes facilitate identification of gene essentiality across species. Finally, the impact of gene essentiality and synthetic lethality on cancer research and the clinical translation of screening results are highlighted.
Collapse
Affiliation(s)
- Tianzuo Zhan
- a Department of Cell and Molecular Biology , Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University , Heidelberg , Germany and.,b Department of Medicine II , Medical Faculty Mannheim, University Hospital Mannheim, Heidelberg University , Mannheim , Germany
| | - Michael Boutros
- a Department of Cell and Molecular Biology , Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University , Heidelberg , Germany and
| |
Collapse
|
48
|
Kearney AY, Fan YH, Giri U, Saigal B, Gandhi V, Heymach JV, Zurita AJ. 8-Chloroadenosine Sensitivity in Renal Cell Carcinoma Is Associated with AMPK Activation and mTOR Pathway Inhibition. PLoS One 2015; 10:e0135962. [PMID: 26313261 PMCID: PMC4552467 DOI: 10.1371/journal.pone.0135962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022] Open
Abstract
The adenosine analog 8-chloroadenosine has been shown to deplete ATP and inhibit tumor growth in hematological malignancies as well as in lung and breast cancer cell lines. We investigated effects of 8-chloroadenosine on clear cell (cc) renal cell carcinoma (RCC) cell lines. 8-chloroadenosine was effective against ccRCC cell viability in vitro, with IC50 ranging from 2 μM in the most sensitive CAKI-1 to 36 μM in the most resistant RXF-393. Proteomic analysis by reverse-phase protein array revealed that 8-chloroadenosine treatment leads to inhibition of the mTOR pathway. In time-course experiments, 8-chloroadenosine treatment rapidly activated AMPK, measured by AMPK and ACC phosphorylation, and subsequently caused dephosphorylation of p70S6K and ribosomal protein RPS6 in the sensitive cell lines. However, in the resistant cell lines, AMPK activity and the mTOR pathway were unaffected by the treatment. We also noted that the resistant cell lines had elevated basal levels of phospho RPS6 and AKT. Inhibition of PI3K pathway enhanced the efficacy of 8-chloroadenosine across all cell lines. Our observations indicate that 8-chloroadenosine activity is associated with inhibition of the mTOR pathway, and that phospho RPS6 and PI3K pathway activation status may determine resistance. Among solid tumors, RCC is one of the few susceptible to mTOR inhibition. We thus infer that 8-chloroadenosine may be effective in RCC by activating AMPK and inhibiting the mTOR pathway.
Collapse
Affiliation(s)
- Alper Y. Kearney
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - You-Hong Fan
- Department of Thoracic & Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Uma Giri
- Department of Thoracic & Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Babita Saigal
- Department of Thoracic & Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - John V. Heymach
- Department of Thoracic & Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Malínková V, Vylíčil J, Kryštof V. Cyclin-dependent kinase inhibitors for cancer therapy: a patent review (2009 - 2014). Expert Opin Ther Pat 2015; 25:953-70. [PMID: 26161698 DOI: 10.1517/13543776.2015.1045414] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Cell cycle deregulation is a common characteristic of cancer cells. Progression through the cell cycle is controlled by enzymes known as cyclin-dependent kinases (CDKs), whose activity can be upregulated by a wide range of molecular mechanisms. Based on these observations, small molecule CDK inhibitors are being developed as potential cancer therapeutics. Some of these compounds have entered Phase III clinical trials and one of them, palbociclib, recently received accelerated approval from the FDA. However, the complexity of CDK biology and the undesired side effects of the existing inhibitors mean that the hunt for new CDK-targeting drug candidates continues. AREAS COVERED This article reviews patent applications related to small molecule CDK inhibitors published between 2009 and 2014. EXPERT OPINION Clinical trials with pan-specific inhibitors have generally yielded unambiguously positive outcomes. However, better results have been achieved with highly specific inhibitors of CDK4/CDK6. This may be due to several factors and has generated considerable interest in the discovery of new mono-specific CDK inhibitors. The development of such compounds is challenging because all CDKs have very similar active sites. Aside from this issue of selectivity, another key challenge is the identification of patients who will benefit from specific therapies.
Collapse
Affiliation(s)
- Veronika Malínková
- a Palacký University and Institute of Experimental Botany AS CR, Centre of the Region Haná for Biotechnological and Agricultural Research, Laboratory of Growth Regulators , Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic +420 585 634 854 ; +420 585 634 870 ;
| | | | | |
Collapse
|
50
|
Vymětalová L, Kryštof V. Potential Clinical Uses of CDK Inhibitors: Lessons from Synthetic Lethality Screens. Med Res Rev 2015; 35:1156-74. [DOI: 10.1002/med.21354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/24/2015] [Accepted: 05/23/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Ladislava Vymětalová
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR; Šlechtitelů 11 CZ-78371 Olomouc Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR; Šlechtitelů 11 CZ-78371 Olomouc Czech Republic
| |
Collapse
|