1
|
Moon JH, Woo J, Park JY, Noh MH, Kim D, Jung GY. Biosensor-guided evolution boosts itaconic acid production, unveiling unique insights into the stringent response. BIORESOURCE TECHNOLOGY 2025; 426:132326. [PMID: 40024573 DOI: 10.1016/j.biortech.2025.132326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/20/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Acetate is a cost-effective and sustainable carbon source that, despite its potential, remains underutilized. This study employed biosensor-assisted adaptive laboratory evolution (ALE) to enhance itaconic acid production and acetate metabolism in Escherichia coli. The evolved E. coli W strains exhibited 65% increase in itaconic acid production and 71% increase in growth rate, and 45% increase in itaconic acid yield. A common 31-kb genomic deletion was identified in the evolved strains, with two genes, ecw_m2276 and ecw_m2277, driving the observed phenotypic changes. The evolved strains exhibited an intensified stringent response, which enhanced the acetate-utilizing pathway and resulted in over a 5,000% increase in the expression of the glyoxylate shunt, thereby boosting microbial growth. Overexpression of relA further replicated these enhanced phenotypes. Our findings highlight not only significant physiological improvements but also present a novel strategy for enhancing microbial growth and bioproduction from acetate, offering valuable insights for industrial biotechnology applications.
Collapse
Affiliation(s)
- Jo Hyun Moon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jihoon Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Myung Hyun Noh
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea.
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
2
|
Hasan MK, Alaribe O, Govind R. Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile. Anaerobe 2025; 91:102920. [PMID: 39521117 PMCID: PMC11811957 DOI: 10.1016/j.anaerobe.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Clostridioides difficile has been recognized as an important nosocomial pathogen that causes diarrheal disease as a consequence of antibiotic exposure and costs the healthcare system billions of dollars every year. C. difficile enters the host gut as dormant spores, germinates into vegetative cells, colonizes the gut, and produces toxins TcdA and/or TcdB, leading to diarrhea and inflammation. Spores are the primary transmission vehicle, while the toxins A and B directly contribute to the disease. Thus, toxin production and sporulation are the key traits that determine the success of C. difficile as a pathogen. Both toxins and spores are produced during the late stationary phase in response to various stimuli. This review provides a comprehensive analysis of the current knowledge on the molecular mechanisms, highlighting the regulatory pathways that interconnect toxin gene expression and sporulation in C. difficile. The roles of carbohydrates, amino acids and other nutrients and signals, in modulating these virulence traits through global regulatory networks are discussed. Understanding the links within the gene regulatory network is crucial for developing effective therapeutic strategies against C. difficile infections, potentially leading to targeted interventions that disrupt the co-regulation of toxin production and sporulation.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Oluchi Alaribe
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
3
|
De la Cruz MA, Valdez-Salazar HA, Rodríguez-Valverde D, Mejia-Ventura S, Robles-Leyva N, Siqueiros-Cendón T, Rascón-Cruz Q, León-Montes N, Soria-Bustos J, Chimal-Cázares F, Rosales-Reyes R, Cedillo ML, Yañez-Santos JA, Ibarra JA, Torres J, Girón JA, Fox JG, Ares MA. The transcriptional regulator Lrp activates the expression of genes involved in the biosynthesis of tilimycin and tilivalline enterotoxins in Klebsiella oxytoca. mSphere 2025; 10:e0078024. [PMID: 39688404 PMCID: PMC11774035 DOI: 10.1128/msphere.00780-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The toxigenic Klebsiella oxytoca strains secrete tilymicin and tilivalline enterotoxins, which cause antibiotic-associated hemorrhagic colitis. Both enterotoxins are non-ribosomal peptides synthesized by enzymes encoded in two divergent operons clustered in a pathogenicity island. The transcriptional regulator Lrp (leucine-responsive regulatory protein) controls the expression of several bacterial genes involved in virulence. In this work, we have uncovered novel findings that have significant implications. We determined the transcriptional expression of aroX and npsA, the first genes of each tilimycin (TM)/tilivalline (TV) biosynthetic operon in K. oxytoca MIT 09-7231 wild-type and its derivatives Δlrp mutant and complemented strains. Our results suggest that Lrp directly activates the transcription of both aroX and npsA genes by binding to the intergenic regulatory region in a leucine-dependent manner. Furthermore, the lack of Lrp significantly diminished the cytotoxicity of K. oxytoca on HeLa cells due to reduced production of TM and TV. Altogether, our data present a new perspective on the role of Lrp as a regulator in cytotoxin-producing K. oxytoca strains and how it controls the expression of genes involved in the biosynthesis of their main virulence factors.IMPORTANCETilimycin (TM) and tilivalline (TV) are enterotoxins that are a hallmark for the cytotoxin-producing Klebsiella oxytoca strains, which cause antibiotic-associated hemorrhagic colitis. The biosynthesis of TM and TV is driven by enzymes encoded by the aroX- and NRPS-operons. In this study, we discovered that the transcriptional regulator Lrp plays a crucial role in activating the expression of the aroX- and NRPS-operons, thereby initiating TM and TV biosynthesis. Our results underscore a molecular mechanism by which TM and TV production by toxigenic K. oxytoca strains is regulated and shed further light on developing strategies to prevent the intestinal illness caused by this enteric pathogen.
Collapse
Affiliation(s)
- Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Hilda A. Valdez-Salazar
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Santa Mejia-Ventura
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Nayely Robles-Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | | | - Quintín Rascón-Cruz
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Nancy León-Montes
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Fernando Chimal-Cázares
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Autónoma de México, Mexico City, Mexico
| | - María L. Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge A. Yañez-Santos
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - J. Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
4
|
Puiggené Ò, Favoino G, Federici F, Partipilo M, Orsi E, Alván-Vargas MVG, Hernández-Sancho JM, Dekker NK, Ørsted EC, Bozkurt EU, Grassi S, Martí-Pagés J, Volke DC, Nikel PI. Seven critical challenges in synthetic one-carbon assimilation and their potential solutions. FEMS Microbiol Rev 2025; 49:fuaf011. [PMID: 40175298 PMCID: PMC12010959 DOI: 10.1093/femsre/fuaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/04/2025] Open
Abstract
Synthetic C1 assimilation holds the promise of facilitating carbon capture while mitigating greenhouse gas emissions, yet practical implementation in microbial hosts remains relatively limited. Despite substantial progress in pathway design and prototyping, most efforts stay at the proof-of-concept stage, with frequent failures observed even under in vitro conditions. This review identifies seven major barriers constraining the deployment of synthetic C1 metabolism in microorganisms and proposes targeted strategies for overcoming these issues. A primary limitation is the low catalytic activity of carbon-fixing enzymes, particularly carboxylases, which restricts the overall pathway performance. In parallel, challenges in expressing multiple heterologous genes-especially those encoding metal-dependent or oxygen-sensitive enzymes-further hinder pathway functionality. At the systems level, synthetic C1 pathways often exhibit poor flux distribution, limited integration with the host metabolism, accumulation of toxic intermediates, and disruptions in redox and energy balance. These factors collectively reduce biomass formation and compromise product yields in biotechnological setups. Overcoming these interconnected challenges is essential for moving synthetic C1 assimilation beyond conceptual stages and enabling its application in scalable, efficient bioprocesses towards a circular bioeconomy.
Collapse
Affiliation(s)
- Òscar Puiggené
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Giusi Favoino
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Filippo Federici
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michele Partipilo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maria V G Alván-Vargas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nienke K Dekker
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sara Grassi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Julia Martí-Pagés
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Stibelman AY, Sariles AY, Takahashi MK. The Small RNA MicF Represses ObgE and SeqA in Escherichia coli. Microorganisms 2024; 12:2397. [PMID: 39770600 PMCID: PMC11676804 DOI: 10.3390/microorganisms12122397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Small regulatory RNAs (sRNA) have been shown to play a large role in the management of stress responses in Escherichia coli and other bacteria. Upon fluctuations in nutrient availability and exposure to antimicrobials and superoxide-generating agents, the MicF sRNA in E. coli has been shown to regulate a small set of genes involved in the management of membrane permeability. Currently, it is unknown whether MicF acts on other processes to mediate the response to these agents. Using an sRNA interaction prediction tool, we identified genes in E. coli that are potentially regulated by MicF. Through subsequent analysis using a sfGFP-based reporter-gene fusion, we have validated two novel targets of MicF regulation: ObgE, a GTPase crucial for chromosome partitioning, and SeqA, a negative modulator of DNA replication. Importantly, the interaction between MicF and these target mRNAs is contingent upon the presence of the RNA chaperone protein, Hfq. Furthermore, our findings affirm the role of MicF's conserved 5' seed pairing region in initiating these regulatory interactions. Our study suggests that, beyond its established role in membrane permeability management, MicF exerts control over chromosome dynamics in response to distinct environmental cues, implicating a more multifaceted regulatory function in bacterial stress adaptation.
Collapse
Affiliation(s)
- Aaron Y. Stibelman
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA; (A.Y.S.); (A.Y.S.)
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Amy Y. Sariles
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA; (A.Y.S.); (A.Y.S.)
| | - Melissa K. Takahashi
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA; (A.Y.S.); (A.Y.S.)
| |
Collapse
|
6
|
Park JY, Jang M, Lee SM, Woo J, Lee EJ, Kim D. Unveiling the novel regulatory roles of RpoD-family sigma factors in Salmonella Typhimurium heat shock response through systems biology approaches. PLoS Genet 2024; 20:e1011464. [PMID: 39471211 PMCID: PMC11548764 DOI: 10.1371/journal.pgen.1011464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024] Open
Abstract
Three RpoD-family sigma factors, RpoD, RpoS, and RpoH, play critical roles in transcriptional regulation in Salmonella enterica serovar Typhimurium under heat shock conditions. However, the genome-wide regulatory mechanisms of these sigma factors in response to heat stress have remained elusive. In this study, we comprehensively identified 2,319, 2,226, and 213 genome-wide binding sites for RpoD, RpoS, and RpoH, respectively, under sublethal heat shock conditions (42°C). Machine learning-based transcriptome analysis was employed to infer the relative activity of iModulons, providing valuable insights into the transcriptional impact of heat shock. Integrative data analysis enabled the reconstruction of the transcriptional regulatory network of sigma factors, revealing how they modulate gene expression to adapt to heat stress, including responses to anaerobic and oxidative stresses. Notably, we observed a significant expansion of the RpoS sigmulon from 97 to 301 genes in response to heat shock, underscoring the crucial role of RpoS in regulating various metabolic processes. Moreover, we uncovered a competition mechanism between RpoD and RpoS within RpoS sigmulons, where RpoS significantly increases its binding within promoter regions shared with RpoD under heat shock conditions. These findings illuminate how three RpoD-family sigma factors coordinate multiple cellular processes to orchestrate the overall response of S. Typhimurium to heat stress.
Collapse
Affiliation(s)
- Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Minchang Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jihoon Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
7
|
Asefi S, Nouri H, Pourmohammadi G, Moghimi H. Comprehensive network of stress-induced responses in Zymomonas mobilis during bioethanol production: from physiological and molecular responses to the effects of system metabolic engineering. Microb Cell Fact 2024; 23:180. [PMID: 38890644 PMCID: PMC11186258 DOI: 10.1186/s12934-024-02459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nowadays, biofuels, especially bioethanol, are becoming increasingly popular as an alternative to fossil fuels. Zymomonas mobilis is a desirable species for bioethanol production due to its unique characteristics, such as low biomass production and high-rate glucose metabolism. However, several factors can interfere with the fermentation process and hinder microbial activity, including lignocellulosic hydrolysate inhibitors, high temperatures, an osmotic environment, and high ethanol concentration. Overcoming these limitations is critical for effective bioethanol production. In this review, the stress response mechanisms of Z. mobilis are discussed in comparison to other ethanol-producing microbes. The mechanism of stress response is divided into physiological (changes in growth, metabolism, intracellular components, and cell membrane structures) and molecular (up and down-regulation of specific genes and elements of the regulatory system and their role in expression of specific proteins and control of metabolic fluxes) changes. Systemic metabolic engineering approaches, such as gene manipulation, overexpression, and silencing, are successful methods for building new metabolic pathways. Therefore, this review discusses systems metabolic engineering in conjunction with systems biology and synthetic biology as an important method for developing new strains with an effective response mechanism to fermentation stresses during bioethanol production. Overall, understanding the stress response mechanisms of Z. mobilis can lead to more efficient and effective bioethanol production.
Collapse
Affiliation(s)
- Shaqayeq Asefi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hoda Nouri
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Golchehr Pourmohammadi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Stibelman AY, Sariles AY, Takahashi MK. Beyond membrane permeability: A role for the small RNA MicF in regulation of chromosome replication and partitioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590647. [PMID: 38712278 PMCID: PMC11071386 DOI: 10.1101/2024.04.22.590647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Small regulatory RNAs (sRNA) have been shown to play a large role in the management of stress responses in Escherichia coli and other bacteria. sRNAs act post-transcriptionally on target mRNA through an imperfect base pairing mechanism to regulate downstream protein expression. The imperfect base pairing allows a single sRNA to bind and regulate a variety mRNA targets which can form intricate regulatory networks that connect different physiological processes for the cell's response. Upon exposure to antimicrobials and superoxide generating agents, the MicF sRNA in E. coli has been shown to regulate a small set of genes involved in the management of membrane permeability. Currently, it is unknown whether MicF acts on other processes to mediate the response to these agents. Using an sRNA interaction prediction tool, we identified genes in E. coli that are potentially regulated by MicF. Through subsequent analysis using a sfGFP-based reporter-gene fusion, we have validated two novel targets of MicF regulation: SeqA, a negative modulator of DNA replication, and ObgE, a GTPase crucial for chromosome partitioning. Importantly, the interaction between MicF and these target mRNAs is contingent upon the presence of the RNA chaperone protein, Hfq. Furthermore, our findings affirm the role of MicF's conserved 5' seed pairing region in initiating these regulatory interactions. Our study suggests that, beyond its established role in membrane permeability management, MicF exerts control over chromosome dynamics in response to distinct environmental cues, implicating a more multifaceted regulatory function in bacterial stress adaptation.
Collapse
Affiliation(s)
- Aaron Y. Stibelman
- Department of Biology, California State University Northridge, Northridge, CA 91330
- Department of Biosciences, Rice University, Houston, TX 77005
| | - Amy Y. Sariles
- Department of Biology, California State University Northridge, Northridge, CA 91330
| | - Melissa K. Takahashi
- Department of Biology, California State University Northridge, Northridge, CA 91330
| |
Collapse
|
9
|
Teteneva N, Sanches-Medeiros A, Sourjik V. Genome-wide screen of genetic determinants that govern Escherichia coli growth and persistence in lake water. THE ISME JOURNAL 2024; 18:wrae096. [PMID: 38874171 PMCID: PMC11188689 DOI: 10.1093/ismejo/wrae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.
Collapse
Affiliation(s)
- Nataliya Teteneva
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Ananda Sanches-Medeiros
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| |
Collapse
|
10
|
Qiu S, Wan X, Liang Y, Lamoureux CR, Akbari A, Palsson BO, Zielinski DC. Inferred regulons are consistent with regulator binding sequences in E. coli. PLoS Comput Biol 2024; 20:e1011824. [PMID: 38252668 PMCID: PMC10833566 DOI: 10.1371/journal.pcbi.1011824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/01/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The transcriptional regulatory network (TRN) of E. coli consists of thousands of interactions between regulators and DNA sequences. Regulons are typically determined either from resource-intensive experimental measurement of functional binding sites, or inferred from analysis of high-throughput gene expression datasets. Recently, independent component analysis (ICA) of RNA-seq compendia has shown to be a powerful method for inferring bacterial regulons. However, it remains unclear to what extent regulons predicted by ICA structure have a biochemical basis in promoter sequences. Here, we address this question by developing machine learning models that predict inferred regulon structures in E. coli based on promoter sequence features. Models were constructed successfully (cross-validation AUROC > = 0.8) for 85% (40/47) of ICA-inferred E. coli regulons. We found that: 1) The presence of a high scoring regulator motif in the promoter region was sufficient to specify regulatory activity in 40% (19/47) of the regulons, 2) Additional features, such as DNA shape and extended motifs that can account for regulator multimeric binding, helped to specify regulon structure for the remaining 60% of regulons (28/47); 3) investigating regulons where initial machine learning models failed revealed new regulator-specific sequence features that improved model accuracy. Finally, we found that strong regulatory binding sequences underlie both the genes shared between ICA-inferred and experimental regulons as well as genes in the E. coli core pan-regulon of Fur. This work demonstrates that the structure of ICA-inferred regulons largely can be understood through the strength of regulator binding sites in promoter regions, reinforcing the utility of top-down inference for regulon discovery.
Collapse
Affiliation(s)
- Sizhe Qiu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Xinlong Wan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Yueshan Liang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Cameron R. Lamoureux
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Amir Akbari
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
11
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
12
|
Trouillon J, Doubleday PF, Sauer U. Genomic footprinting uncovers global transcription factor responses to amino acids in Escherichia coli. Cell Syst 2023; 14:860-871.e4. [PMID: 37820729 DOI: 10.1016/j.cels.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Our knowledge of transcriptional responses to changes in nutrient availability comes primarily from few well-studied transcription factors (TFs), often lacking an unbiased genome-wide perspective. Leveraging recent advances allowing bacterial genomic footprinting, we comprehensively mapped the genome-wide regulatory responses of Escherichia coli to exogenous leucine, methionine, alanine, and lysine. The global TF Lrp was found to individually sense three amino acids and mount three different target gene responses. Overall, 531 genes had altered RNA polymerase occupancy, and 32 TFs responded directly or indirectly to the presence of amino acids, including regulators of membrane and osmotic pressure homeostasis. About 70% of the detected TF-DNA interactions had not been reported before. We thus identified 682 previously unknown TF-binding locations, for a subset of which the involved TFs were identified by affinity purification. This comprehensive map of amino acid regulation illustrates the incompleteness of the known transcriptional regulation network, even in E. coli.
Collapse
Affiliation(s)
- Julian Trouillon
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter F Doubleday
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
13
|
Ziegler CA, Freddolino PL. Escherichia coli Leucine-Responsive Regulatory Protein Bridges DNA In Vivo and Tunably Dissociates in the Presence of Exogenous Leucine. mBio 2023; 14:e0269022. [PMID: 36786566 PMCID: PMC10127797 DOI: 10.1128/mbio.02690-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Feast-famine response proteins are a widely conserved class of global regulators in prokaryotes, the most highly studied of which is the Escherichia coli leucine-responsive regulatory protein (Lrp). Lrp senses the environmental nutrition status and subsequently regulates up to one-third of the genes in E. coli, either directly or indirectly. Lrp exists predominantly as octamers and hexadecamers (16mers), where leucine is believed to shift the equilibrium toward the octameric state. In this study, we analyzed the effects of three oligomerization state mutants of Lrp in terms of their ability to bind to DNA and regulate gene expression in response to exogenous leucine. We find that oligomerization beyond dimers is required for Lrp's regulatory activity and that, contrary to previous speculation, exogenous leucine modulates Lrp activity at its target promoters exclusively by inhibiting Lrp binding to DNA. We also show evidence that Lrp binding bridges DNA over length scales of multiple kilobases, revealing a new range of mechanisms for Lrp-mediated transcriptional regulation. IMPORTANCE Leucine-responsive regulatory protein (Lrp) is one of the most impactful regulators in E. coli and other bacteria. Lrp senses nutrient conditions and responds by controlling strategies for virulence, cellular motility, and nutrient acquisition. Despite its importance and being evolutionarily highly conserved across bacteria and archaea, several mysteries remain regarding Lrp, including how it actually responds to leucine to change its regulation of targets. Previous studies have led to the hypothesis that Lrp switches between two states, an octamer (8 Lrp molecules together) and a hexadecamer (16 Lrp molecules together), upon exposure to leucine; these are referred to as different oligomerization states. Here, we show that contrary to previous expectations, it is Lrp's propensity to bind DNA, rather than its oligomerization state, that is directly affected by leucine in the cell's environment. Our new understanding of Lrp activity will aid in identifying and disrupting pathways used by bacteria to cause disease.
Collapse
Affiliation(s)
- Christine A. Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Carrier MC, Lalaouna D, Massé E. Hfq protein and GcvB small RNA tailoring of oppA target mRNA to levels allowing translation activation by MicF small RNA in Escherichia coli. RNA Biol 2023; 20:59-76. [PMID: 36860088 PMCID: PMC9988348 DOI: 10.1080/15476286.2023.2179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Traffic of molecules across the bacterial membrane mainly relies on porins and transporters, whose expression must adapt to environmental conditions. To ensure bacterial fitness, synthesis and assembly of functional porins and transporters are regulated through a plethora of mechanisms. Among them, small regulatory RNAs (sRNAs) are known to be powerful post-transcriptional regulators. In Escherichia coli, the MicF sRNA is known to regulate only four targets, a very narrow targetome for a sRNA responding to various stresses, such as membrane stress, osmotic shock, or thermal shock. Using an in vivo pull-down assay combined with high-throughput RNA sequencing, we sought to identify new targets of MicF to better understand its role in the maintenance of cellular homoeostasis. Here, we report the first positively regulated target of MicF, the oppA mRNA. The OppA protein is the periplasmic component of the Opp ATP-binding cassette (ABC) oligopeptide transporter and regulates the import of short peptides, some of them bactericides. Mechanistic studies suggest that oppA translation is activated by MicF through a mechanism of action involving facilitated access to a translation-enhancing region in oppA 5'UTR. Intriguingly, MicF activation of oppA translation depends on cross-regulation by negative trans-acting effectors, the GcvB sRNA and the RNA chaperone protein Hfq.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David Lalaouna
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
15
|
Conway C, Beckett MC, Dorman CJ. The DNA relaxation-dependent OFF-to-ON biasing of the type 1 fimbrial genetic switch requires the Fis nucleoid-associated protein. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001283. [PMID: 36748578 PMCID: PMC9993118 DOI: 10.1099/mic.0.001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structural genes expressing type 1 fimbriae in Escherichia coli alternate between expressed (phase ON) and non-expressed (phase OFF) states due to inversion of the 314 bp fimS genetic switch. The FimB tyrosine integrase inverts fimS by site-specific recombination, alternately connecting and disconnecting the fim operon, encoding the fimbrial subunit protein and its associated secretion and adhesin factors, to and from its transcriptional promoter within fimS. Site-specific recombination by the FimB recombinase becomes biased towards phase ON as DNA supercoiling is relaxed, a condition that occurs when bacteria approach the stationary phase of the growth cycle. This effect can be mimicked in exponential phase cultures by inhibiting the negative DNA supercoiling activity of DNA gyrase. We report that this bias towards phase ON depends on the presence of the Fis nucleoid-associated protein. We mapped the Fis binding to a site within the invertible fimS switch by DNase I footprinting. Disruption of this binding site by base substitution mutagenesis abolishes both Fis binding and the ability of the mutated switch to sustain its phase ON bias when DNA is relaxed, even in bacteria that produce the Fis protein. In addition, the Fis binding site overlaps one of the sites used by the Lrp protein, a known directionality determinant of fimS inversion that also contributes to phase ON bias. The Fis–Lrp relationship at fimS is reminiscent of that between Fis and Xis when promoting DNA relaxation-dependent excision of bacteriophage λ from the E. coli chromosome. However, unlike the co-binding mechanism used by Fis and Xis at λ attR, the Fis–Lrp relationship at fimS involves competitive binding. We discuss these findings in the context of the link between fimS inversion biasing and the physiological state of the bacterium.
Collapse
Affiliation(s)
- Colin Conway
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland.,Present address: Technical University of the Atlantic, Galway, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Chakraborty S, Singh P, Seshasayee ASN. Understanding the Genome-Wide Transcription Response To Various cAMP Levels in Bacteria Using Phenomenological Models. mSystems 2022; 7:e0090022. [PMID: 36409084 PMCID: PMC9765429 DOI: 10.1128/msystems.00900-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Attempts to understand gene regulation by global transcription factors have largely been limited to expression studies under binary conditions of presence and absence of the transcription factor. Studies addressing genome-wide transcriptional responses to changing transcription factor concentration at high resolution are lacking. Here, we create a data set containing the entire Escherichia coli transcriptome in Luria-Bertani (LB) broth as it responds to 10 different cAMP concentrations spanning the biological range. We use the Hill's model to accurately summarize individual gene responses into three intuitively understandable parameters, Emax, n, and k, reflecting the sensitivity, nonlinearity, and midpoint of the dynamic range. Our data show that most cAMP-regulated genes have an n of >2, with their k values centered around the wild-type concentration of cAMP. Additionally, cAMP receptor protein (CRP) affinity to a promoter is correlated with Emax but not k, hinting that a high-affinity CRP promoter need not ensure transcriptional activation at lower cAMP concentrations and instead affects the magnitude of the response. Finally, genes belonging to different functional classes are tuned to have different k, n, and Emax values. We demonstrate that phenomenological models are a better alternative for studying gene expression trends than classical clustering methods, with the phenomenological constants providing greater insights into how genes are tuned in a regulatory network. IMPORTANCE Different genes may follow different trends in response to various transcription factor concentrations. In this study, we ask two questions: (i) what are the trends that different genes follow in response to changing transcription factor concentrations and (ii) what methods can be used to extract information from the gene trends so obtained. We demonstrate a method to analyze transcription factor concentration-dependent genome-wide expression data using phenomenological models. Conventional clustering methods and principal-component analysis (PCA) can be used to summarize trends in data but have limited interpretability. The use of phenomenological models greatly enhances the interpretability and thus utility of conventional clustering. Transformation of dose-response data into phenomenological constants opens up avenues to ask and answer many different kinds of question. We show that the phenomenological constants obtained from the model fits can be used to generate insights about network topology and allows integration of other experimental data such as chromatin immunoprecipitation sequencing (ChIP-seq) to understand the system in greater detail.
Collapse
Affiliation(s)
- Shweta Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | | | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
17
|
Gene Networks and Pathways Involved in Escherichia coli Response to Multiple Stressors. Microorganisms 2022; 10:microorganisms10091793. [PMID: 36144394 PMCID: PMC9501238 DOI: 10.3390/microorganisms10091793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Stress response helps microorganisms survive extreme environmental conditions and host immunity, making them more virulent or drug resistant. Although both reductionist approaches investigating specific genes and systems approaches analyzing individual stress conditions are being used, less is known about gene networks involved in multiple stress responses. Here, using a systems biology approach, we mined hundreds of transcriptomic data sets for key genes and pathways involved in the tolerance of the model microorganism Escherichia coli to multiple stressors. Specifically, we investigated the E. coli K-12 MG1655 transcriptome under five stresses: heat, cold, oxidative stress, nitrosative stress, and antibiotic treatment. Overlaps of transcriptional changes between studies of each stress factor and between different stressors were determined: energy-requiring metabolic pathways, transport, and motility are typically downregulated to conserve energy, while genes related to survival, bona fide stress response, biofilm formation, and DNA repair are mainly upregulated. The transcription of 15 genes with uncharacterized functions is higher in response to multiple stressors, which suggests they may play pivotal roles in stress response. In conclusion, using rank normalization of transcriptomic data, we identified a set of E. coli stress response genes and pathways, which could be potential targets to overcome antibiotic tolerance or multidrug resistance.
Collapse
|
18
|
Gagarinova A, Hosseinnia A, Rahmatbakhsh M, Istace Z, Phanse S, Moutaoufik MT, Zilocchi M, Zhang Q, Aoki H, Jessulat M, Kim S, Aly KA, Babu M. Auxotrophic and prototrophic conditional genetic networks reveal the rewiring of transcription factors in Escherichia coli. Nat Commun 2022; 13:4085. [PMID: 35835781 PMCID: PMC9283627 DOI: 10.1038/s41467-022-31819-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial transcription factors (TFs) are widely studied in Escherichia coli. Yet it remains unclear how individual genes in the underlying pathways of TF machinery operate together during environmental challenge. Here, we address this by applying an unbiased, quantitative synthetic genetic interaction (GI) approach to measure pairwise GIs among all TF genes in E. coli under auxotrophic (rich medium) and prototrophic (minimal medium) static growth conditions. The resulting static and differential GI networks reveal condition-dependent GIs, widespread changes among TF genes in metabolism, and new roles for uncharacterized TFs (yjdC, yneJ, ydiP) as regulators of cell division, putrescine utilization pathway, and cold shock adaptation. Pan-bacterial conservation suggests TF genes with GIs are co-conserved in evolution. Together, our results illuminate the global organization of E. coli TFs, and remodeling of genetic backup systems for TFs under environmental change, which is essential for controlling the bacterial transcriptional regulatory circuits. The bacterium E. coli has around 300 transcriptional factors, but the functions of many of them, and the interactions between their respective regulatory networks, are unclear. Here, the authors study genetic interactions among all transcription factor genes in E. coli, revealing condition-dependent interactions and roles for uncharacterized transcription factors.
Collapse
Affiliation(s)
- Alla Gagarinova
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Zoe Istace
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Qingzhou Zhang
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada.
| |
Collapse
|
19
|
Mahalik S, Sharma A, Das DR, Mittra D, Mukherjee KJ. Co-expressing Leucine Responsive Regulatory protein (Lrp) enhances Recombinant L-Asparaginase-II production in Escherichia coli. J Biotechnol 2022; 351:99-108. [DOI: 10.1016/j.jbiotec.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|
20
|
The Escherichia coli Amino Acid Uptake Protein CycA: Regulation of Its Synthesis and Practical Application in l-Isoleucine Production. Microorganisms 2022; 10:microorganisms10030647. [PMID: 35336222 PMCID: PMC8948829 DOI: 10.3390/microorganisms10030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acid transport systems perform important physiological functions; their role should certainly be considered in microbial production of amino acids. Typically, in the context of metabolic engineering, efforts are focused on the search for and application of specific amino acid efflux pumps. However, in addition, importers can also be used to improve the industrial process as a whole. In this study, the protein CycA, which is known for uptake of nonpolar amino acids, was characterized from the viewpoint of regulating its expression and range of substrates. We prepared a cycA-overexpressing strain and found that it exhibited high sensitivity to branched-chain amino acids and their structural analogues, with relatively increased consumption of these amino acids, suggesting that they are imported by CycA. The expression of cycA was found to be dependent on the extracellular concentrations of substrate amino acids. The role of some transcription factors in cycA expression, including of Lrp and Crp, was studied using a reporter gene construct. Evidence for the direct binding of Crp to the cycA regulatory region was obtained using a gel-retardation assay. The enhanced import of named amino acids due to cycA overexpression in the l-isoleucine-producing strain resulted in a significant reduction in the generation of undesirable impurities. This work demonstrates the importance of uptake systems with respect to their application in metabolic engineering.
Collapse
|
21
|
Bessaiah H, Anamalé C, Sung J, Dozois CM. What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 2021; 10:5. [PMID: 35056454 PMCID: PMC8777976 DOI: 10.3390/microorganisms10010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.
Collapse
Affiliation(s)
- Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Carole Anamalé
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
| | - Jacqueline Sung
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
22
|
Seok JY, Han YH, Yang JS, Yang J, Lim HG, Kim SG, Seo SW, Jung GY. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite. Cell Rep 2021; 36:109589. [PMID: 34433019 DOI: 10.1016/j.celrep.2021.109589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Proper carbon flux distribution between cell growth and production of a target compound is important for biochemical production because improper flux reallocation inhibits cell growth, thus adversely affecting production yield. Here, using a synthetic biosensor to couple production of a specific metabolite with cell growth, we spontaneously evolve cells under the selective condition toward the acquisition of genotypes that optimally reallocate cellular resources. Using 3-hydroxypropionic acid (3-HP) production from glycerol in Escherichia coli as a model system, we determine that mutations in the conserved regions of proteins involved in global transcriptional regulation alter the expression of several genes associated with central carbon metabolism. These changes rewire central carbon flux toward the 3-HP production pathway, increasing 3-HP yield and reducing acetate accumulation by alleviating overflow metabolism. Our study provides a perspective on adaptive laboratory evolution (ALE) using synthetic biosensors, thereby supporting future efforts in metabolic pathway optimization.
Collapse
Affiliation(s)
- Joo Yeon Seok
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jae-Seong Yang
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jina Yang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Seong Gyeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
23
|
Leucine-Responsive Regulatory Protein in Acetic Acid Bacteria Is Stable and Functions at a Wide Range of Intracellular pH Levels. J Bacteriol 2021; 203:e0016221. [PMID: 34228496 DOI: 10.1128/jb.00162-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetic acid bacteria grow while producing acetic acid, resulting in acidification of the culture. Limited reports elucidate the effect of changes in intracellular pH on transcriptional factors. In the present study, the intracellular pH of Komagataeibacter europaeus was monitored with a pH-sensitive green fluorescent protein, showing that the intracellular pH decreased from 6.3 to 4.7 accompanied by acetic acid production during cell growth. The leucine-responsive regulatory protein of K. europaeus (KeLrp) was used as a model to examine pH-dependent effects, and its properties were compared with those of the Escherichia coli ortholog (EcLrp) at different pH levels. The DNA-binding activities of EcLrp and KeLrp with the target DNA (Ec-ilvI and Ke-ilvI) were examined by gel mobility shift assays under various pH conditions. EcLrp showed the highest affinity with the target at pH 8.0 (Kd [dissociation constant], 0.7 μM), decreasing to a minimum of 3.4 μM at pH 4.0. Conversely, KeLrp did not show significant differences in binding affinity between pH 4 and 7 (Kd, 1.0 to 1.5 μM), and the highest affinity was at pH 5.0 (Kd, 1.0 μM). Circular dichroism spectroscopy revealed that the α-helical content of KeLrp was the highest at pH 5.0 (49%) and was almost unchanged while being maintained at >45% over a range of pH levels examined, while that of EcLrp decreased from its maximum (49% at pH 7.0) to its minimum (36% at pH 4.0). These data indicate that KeLrp is stable and functions over a wide range of intracellular pH levels. IMPORTANCE Lrp is a highly conserved transcriptional regulator found in bacteria and archaea and regulates transcriptions of various genes. The intracellular pH of acetic acid bacteria (AAB) changes accompanied by acetic acid production during cell growth. The Lrp of AAB K. europaeus (KeLrp) was structurally stable over a wide range of pH and maintained DNA-binding activity even at low pH compared with Lrp from E. coli living in a neutral environment. An in vitro experiment showed DNA-binding activity of KeLrp to the target varied with changes in pH. In AAB, change of the intracellular pH during a cell growth would be an important trigger in controlling the activity of Lrp in vivo.
Collapse
|
24
|
Keseler IM, Gama-Castro S, Mackie A, Billington R, Bonavides-Martínez C, Caspi R, Kothari A, Krummenacker M, Midford PE, Muñiz-Rascado L, Ong WK, Paley S, Santos-Zavaleta A, Subhraveti P, Tierrafría VH, Wolfe AJ, Collado-Vides J, Paulsen IT, Karp PD. The EcoCyc Database in 2021. Front Microbiol 2021; 12:711077. [PMID: 34394059 PMCID: PMC8357350 DOI: 10.3389/fmicb.2021.711077] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
The EcoCyc model-organism database collects and summarizes experimental data for Escherichia coli K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality. This article highlights recent improvements to the curated data in the areas of metabolism, transport, DNA repair, and regulation of gene expression. New and revised data analysis and visualization tools include an interactive metabolic network explorer, a circular genome viewer, and various improvements to the speed and usability of existing tools.
Collapse
Affiliation(s)
- Ingrid M. Keseler
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Amanda Mackie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Richard Billington
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | | | - Ron Caspi
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Anamika Kothari
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Markus Krummenacker
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Peter E. Midford
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Luis Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Wai Kit Ong
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Suzanne Paley
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Alberto Santos-Zavaleta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, México
| | - Pallavi Subhraveti
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter D. Karp
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| |
Collapse
|
25
|
Ziegler CA, Freddolino PL. The leucine-responsive regulatory proteins/feast-famine regulatory proteins: an ancient and complex class of transcriptional regulators in bacteria and archaea. Crit Rev Biochem Mol Biol 2021; 56:373-400. [PMID: 34151666 DOI: 10.1080/10409238.2021.1925215] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since the discovery of the Escherichia coli leucine-responsive regulatory protein (Lrp) almost 50 years ago, hundreds of Lrp homologs have been discovered, occurring in 45% of sequenced bacteria and almost all sequenced archaea. Lrp-like proteins are often referred to as the feast/famine regulatory proteins (FFRPs), reflecting their common regulatory roles. Acting as either global or local transcriptional regulators, FFRPs detect the environmental nutritional status by sensing small effector molecules (usually amino acids) and regulate the expression of genes involved in metabolism, virulence, motility, nutrient transport, stress tolerance, and antibiotic resistance to implement appropriate behaviors for the specific ecological niche of each organism. Despite FFRPs' complexity, a significant role in gene regulation, and prevalence throughout prokaryotes, the last comprehensive review on this family of proteins was published about a decade ago. In this review, we integrate recent notable findings regarding E. coli Lrp and other FFRPs across bacteria and archaea with previous observations to synthesize a more complete view on the mechanistic details and biological roles of this ancient class of transcription factors.
Collapse
Affiliation(s)
- Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Choi G, Kim D, Im H, Choi SH. A Nitric Oxide-Responsive Transcriptional Regulator NsrR Cooperates With Lrp and CRP to Tightly Control the hmpA Gene in Vibrio vulnificus. Front Microbiol 2021; 12:681196. [PMID: 34093504 PMCID: PMC8175989 DOI: 10.3389/fmicb.2021.681196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is an important antimicrobial effector produced by the host innate immune system to counteract invading pathogens. To survive and establish a successful infection, a fulminating human pathogen Vibrio vulnificus expresses the hmpA gene encoding an NO dioxygenase in an NO-responsive manner. In this study, we identified an Rrf2-family transcriptional regulator NsrR that is predicted to contain the Fe-S cluster coordinated by three cysteine residues. Transcriptome analysis showed that NsrR controls the expression of multiple genes potentially involved in nitrosative stress responses. Particularly, NsrR acts as a strong repressor of hmpA transcription and relieves the repression of hmpA upon exposure to NO. Notably, nsrR and hmpA are transcribed divergently, and their promoter regions overlap with each other. Molecular biological analyses revealed that NsrR directly binds to this overlapping promoter region, which is alleviated by loss of the Fe-S cluster, leading to the subsequent derepression of hmpA under nitrosative stress. We further found that a leucine-responsive regulatory protein (Lrp) negatively regulates hmpA in an NsrR-dependent manner by directly binding to the promoter region, presumably resulting in a DNA conformation change to support the repression by NsrR. Meanwhile, a cyclic AMP receptor protein (CRP) positively regulates hmpA probably through repression of nsrR and lrp by directly binding to each promoter region in a sequential cascade. Altogether, this collaborative regulation of NsrR along with Lrp and CRP enables an elaborate control of hmpA transcription, contributing to survival under host-derived nitrosative stress and thereby the pathogenesis of V. vulnificus.
Collapse
Affiliation(s)
- Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Dukyun Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hanhyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
27
|
Mohany NAM, Totti A, Naylor KR, Janovjak H. Microbial methionine transporters and biotechnological applications. Appl Microbiol Biotechnol 2021; 105:3919-3929. [PMID: 33929594 PMCID: PMC8140960 DOI: 10.1007/s00253-021-11307-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 11/07/2022]
Abstract
Methionine (Met) is an essential amino acid with commercial value in animal feed, human nutrition, and as a chemical precursor. Microbial production of Met has seen intensive investigation towards a more sustainable alternative to the chemical synthesis that currently meets the global Met demand. Indeed, efficient Met biosynthesis has been achieved in genetically modified bacteria that harbor engineered enzymes and streamlined metabolic pathways. Very recently, the export of Met as the final step during its fermentative production has been studied and optimized, primarily through identification and expression of microbial Met efflux transporters. In this mini-review, we summarize the current knowledge on four families of Met export and import transporters that have been harnessed for the production of Met and other valuable biomolecules. These families are discussed with respect to their function, gene regulation, and biotechnological applications. We cover methods for identification and characterization of Met transporters as the basis for the further engineering of these proteins and for exploration of other solute carrier families. The available arsenal of Met transporters from different species and protein families provides blueprints not only for fermentative production but also synthetic biology systems, such as molecular sensors and cell-cell communication systems. KEY POINTS: • Sustainable production of methionine (Met) using microbes is actively explored. • Met transporters of four families increase production yield and specificity. • Further applications include other biosynthetic pathways and synthetic biology.
Collapse
Affiliation(s)
- Nurul Amira Mohammad Mohany
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Clayton, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Melbourne, Clayton, Australia
| | - Alessandra Totti
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, Italy
| | - Keith R Naylor
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Clayton, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Melbourne, Clayton, Australia
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Clayton, Australia.
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Melbourne, Clayton, Australia.
| |
Collapse
|
28
|
Iyer MS, Pal A, Srinivasan S, Somvanshi PR, Venkatesh KV. Global Transcriptional Regulators Fine-Tune the Translational and Metabolic Efficiency for Optimal Growth of Escherichia coli. mSystems 2021; 6:e00001-21. [PMID: 33785570 PMCID: PMC8546960 DOI: 10.1128/msystems.00001-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Global transcriptional regulators coordinate complex genetic interactions that bestow better adaptability for an organism against external and internal perturbations. These transcriptional regulators are known to control an enormous array of genes with diverse functionalities. However, regulator-driven molecular mechanisms that underpin precisely tuned translational and metabolic processes conducive for rapid exponential growth remain obscure. Here, we comprehensively reveal the fundamental role of global transcriptional regulators FNR, ArcA, and IHF in sustaining translational and metabolic efficiency under glucose fermentative conditions in Escherichia coli By integrating high-throughput gene expression profiles and absolute intracellular metabolite concentrations, we illustrate that these regulators are crucial in maintaining nitrogen homeostasis, govern expression of otherwise unnecessary or hedging genes, and exert tight control on metabolic bottleneck steps. Furthermore, we characterize changes in expression and activity profiles of other coregulators associated with these dysregulated metabolic pathways, determining the regulatory interactions within the transcriptional regulatory network. Such systematic findings emphasize their importance in optimizing the proteome allocation toward metabolic enzymes as well as ribosomes, facilitating condition-specific phenotypic outcomes. Consequentially, we reveal that disruption of this inherent trade-off between ribosome and metabolic proteome economy due to the loss of regulators resulted in lowered growth rates. Moreover, our findings reinforce that the accumulations of intracellular metabolites in the event of proteome repartitions negatively affects the glucose uptake. Overall, by extending the three-partition proteome allocation theory concordant with multi-omics measurements, we elucidate the physiological consequences of loss of global regulators on central carbon metabolism restraining the organism to attain maximal biomass synthesis.IMPORTANCE Cellular proteome allocation in response to environmental or internal perturbations governs their eventual phenotypic outcome. This entails striking an effective balance between amino acid biosynthesis by metabolic proteins and its consumption by ribosomes. However, the global transcriptional regulator-driven molecular mechanisms that underpin their coordination remains unexplored. Here, we emphasize that global transcriptional regulators, known to control expression of a myriad of genes, are fundamental for precisely tuning the translational and metabolic efficiencies that define the growth optimality. Towards this, we systematically characterized the single deletion effect of FNR, ArcA, and IHF regulators of Escherichia coli on exponential growth under anaerobic glucose fermentative conditions. Their absence disrupts the stringency of proteome allocation, which manifests as impairment in key metabolic processes and an accumulation of intracellular metabolites. Furthermore, by incorporating an extension to the empirical growth laws, we quantitatively demonstrate the general design principles underlying the existence of these regulators in E. coli.
Collapse
Affiliation(s)
- Mahesh S Iyer
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ankita Pal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sumana Srinivasan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pramod R Somvanshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
29
|
Genome-wide Identification of DNA-protein Interaction to Reconstruct Bacterial Transcription Regulatory Network. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0030-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Zamora M, Ziegler CA, Freddolino L, Wolfe AJ. A Thermosensitive, Phase-Variable Epigenetic Switch: pap Revisited. Microbiol Mol Biol Rev 2020; 84:e00030-17. [PMID: 32727743 PMCID: PMC7392537 DOI: 10.1128/mmbr.00030-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It has been more than a decade since the last comprehensive review of the phase-variable uropathogen-associated pyelonephritis-associated pilus (pap) genetic switch. Since then, important data have come to light, including additional factors that regulate pap expression, better characterization of H-NS regulation, the structure of the Lrp octamer in complex with pap regulatory DNA, the temperature-insensitive phenotype of a mutant lacking the acetyltransferase RimJ, evidence that key components of the regulatory machinery are acetylated, and new insights into the role of DNA binding by key regulators in shaping both the physical structure and regulatory state of the papI and papBA promoters. This review revisits pap, integrating these newer observations with older ones to produce a new model for the concerted behavior of this virulence-regulatory region.
Collapse
Affiliation(s)
- Mario Zamora
- Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
31
|
A MARTX Toxin rtxA Gene Is Controlled by Host Environmental Signals through a CRP-Coordinated Regulatory Network in Vibrio vulnificus. mBio 2020; 11:mBio.00723-20. [PMID: 32723914 PMCID: PMC7387792 DOI: 10.1128/mbio.00723-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A MARTX toxin, RtxA, is an essential virulence factor of many pathogens, including Vibrio species. H-NS and HlyU repress and derepress, respectively, rtxA expression of a life-threatening pathogen, Vibrio vulnificus. We found that Lrp directly activates rtxA independently of H-NS and HlyU, and leucine inhibits the Lrp-mediated activation of rtxA. Furthermore, we demonstrated that CRP represses rtxA but derepresses in the presence of exogenous glucose. CRP represses rtxA not only directly by binding to upstream of rtxA but also indirectly by repressing lrp and hlyU. This is the first report of a regulatory network comprising CRP, Lrp, H-NS, and HlyU, which coordinates the rtxA expression in response to environmental signals such as leucine and glucose during infection. This elaborate regulatory network will enhance the fitness of V. vulnificus and contribute to its successful infection within the host. A multifunctional autoprocessing repeats-in-toxin (MARTX) toxin plays an essential role in the virulence of many pathogens, including a fulminating human pathogen Vibrio vulnificus. H-NS and HlyU repress and derepress expression of the MARTX toxin gene rtxA in V. vulnificus, respectively. However, little is known about other regulatory proteins and environmental signals involved in rtxA regulation. In this study, we found that a leucine-responsive regulatory protein (Lrp) activates rtxA by binding directly and specifically to the rtxA promoter, PrtxA. Phased hypersensitivity resulting from DNase I cleavage of the PrtxA regulatory region suggests that Lrp probably induces DNA bending in PrtxA. Lrp activates PrtxA independently of H-NS and HlyU, and leucine inhibits Lrp binding to PrtxA and reduces the Lrp-mediated activation. Furthermore, a cyclic AMP receptor protein (CRP) represses PrtxA, and exogenous glucose relieves the CRP-mediated repression. Biochemical and mutational analyses demonstrated that CRP binds directly and specifically to the upstream region of PrtxA, which presumably alters the DNA conformation in PrtxA and thus represses rtxA. Moreover, CRP represses expression of lrp and hlyU by binding directly to their upstream regions, forming coherent feed-forward loops with Lrp and HlyU. In conclusion, expression of rtxA is controlled by a regulatory network comprising CRP, Lrp, H-NS, and HlyU in response to changes in host environmental signals such as leucine and glucose. This collaborative regulation enables the elaborate expression of rtxA, thereby enhancing the fitness and pathogenesis of V. vulnificus during the course of infection.
Collapse
|
32
|
LaSarre B, Deutschbauer AM, Love CE, McKinlay JB. Covert Cross-Feeding Revealed by Genome-Wide Analysis of Fitness Determinants in a Synthetic Bacterial Mutualism. Appl Environ Microbiol 2020; 86:e00543-20. [PMID: 32332139 PMCID: PMC7301861 DOI: 10.1128/aem.00543-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Microbial interactions abound in natural ecosystems and shape community structure and function. Substantial attention has been given to cataloging mechanisms by which microbes interact, but there is a limited understanding of the genetic landscapes that promote or hinder microbial interactions. We previously developed a mutualistic coculture pairing Escherichia coli and Rhodopseudomonas palustris, wherein E. coli provides carbon to R. palustris in the form of glucose fermentation products and R. palustris fixes N2 gas and provides nitrogen to E. coli in the form of NH4+ The stable coexistence and reproducible trends exhibited by this coculture make it ideal for interrogating the genetic underpinnings of a cross-feeding mutualism. Here, we used random barcode transposon sequencing (RB-TnSeq) to conduct a genome-wide search for E. coli genes that influence fitness during cooperative growth with R. palustris RB-TnSeq revealed hundreds of genes that increased or decreased E. coli fitness in a mutualism-dependent manner. Some identified genes were involved in nitrogen sensing and assimilation, as expected given the coculture design. The other identified genes were involved in diverse cellular processes, including energy production and cell wall and membrane biogenesis. In addition, we discovered unexpected purine cross-feeding from R. palustris to E. coli, with coculture rescuing growth of an E. coli purine auxotroph. Our data provide insight into the genes and gene networks that can influence a cross-feeding mutualism and underscore that microbial interactions are not necessarily predictable a prioriIMPORTANCE Microbial communities impact life on Earth in profound ways, including driving global nutrient cycles and influencing human health and disease. These community functions depend on the interactions that resident microbes have with the environment and each other. Thus, identifying genes that influence these interactions will aid the management of natural communities and the use of microbial consortia as biotechnology. Here, we identified genes that influenced Escherichia coli fitness during cooperative growth with a mutualistic partner, Rhodopseudomonas palustris Although this mutualism centers on the bidirectional exchange of essential carbon and nitrogen, E. coli fitness was positively and negatively affected by genes involved in diverse cellular processes. Furthermore, we discovered an unexpected purine cross-feeding interaction. These results contribute knowledge on the genetic foundation of a microbial cross-feeding interaction and highlight that unanticipated interactions can occur even within engineered microbial communities.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Crystal E Love
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
33
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
34
|
Torres Montaguth OE, Bervoets I, Peeters E, Charlier D. Competitive Repression of the artPIQM Operon for Arginine and Ornithine Transport by Arginine Repressor and Leucine-Responsive Regulatory Protein in Escherichia coli. Front Microbiol 2019; 10:1563. [PMID: 31354664 PMCID: PMC6640053 DOI: 10.3389/fmicb.2019.01563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 11/20/2022] Open
Abstract
Two out of the three major uptake systems for arginine in Escherichia coli are encoded by the artJ-artPIQM gene cluster. ArtJ is the high-affinity periplasmic arginine-specific binding protein (ArgBP-I), whereas artI encodes the arginine and ornithine periplasmic binding protein (AO). Both ArtJ and ArtI are supposed to combine with the inner membrane-associated ArtQMP2 transport complex of the ATP-binding cassette-type (ABC). Transcription of artJ is repressed by arginine repressor (ArgR) and the artPIQM operon is regulated by the transcriptional regulators ArgR and Leucine-responsive regulatory protein (Lrp). Whereas repression by ArgR requires arginine as corepressor, repression of PartP by Lrp is partially counteracted by leucine, its major effector molecule. We demonstrate that binding of dimeric Lrp to the artP control region generates four complexes with a distinct migration velocity, and that leucine has an effect on both global binding affinity and cooperativity in the binding. We identify the binding sites for Lrp in the artP control region, reveal interferences in the binding of ArgR and Lrp in vitro and demonstrate that the two transcription factors act as competitive repressors in vivo, each one being a more potent regulator in the absence of the other. This competitive behavior may be explained by the partial steric overlap of their respective binding sites. Furthermore, we demonstrate ArgR binding to an unusual position in the control region of the lrp gene, downstream of the transcription initiation site. From this unusual position for an ArgR-specific operator, ArgR has little direct effect on lrp expression, but interferes with the negative leucine-sensitive autoregulation exerted by Lrp. Direct arginine and ArgR-dependent repression of lrp could be observed with a 25-bp deletion mutant, in which the ArgR binding site was artificially moved to a position immediately downstream of the lrp transcription initiation site. This finding is reminiscent of a previous observation made for the carAB operon encoding carbamoylphosphate synthase, where ArgR bound in overlap with the downstream promoter P2 does not block transcription initiated 67 bp upstream at the P1 promoter, and further supports the hypothesis that ArgR does not act as an efficient roadblock.
Collapse
Affiliation(s)
- Oscar E Torres Montaguth
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
35
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
36
|
Shukla S, Mahadevan S. The ridA gene of E. coli is indirectly regulated by BglG through the transcriptional regulator Lrp in stationary phase. Microbiology (Reading) 2019; 165:683-696. [DOI: 10.1099/mic.0.000806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shambhavi Shukla
- 1 Department of Molecular Reproduction, Development and Genetics Indian Institute of Science, Bangalore 560012, India
| | - S. Mahadevan
- 1 Department of Molecular Reproduction, Development and Genetics Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
37
|
Kroner GM, Wolfe MB, Freddolino L. Escherichia coli Lrp Regulates One-Third of the Genome via Direct, Cooperative, and Indirect Routes. J Bacteriol 2019; 201:e00411-18. [PMID: 30420454 PMCID: PMC6349092 DOI: 10.1128/jb.00411-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
The global regulator Lrp plays a crucial role in regulating metabolism, virulence, and motility in response to environmental conditions. Lrp has previously been shown to activate or repress approximately 10% of the genes in Escherichia coli However, the full spectrum of targets, and how Lrp acts to regulate them, have stymied earlier study. We have combined matched chromatin-immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) under nine physiological conditions to comprehensively map the binding and regulatory activity of Lrp as it directs responses to nutrient abundance. In addition to identifying hundreds of novel Lrp targets, we observe two new global trends, as follows: first, that Lrp will often bind to promoters in a poised position under conditions when it has no regulatory activity to enable combinatorial interactions with other regulators, and second, that nutrient levels induce a global shift in the equilibrium between less-sequence-specific and more-sequence-specific DNA binding. The overall regulatory behavior of Lrp, which as we now show extends to 38% of E. coli genes directly or indirectly under at least one condition, thus arises from the interaction between changes in Lrp binding specificity and cooperative action with other regulators.IMPORTANCE To survive, bacteria such as E. coli must rapidly respond to changing environmental conditions, including nutrient levels. A decrease in nutrient availability causes bacteria to stop rapid replication and enter stationary phase, where they perform limited to no cell division. The E. coli global regulatory protein Lrp has been previously implicated in modulating the expression of genes particularly important at this transition from rapid to slowed growth. Here, we monitor Lrp's DNA binding locations and effect on gene expression under three different nutrient conditions across three growth stages. We find that Lrp's role is even broader than previously suspected and that it appears to interact with many other bacterial regulators to perform its function in a condition-specific manner.
Collapse
Affiliation(s)
- Grace M Kroner
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Cellular Biotechnology Training Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael B Wolfe
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Sander T, Farke N, Diehl C, Kuntz M, Glatter T, Link H. Allosteric Feedback Inhibition Enables Robust Amino Acid Biosynthesis in E. coli by Enforcing Enzyme Overabundance. Cell Syst 2019; 8:66-75.e8. [PMID: 30638812 PMCID: PMC6345581 DOI: 10.1016/j.cels.2018.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/08/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Microbes must ensure robust amino acid metabolism in the face of external and internal perturbations. This robustness is thought to emerge from regulatory interactions in metabolic and genetic networks. Here, we explored the consequences of removing allosteric feedback inhibition in seven amino acid biosynthesis pathways in Escherichia coli (arginine, histidine, tryptophan, leucine, isoleucine, threonine, and proline). Proteome data revealed that enzyme levels decreased in five of the seven dysregulated pathways. Despite that, flux through the dysregulated pathways was not limited, indicating that enzyme levels are higher than absolutely needed in wild-type cells. We showed that such enzyme overabundance renders the arginine, histidine, and tryptophan pathways robust against perturbations of gene expression, using a metabolic model and CRISPR interference experiments. The results suggested a sensitive interaction between allosteric feedback inhibition and enzyme-level regulation that ensures robust yet efficient biosynthesis of histidine, arginine, and tryptophan in E. coli. Amino acid biosynthesis enzymes do not normally operate at maximum capacity Allosteric feedback inhibition ensures that enzymes are overabundant Enzyme overabundance provides robustness against decreases in gene expression
Collapse
Affiliation(s)
- Timur Sander
- Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Niklas Farke
- Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Christoph Diehl
- Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Michelle Kuntz
- Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany.
| |
Collapse
|
39
|
Gao Y, Yurkovich JT, Seo SW, Kabimoldayev I, Dräger A, Chen K, Sastry AV, Fang X, Mih N, Yang L, Eichner J, Cho BK, Kim D, Palsson BO. Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Res 2018; 46:10682-10696. [PMID: 30137486 PMCID: PMC6237786 DOI: 10.1093/nar/gky752] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 02/03/2023] Open
Abstract
Transcriptional regulation enables cells to respond to environmental changes. Of the estimated 304 candidate transcription factors (TFs) in Escherichia coli K-12 MG1655, 185 have been experimentally identified, but ChIP methods have been used to fully characterize only a few dozen. Identifying these remaining TFs is key to improving our knowledge of the E. coli transcriptional regulatory network (TRN). Here, we developed an integrated workflow for the computational prediction and comprehensive experimental validation of TFs using a suite of genome-wide experiments. We applied this workflow to (i) identify 16 candidate TFs from over a hundred uncharacterized genes; (ii) capture a total of 255 DNA binding peaks for ten candidate TFs resulting in six high-confidence binding motifs; (iii) reconstruct the regulons of these ten TFs by determining gene expression changes upon deletion of each TF and (iv) identify the regulatory roles of three TFs (YiaJ, YdcI, and YeiE) as regulators of l-ascorbate utilization, proton transfer and acetate metabolism, and iron homeostasis under iron-limited conditions, respectively. Together, these results demonstrate how this workflow can be used to discover, characterize, and elucidate regulatory functions of uncharacterized TFs in parallel.
Collapse
Affiliation(s)
- Ye Gao
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - James T Yurkovich
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ilyas Kabimoldayev
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Andreas Dräger
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Center for Bioinformatics Tübingen (ZBIT), 72076 Tübingen, Germany
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Ke Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xin Fang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathan Mih
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Laurence Yang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Johannes Eichner
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Center for Bioinformatics Tübingen (ZBIT), 72076 Tübingen, Germany
| | - Byung-Kwan Cho
- Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghyuk Kim
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
40
|
Newly Identified Nucleoid-Associated-Like Protein YlxR Regulates Metabolic Gene Expression in Bacillus subtilis. mSphere 2018; 3:3/5/e00501-18. [PMID: 30355672 PMCID: PMC6200986 DOI: 10.1128/msphere.00501-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Expression of genes encoding NAPs is often temporally regulated. According to results from single-cell analysis, the ylxR gene is induced by glucose and expressed in a bistable mode. These characteristics have not previously been reported for NAP gene expression. Transcriptional profiling of the ylxR disruptant revealed a change in the expression levels of approximately 400 genes, including genes for synthesis of 12 amino acids and 4 nucleotides, in addition to the SigX/M regulons. Thus, YlxR is a critical regulator of glucose response in B. subtilis. Glucose is the most favorable carbon source for the majority of bacteria, which have several glucose-responsive gene networks. Recently, we found that in Bacillus subtilis, glucose induces expression of the extracellular sigma factor genes sigX/M. To explore the factors affecting this phenomenon, we performed a transposon mutagenesis screen for mutants with no glucose induction (GI) of sigX-lacZ and identified ylxR. YlxR is widely conserved in eubacteria. Further analysis revealed that ylxR is induced by glucose addition. In vitro DNA-binding and cytological studies suggested that YlxR is a nucleoid-associated protein (NAP) in B. subtilis. In many cases, NAPs influence transcription, recombination, and genome stability. Thus, we performed transcriptome sequencing (RNA-Seq) analysis to evaluate the impact of ylxR disruption on the transcriptome in the presence of glucose and observed that YlxR has a profound impact on metabolic gene expression in addition to that of four sigma factor genes. The wide fluctuations of gene expression may result in abolition of GI of sigX/M in the ylxR disruptant. IMPORTANCE Expression of genes encoding NAPs is often temporally regulated. According to results from single-cell analysis, the ylxR gene is induced by glucose and expressed in a bistable mode. These characteristics have not previously been reported for NAP gene expression. Transcriptional profiling of the ylxR disruptant revealed a change in the expression levels of approximately 400 genes, including genes for synthesis of 12 amino acids and 4 nucleotides, in addition to the SigX/M regulons. Thus, YlxR is a critical regulator of glucose response in B. subtilis.
Collapse
|
41
|
Mouammine A, Eich K, Frandi A, Collier J. Control of proline utilization by the Lrp-like regulator PutR in Caulobacter crescentus. Sci Rep 2018; 8:14677. [PMID: 30279528 PMCID: PMC6168545 DOI: 10.1038/s41598-018-32660-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
Cellular metabolism recently emerged as a central player modulating the bacterial cell cycle. The Alphaproteobacterium Caulobacter crescentus appears as one of the best models to study these connections, but its metabolism is still poorly characterized. Considering that it lives in oligotrophic environments, its capacity to use amino-acids is often critical for its growth. Here, we characterized the C. crescentus PutA bi-functional enzyme and showed that it is required for the utilization of proline as a carbon source. We also found that putA transcription and proline utilization by PutA are strictly dependent on the Lrp-like PutR activator. The activation of putA by PutR needs proline, which most likely acts as an effector molecule for PutR. Surprisingly, we also observed that an over-production of PutR leads to cell elongation in liquid medium containing proline, while it inhibits colony formation even in the absence of proline on solid medium. These cell division and growth defects were equally pronounced in a ΔputA mutant background, indicating that PutR can play other roles beyond the control of proline catabolism. Altogether, these findings suggest that PutR might connect central metabolism with cell cycle processes.
Collapse
Affiliation(s)
- Annabelle Mouammine
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Katharina Eich
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Antonio Frandi
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland.
| |
Collapse
|
42
|
Ciaccia PN, Ramachandran R, Chattoraj DK. A Requirement for Global Transcription Factor Lrp in Licensing Replication of Vibrio cholerae Chromosome 2. Front Microbiol 2018; 9:2103. [PMID: 30250457 PMCID: PMC6139311 DOI: 10.3389/fmicb.2018.02103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
The human pathogen, Vibrio cholerae, belongs to the 10% of bacteria in which the genome is divided. Each of its two chromosomes, like bacterial chromosomes in general, replicates from a unique origin at fixed times in the cell cycle. Chr1 initiates first, and upon duplication of a site in Chr1, crtS, Chr2 replication initiates. Recent in vivo experiments demonstrate that crtS binds the Chr2-specific initiator RctB and promotes its initiator activity by remodeling it. Compared to the well-defined RctB binding sites in the Chr2 origin, crtS is an order of magnitude longer, suggesting that other factors can bind to it. We developed an in vivo screen to identify additional crtS-binding proteins and identified the global transcription factor, Lrp, as one such protein. Studies in vivo and in vitro indicate that Lrp binds to crtS and facilitates RctB binding to crtS. Chr2 replication is severely defective in the absence of Lrp, indicative of a critical role of the transcription factor in licensing Chr2 replication. Since Lrp responds to stresses such as nutrient limitation, its interaction with RctB presumably sensitizes Chr2 replication to the physiological state of the cell.
Collapse
Affiliation(s)
| | - Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
43
|
Santos-Zavaleta A, Sánchez-Pérez M, Salgado H, Velázquez-Ramírez DA, Gama-Castro S, Tierrafría VH, Busby SJW, Aquino P, Fang X, Palsson BO, Galagan JE, Collado-Vides J. A unified resource for transcriptional regulation in Escherichia coli K-12 incorporating high-throughput-generated binding data into RegulonDB version 10.0. BMC Biol 2018; 16:91. [PMID: 30115066 PMCID: PMC6094552 DOI: 10.1186/s12915-018-0555-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our understanding of the regulation of gene expression has benefited from the availability of high-throughput technologies that interrogate the whole genome for the binding of specific transcription factors and gene expression profiles. In the case of widely used model organisms, such as Escherichia coli K-12, the new knowledge gained from these approaches needs to be integrated with the legacy of accumulated knowledge from genetic and molecular biology experiments conducted in the pre-genomic era in order to attain the deepest level of understanding possible based on the available data. RESULTS In this paper, we describe an expansion of RegulonDB, the database containing the rich legacy of decades of classic molecular biology experiments supporting what we know about gene regulation and operon organization in E. coli K-12, to include the genome-wide dataset collections from 32 ChIP and 19 gSELEX publications, in addition to around 60 genome-wide expression profiles relevant to the functional significance of these datasets and used in their curation. Three essential features for the integration of this information coming from different methodological approaches are: first, a controlled vocabulary within an ontology for precisely defining growth conditions; second, the criteria to separate elements with enough evidence to consider them involved in gene regulation from isolated transcription factor binding sites without such support; and third, an expanded computational model supporting this knowledge. Altogether, this constitutes the basis for adequately gathering and enabling the comparisons and integration needed to manage and access such wealth of knowledge. CONCLUSIONS This version 10.0 of RegulonDB is a first step toward what should become the unifying access point for current and future knowledge on gene regulation in E. coli K-12. Furthermore, this model platform and associated methodologies and criteria can be emulated for gathering knowledge on other microbial organisms.
Collapse
Affiliation(s)
- Alberto Santos-Zavaleta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | - Mishael Sánchez-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | - Heladia Salgado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | | | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | | | - Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts USA
| | - Xin Fang
- Department of Bioengineering, University of California San Diego, La Jolla, California USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California USA
- Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - James E. Galagan
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts USA
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts USA
| |
Collapse
|
44
|
Abstract
When faced with amino acid starvation, prokaryotic cells induce a stringent response that modulates their physiology. The stringent response is manifested by production of signaling molecules guanosine 5'-diphosphate,3'-diphosphate (ppGpp) and guanosine 5'-triphosphate,3'-diphosphate (pppGpp) that are also called alarmones. In many species, alarmone levels are regulated by a multidomain bifunctional alarmone synthetase/hydrolase called Rel. In this enzyme, there is an ACT domain at the carboxyl region that has an unknown function; however, similar ACT domains are present in other enzymes that have roles in controlling amino acid metabolism. In many cases, these other ACT domains have been shown to allosterically regulate enzyme activity through the binding of amino acids. Here, we show that the ACT domain present in the Rhodobacter capsulatus Rel alarmone synthetase/hydrolase binds branched-chain amino acids valine and isoleucine. We further show that the binding of these amino acids stimulates alarmone hydrolase activity both in vitro and in vivo. Furthermore, we found that the ACT domain present in Rel proteins from many diverse species also binds branched-chain amino acids. These results indicate that the cellular concentration of amino acids can directly affect Rel alarmone synthetase/hydrolase activity, thus adding another layer of control to current models of cellular control of the stringent response.
Collapse
Affiliation(s)
- Mingxu Fang
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Carl E Bauer
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|
45
|
Latif H, Federowicz S, Ebrahim A, Tarasova J, Szubin R, Utrilla J, Zengler K, Palsson BO. ChIP-exo interrogation of Crp, DNA, and RNAP holoenzyme interactions. PLoS One 2018; 13:e0197272. [PMID: 29771928 PMCID: PMC5957442 DOI: 10.1371/journal.pone.0197272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Numerous in vitro studies have yielded a refined picture of the structural and molecular associations between Cyclic-AMP receptor protein (Crp), the DNA motif, and RNA polymerase (RNAP) holoenzyme. In this study, high-resolution ChIP-exonuclease (ChIP-exo) was applied to study Crp binding in vivo and at genome-scale. Surprisingly, Crp was found to provide little to no protection of the DNA motif under activating conditions. Instead, Crp demonstrated binding patterns that closely resembled those generated by σ70. The binding patterns of both Crp and σ70 are indicative of RNAP holoenzyme DNA footprinting profiles associated with stages during transcription initiation that occur post-recruitment. This is marked by a pronounced advancement of the template strand footprint profile to the +20 position relative to the transcription start site and a multimodal distribution on the nontemplate strand. This trend was also observed in the familial transcription factor, Fnr, but full protection of the motif was seen in the repressor ArcA. Given the time-scale of ChIP studies and that the rate-limiting step in transcription initiation is typically post recruitment, we propose a hypothesis where Crp is absent from the DNA motif but remains associated with RNAP holoenzyme post-recruitment during transcription initiation. The release of Crp from the DNA motif may be a result of energetic changes that occur as RNAP holoenzyme traverses the various stable intermediates towards elongation complex formation.
Collapse
Affiliation(s)
- Haythem Latif
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Stephen Federowicz
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
| | - Ali Ebrahim
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
| | - Janna Tarasova
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
| | - Richard Szubin
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
| | - Jose Utrilla
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
| | - Karsten Zengler
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard O. Palsson
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
46
|
Jers C, Ravikumar V, Lezyk M, Sultan A, Sjöling Å, Wai SN, Mijakovic I. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators. Front Cell Infect Microbiol 2018; 7:537. [PMID: 29376036 PMCID: PMC5768985 DOI: 10.3389/fcimb.2017.00537] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/26/2017] [Indexed: 01/16/2023] Open
Abstract
Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination of immuno-enrichment of acetylated peptides and high resolution mass spectrometry, we identified 3,402 acetylation sites on 1,240 proteins. Of the acetylated proteins, more than half were acetylated on two or more sites. As reported for other bacteria, we observed that many of the acetylated proteins were involved in metabolic and cellular processes and there was an over-representation of acetylated proteins involved in protein synthesis. Of interest, we demonstrated that many global transcription factors such as CRP, H-NS, IHF, Lrp and RpoN as well as transcription factors AphB, TcpP, and PhoB involved in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes.
Collapse
Affiliation(s)
- Carsten Jers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vaishnavi Ravikumar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mateusz Lezyk
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Abida Sultan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sun N Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
47
|
Ishii Y, Akasaka N, Sakoda H, Hidese R, Fujiwara S. Leucine responsive regulatory protein is involved in methionine metabolism and polyamine homeostasis in acetic acid bacterium Komagataeibacter europaeus. J Biosci Bioeng 2018; 125:67-75. [DOI: 10.1016/j.jbiosc.2017.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/03/2017] [Accepted: 07/31/2017] [Indexed: 01/29/2023]
|
48
|
Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Proc Natl Acad Sci U S A 2017; 115:222-227. [PMID: 29255023 DOI: 10.1073/pnas.1716056115] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic robustness, regulation, and areas of kinetic limitation. In this study, whole-genome sequencing and high-resolution 13C-metabolic flux analysis were performed on 10 adaptively evolved pgi knockouts of Escherichia coliPgi catalyzes the first reaction in glycolysis, and its loss results in major physiological and carbon catabolism pathway changes, including an 80% reduction in growth rate. Following adaptive laboratory evolution (ALE), the knockouts increase their growth rate by up to 3.6-fold. Through combined genomic-fluxomic analysis, we characterized the mutations and resulting metabolic fluxes that enabled this fitness recovery. Large increases in pyridine cofactor transhydrogenase flux, correcting imbalanced production of NADPH and NADH, were enabled by direct mutations to the transhydrogenase genes sthA and pntAB The phosphotransferase system component crr was also found to be frequently mutated, which corresponded to elevated flux from pyruvate to phosphoenolpyruvate. The overall energy metabolism was found to be strikingly robust, and what have been previously described as latently activated Entner-Doudoroff and glyoxylate shunt pathways are shown here to represent no real increases in absolute flux relative to the wild type. These results indicate that the dominant mechanism of adaptation was to relieve the rate-limiting steps in cofactor metabolism and substrate uptake and to modulate global transcriptional regulation from stress response to catabolism.
Collapse
|
49
|
Gonzalez JE, Bennett RK, Papoutsakis ET, Antoniewicz MR. Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein. Metab Eng 2017; 45:67-74. [PMID: 29203222 DOI: 10.1016/j.ymben.2017.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
Methane, the main component of natural gas, can be used to produce methanol which can be further converted to other valuable products. There is increasing interest in using biological systems for the production of fuels and chemicals from methanol, termed methylotrophy. In this work, we have examined methanol assimilation metabolism in a synthetic methylotrophic E. coli strain. Specifically, we applied 13C-tracers and evaluated 25 different co-substrates for methanol assimilation, including amino acids, sugars and organic acids. In particular, co-utilization of threonine significantly enhanced methylotrophy. Through our investigations, we proposed specific metabolic pathways that, when activated, correlated with increased methanol assimilation. These pathways are normally repressed by the leucine-responsive regulatory protein (lrp), a global regulator of metabolism associated with the feast-or-famine response in E. coli. By deleting lrp, we were able to further enhance the methylotrophic ability of our synthetic strain, as demonstrated through increased incorporation of 13C carbon from 13C-methanol into biomass.
Collapse
Affiliation(s)
- Jacqueline E Gonzalez
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - R Kyle Bennett
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - E Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
50
|
Stringent Response Regulators Contribute to Recovery from Glucose Phosphate Stress in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.01636-17. [PMID: 28986375 DOI: 10.1128/aem.01636-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
In enteric bacteria such as Escherichia coli, the transcription factor SgrR and the small RNA SgrS regulate the response to glucose phosphate stress, a metabolic dysfunction that results in growth inhibition and stems from the intracellular accumulation of sugar phosphates. SgrR activates the transcription of sgrS, and SgrS helps to rescue cells from stress in part by inhibiting the uptake of stressor sugar phosphates. While the regulatory targets of this stress response are well described, less is known about how the SgrR-SgrS response itself is regulated. To further characterize the regulation of the glucose phosphate stress response, we screened global regulator gene mutants for growth changes during glucose phosphate stress. We found that deleting dksA, which encodes a regulator of the stringent response to nutrient starvation, decreases growth under glucose phosphate stress conditions. The stringent response alarmone regulator ppGpp (synthesized by RelA and SpoT) also contributes to recovery from glucose phosphate stress: as with dksA, mutating relA and spoT worsens the growth defect of an sgrS mutant during stress, although the sgrS relA spoT mutant defect was only detectable under lower stress levels. In addition, mutating dksA or relA and spoT lowers sgrS expression (as measured with a P sgrS -lacZ fusion), suggesting that the observed growth defects may be due to decreased induction of the glucose phosphate stress response or related targets. This regulatory effect could occur through altered sgrR transcription, as dksA and relA spoT mutants also exhibit decreased expression of a P sgrR -lacZ fusion. Taken together, this work supports a role for stringent response regulators in aiding the recovery from glucose phosphate stress.IMPORTANCE Glucose phosphate stress leads to growth inhibition in bacteria such as Escherichia coli when certain sugar phosphates accumulate in the cell. The transcription factor SgrR and the small RNA SgrS alleviate this stress in part by preventing further sugar phosphate transport. While the regulatory mechanisms of this response have been characterized, the regulation of the SgrR-SgrS response itself is not as well understood. Here, we describe a role for stringent response regulators DksA and ppGpp in the response to glucose phosphate stress. sgrS dksA and sgrS relA spoT mutants exhibit growth defects under glucose phosphate stress conditions. These defects may be due to a decrease in stress response induction, as deleting dksA or relA and spoT also results in decreased expression of sgrS and sgrR This research presents one of the first regulatory effects on the glucose phosphate stress response outside SgrR and SgrS and depicts a novel connection between these two metabolic stress responses.
Collapse
|