1
|
Ma Y, Zhao Y, Zhang JF, Bi W. Efficient and accurate framework for genome-wide gene-environment interaction analysis in large-scale biobanks. Nat Commun 2025; 16:3064. [PMID: 40157913 PMCID: PMC11955004 DOI: 10.1038/s41467-025-57887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025] Open
Abstract
Gene-environment interaction (G×E) analysis elucidates the interplay between genetic and environmental factors. Genome-wide association studies (GWAS) have expanded to encompass complex traits like time-to-event and ordinal traits, which provide richer phenotypic information. However, most existing scalable approaches focus only on quantitative or binary traits. Here we propose SPAGxECCT, a scalable and accurate framework for diverse trait types. SPAGxECCT fits a genotype-independent model and employs a hybrid strategy including saddlepoint approximation (SPA) for accurate p value calculation, especially for low-frequency variants and unbalanced phenotypic distributions. We extend SPAGxECCT to SPAGxEmixCCT, which accounts for population stratification and is applicable to multi-ancestry or admixed populations. SPAGxEmixCCT can further be extended to SPAGxEmixCCT-local, which identifies ancestry-specific G×E effects using local ancestry. Through extensive simulations and real data analyses of UK Biobank data, we demonstrate that SPAGxECCT and SPAGxEmixCCT are scalable to analyze large-scale study cohort, control type I error rates effectively, and maintain power.
Collapse
Affiliation(s)
- Yuzhuo Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanlong Zhao
- State Key Laboratory of Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Feng Zhang
- State Key Laboratory of Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Bi
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China.
- Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China.
- Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China.
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Pawar K, Gupta PP, Solanki PS, Niraj RRK, Kothari SL. Downregulation of solute carrier family 4 members 4 as a biomarker for colorectal cancer. Discov Oncol 2025; 16:229. [PMID: 39988623 PMCID: PMC11847767 DOI: 10.1007/s12672-025-01948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Colorectal cancer (CRC) is one of the major cancer types associated with increased mortality worldwide. Hence, identifying reliable biomarkers make it very essential for early diagnosis and prognosis of CRC. Numerous studies have been conducted to decipher molecular mechanisms underlying CRC, however more deep insightful knowledge is the need of the hour. The purpose of this study was to identify promising key candidate genes in colorectal cancer (CRC) and assess their expression and clinical significance. To clarify and verify promising key biomarkers with signal transduction pathways in colorectal cancer, we integrated 11 microarray datasets from NCBI-GEO. This study utilized multiple bioinformatics tools and databases, including OncoDB, GEO2R, UALCAN, GEIPA, TIMER, and DAVID. The gene expression profiles of eleven datasets (GSE10714, GSE113513, GSE13471, GSE15960, GSE24514, GSE32323, GSE41258, GSE4183, GSE44076, GSE44861, GSE9348) were screened. In 11 gene expression profiles, 3 downregulated genes were identified and validated by databases such as OncoDB, UALCAN, GEIPA and TIMER. Downregulation of SLC4A4 with significant predictive value was validated by multi-omic data analysis and validated by Gene Expression Omnibus (GEO). GEIPA survival analysis showed that low SLC4A4 expression correlated with poorer overall survival among CRC patients. Based on this study, we identified SLC4A4 as a potential candidate biomarker for colorectal cancer (CRC), enabling early diagnosis and prognosis with molecular targeted therapy.
Collapse
Affiliation(s)
- Krunal Pawar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Pramodkumar P Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to Be University, Navi-Mumbai, Maharashtra, 400614, India
| | - Pooran Singh Solanki
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Off Campus Jaipur, Jaipur, India, Rajasthan, 302001
| | - Ravi Ranjan Kumar Niraj
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India.
| |
Collapse
|
3
|
Brown N, Luniewski A, Yu X, Warthan M, Liu S, Zulawinska J, Ahmad S, Congdon M, Santos W, Xiao F, Guler JL. Replication stress increases de novo CNVs across the malaria parasite genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629492. [PMID: 39803504 PMCID: PMC11722320 DOI: 10.1101/2024.12.19.629492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Changes in the copy number of large genomic regions, termed copy number variations (CNVs), contribute to important phenotypes in many organisms. CNVs are readily identified using conventional approaches when present in a large fraction of the cell population. However, CNVs that are present in only a few genomes across a population are often overlooked but important; if beneficial under specific conditions, a de novo CNV that arises in a single genome can expand during selection to create a larger population of cells with novel characteristics. While the reach of single cell methods to study de novo CNVs is increasing, we continue to lack information about CNV dynamics in rapidly evolving microbial populations. Here, we investigated de novo CNVs in the genome of the Plasmodium parasite that causes human malaria. The highly AT-rich P. falciparum genome readily accumulates CNVs that facilitate rapid adaptation to new drugs and host environments. We employed a low-input genomics approach optimized for this unique genome as well as specialized computational tools to evaluate the de novo CNV rate both before and after the application of stress. We observed a significant increase in genomewide de novo CNVs following treatment with a replication inhibitor. These stress-induced de novo CNVs encompassed genes that contribute to various cellular pathways and tended to be altered in clinical parasite genomes. This snapshot of CNV dynamics emphasizes the connection between replication stress, DNA repair, and CNV generation in this important microbial pathogen.
Collapse
Affiliation(s)
- Noah Brown
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | | | - Xuanxuan Yu
- Unifersity of Florida, Department of Biostatistics, Gainesville, FL, USA
- Unifersity of Florida, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Michelle Warthan
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | - Shiwei Liu
- University of Virginia, Department of Biology, Charlottesville, VA, USA
- Current affiliation: Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julia Zulawinska
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | - Syed Ahmad
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | - Molly Congdon
- Virginia Tech, Department of Chemistry, Blacksburg, VA, USA
| | - Webster Santos
- Virginia Tech, Department of Chemistry, Blacksburg, VA, USA
| | - Feifei Xiao
- Unifersity of Florida, Department of Biostatistics, Gainesville, FL, USA
| | - Jennifer L Guler
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| |
Collapse
|
4
|
Ariyannur P, Menon VP, Pavithran K, Paulose RR, Joy RA, Vasudevan DM. Molecular pathogenesis of microsatellite instability-high early-stage colorectal adenocarcinoma in India. Drug Metab Pers Ther 2024; 39:125-135. [PMID: 39042905 DOI: 10.1515/dmpt-2024-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES The prevalence of microsatellite instability (MSI) subtype among all colon cancers in India is about 30 %, approximately two times more than that of western population suggesting different molecular pathogeneses. METHODS A NanoString analysis-based Pan cancer differential expression (DE) profile was determined in a primary cohort of early-stage CRC (tumor=10, normal=7), and correlated against MSI status. Using RT-PCR, tumor-specific DE genes were validated in another cohort of MSI-high CRC (n=15). RESULTS Among the most differentially expressed genes, AXIN2, ETV4, and RNF43 were tumor cell-specific signals, while a set of genes including COL11A1, COMP, INHBA, SPP1, MMP3, TLR2, and others were immune cell-specific signals, that had a differential expression between MSI and MSS groups. When overlapped with The Cancer Genome Atlas (TCGA) studies using the Tumor immune estimation resource tool (TIMER), and protein-protein interaction analysis by STRING.db, these genes were segregated to representative tumor cells and immune cells. On validation, the tumor-specific gene signals were inversely associated with TLR4 expression. CONCLUSIONS The differential expression distribution of AXIN2, ETV4, and RNF43 among tumor and immune cells, suggests more than one pathological subset in the MSI-H subgroup of early-stage CRC in the Indian population.
Collapse
Affiliation(s)
- Prasanth Ariyannur
- Molecular Oncology Laboratory, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Health Sciences Research, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Veena P Menon
- Department of Virology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Roopa R Paulose
- Department of Pathology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Reenu A Joy
- Molecular Oncology Laboratory, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Damodaran M Vasudevan
- Department of Health Sciences Research, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
5
|
Purohit G, Ghosh P, Khalimonchuk O. Mitochondrial metallopeptidase OMA1 in cancer. Adv Cancer Res 2024; 162:75-97. [PMID: 39069370 DOI: 10.1016/bs.acr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Our understanding of the roles that mitochondria play in cellular physiology has evolved drastically-from a mere cellular energy supplier to a crucial regulator of metabolic and signaling processes, particularly in the context of development and progression of human diseases such as cancers. The present review examines the role of OMA1, a conserved, redox-sensitive metallopeptidase in cancer biology. OMA1's involvement in mitochondrial quality control, redox activity, and stress responses underscores its potential as a novel target in cancer diagnosis and treatment. However, our incomplete understanding of OMA1's regulation and structural detail presents ongoing challenges to target OMA1 for therapeutic purposes. Further exploration of OMA1 holds promise in uncovering novel insights into cancer mechanisms and therapeutic strategies. In this chapter, we briefly summarize our current knowledge about OMA1, its redox-regulation, and emerging role in certain cancers.
Collapse
Affiliation(s)
- Gunjan Purohit
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Polash Ghosh
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States; Nebraska Redox Biology Center, Lincoln, NE, United States; Fred & Pamela Buffett Cancer Center, Omaha, NE, United States.
| |
Collapse
|
6
|
Zhou Y, Chen X, Chen J, Kendrick CD, Ramanathan RK, Graham RP, Kossick KF, Boardman LA, Barrett MT. Genomic landscape of diploid and aneuploid microsatellite stable early onset colorectal cancer. Sci Rep 2024; 14:9368. [PMID: 38654044 DOI: 10.1038/s41598-024-59398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Although colorectal cancer (CRC) remains the second leading cause of cancer-related death in the United States, the overall incidence and mortality from the disease have declined in recent decades. In contrast, there has been a steady increase in the incidence of CRC in individuals under 50 years of age. Hereditary syndromes contribute disproportionately to early onset CRC (EOCRC). These include microsatellite instability high (MSI+) tumors arising in patients with Lynch Syndrome. However, most EOCRCs are not associated with familial syndromes or MSI+ genotypes. Comprehensive genomic profiling has provided the basis of improved more personalized treatments for older CRC patients. However, less is known about the basis of sporadic EOCRC. To define the genomic landscape of EOCRC we used DNA content flow sorting to isolate diploid and aneuploid tumor fractions from 21 non-hereditary cases. We then generated whole exome mutational profiles for each case and whole genome copy number, telomere length, and EGFR immunohistochemistry (IHC) analyses on subsets of samples. These results discriminate the molecular features of diploid and aneuploid EOCRC and provide a basis for larger population-based studies and the development of effective strategies to monitor and treat this emerging disease.
Collapse
Affiliation(s)
- Yumei Zhou
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Xianfeng Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Conner D Kendrick
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramesh K Ramanathan
- Mayo Clinic Cancer Center, Phoenix, AZ, 85054, USA
- Ironwood Cancer and Research Center, Scottsdale, AZ, 85260, USA
| | | | - Kimberlee F Kossick
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lisa A Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael T Barrett
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
7
|
Hu H, Umair M, Khan SA, Sani AI, Iqbal S, Khalid F, Sultan R, Abdel-Maksoud MA, Mubarak A, Dawoud TM, Malik A, Saleh IA, Al Amri AA, Algarzae NK, Kodous AS, Hameed Y. CDCA8, a mitosis-related gene, as a prospective pan-cancer biomarker: implications for survival prognosis and oncogenic immunology. Am J Transl Res 2024; 16:432-445. [PMID: 38463578 PMCID: PMC10918119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Human cell division cycle-associated protein 8 (CDCA8), a critical regulator of mitosis, has been identified as a prospective prognostic biomarker in several cancer types, including breast, colon, and lung cancers. This study analyzed the diagnostic/prognostic potential and clinical implications of CDCA8 across diverse cancers. METHODS Bioinformatics and molecular experiments. RESULTS Analyzing TCGA data via TIMER2 and GEPIA2 databases revealed significant up-regulation of CDCA8 in 23 cancer types compared to normal tissues. Prognostically, elevated CDCA8 expression correlated with poorer overall survival in KIRC, LUAD, and SKCM, emphasizing its potential as a prognostic marker. UALCAN analysis demonstrated CDCA8 up-regulation based on clinical variables, such as cancer stage, race, and gender, in these cancers. Epigenetic exploration indicated reduced CDCA8 promoter methylation levels in Kidney Renal Clear Cell Carcinoma (KIRC), Lung Adenocarcinoma (LUAD), and Skin Cutaneous Melanoma (SKCM) tissues compared to normal controls. Promoter methylation and mutational analyses showcased a hypomethylation and low mutation rate for CDCA8 in these cancers. Correlation analysis revealed positive associations between CDCA8 expression and infiltrating immune cells, particularly CD8+ and CD4+ T cells. Protein-protein interaction (PPI) network analysis unveiled key interacting proteins, while gene enrichment analysis highlighted their involvement in crucial cellular processes and pathways. Additionally, exploration of CDCA8-associated drugs through DrugBank presented potential therapeutic options for KIRC, LUAD, and SKCM. In vitro validation using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) confirmed elevated CDCA8 expression in LUAD cell lines (A549 and H1299) compared to control cell lines (Beas-2B and NL-20). CONCLUSION This study provides concise insights into CDCA8's multifaceted role in KIRC, LUAD, and SKCM, covering expression patterns, diagnostic and prognostic relevance, epigenetic regulation, mutational landscape, immune infiltration, and therapeutic implications.
Collapse
Affiliation(s)
- Hanjie Hu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Muhammad Umair
- Department of Physiology, Gomal Medical College, MTIDera Ismail Khan, Pakistan
| | - Sikandar Ali Khan
- Department of Biochemistry Khyber Girls Medical CollegePeshawar, Pakistan
| | - Aliya Irshad Sani
- Department of Biochemistry, Ziauddin Medical CollegeKarachi 74700, Pakistan
| | - Sahar Iqbal
- Department of Pathology, Azra Naheed Medical CollegeLahore 54000, Pakistan
| | - Fatima Khalid
- Department of Pathology, Al Aleem Medical CollegeLahore, Pakistan
| | - Rizwana Sultan
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal SciencesBahawalpur, Pakistan
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud UniversitySaudi Arabia
| | | | - Abdul Aziz Al Amri
- Biochemistry Department, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah Khaled Algarzae
- Department of Physiology, College of Medicine, King Saud UniversityRiyadh 11149, Saudi Arabia
| | - Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA)Egypt
- Department of Molecular Oncology, Cancer Institute (WIA)38, Sardar Patel Road, Chennai, P.O. Box 600036, Tamilnadu, India
| | - Yasir Hameed
- Department of Biotechnology, Institute of Biochemistry Biotechnology and Bioinformatics, The Islamia University of BahawalpurBahawalpur 63100, Pakistan
| |
Collapse
|
8
|
Dai J, Zheng S, Falco MM, Bao J, Eriksson J, Pikkusaari S, Forstén S, Jiang J, Wang W, Gao L, Perez-Villatoro F, Dufva O, Saeed K, Wang Y, Amiryousefi A, Färkkilä A, Mustjoki S, Kauppi L, Tang J, Vähärautio A. Tracing back primed resistance in cancer via sister cells. Nat Commun 2024; 15:1158. [PMID: 38326354 PMCID: PMC10850087 DOI: 10.1038/s41467-024-45478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Exploring non-genetic evolution of cell states during cancer treatments has become attainable by recent advances in lineage-tracing methods. However, transcriptional changes that drive cells into resistant fates may be subtle, necessitating high resolution analysis. Here, we present ReSisTrace that uses shared transcriptomic features of sister cells to predict the states priming treatment resistance. Applying ReSisTrace in ovarian cancer cells perturbed with olaparib, carboplatin or natural killer (NK) cells reveals pre-resistant phenotypes defined by proteostatic and mRNA surveillance features, reflecting traits enriched in the upcoming subclonal selection. Furthermore, we show that DNA repair deficiency renders cells susceptible to both DNA damaging agents and NK killing in a context-dependent manner. Finally, we leverage the obtained pre-resistance profiles to predict and validate small molecules driving cells to sensitive states prior to treatment. In summary, ReSisTrace resolves pre-existing transcriptional features of treatment vulnerability, facilitating both molecular patient stratification and discovery of synergistic pre-sensitizing therapies.
Collapse
Affiliation(s)
- Jun Dai
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shuyu Zheng
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matías M Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jie Bao
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Eriksson
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sanna Pikkusaari
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sofia Forstén
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jing Jiang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wenyu Wang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Luping Gao
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Fernando Perez-Villatoro
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine, Helsinki, Finland
| | - Olli Dufva
- Research Program in Translational Immunology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Khalid Saeed
- Research Program in Translational Immunology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yinyin Wang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, and Clinical Trial Unit, Comprehensive Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | - Satu Mustjoki
- Research Program in Translational Immunology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liisa Kauppi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
9
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
10
|
Risinskaya N, Gladysheva M, Abdulpatakhov A, Chabaeva Y, Surimova V, Aleshina O, Yushkova A, Dubova O, Kapranov N, Galtseva I, Kulikov S, Obukhova T, Sudarikov A, Parovichnikova E. DNA Copy Number Alterations and Copy Neutral Loss of Heterozygosity in Adult Ph-Negative Acute B-Lymphoblastic Leukemia: Focus on the Genes Involved. Int J Mol Sci 2023; 24:17602. [PMID: 38139431 PMCID: PMC10744257 DOI: 10.3390/ijms242417602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The landscape of chromosomal aberrations in the tumor cells of the patients with B-ALL is diverse and can influence the outcome of the disease. Molecular karyotyping at the onset of the disease using chromosomal microarray (CMA) is advisable to identify additional molecular factors associated with the prognosis of the disease. Molecular karyotyping data for 36 patients with Ph-negative B-ALL who received therapy according to the ALL-2016 protocol are presented. We analyzed copy number alterations and their prognostic significance for CDKN2A/B, DMRTA, DOCK8, TP53, SMARCA2, PAX5, XPA, FOXE1, HEMGN, USP45, RUNX1, NF1, IGF2BP1, ERG, TMPRSS2, CRLF2, FGFR3, FLNB, IKZF1, RUNX2, ARID1B, CIP2A, PIK3CA, ATM, RB1, BIRC3, MYC, IKZF3, ETV6, ZNF384, PTPRJ, CCL20, PAX3, MTCH2, TCF3, IKZF2, BTG1, BTG2, RAG1, RAG2, ELK3, SH2B3, EP300, MAP2K2, EBI3, MEF2D, MEF2C, CEBPA, and TBLXR1 genes, choosing t(4;11) and t(7;14) as reference events. Of the 36 patients, only 5 (13.8%) had a normal molecular karyotype, and 31 (86.2%) were found to have various molecular karyotype abnormalities-104 deletions, 90 duplications or amplifications, 29 cases of cnLOH and 7 biallelic/homozygous deletions. We found that 11q22-23 duplication involving the BIRC3, ATM and MLL genes was the most adverse prognostic event in the study cohort.
Collapse
Affiliation(s)
- Natalya Risinskaya
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Maria Gladysheva
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Abdulpatakh Abdulpatakhov
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Yulia Chabaeva
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Valeriya Surimova
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Olga Aleshina
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Anna Yushkova
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Olga Dubova
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Nikolay Kapranov
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Irina Galtseva
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Sergey Kulikov
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Tatiana Obukhova
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Andrey Sudarikov
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| | - Elena Parovichnikova
- National Medical Research Center for Hematology, 125167 Moscow, Russia; (M.G.); (A.A.); (Y.C.); (V.S.); (O.A.); (A.Y.); (O.D.); (N.K.); (I.G.); (S.K.); (A.S.); (E.P.)
| |
Collapse
|
11
|
Sutherland RL, Boyne DJ, Brenner DR, Cheung WY. The Impact of BRAF Mutation Status on Survival Outcomes and Treatment Patterns among Metastatic Colorectal Cancer Patients in Alberta, Canada. Cancers (Basel) 2023; 15:5748. [PMID: 38136294 PMCID: PMC10741517 DOI: 10.3390/cancers15245748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer presents via multiple different clinical phenotypes that can arise from a variety of different genetic and molecular alterations. The aim of this study was to describe survival outcomes and treatment patterns of metastatic colorectal cancer (mCRC) patients by v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation status. The Alberta Cancer Registry was used to identify all patients >18 years old who had been diagnosed with mCRC in Alberta between 1 January 2017 and 31 December 2019 and had received at least one cycle of systemic therapy. Treatment patterns were compared between wild-type and mutant BRAF mCRC patients. Cox regression models and Kaplan-Meier curves were created to assess survival differences by both treatment pattern and BRAF status. A total of 488 patients were identified with mCRC, of which 42 (11.4%) were confirmed to have a BRAF mutation. The most common first-line treatment regimen was either capecitabine and oxaliplatin (CAPOX) or leucovorin calcium (folinic acid), fluorouracil, and oxaliplatin (FOLFOX). The median overall survival for mCRC patients was 20.01 months. Mutant BRAF patients had a median survival of 8.21 months compared to 20.03 months among those with wild-type BRAF. BRAF mutations among mCRC patients are associated with a considerably poor prognosis, reinforcing the need for clinical BRAF testing among newly diagnosed patients to better understand their prognosis.
Collapse
Affiliation(s)
- R. Liam Sutherland
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Devon J. Boyne
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Darren R. Brenner
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Winson Y. Cheung
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
12
|
Gadwal A, Purohit P, Khokhar M, Vishnoi JR, Pareek P, Choudhary R, Elhence P, Banerjee M, Sharma P. In silico analysis of differentially expressed-aberrantly methylated genes in breast cancer for prognostic and therapeutic targets. Clin Exp Med 2023; 23:3847-3866. [PMID: 37029310 DOI: 10.1007/s10238-023-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
Breast cancer (BC) is the leading cause of death among women across the globe. Abnormal gene expression plays a crucial role in tumour progression, carcinogenesis and metastasis of BC. The alteration of gene expression may be through aberrant gene methylation. In the present study, differentially expressed genes which may be regulated by DNA methylation and their pathways associated with BC have been identified. Expression microarray datasets GSE10780, GSE10797, GSE21422, GSE42568, GSE61304, GSE61724 and one DNA methylation profile dataset GSE20713 were downloaded from Gene Expression Omnibus database (GEO). Differentially expressed-aberrantly methylated genes were identified using online Venn diagram tool. Based on fold change expression of differentially expressed-aberrantly methylated genes were chosen through heat map. Protein-protein interaction (PPI) network of the hub genes was constructed by Search Tool for the Retrieval of Interacting Genes (STRING). Gene expression and DNA methylation level of the hub genes were validated through UALCAN. Overall survival analysis of the hub genes was analysed through Kaplan-Meier plotter database for BC. A total of 72 upregulated-hypomethylated genes and 92 downregulated-hypermethylated genes were obtained from GSE10780, GSE10797, GSE21422, GSE42568, GSE61304, GSE61724, and GSE20713 datasets by GEO2R and Venn diagram tool. PPI network of the upregulated-hypomethylated hub genes (MRGBP, MANF, ARF3, HIST1H3D, GSK3B, HJURP, GPSM2, MATN3, KDELR2, CEP55, GSPT1, COL11A1, and COL1A1) and downregulated-hypermethylated hub genes were constructed (APOD, DMD, RBPMS, NR3C2, HOXA9, AMKY2, KCTD9, and EDN1). All the differentially expressed hub genes expression was validated in UALCAN database. 4 in 13 upregulated-hypomethylated and 5 in 8 downregulated-hypermethylated hub genes to be significantly hypomethylated or hypermethylated in BC were confirmed using UALCAN database (p < 0.05). MANF, HIST1H3D, HJURP, GSK3B, GPSM2, MATN3, KDELR2, CEP55, COL1A1, APOD, RBPMS, NR3C2, HOXA9, ANKMY2, and EDN1 were significantly (p < 0.05) associated with poor overall survival (OS). The identified aberrantly methylated-differentially expressed genes and their related pathways and function in BC can serve as novel diagnostic and prognostic biomarkers and therapeutic targets.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 4 Given name: [Jeewan Ram] Last name [Vishnoi]. Also, kindly confirm the details in the metadata are correct.It is correct.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India.
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| |
Collapse
|
13
|
Niknafs N, Balan A, Cherry C, Hummelink K, Monkhorst K, Shao XM, Belcaid Z, Marrone KA, Murray J, Smith KN, Levy B, Feliciano J, Hann CL, Lam V, Pardoll DM, Karchin R, Seiwert TY, Brahmer JR, Forde PM, Velculescu VE, Anagnostou V. Persistent mutation burden drives sustained anti-tumor immune responses. Nat Med 2023; 29:440-449. [PMID: 36702947 PMCID: PMC9941047 DOI: 10.1038/s41591-022-02163-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/30/2022] [Indexed: 01/27/2023]
Abstract
Tumor mutation burden is an imperfect proxy of tumor foreignness and has therefore failed to consistently demonstrate clinical utility in predicting responses in the context of immunotherapy. We evaluated mutations in regions of the genome that are unlikely to undergo loss in a pan-cancer analysis across 31 tumor types (n = 9,242) and eight immunotherapy-treated cohorts of patients with non-small-cell lung cancer, melanoma, mesothelioma, and head and neck cancer (n = 524). We discovered that mutations in single-copy regions and those present in multiple copies per cell constitute a persistent tumor mutation burden (pTMB) which is linked with therapeutic response to immune checkpoint blockade. Persistent mutations were retained in the context of tumor evolution under selective pressure of immunotherapy and tumors with a high pTMB content were characterized by a more inflamed tumor microenvironment. pTMB imposes an evolutionary bottleneck that cancer cells cannot overcome and may thus drive sustained immunologic tumor control in the context of immunotherapy.
Collapse
Affiliation(s)
- Noushin Niknafs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Archana Balan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Cherry
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Kim Monkhorst
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Xiaoshan M Shao
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zineb Belcaid
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen A Marrone
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Murray
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kellie N Smith
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin Levy
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josephine Feliciano
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine L Hann
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincent Lam
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Karchin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tanguy Y Seiwert
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie R Brahmer
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick M Forde
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Huang W, Ho CL, Lee CT, Chen WL, Yang SC, Chow NH, Chen YL. High concordance rate of capillary electrophoresis workflow for microsatellite instability analysis and mismatch repair (MMR) immunostaining in colorectal carcinoma. PLoS One 2023; 18:e0284227. [PMID: 37098015 PMCID: PMC10128978 DOI: 10.1371/journal.pone.0284227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
Microsatellite instability (MSI) is the primary predictive biomarker for therapeutic efficacies of cancer immunotherapies. Establishment of the MSI detection methods with high sensitivity and accessibility is important. Because MSI is mainly caused by defects in DNA mismatch repair (MMR), immunohistochemical (IHC) staining for the MMR proteins has been widely employed to predict the responses to immunotherapies. Thus, due to the high sensitivity of PCR, the MSI-PCR analysis has also been recommended as the primary approach as MMR IHC. This study aimed to develop a sensitive and convenient platform for daily MSI-PCR services. The routine workflow used a non-labeling QIAxcel capillary electrophoresis system which did not need the fluorescence labeling of the DNA products or usage of a multi-color fluorescence reader. Furthermore, the 15 and 1000 bp size alignment markers were used to precisely detect the size of the DNA product. A cohort of 336 CRC cases was examined by MSI-PCR on the five mononucleotide MSI markers recommended by ESMO. The PCR products were analyzed in the screening gels, followed by high-resolution gel electrophoresis for confirmation if needed. In the MSI-PCR tests, 90.1% (303/336) cases showed clear major shift patterns in the screening gels, and only 33 cases had to be re-examined using the high-resolution gels. The cohort was also analyzed by MMR IHC is, which revealed 98.5% (331/336) concordance with MSI-PCR. In the five discordant cases, 4 (3 MSI-L and 1 MSS) showed MSH6 loss. Besides, one case exhibited MSI-H but no loss in the MMR IHC. Further NGS analysis, in this case, found that missense and frameshift mutations in the PMS2 and MSH6 genes occurred, respectively. In conclusion, the non-labeling MSI-PCR capillary electrophoresis revealed high concordance with the MMR IHC analysis and is cost- and time-effective. Therefore, it shall be highly applicable in clinical laboratories.
Collapse
Affiliation(s)
- Wenya Huang
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Li Chen
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shu-Ching Yang
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Cheruba E, Viswanathan R, Wong PM, Womersley HJ, Han S, Tay B, Lau Y, Gan A, Poon PSY, Skanderup A, Ng SB, Chok AY, Chong DQ, Tan IB, Cheow LF. Heat selection enables highly scalable methylome profiling in cell-free DNA for noninvasive monitoring of cancer patients. SCIENCE ADVANCES 2022; 8:eabn4030. [PMID: 36083902 PMCID: PMC9462700 DOI: 10.1126/sciadv.abn4030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/22/2022] [Indexed: 06/01/2023]
Abstract
Genome-wide analysis of cell-free DNA methylation profile is a promising approach for sensitive and specific detection of many cancers. However, scaling such assays for clinical translation is impractical because of the high cost of whole-genome bisulfite sequencing. We show that the small fraction of GC-rich genome is highly enriched in CpG sites and disproportionately harbors most of the cancer-specific methylation signature. Here, we report on the simple and effective heat enrichment of CpG-rich regions for bisulfite sequencing (Heatrich-BS) platform that allows for focused methylation profiling in these highly informative regions. Our novel method and bioinformatics algorithm enable accurate tumor burden estimation and quantitative tracking of colorectal cancer patient's response to treatment at much reduced sequencing cost suitable for frequent monitoring. We also show tumor epigenetic subtyping using Heatrich-BS, which could enable patient stratification. Heatrich-BS holds great potential for highly scalable screening and monitoring of cancer using liquid biopsy.
Collapse
Affiliation(s)
- Elsie Cheruba
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Ramya Viswanathan
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Pui-Mun Wong
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
| | - Howard John Womersley
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Brenda Tay
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Yiting Lau
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
| | - Anna Gan
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
| | - Polly S. Y. Poon
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
| | - Anders Skanderup
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Sarah B. Ng
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
| | - Aik Yong Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Dawn Qingqing Chong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Iain Beehuat Tan
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore 138672, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
16
|
Responses to the Tepotinib in Gastric Cancers with MET Amplification or MET Exon 14 Skipping Mutations and High Expression of Both PD-L1 and CD44. Cancers (Basel) 2022; 14:cancers14143444. [PMID: 35884507 PMCID: PMC9318186 DOI: 10.3390/cancers14143444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Both MET exon 14 skipping mutation (METex14SM) and high copy-number variation (CNV) lead to enhanced carcinogenesis; additionally, programmed-death ligand 1 (PD-L1) is often upregulated in cancers. In this study, we characterized the expression of MET (including METex14SM), PD-L1, and CD44 in human gastric cancer (GC) cells as well as the differential susceptibility of these cells to tepotinib. Tepotinib treatments inhibited the growth of five GC cells in a dose-dependent manner with a concomitant induction of cell death. Tepotinib treatments also significantly reduced the expression of phospho-MET, total MET, c-Myc, VEGFR2, and Snail protein in SNU620, MKN45, and Hs746T cells. Notably, tepotinib significantly reduced the expression of CD44 and PD-L1 in METex14SM Hs746T cells. By contrast, tepotinib was only slightly active against SNU638 and KATO III cells. Migration was reduced to a greater extent in the tepotinib-treated group than in the control group. Tepotinib may have therapeutic effects on c-MET-amplified GC, a high expression of both PD-L1 and CD44, and METex14SM. Clinical studies are needed to confirm these therapeutic effects.
Collapse
|
17
|
Li F, Wen H, Bukhari I, Liu B, Guo C, Ren F, Tang Y, Mi Y, Zheng P. Relationship Between CNVs and Immune Cells Infiltration in Gastric Tumor Microenvironment. Front Genet 2022; 13:869967. [PMID: 35754804 PMCID: PMC9214698 DOI: 10.3389/fgene.2022.869967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer (GC) is a highly fatal and common malignancy of the digestive system. Recent therapeutic advancements have significantly improved the clinical outcomes in GC, but due to the unavailability of suitable molecular targets, a large number of patients do not respond to the immune checkpoint inhibitors (ICI) therapy. To identify and validate potential therapeutic and prognostic targets of gastric cancer, we used the “inferCNV” R package for analyzing single-cell sequencing data (GSE112302) of GC and normal epithelial cells. First, by using LASSO, we screened genes that were highly correlated with copy number variations (CNVs). Therefrom, five gene signature (CPVL, DDC, GRTP1, ONECUT2, and PRSS21) was selected by cross-validating the prognosis and risk management with the GC RNA-seq data obtained from GEO and TCGA. Moreover, the correlation analyses between CNVs of these genes and immune cell infiltration in gastric cancer identified CPVL as a potential prognostic marker. Finally, CPVL showed high expression in gastric cancer samples and cell lines, then siRNA-mediated silencing of CPVL expression in gastric cancer cells showed significant proliferation arrest in MGC803 cells. Here, we conclude that CNVs are key regulators of the immune cells infiltration in gastric TME as well as cancer development, and CPVL could potentially be used as a prognostic and therapeutic marker in gastric cancer.
Collapse
Affiliation(s)
- Fazhan Li
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Huijuan Wen
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Liu
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Chenxu Guo
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - FeiFei Ren
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Youcai Tang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Hong C, Thiele R, Feuerbach L. GenomeTornadoPlot: a novel R package for CNV visualization and focality analysis. Bioinformatics 2022; 38:2036-2038. [PMID: 35099519 PMCID: PMC8963283 DOI: 10.1093/bioinformatics/btac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/21/2021] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Analysis of focal copy number variations (CNVs) is highly relevant for cancer research, as they pinpoint driver genes. More specifically, due to selective pressure oncogenes and tumor suppressor genes are more often affected by these events than neighboring passengers. In cases where multiple candidates co-reside in a genomic locus, careful comparison is required to either identify multigenic minimally deleted regions of synergistic co-mutations, or the true single driver gene. The study of focal CNVs in large cancer genome cohorts requires specialized visualization and statistical analysis. RESULTS We developed the GenomeTornadoPlot R-package which generates gene-centric visualizations of CNV types, locations and lengths from cohortwise NGS data. Furthermore, the software enables the pairwise comparison of proximate genes to identify co-mutation patterns or driver-passenger hierarchies. The visual examination provided by GenomeTornadoPlot is further supported by adaptable local and global focality scoring. Integrated into the GenomeTornadoPlot R-Package is the comprehensive PCAWG database of CNVs, comprising 2976 cancer genome entities from 46 cohorts of the Pan-cancer Analysis of Whole Genomes project. The GenomeTornadoPlot R-package can be used to perform exploratory or hypothesis-driven analyses on the basis of the PCAWG data or in combination with data provided by the user. AVAILABILITY AND IMPLEMENTATION GenomeTornadoPlot is written in R script and released via github: <https://github.com/chenhong-dkfz/GenomeTornadoPlot/>. The package is under the license of GPL-3.0.
Collapse
Affiliation(s)
- Chen Hong
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Robin Thiele
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | | |
Collapse
|
19
|
Hussen BM, Abdullah ST, Salihi A, Sabir DK, Sidiq KR, Rasul MF, Hidayat HJ, Ghafouri-Fard S, Taheri M, Jamali E. The emerging roles of NGS in clinical oncology and personalized medicine. Pathol Res Pract 2022; 230:153760. [PMID: 35033746 DOI: 10.1016/j.prp.2022.153760] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has been increasingly popular in genomics studies over the last decade, as new sequencing technology has been created and improved. Recently, NGS started to be used in clinical oncology to improve cancer therapy through diverse modalities ranging from finding novel and rare cancer mutations, discovering cancer mutation carriers to reaching specific therapeutic approaches known as personalized medicine (PM). PM has the potential to minimize medical expenses by shifting the current traditional medical approach of treating cancer and other diseases to an individualized preventive and predictive approach. Currently, NGS can speed up in the early diagnosis of diseases and discover pharmacogenetic markers that help in personalizing therapies. Despite the tremendous growth in our understanding of genetics, NGS holds the added advantage of providing more comprehensive picture of cancer landscape and uncovering cancer development pathways. In this review, we provided a complete overview of potential NGS applications in scientific and clinical oncology, with a particular emphasis on pharmacogenomics in the direction of precision medicine treatment options.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq; Department of Biology, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Dana Khdr Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Karzan R Sidiq
- Department of Biology, College of Education, University of Sulaimani, Sulaimani 334, Kurdistan, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Jangde S, Purohit MR, Saraf F, Merchant N, Bhaskar LVKS. Dietary Phytocompounds for Colon Cancer Therapy. ONCO THERAPEUTICS 2022; 9:69-82. [DOI: 10.1615/oncotherap.2022046215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
21
|
Bou Malhab LJ, Abdel-Rahman WM. Obesity and Inflammation: Colorectal Cancer Engines. Curr Mol Pharmacol 2022; 15:620-646. [PMID: 34488607 DOI: 10.2174/1874467214666210906122054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
The prevalence of obesity continues to increase to the extent that it became a worldwide pandemic. An accumulating body of evidence has associated obesity with the development of different types of cancer, including colorectal cancer, which is a notorious disease with a high mortality rate. At the molecular level, colorectal cancer is a heterogenous disease characterized by a myriad of genetic and epigenetic alterations associated with various forms of genomic instability (detailed in Supplementary Materials). Recently, the microenvironment has emerged as a major factor in carcinogenesis. Our aim is to define the different molecular alterations leading to the development of colorectal cancer in obese patients with a focus on the role of the microenvironment in carcinogenesis. We also highlight all existent molecules in clinical trials that target the activated pathways in obesity-associated colorectal cancer, whether used as single treatments or in combination. Obesity predisposes to colorectal cancer via creating a state of chronic inflammation with dysregulated adipokines, inflammatory mediators, and other factors such as immune cell infiltration. A unifying theme in obesity-mediated colorectal cancer is the activation of the PI3K/AKT, mTOR/MAPK, and STAT3 signaling pathways. Different inhibitory molecules towards these pathways exist, increasing the therapeutic choice of obesity-associated colon cancer. However, obese patients are more likely to suffer from chemotherapy overdosing. Preventing obesity through maintaining a healthy and active lifestyle remains to be the best remedy.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
22
|
Rasool M, Carracedo A, Sibiany A, Al-Sayes F, Karim S, Haque A, Natesan Pushparaj P, Asif M, Achakzai NM. Discovery of a novel and a rare Kristen rat sarcoma viral oncogene homolog (KRAS) gene mutation in colorectal cancer patients. Bioengineered 2021; 12:5099-5109. [PMID: 34369256 PMCID: PMC8806922 DOI: 10.1080/21655979.2021.1960715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most important causes of morbidity and mortality in the developed world and is gradually more frequent in the developing world including Saudi Arabia. According to the Saudi Cancer Registry report 2015, CRC is the most common cancer in men (14.9%) and the second most prevalent cancer. Oncogenic mutations in the KRAS gene play a central role in tumorigenesis and are mutated in 30-40% of all CRC patients. To explore the prevalence of KRAS gene mutations in the Saudi population, we collected 80 CRC tumor tissues and sequenced the KRAS gene using automated sequencing technologies. The chromatograms presented mutations in 26 patients (32.5%) in four different codons, that is, 12, 13, 17, and 31. Most of the mutations were identified in codon 12 in 16 patients (61.5% of all mutations). We identified a novel mutation c.51 G>A in codon 17, where serine was substituted by arginine (S17R) in four patients. We also identified a very rare mutation, c.91 G>A, in which glutamic acid was replaced by lysine (E31K) in three patients. In conclusion, our findings further the knowledge about KRAS mutations in different ethnic groups is indispensable to fully understand their role in the development and progression of CRC.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angel Carracedo
- Genomic Medicine Group, University of Santiago De Compostela, Spain
| | | | - Faten Al-Sayes
- Faculty of Medicine, KAUH, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Absarul Haque
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Asif
- ORIC, Department of Biotechnology, Buitems, Quetta, Pakistan
| | - Niaz M. Achakzai
- Department of Molecular Biology, City Medical Complex, Kabul, Afghanistan
- Department of Molecular Biology, DNA Section, Legal Medicine Directorate, Ministry of Public Health, Kabul, Afghanistan
| |
Collapse
|
23
|
Ariyannur PS, Joy RA, Menon V, Paulose RR, Pavithran K, Vasudevan DM. Pilot Nanostring PanCancer pathway analysis of colon adenocarcinoma in a tertiary healthcare centre in Kerala, India. Ecancermedicalscience 2021; 15:1302. [PMID: 34824625 PMCID: PMC8580724 DOI: 10.3332/ecancer.2021.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 11/26/2022] Open
Abstract
The prevalence of microsatellite instability and deoxyribonucleic acid mismatch repair deficiency in colorectal adenocarcinoma (CRC) cases is higher in India compared to western populations. No major study on the molecular pathogenesis is currently available in the Indian population. We conducted a pilot study to explore the differences in molecular pathogenesis of microsatellite stable (MSS) and microsatellite unstable CRC from a tertiary care centre in Kerala, South India. Using Nanostring PanCancer panel assay in Stage II colorectal adenocarcinoma, tumour tissues (n = 11) were compared against normal colon tissues (n = 4). Differentially expressed (DE) genes were identified and super-imposed onto colon adenocarcinoma cohort of The Cancer Genome Atlas (TCGA) data (TCGA Colon Adenocarcinoma (TCGA COAD)), from the Genome Expression Profiling Interactive Analysis and Tumor Immune Estimation Resource (TIMER) to compare the gene associations. Significant DE genes were 59 out of 730 (false discovery rate adj. p-value < 0.05), 18 of which had a fold-change |FC(log2)| ≥ 2. On superimposition to TCGA COAD, 33 genes were significant in both TCGA and current study. ETV4 was expressed significantly higher in MSS with no immune cell infiltration. Other significant DE genes with high FC(log2), unique to the study were INHBA, COL1A1, COL11A1, COMP, SFRP4 and SPP1, which were clustered in STRING network analysis and correlated with tumour-infiltrating immune cells in TIMER, suggesting a specific interaction pathway. The preliminary study suggests a distinct pathogenesis of MSS CRC involving ETV4 in the Indian population and warrants further clinically extensive and high-dimensional expression studies.
Collapse
Affiliation(s)
- Prasanth S Ariyannur
- Department of Biochemistry and Molecular Biology, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Reenu Anne Joy
- Department of Biochemistry and Molecular Biology, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Veena Menon
- Department of Molecular Biology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Roopa Rachel Paulose
- Department of Pathology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Damodaran M Vasudevan
- Department of Biochemistry and Molecular Biology, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India.,Department of Health Sciences Research, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| |
Collapse
|
24
|
Tang N, Dou X, You X, Shi Q, Ke M, Liu G. Pan-cancer analysis of the oncogenic role of discs large homolog associated protein 5 (DLGAP5) in human tumors. Cancer Cell Int 2021; 21:457. [PMID: 34454476 PMCID: PMC8399833 DOI: 10.1186/s12935-021-02155-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, there have been many studies on the relationship between DLGAP5 and different types of cancers, yet there is no pan-cancer analysis of DLGAP5. Therefore, this study aims to analyze the roles of DLGAP5 in human tumors. METHODS Firstly, we evaluated the expression level of DLGAP5 in 33 types of tumors throughout the datasets of TCGA (Cancer Genome Atlas) and GEO (Gene Expression Synthesis). Secondly, we used the GEPIA2 and Kaplan-Meier plotter to conduct Survival prognosis analysis. Additionally, cBioPortal web was utilized to analyze the genetic alteration of DLGAP5, after which we selected hepatocellular carcinoma (HCC) cell lines to define the function of DLGAP5. Last but not least, we performed immune infiltration analysis and DLGAP5-related gene enrichment analysis. RESULTS DLGAP5 is highly expressed in most type of cancers, and there is a significant correlation between the expression of DLGAP5 and the prognosis of cancer patients. We have observed that DLGAP5 promotes the proliferation and invasion of hepatocellular carcinoma (HCC) cell lines. We also found that DLGAP5 expression was related with the CD8+ T-cell infiltration status in kidney renal clear cell carcinoma, uveal melanoma, and thymoma, and cancer-associated fibroblast infiltration was observed in breast invasive carcinoma, kidney renal papillary cell carcinoma and testicular germ cell tumors. In addition, enrichment analysis revealed that cell cycle- and oocyte meiosis-associated functions were involved in the functional mechanism of DLGAP5. CONCLUSIONS Taken together, our unpresented pan-cancer analysis of DLGAP5 provides a relatively integrative understanding of the oncogenic role of DLGAP5 in various tumors. DLGAP5 may prompt HCC cellular proliferation, invasion and metastasis. All of these provides solid basement and will promote more advanced understanding the role of DLGAP5 in tumorigenesis and development from the perspective of clinical tumor samples and cells.
Collapse
Affiliation(s)
- Neng Tang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 41008, Hunan Province, China
| | - Xiaolin Dou
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 41008, Hunan Province, China
| | - Xing You
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 41008, Hunan Province, China
| | - Qiman Shi
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 41008, Hunan Province, China
| | - Mujing Ke
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 41008, Hunan Province, China.,Department of Ultrasoud, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, China
| | - Guodong Liu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, China. .,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 41008, Hunan Province, China.
| |
Collapse
|
25
|
Lu J, Ding Y, Chen Y, Jiang J, Chen Y, Huang Y, Wu M, Li C, Kong M, Zhao W, Wang H, Zhang J, Li Z, Lu Y, Yu X, Jin K, Zhou D, Zhou T, Teng F, Zhang H, Zhou Z, Wang H, Teng L. Whole-exome sequencing of alpha-fetoprotein producing gastric carcinoma reveals genomic profile and therapeutic targets. Nat Commun 2021; 12:3946. [PMID: 34168152 PMCID: PMC8225795 DOI: 10.1038/s41467-021-24170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Alpha-fetoprotein producing gastric carcinoma (AFPGC) is a rare and aggressive subtype of gastric cancer. However, little is known about the genomic features of this disease. We perform whole-exome sequencing analysis of AFPGC, and identify 34 significantly mutated genes. Somatic copy number alterations analysis reveals several significant focal amplifications (e.g. 19q12, 17q12) and focal deletions (e.g. 1p36.11, 9p21.3), and some of these negatively affect the patient prognosis. Comparative analyses reveal that AFPGC has distinct genomic features from gastric cancer of The Cancer Genome Atlas as well as four molecular subtypes. Several frequently altered genes with potential as therapeutic targets are identified in AFPGC. Further analysis reveals that AFPGC with amplification of CCNE1 at 19q12 and/or ERBB2 at 17q12 show poorer survival and more aggressive. Subsequently, based on our established patient-derived xenograft models for AFPGC, translational research is performed and the therapeutic value of targeting CCNE1 and ERBB2 is validated. In this work, we provide an understanding of genomic characteristics of AFPGC and propose a platform to explore and validate the genome-guided personalized treatment for this disease.
Collapse
Affiliation(s)
- Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengjie Wu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengzhi Li
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenyi Zhao
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yimin Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ketao Jin
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianhua Zhou
- Institute of Gastroenterology, Cancer center, Zhejiang University, Hangzhou, China
| | - Fei Teng
- Hangzhou Oncocare Co. Ltd, Hangzhou, China
| | - Haibin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China.
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine. Genes Dis 2021; 8:133-145. [PMID: 33997160 PMCID: PMC8099693 DOI: 10.1016/j.gendis.2019.10.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular subtypes-based therapies offer new potential framework for desired and precise outcome in clinical settings. Current treatment strategies in colorectal cancer are largely 'one drug fit all' model for patients that display same pathological conditions. However, CRC is a very heterogenous set of malignancy that does not support for above criteria. Each subtype displays different pathological and genetic signatures. Based on these features, therapeutic stratification for individual patients may be designed, which may ultimately lead to improved therapeutic outcomes. In this comprehensive review, we have attempted to briefly outline major CRC pathways. A detailed overview of molecular subtypes and their clinical significance has been discussed. Present and future methods, governing CRC subtyping in the era of personalized therapy with a special emphasis on CMS subtypes of CRC has been reviewed. Together, discovery and validation of new CRC patient stratification methods, screening for novel therapeutic targets, and enhanced diagnosis of CRC may improve the treatment outcome.
Collapse
Affiliation(s)
- Manish Pratap Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Sandhya Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Ashutosh Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Nand K. Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| |
Collapse
|
27
|
Li J, Wang Y, Zheng X, Sheng J, Guo H, Long W, Xu Y. Quantitative evaluation of PTPN22 copy number variation by digital droplet PCR and association with type 2 diabetes risk. Endocr J 2021; 68:153-162. [PMID: 32938833 DOI: 10.1507/endocrj.ej20-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes (T2D) is a chronic endocrine disorder with rapidly increasing prevalence worldwide. Genetic instability leading to metabolic dysfunction plays an important role in T2D susceptibility and progression. Structural alteration in genome, that is, copy number variation (CNV) is emerging as the inherent marker for disease identification. Previous genomic CNV array revealed that protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene was overlapped with a CNV region, however, whether this CNV affected T2D risk remains to be further elucidated. In this study, we first identified divergent distributions of the PTPN22 copy number (CN) between T2D patients and healthy controls in Chinese population (p < 0.01). Risk assessment analysis revealed that the CN gain (OR = 3.28, p < 0.001) was the promising risk factor for T2D. Also, significantly positive correlations of the PTPN22 CNV with fasting plasma glucose and glycated hemoglobin were demonstrated in T2D patients. Statistical association analysis investigated that the T2D individuals carrying CN gain showed higher plasma glucose and lower insulin levels than those carrying CN normal and loss at 60 min/120 min/180 min during an OGTT test. In addition, the PTPN22 CNV had an effect on total cholesterol, and the CN gain presented higher values than the other two CN types. These results suggested that the CN gain types of the PTPN22 gene accompany with the glycometabolism dysregulation, and finally predispose their carriers to T2D; therefore, the PTPN22 CNV may be a promising biomarker for predicting T2D risk, or a clinical target for T2D diagnosis and therapy.
Collapse
Affiliation(s)
- Jiajun Li
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Yue Wang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Xiao Zheng
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Jie Sheng
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Hui Guo
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Wenlin Long
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| |
Collapse
|
28
|
Copy number variation: Characteristics, evolutionary and pathological aspects. Biomed J 2021; 44:548-559. [PMID: 34649833 PMCID: PMC8640565 DOI: 10.1016/j.bj.2021.02.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Copy number variants (CNVs) were the subject of extensive research in the past years. They are common features of the human genome that play an important role in evolution, contribute to population diversity, development of certain diseases, and influence host–microbiome interactions. CNVs have found application in the molecular diagnosis of many diseases and in non-invasive prenatal care, but their full potential is only emerging. CNVs are expected to have a tremendous impact on screening, diagnosis, prognosis, and monitoring of several disorders, including cancer and cardiovascular disease. Here, we comprehensively review basic definitions of the term CNV, outline mechanisms and factors involved in CNV formation, and discuss their evolutionary and pathological aspects. We suggest a need for better defined distinguishing criteria and boundaries between known types of CNVs.
Collapse
|
29
|
Woo XY, Giordano J, Srivastava A, Zhao ZM, Lloyd MW, de Bruijn R, Suh YS, Patidar R, Chen L, Scherer S, Bailey MH, Yang CH, Cortes-Sanchez E, Xi Y, Wang J, Wickramasinghe J, Kossenkov AV, Rebecca VW, Sun H, Mashl RJ, Davies SR, Jeon R, Frech C, Randjelovic J, Rosains J, Galimi F, Bertotti A, Lafferty A, O’Farrell AC, Modave E, Lambrechts D, ter Brugge P, Serra V, Marangoni E, El Botty R, Kim H, Kim JI, Yang HK, Lee C, Dean DA, Davis-Dusenbery B, Evrard YA, Doroshow JH, Welm AL, Welm BE, Lewis MT, Fang B, Roth JA, Meric-Bernstam F, Herlyn M, Davies MA, Ding L, Li S, Govindan R, Isella C, Moscow JA, Trusolino L, Byrne AT, Jonkers J, Bult CJ, Medico E, Chuang JH, PDXNET Consortium BaileyMatthew H.89RebeccaVito W.11DaviesMichael A.26RobinsonPeter N.1SandersonBrian J.1NeuhauserSteven B.4DobroleckiLacey E.23ZhengXiaofeng10MajidiMourad24ZhangRan24ZhangXiaoshan24AkcakanatArgun25EvansKurt W.25YapTimothy A.25LiDali25YucanErkan25LanierChristopher D.25SaridoganTurcin25KirbyBryce P.25HaMin Jin28ChenHuiqin28KopetzScott29MenterDavid G.29ZhangJianhua30WestinShannon N.31KimMichael P.32DaiBingbing32GibbonsDon L.33TapiaCoya34JensenVanessa B.35BoningGao36MinnaJohn D.36ParkHyunsil36TimmonsBrenda C.36GirardLuc36FingermanDylan11LiuQin11SomasundaramRajasekharan11XiaoMin11Yennu-NandaVashisht G.26TetzlaffMichael T.37XuXiaowei37NathansonKatherine L.38CaoSong12ChenFeng12DiPersioJohn F.12LimKian H.12MaCynthia X.12RodriguezFernanda M.12Van TineBrian A.12Wang-GillamAndrea12WendlMichael C.12WuYige12WyczalkowskiMatthew A.12YaoLijun12JayasingheReyka12AftRebecca L.39FieldsRyan C.39LuoJingqin39FuhKatherine C.40ChinVicki13DiGiovannaJohn13GroverJeffrey13KocSoner13SeepoSara13WallaceTiffany41PanChong-Xian42ChenMoon S.Jr42Carvajal-CarmonaLuis G.43KiraneAmanda R.44ChoMay44GandaraDavid R.44RiessJonathan W.44LeTiffany44deVere WhiteRalph W.44TepperClifford G.44ZhangHongyong45CogginsNicole B.45LottPaul45EstradaAna45ToalTed45AranaAlexa Morales45Polanco-EcheverryGuadalupe45RochaSienna45MaAi-Hong43MitsiadesNicholas4647KaocharSalma46O’MalleyBert W.47EllisMatthew J.23HilsenbeckSusan G.23IttmannMichael48, EurOPDX Consortium de BruijnRoebi5ter BruggePetra5CorsoSimona23FioriAlessandro23GiordanoSilvia23van de VenMarieke5PeeperDaniel S.5MillerIan14BernadóCristina17MoranchoBeatriz17RamírezLorena17ArribasJoaquín17PalmerHéctor G.17Piris-GimenezAlejandro17SoucekLaura17DahmaniAhmed18MontaudonElodie18NematiFariba18Dangles-MarieVirginie18DecaudinDidier18Roman-RomanSergio18AlférezDenis G.49SpenceKatherine49ClarkeRobert B.49Bentires-AljMohamed50ChangDavid K.51BiankinAndrew V.51BrunaAlejandra52O’ReillyMartin52CaldasCarlos52CasanovasOriol53Gonzalez-SuarezEva53MuñozPurificacíon53VillanuevaAlberto53ConteNathalie54MasonJeremy54ThorneRoss54MeehanTerrence F.54ParkinsonHelen54DudovaZdenka55KřenekAles55StuchlíkDalibor55ElementoOlivier56InghiramiGiorgio56GolebiewskaAnna57NiclouSimone P.57WismanG. Bea A.58de JongSteven58KralovaPetra59SedlacekRadislav59ClaeysElisa60LeucciEleonora60BorsaniMassimiliano61LanfranconeLuisa61PelicciPier Giuseppe61MælandsmoGunhild Mari62NorumJens Henrik62VinoloEmilie63. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat Genet 2021; 53:86-99. [PMID: 33414553 PMCID: PMC7808565 DOI: 10.1038/s41588-020-00750-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 11/18/2020] [Indexed: 02/03/2023]
Abstract
Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.
Collapse
Grants
- NC/T001267/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- P30 CA016672 NCI NIH HHS
- 29567 Cancer Research UK
- U54 CA233223 NCI NIH HHS
- P30 CA034196 NCI NIH HHS
- P01 CA114046 NCI NIH HHS
- HHSN261201400008C NCI NIH HHS
- P30 CA091842 NCI NIH HHS
- U24 CA224067 NCI NIH HHS
- P50 CA196510 NCI NIH HHS
- U54 CA224070 NCI NIH HHS
- U54 CA224076 NCI NIH HHS
- U54 CA224065 NCI NIH HHS
- U54 CA233306 NCI NIH HHS
- P30 CA010815 NCI NIH HHS
- U24 CA204781 NCI NIH HHS
- U54 CA224083 NCI NIH HHS
- HHSN261201500003C NCI NIH HHS
- HHSN261200800001C NCI NIH HHS
- T32 HG008962 NHGRI NIH HHS
- R50 CA211199 NCI NIH HHS
- P30 CA125123 NCI NIH HHS
- P50 CA070907 NCI NIH HHS
- HHSN261201500003I NCI NIH HHS
- HHSN261200800001E NCI NIH HHS
- P30 CA042014 NCI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- KWF Kankerbestrijding (Dutch Cancer Society)
- Oncode Institute
- Fondazione AIRC under 5 per Mille 2018 - ID. 21091 EU H2020 Research and Innovation Programme, grant agreement no. 731105 European Research Council Consolidator Grant 724748
- EU H2020 Research and Innovation Programme, grant Agreement No. 754923
- EU H2020 Research and Innovation Programme, grant agreement no. 731105 ISCIII - Miguel Servet program CP14/00228 GHD-Pink/FERO Foundation grant
- Fondazione Piemontese per la Ricerca sul Cancro-ONLUS 5 per mille Ministero della Salute 2015
- Korean Health Industry Development Institute HI13C2148
- Korean Health Industry Development Institute HI13C2148 The First Affiliated Hospital of Xi’an Jiaotong University Ewha Womans University Research Grant
- CPRIT RP170691
- SCU | Ignatian Center for Jesuit Education, Santa Clara University
- Breast Cancer Research Foundation (BCRF)
- Fashion Footwear Charitable Foundation of New York The Foundation for Barnes-Jewish Hospital’s Cancer Frontier Fund
- My First AIRC Grant 19047
- Fondazione AIRC under 5 per Mille 2018 - ID. 21091 AIRC Investigator Grants 18532 and 20697 AIRC/CRUK/FC AECC Accelerator Award 22795 Fondazione Piemontese per la Ricerca sul Cancro-ONLUS 5 per mille Ministero della Salute 2015, 2014, 2016 EU H2020 Research and Innovation Programme, grant Agreement No. 754923 EU H2020 Research and Innovation Programme, grant agreement no. 731105
- Science Foundation Ireland (SFI)
- EU H2020 Research and Innovation Programme, grant agreement no. 731105 EU H2020 Research and Innovation Programme, grant Agreement No. 754923 Irish Health Research Board grant ILP-POR-2019-066
- Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- EU H2020 Research and Innovation Programme, grant agreement no. 731105 European Research Council (ERC) Synergy project CombatCancer Oncode Institute
Collapse
Affiliation(s)
- Xing Yi Woo
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Jessica Giordano
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Anuj Srivastava
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Zi-Ming Zhao
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Michael W. Lloyd
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME USA
| | - Roebi de Bruijn
- grid.430814.aNetherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yun-Suhk Suh
- grid.31501.360000 0004 0470 5905College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Rajesh Patidar
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Li Chen
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Sandra Scherer
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Matthew H. Bailey
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah, Salt Lake City, UT USA
| | - Chieh-Hsiang Yang
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Emilio Cortes-Sanchez
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Yuanxin Xi
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jing Wang
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | | | - Vito W. Rebecca
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Hua Sun
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - R. Jay Mashl
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Sherri R. Davies
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Ryan Jeon
- grid.492568.4Seven Bridges Genomics, Charlestown, MA USA
| | | | | | | | - Francesco Galimi
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Andrea Bertotti
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Adam Lafferty
- grid.4912.e0000 0004 0488 7120Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice C. O’Farrell
- grid.4912.e0000 0004 0488 7120Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elodie Modave
- grid.5596.f0000 0001 0668 7884Center for Cancer Biology, VIB, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- grid.5596.f0000 0001 0668 7884Center for Cancer Biology, VIB, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Petra ter Brugge
- grid.430814.aNetherlands Cancer Institute, Amsterdam, the Netherlands
| | - Violeta Serra
- grid.411083.f0000 0001 0675 8654Vall d´Hebron Institute of Oncology, Barcelona, Spain
| | - Elisabetta Marangoni
- grid.418596.70000 0004 0639 6384Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Rania El Botty
- grid.418596.70000 0004 0639 6384Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Hyunsoo Kim
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Jong-Il Kim
- grid.31501.360000 0004 0470 5905College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han-Kwang Yang
- grid.31501.360000 0004 0470 5905College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Charles Lee
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA ,grid.452438.cPrecision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China ,grid.255649.90000 0001 2171 7754Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Dennis A. Dean
- grid.492568.4Seven Bridges Genomics, Charlestown, MA USA
| | | | - Yvonne A. Evrard
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - James H. Doroshow
- grid.48336.3a0000 0004 1936 8075Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD USA
| | - Alana L. Welm
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Bryan E. Welm
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Michael T. Lewis
- grid.39382.330000 0001 2160 926XLester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Bingliang Fang
- grid.240145.60000 0001 2291 4776Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jack A. Roth
- grid.240145.60000 0001 2291 4776Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Funda Meric-Bernstam
- grid.240145.60000 0001 2291 4776Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Meenhard Herlyn
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Michael A. Davies
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Li Ding
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Shunqiang Li
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Ramaswamy Govindan
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Claudio Isella
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Jeffrey A. Moscow
- grid.48336.3a0000 0004 1936 8075Investigational Drug Branch, National Cancer Institute, Bethesda, MD USA
| | - Livio Trusolino
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Annette T. Byrne
- grid.4912.e0000 0004 0488 7120Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jos Jonkers
- grid.430814.aNetherlands Cancer Institute, Amsterdam, the Netherlands
| | - Carol J. Bult
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME USA
| | - Enzo Medico
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Jeffrey H. Chuang
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | | | | |
Collapse
|
30
|
Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int J Mol Sci 2020; 22:ijms22010130. [PMID: 33374459 PMCID: PMC7794761 DOI: 10.3390/ijms22010130] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer, is the second leading cause of cancer-related mortality rates worldwide. Although modern research was able to shed light on the pathogenesis of CRC and provide enhanced screening strategies, the prevalence of CRC is still on the rise. Studies showed several cellular signaling pathways dysregulated in CRC, leading to the onset of malignant phenotypes. Therefore, analyzing signaling pathways involved in CRC metastasis is necessary to elucidate the underlying mechanism of CRC progression and pharmacotherapy. This review focused on target genes as well as various cellular signaling pathways including Wnt/β-catenin, p53, TGF-β/SMAD, NF-κB, Notch, VEGF, and JAKs/STAT3, which are associated with CRC progression and metastasis. Additionally, alternations in methylation patterns in relation with signaling pathways involved in regulating various cellular mechanisms such as cell cycle, transcription, apoptosis, and angiogenesis as well as invasion and metastasis were also reviewed. To date, understanding the genomic and epigenomic instability has identified candidate biomarkers that are validated for routine clinical use in CRC management. Nevertheless, better understanding of the onset and progression of CRC can aid in the development of early detection molecular markers and risk stratification methods to improve the clinical care of CRC patients.
Collapse
|
31
|
Rabadán R, Mohamedi Y, Rubin U, Chu T, Alghalith AN, Elliott O, Arnés L, Cal S, Obaya ÁJ, Levine AJ, Cámara PG. Identification of relevant genetic alterations in cancer using topological data analysis. Nat Commun 2020; 11:3808. [PMID: 32732999 PMCID: PMC7393176 DOI: 10.1038/s41467-020-17659-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
Large-scale cancer genomic studies enable the systematic identification of mutations that lead to the genesis and progression of tumors, uncovering the underlying molecular mechanisms and potential therapies. While some such mutations are recurrently found in many tumors, many others exist solely within a few samples, precluding detection by conventional recurrence-based statistical approaches. Integrated analysis of somatic mutations and RNA expression data across 12 tumor types reveals that mutations of cancer genes are usually accompanied by substantial changes in expression. We use topological data analysis to leverage this observation and uncover 38 elusive candidate cancer-associated genes, including inactivating mutations of the metalloproteinase ADAMTS12 in lung adenocarcinoma. We show that ADAMTS12-/- mice have a five-fold increase in the susceptibility to develop lung tumors, confirming the role of ADAMTS12 as a tumor suppressor gene. Our results demonstrate that data integration through topological techniques can increase our ability to identify previously unreported cancer-related alterations.
Collapse
Affiliation(s)
- Raúl Rabadán
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave., New York, NY, 10032, USA.
| | - Yamina Mohamedi
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Oviedo, Asturias, Spain
- IUOPA, Instituto Universitario de Oncologia, Oviedo, Asturias, Spain
| | - Udi Rubin
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave., New York, NY, 10032, USA
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Tim Chu
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave., New York, NY, 10032, USA
| | - Adam N Alghalith
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Oliver Elliott
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave., New York, NY, 10032, USA
| | - Luis Arnés
- Departments of Systems Biology and Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave., New York, NY, 10032, USA
| | - Santiago Cal
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Oviedo, Asturias, Spain
- IUOPA, Instituto Universitario de Oncologia, Oviedo, Asturias, Spain
| | - Álvaro J Obaya
- IUOPA, Instituto Universitario de Oncologia, Oviedo, Asturias, Spain
- Departamento de Biologia Funcional, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Arnold J Levine
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, 08540, USA.
| | - Pablo G Cámara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Khalil AIS, Khyriem C, Chattopadhyay A, Sanyal A. Hierarchical discovery of large-scale and focal copy number alterations in low-coverage cancer genomes. BMC Bioinformatics 2020; 21:147. [PMID: 32299346 PMCID: PMC7160937 DOI: 10.1186/s12859-020-3480-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background Detection of DNA copy number alterations (CNAs) is critical to understand genetic diversity, genome evolution and pathological conditions such as cancer. Cancer genomes are plagued with widespread multi-level structural aberrations of chromosomes that pose challenges to discover CNAs of different length scales, and distinct biological origins and functions. Although several computational tools are available to identify CNAs using read depth (RD) signal, they fail to distinguish between large-scale and focal alterations due to inaccurate modeling of the RD signal of cancer genomes. Additionally, RD signal is affected by overdispersion-driven biases at low coverage, which significantly inflate false detection of CNA regions. Results We have developed CNAtra framework to hierarchically discover and classify ‘large-scale’ and ‘focal’ copy number gain/loss from a single whole-genome sequencing (WGS) sample. CNAtra first utilizes a multimodal-based distribution to estimate the copy number (CN) reference from the complex RD profile of the cancer genome. We implemented Savitzky-Golay smoothing filter and Modified Varri segmentation to capture the change points of the RD signal. We then developed a CN state-driven merging algorithm to identify the large segments with distinct copy numbers. Next, we identified focal alterations in each large segment using coverage-based thresholding to mitigate the adverse effects of signal variations. Using cancer cell lines and patient datasets, we confirmed CNAtra’s ability to detect and distinguish the segmental aneuploidies and focal alterations. We used realistic simulated data for benchmarking the performance of CNAtra against other single-sample detection tools, where we artificially introduced CNAs in the original cancer profiles. We found that CNAtra is superior in terms of precision, recall and f-measure. CNAtra shows the highest sensitivity of 93 and 97% for detecting large-scale and focal alterations respectively. Visual inspection of CNAs revealed that CNAtra is the most robust detection tool for low-coverage cancer data. Conclusions CNAtra is a single-sample CNA detection tool that provides an analytical and visualization framework for CNA profiling without relying on any reference control. It can detect chromosome-level segmental aneuploidies and high-confidence focal alterations, even from low-coverage data. CNAtra is an open-source software implemented in MATLAB®. It is freely available at https://github.com/AISKhalil/CNAtra.
Collapse
Affiliation(s)
- Ahmed Ibrahim Samir Khalil
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Costerwell Khyriem
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Anupam Chattopadhyay
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
33
|
Zhang S, Pan X, Zeng T, Guo W, Gan Z, Zhang YH, Chen L, Zhang Y, Huang T, Cai YD. Copy Number Variation Pattern for Discriminating MACROD2 States of Colorectal Cancer Subtypes. Front Bioeng Biotechnol 2019; 7:407. [PMID: 31921812 PMCID: PMC6930883 DOI: 10.3389/fbioe.2019.00407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Copy number variation (CNV) is a common structural variation pattern of DNA, and it features a higher mutation rate than single-nucleotide polymorphisms (SNPs) and affects a larger fragment of genomes. CNV is related with the genesis of complex diseases and can thus be used as a strategy to identify novel cancer-predisposing markers or mechanisms. In particular, the frequent deletions of mono-ADP-ribosylhydrolase 2 (MACROD2) locus in human colorectal cancer (CRC) alters DNA repair and the sensitivity to DNA damage and results in chromosomal instability. The relationship between CNV and cancer has not been explained. In this study, on the basis of the genome variation profiling by the SNP array from 651 CRC primary tumors, we computationally analyzed the CNV data to select crucial SNP sites with the most relevance to three different states of MACROD2 (heterozygous deletion, homozygous deletion, and normal state), suggesting that these CNVs may play functional roles in CRC tumorigenesis. Our study can shed new insights into the genesis of cancer based on CNV, providing reference for clinical diagnosis, and treatment prognosis of CRC.
Collapse
Affiliation(s)
- ShiQi Zhang
- School of Life Sciences, Shanghai University, Shanghai, China.,Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - XiaoYong Pan
- Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Guo
- Institute of Health Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Zijun Gan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
| | - YunHua Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
34
|
Papp E, Hallberg D, Konecny GE, Bruhm DC, Adleff V, Noë M, Kagiampakis I, Palsgrove D, Conklin D, Kinose Y, White JR, Press MF, Drapkin R, Easwaran H, Baylin SB, Slamon D, Velculescu VE, Scharpf RB. Integrated Genomic, Epigenomic, and Expression Analyses of Ovarian Cancer Cell Lines. Cell Rep 2019; 25:2617-2633. [PMID: 30485824 PMCID: PMC6481945 DOI: 10.1016/j.celrep.2018.10.096] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/07/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
To improve our understanding of ovarian cancer, we performed genome-wide analyses of 45 ovarian cancer cell lines. Given the challenges of genomic analyses of tumors without matched normal samples, we developed approaches for detection of somatic sequence and structural changes and integrated these with epigenetic and expression alterations. Alterations not previously implicated in ovarian cancer included amplification or overexpression of ASXL1 and H3F3B, deletion or underexpression of CDC73 and TGF-beta receptor pathway members, and rearrangements of YAP1-MAML2 and IKZF2-ERBB4. Dose-response analyses to targeted therapies revealed unique molecular dependencies, including increased sensitivity of tumors with PIK3CA and PPP2R1A alterations to PI3K inhibitor GNE-493, MYC amplifications to PARP inhibitor BMN673, and SMAD3/4 alterations to MEK inhibitor MEK162. Genome-wide rearrangements provided an improved measure of sensitivity to PARP inhibition. This study provides a comprehensive and broadly accessible resource of molecular information for the development of therapeutic avenues in ovarian cancer. The overall survival of patients with late-stage ovarian cancer is dismal. To identify therapeutic opportunities, Papp et al. integrate genomic, epigenomic, and expression analyses to provide a resource of molecular abnormalities in ovarian cancer cell lines and use these to identify tumors sensitive to PARP, MEK, and PI3K inhibitors.
Collapse
Affiliation(s)
- Eniko Papp
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gottfried E Konecny
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vilmos Adleff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michaël Noë
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ioannis Kagiampakis
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doreen Palsgrove
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dylan Conklin
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James R White
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dennis Slamon
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
35
|
Simidjievski N, Bodnar C, Tariq I, Scherer P, Andres Terre H, Shams Z, Jamnik M, Liò P. Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice. Front Genet 2019; 10:1205. [PMID: 31921281 PMCID: PMC6917668 DOI: 10.3389/fgene.2019.01205] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/27/2022] Open
Abstract
International initiatives such as the Molecular Taxonomy of Breast Cancer International Consortium are collecting multiple data sets at different genome-scales with the aim to identify novel cancer bio-markers and predict patient survival. To analyze such data, several machine learning, bioinformatics, and statistical methods have been applied, among them neural networks such as autoencoders. Although these models provide a good statistical learning framework to analyze multi-omic and/or clinical data, there is a distinct lack of work on how to integrate diverse patient data and identify the optimal design best suited to the available data.In this paper, we investigate several autoencoder architectures that integrate a variety of cancer patient data types (e.g., multi-omics and clinical data). We perform extensive analyses of these approaches and provide a clear methodological and computational framework for designing systems that enable clinicians to investigate cancer traits and translate the results into clinical applications. We demonstrate how these networks can be designed, built, and, in particular, applied to tasks of integrative analyses of heterogeneous breast cancer data. The results show that these approaches yield relevant data representations that, in turn, lead to accurate and stable diagnosis.
Collapse
Affiliation(s)
- Nikola Simidjievski
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Cristian Bodnar
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Ifrah Tariq
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Paul Scherer
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Helena Andres Terre
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Zohreh Shams
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Mateja Jamnik
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Shin G, Greer SU, Xia LC, Lee H, Zhou J, Boles TC, Ji HP. Targeted short read sequencing and assembly of re-arrangements and candidate gene loci provide megabase diplotypes. Nucleic Acids Res 2019; 47:e115. [PMID: 31350896 PMCID: PMC6821272 DOI: 10.1093/nar/gkz661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 11/12/2022] Open
Abstract
The human genome is composed of two haplotypes, otherwise called diplotypes, which denote phased polymorphisms and structural variations (SVs) that are derived from both parents. Diplotypes place genetic variants in the context of cis-related variants from a diploid genome. As a result, they provide valuable information about hereditary transmission, context of SV, regulation of gene expression and other features which are informative for understanding human genetics. Successful diplotyping with short read whole genome sequencing generally requires either a large population or parent-child trio samples. To overcome these limitations, we developed a targeted sequencing method for generating megabase (Mb)-scale haplotypes with short reads. One selects specific 0.1-0.2 Mb high molecular weight DNA targets with custom-designed Cas9-guide RNA complexes followed by sequencing with barcoded linked reads. To test this approach, we designed three assays, targeting the BRCA1 gene, the entire 4-Mb major histocompatibility complex locus and 18 well-characterized SVs, respectively. Using an integrated alignment- and assembly-based approach, we generated comprehensive variant diplotypes spanning the entirety of the targeted loci and characterized SVs with exact breakpoints. Our results were comparable in quality to long read sequencing.
Collapse
Affiliation(s)
- GiWon Shin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie U Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Li C Xia
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Zhou
- Sage Science, Inc., Beverly, MA 01915, USA
| | | | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
37
|
Lin L, Xiao J, Shi L, Chen W, Ge Y, Jiang M, Li Z, Fan H, Yang L, Xu Z. STRA6 exerts oncogenic role in gastric tumorigenesis by acting as a crucial target of miR-873. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:452. [PMID: 31694721 PMCID: PMC6836487 DOI: 10.1186/s13046-019-1450-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Background Increasing evidence shows that stimulated by retinoic acid 6 (STRA6) participates in regulating multiple cancers. However, the biological roles of STRA6 in gastric cancer (GC) remain unknown. This study aimed to investigate the biological function of STRA6 and reveal the underlying mechanism of its dysregulation in GC. Methods The expression level of STRA6 was detected through quantitative real-time PCR and Western blot analysis. The effects of STRA6 on the proliferation of GC cells were studied through CCK-8 proliferation, colony formation and 5-ethynyl-2′-deoxyuridine (EdU) assays. The effects of STRA6 on migration and invasion were detected via wound healing and Transwell assays. Upstream miRNAs, which might regulate STRA6 expression, was predicted through bioinformatics analysis. Their interaction was further confirmed through dual-luciferase reporter assays and rescue experiments. Results STRA6 was up-regulated in GC and enhanced the proliferation and metastasis of GC cells in vitro and in vivo. STRA6 knockdown could inhibit the Wnt/β-catenin signalling pathway. STRA6 was confirmed as an miR-873 target, which acted as a tumour suppressor in GC. Rescue assays showed that the repressing effect of miR-873 could be partially reversed by overexpressing STRA6. Conclusions STRA6 is down-regulated by miR-873 and plays an oncogenic role by activating Wnt/β-catenin signalling in GC.
Collapse
Affiliation(s)
- Linling Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Liang Shi
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Wangwang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Yugang Ge
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Mingkun Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Zengliang Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Hao Fan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China. .,Department of General Surgery, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Liyang, 213300, Jiangsu Province, China. .,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| |
Collapse
|
38
|
Chien HT, Cheng SD, Liao CT, Wang HM, Huang SF. Amplification of the EGFR and CCND1 Are Coordinated and Play Important Roles in the Progression of Oral Squamous Cell Carcinomas. Cancers (Basel) 2019; 11:cancers11060760. [PMID: 31159251 PMCID: PMC6627096 DOI: 10.3390/cancers11060760] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 01/20/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer in Taiwan and worldwide. To provide some clues for clinical management of OSCC, 72 advanced-stage OSCCs were analyzed using two microarray platforms (26 cases with Affymetrix 500 K and 46 cases with Affymetrix SNP 6.0). Genomic identification of significant targets in cancer analyses were used to identify significant copy number alterations (CNAs) using a q-value cutoff of 0.25. Among the several significant regions, 12 CNAs were common between these two platforms. Two gain regions contained the well-known oncogenes EGFR (7p11.2) and CCND1 (11q13.3) and several known cancer suppressor genes, such as FHIT (3p14.2-p12.1), FAT1 (4q35.1), CDKN2A (9p21.3), and ATM (11q22.3-q24.3), reside within the 10 deletion regions. Copy number gains of EGFR and CCND1 were further confirmed by fluorescence in situ hybridization and TaqMan CN assay, respectively, in 257 OSCC cases. Our results indicate that EGFR and CCND1 CNAs are significantly associated with clinical stage, tumor differentiation, and lymph node metastasis. Furthermore, EGFR and CCND1 CNAs have an additive effect on OSCC tumor progression. Thus, current genome-wide CNA analysis provides clues for future characterization of important oncogenes and tumor suppressor genes associated with the behaviors of the disease.
Collapse
Affiliation(s)
- Huei-Tzu Chien
- Department of Public Health, Chang Gung University, Tao-Yuan 33302, Taiwan.
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Tao-Yuan 33302, Taiwan.
| | - Sou-De Cheng
- Department of Anatomy, Chang Gung University, Tao-Yuan 33302, Taiwan.
| | - Chun-Ta Liao
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou branch, Tao-Yuan 33302, Taiwan.
| | - Hung-Ming Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou branch, Tao-Yuan 33302, Taiwan.
| | - Shiang-Fu Huang
- Department of Public Health, Chang Gung University, Tao-Yuan 33302, Taiwan.
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou branch, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
39
|
Roslan NH, Makpol S, Mohd Yusof YA. A Review on Dietary Intervention in Obesity Associated Colon Cancer. Asian Pac J Cancer Prev 2019; 20:1309-1319. [PMID: 31127882 PMCID: PMC6857900 DOI: 10.31557/apjcp.2019.20.5.1309] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 04/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the major causes of morbidity and mortality. According to National Cancer Registry, the incidence of colorectal cancer in Peninsular Malaysia increases with age. The incidence is highest among Chinese population but lower among Indians and Malays. Many reviews have suggested that obesity may be associated with a higher risk (>50%) of colorectal cancer. Methods: This study collects a comprehensive data from the literature review available from respective journals on dietary intervention and the chemo-protective mechanisms of a few natural resources in obesity -associated colon cancer based on previous and current studies. Results: In obesity-associated colon cancer, the genes of interest and pathways that are mainly involved include NFκB, P13K/Akt, and MAPK pathways, and FTO, leptin, Cyclin D, MMPs, and STAT3 genes. Dietary modification is one of the alternative steps in early prevention of colon cancer. It has been proposed that the components present in certain foods may have the ability to protect against many diseases including the prevention of cancer. Conclusion: There are many factors that lead to obesity-associated colon cancer and the mechanisms behind it is still undergoing intensive research. This review aims to scrutinize research as well as reviews that have been previously reported on obesity associated colorectal cancer and the beneficial effects of including antioxidants-rich foods such as vegetables and fruits in the diet to reduce the risk of obesity associated colorectal cancer.
Collapse
Affiliation(s)
- N H Roslan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia.
| | - S Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia.
| | - Y A Mohd Yusof
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Sun S, Klebaner F, Zhang X, Tian T. Instantaneous mutation rate in cancer initiation and progression. BMC SYSTEMS BIOLOGY 2018; 12:110. [PMID: 30463617 PMCID: PMC6249718 DOI: 10.1186/s12918-018-0629-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cancer is one of the leading causes for the morbidity and mortality worldwide. Although substantial studies have been conducted theoretically and experimentally in recent years, it is still a challenge to explore the mechanisms of cancer initiation and progression. The investigation for these problems is very important for the diagnosis of cancer diseases and development of treatment schemes. RESULTS To accurately describe the process of cancer initiation, we propose a new concept of gene initial mutation rate based on our recently designed mathematical model using the non-constant mutation rate. Unlike the widely-used average gene mutation rate that depends on the number of mutations, the gene initial mutation rate can be used to describe the initiation process of a single patient. In addition, we propose the instantaneous tumour doubling time that is a continuous function of time based on the non-constant mutation rate. Our proposed concepts are supported by the clinic data of seven patients with advanced pancreatic cancer. The regression results suggest that, compared with the average mutation rate, the estimated initial mutation rate has a larger value of correlation coefficient with the patient survival time. We also provide the estimated tumour size of these seven patients over time. CONCLUSIONS The proposed concepts can be used to describe the cancer initiation and progression for different patients more accurately. Since a quantitative understanding of cancer progression is important for clinical treatment, our proposed model and calculated results may provide insights into the development of treatment schemes and also have other clinic implications.
Collapse
Affiliation(s)
- Shuhao Sun
- School of Mathematical Sciences, Monash University, Melbourne, 3800, VIC, Australia
| | - Fima Klebaner
- School of Mathematical Sciences, Monash University, Melbourne, 3800, VIC, Australia
| | - Xinan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Tianhai Tian
- School of Mathematical Sciences, Monash University, Melbourne, 3800, VIC, Australia.
| |
Collapse
|
41
|
Hehir-Kwa JY, Tops BBJ, Kemmeren P. The clinical implementation of copy number detection in the age of next-generation sequencing. Expert Rev Mol Diagn 2018; 18:907-915. [PMID: 30221560 DOI: 10.1080/14737159.2018.1523723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The role of copy number variants (CNVs) in disease is now well established. In parallel NGS technologies, such as long-read technologies, there is continual development and data analysis methods continue to be refined. Clinical exome sequencing data is now a reality for many diagnostic laboratories in both congenital genetics and oncology. This provides the ability to detect and report both SNVs and structural variants, including CNVs, using a single assay for a wide range of patient cohorts. Areas covered: Currently, whole-genome sequencing is mainly restricted to research applications and clinical utility studies. Furthermore, detecting the full-size spectrum of CNVs as well as somatic events remains difficult for both exome and whole-genome sequencing. As a result, the full extent of genomic variants in an individual's genome is still largely unknown. Recently, new sequencing technologies have been introduced which maintain the long-range genomic context, aiding the detection of CNVs and structural variants. Expert commentary: The development of long-read sequencing promises to resolve many CNV and SV detection issues but is yet to become established. The current challenge for clinical CNV detection is how to fully exploit all the data which is generated by high throughput sequencing technologies.
Collapse
Affiliation(s)
- Jayne Y Hehir-Kwa
- a Princess Máxima Center for Pediatric Oncology , Utrecht , Netherlands
| | - Bastiaan B J Tops
- a Princess Máxima Center for Pediatric Oncology , Utrecht , Netherlands
| | - Patrick Kemmeren
- a Princess Máxima Center for Pediatric Oncology , Utrecht , Netherlands
| |
Collapse
|
42
|
Oliveira DM, Laudanna C, Migliozzi S, Zoppoli P, Santamaria G, Grillone K, Elia L, Mignogna C, Biamonte F, Sacco R, Corcione F, Viglietto G, Malanga D, Rizzuto A. Identification of different mutational profiles in cancers arising in specific colon segments by next generation sequencing. Oncotarget 2018; 9:23960-23974. [PMID: 29844865 PMCID: PMC5963617 DOI: 10.18632/oncotarget.25251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to investigate the mutational profiles of cancers arising in different colon segments. To this aim, we have analyzed 37 colon cancer samples by use of the Ion AmpliSeq™ Comprehensive Cancer Panel. Overall, we have found 307 mutated genes, most of which already implicated in the development of colon cancer. Among these, 15 genes were mutated in tumors originating in all six colon segments and were defined "common genes" (i.e. APC, PIK3CA, TP53) whereas 13 genes were preferentially mutated in tumors originating only in specific colon segments and were defined "site-associated genes" (i.e. BLNK, PTPRD). In addition, the presence of mutations in 10 of the 307 identified mutated genes (NBN, SMUG1, ERBB2, PTPRT, EPHB1, ALK, PTPRD, AURKB, KDR and GPR124) were found to be of clinical relevance. Among clinically relevant genes, NBN and SMUG1 were identified as independent prognostic factors that predicted poor survival in colon cancer patients. In conclusion, the findings reported here indicate that tumors arising in different colon segments present differences in the type and/or frequency of genetic variants, with two of them being independent prognostic factors that predict poor survival in colon cancer patients.
Collapse
Affiliation(s)
- Duarte Mendes Oliveira
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Carmelo Laudanna
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Simona Migliozzi
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Pietro Zoppoli
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Laura Elia
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Rosario Sacco
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | | | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Donatella Malanga
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Antonia Rizzuto
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
43
|
Gao S, Zhao ZY, Wu R, Zhang Y, Zhang ZY. Prognostic value of microRNAs in colorectal cancer: a meta-analysis. Cancer Manag Res 2018; 10:907-929. [PMID: 29750053 PMCID: PMC5935085 DOI: 10.2147/cmar.s157493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have shown that miRNA levels are closely related to the survival time of patients with colon, rectal, or colorectal cancer (CRC). However, the outcomes of different investigations have been inconsistent. Accordingly, a meta-analysis was conducted to study associations among the three types of cancers. Materials and methods Studies published in English that estimated the expression levels of miRNAs with survival curves in CRC were identified until May 20, 2017 by online searches in PubMed, Embase, Web of Science, and the Cochrane Library by two independent authors. Pooled HRs with 95% CIs were used to estimate the correlation between miRNA expression and overall survival. Results A total of 63 relevant articles regarding 13 different miRNAs, with 10,254 patients were ultimately included. CRC patients with high expression of blood miR141 (HR 2.52, 95% CI 1.68-3.77), tissue miR21 (HR 1.31, 95% CI 1.12-1.53), miR181a (HR 1.52, 95% CI 1.26-1.83), or miR224 (HR 2.12, 95% CI 1.04-4.34), or low expression of tissue miR126 (HR 1.55, 95% CI 1.24-1.93) had significantly poor overall survival (P<0.05). Conclusion In general, blood miR141 and tissue miR21, miR181a, miR224, and miR126 had significant prognostic value. Among these, blood miR141 and tissue miR224 were strong biomarkers of prognosis for CRC.
Collapse
Affiliation(s)
- Song Gao
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Zhi-Ying Zhao
- School of Computer Science and Engineering, Northeastern University, Shenyang
| | - Rong Wu
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Yue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Yong Zhang
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| |
Collapse
|
44
|
Zhu S, Ward BM, Yu J, Matthew-Onabanjo AN, Janusis J, Hsieh CC, Tomaszewicz K, Hutchinson L, Zhu LJ, Kandil D, Shaw LM. IRS2 mutations linked to invasion in pleomorphic invasive lobular carcinoma. JCI Insight 2018; 3:97398. [PMID: 29669935 DOI: 10.1172/jci.insight.97398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/14/2018] [Indexed: 12/30/2022] Open
Abstract
Pleomorphic invasive lobular carcinoma (PILC) is an aggressive variant of invasive lobular breast cancer that is associated with poor clinical outcomes. Limited molecular data are available to explain the mechanistic basis for PILC behavior. To address this issue, targeted sequencing was performed to identify molecular alterations that define PILC. This sequencing analysis identified genes that distinguish PILC from classic ILC and invasive ductal carcinoma by the incidence of their genomic changes. In particular, insulin receptor substrate 2 (IRS2) is recurrently mutated in PILC, and pathway analysis reveals a role for the insulin receptor (IR)/insulin-like growth factor-1 receptor (IGF1R)/IRS2 signaling pathway in PILC. IRS2 mutations identified in PILC enhance invasion, revealing a role for this signaling adaptor in the aggressive nature of PILC.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Molecular, Cell and Cancer Biology
| | | | - Jun Yu
- Department of Molecular, Cell and Cancer Biology
| | | | | | | | | | | | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology.,Department of Molecular Medicine, and.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
45
|
Mody K, Bekaii-Saab T. Clinical Trials and Progress in Metastatic Colon Cancer. Surg Oncol Clin N Am 2018; 27:349-365. [DOI: 10.1016/j.soc.2017.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Wingless/Wnt Signaling in Intestinal Development, Homeostasis, Regeneration and Tumorigenesis: A Drosophila Perspective. J Dev Biol 2018; 6:jdb6020008. [PMID: 29615557 PMCID: PMC6026893 DOI: 10.3390/jdb6020008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 02/06/2023] Open
Abstract
In mammals, the Wnt/β-catenin signal transduction pathway regulates intestinal stem cell maintenance and proliferation, whereas Wnt pathway hyperactivation, resulting primarily from the inactivation of the tumor suppressor Adenomatous polyposis coli (APC), triggers the development of the vast majority of colorectal cancers. The Drosophila adult gut has recently emerged as a powerful model to elucidate the mechanisms by which Wingless/Wnt signaling regulates intestinal development, homeostasis, regeneration, and tumorigenesis. Herein, we review recent insights on the roles of Wnt signaling in Drosophila intestinal physiology and pathology.
Collapse
|
47
|
Abstract
Humans and other mammals are colonized by microbial agents across the kingdom which can represent a unique microbiome pattern. Dysbiosis of the microbiome has been associated with pathology including cancer. We have identified a microbiome signature unique to ovarian cancers, one of the most lethal malignancies of the female reproductive system, primarily because of its asymptomatic nature during the early stages in development. We screened ovarian cancer samples along with matched, and non-matched control samples using our pan-pathogen array (PathoChip), combined with capture-next generation sequencing. The results show a distinct group of viral, bacterial, fungal and parasitic signatures of high significance in ovarian cases. Further analysis shows specific viral integration sites within the host genome of tumor samples, which may contribute to the carcinogenic process. The ovarian cancer microbiome signature provides insights for the development of targeted therapeutics against ovarian cancers.
Collapse
|
48
|
Sakre N, Wildey G, Behtaj M, Kresak A, Yang M, Fu P, Dowlati A. RICTOR amplification identifies a subgroup in small cell lung cancer and predicts response to drugs targeting mTOR. Oncotarget 2018; 8:5992-6002. [PMID: 27863413 PMCID: PMC5351607 DOI: 10.18632/oncotarget.13362] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/26/2016] [Indexed: 12/30/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive cancer that represents ~15% of all lung cancers. Currently there are no targeted therapies to treat SCLC. Our genomic analysis of a metastatic SCLC cohort identified recurrent RICTOR amplification. Here, we examine the translational potential of this observation. RICTOR was the most frequently amplified gene observed (~14% patients), and co-amplified with FGF10 and IL7R on chromosome 5p13. RICTOR copy number variation correlated with RICTOR protein expression in SCLC cells. In parallel, cells with RICTOR copy number (CN) gain showed increased sensitivity to three mTOR inhibitors, AZD8055, AZD2014 and INK128 in cell growth assays, with AZD2014 demonstrating the best inhibition of downstream signaling. SCLC cells with RICTOR CN gain also migrated more rapidly in chemotaxis and scratch wound assays and were again more sensitive to mTOR inhibitors. The overall survival in SCLC patients with RICTOR amplification was significantly decreased (p = 0.021). Taken together, our results suggest that SCLC patients with RICTOR amplification may constitute a clinically important subgroup because of their potential response to mTORC1/2 inhibitors.
Collapse
Affiliation(s)
- Nneha Sakre
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, 44106 USA.,Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106 USA
| | - Gary Wildey
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, 44106 USA.,Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106 USA
| | - Mohadese Behtaj
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106 USA
| | - Adam Kresak
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, 44106 USA.,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106 USA
| | - Michael Yang
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106 USA
| | - Pingfu Fu
- Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, 44106 USA
| | - Afshin Dowlati
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, 44106 USA.,Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106 USA
| |
Collapse
|
49
|
Liu Z, Kundu-Roy T, Matsuura I, Wang G, Lin Y, Lou YR, Barnard NJ, Wang XF, Huang MT, Suh N, Liu F. Carcinogen 7,12-dimethylbenz[a]anthracene-induced mammary tumorigenesis is accelerated in Smad3 heterozygous mice compared to Smad3 wild type mice. Oncotarget 2018; 7:64878-64885. [PMID: 27588495 PMCID: PMC5323122 DOI: 10.18632/oncotarget.11713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 08/01/2016] [Indexed: 01/09/2023] Open
Abstract
Previous studies based on cell culture and xenograft animal models suggest that Smad3 has tumor suppressor function for breast cancer during early stages of tumorigenesis. In this report, we show that DMBA (7,12-dimethylbenz[a]anthracene), a chemical carcinogen, induces mammary tumor formation at a significantly higher frequency in the Smad3 heterozygous mice than in the Smad3 wild type mice. This is the first genetic evidence showing that Smad3 inhibits mammary tumor formation in a mouse model. Our findings support the notion that Smad3 has important tumor suppressor function for breast cancer.
Collapse
Affiliation(s)
- Zhengxue Liu
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,College of Life Science & Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Tanima Kundu-Roy
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Isao Matsuura
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Division of Molecular Genomics and Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Guannan Wang
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Yong Lin
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - You-Rong Lou
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicola J Barnard
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Mou-Tuan Huang
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
50
|
Isobe T, Seki M, Yoshida K, Sekiguchi M, Shiozawa Y, Shiraishi Y, Kimura S, Yoshida M, Inoue Y, Yokoyama A, Kakiuchi N, Suzuki H, Kataoka K, Sato Y, Kawai T, Chiba K, Tanaka H, Shimamura T, Kato M, Iguchi A, Hama A, Taguchi T, Akiyama M, Fujimura J, Inoue A, Ito T, Deguchi T, Kiyotani C, Iehara T, Hosoi H, Oka A, Sanada M, Tanaka Y, Hata K, Miyano S, Ogawa S, Takita J. Integrated Molecular Characterization of the Lethal Pediatric Cancer Pancreatoblastoma. Cancer Res 2018; 78:865-876. [PMID: 29233928 DOI: 10.1158/0008-5472.can-17-2581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/24/2017] [Accepted: 12/07/2017] [Indexed: 11/16/2022]
Abstract
Pancreatoblastoma is a rare pediatric pancreatic malignancy for which the molecular pathogenesis is not understood. In this study, we report the findings of an integrated multiomics study of whole-exome and RNA sequencing as well as genome-wide copy number and methylation analyses of ten pancreatoblastoma cases. The pancreatoblastoma genome was characterized by a high frequency of aberrant activation of the Wnt signaling pathway, either via somatic mutations of CTNNB1 (90%) and copy-neutral loss of heterozygosity (CN-LOH) of APC (10%). In addition, imprinting dysregulation of IGF2 as a consequence of CN-LOH (80%), gain of paternal allele (10%), and gain of methylation (10%) was universally detected. At the transcriptome level, pancreatoblastoma exhibited an expression profile characteristic of early pancreas progenitor-like cells along with upregulation of the R-spondin/LGR5/RNF43 module. Our results offer a comprehensive description of the molecular basis for pancreatoblastoma and highlight rational therapeutic targets for its treatment.Significance: Molecular genetic analysis of a rare untreatable pediatric tumor reveals Wnt/IGF2 aberrations and features of early pancreas progenitor-like cells, suggesting cellular origins and rational strategies for therapeutic targeting. Cancer Res; 78(4); 865-76. ©2017 AACR.
Collapse
Affiliation(s)
- Tomoya Isobe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Shiozawa
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Misa Yoshida
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Yokoyama
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Iguchi
- Department of Pediatrics, Hokkaido University, Sapporo, Japan
| | - Asahito Hama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Masaharu Akiyama
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Junya Fujimura
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Akiko Inoue
- Department of Pediatrics, Osaka Medical College, Osaka, Japan
| | - Tsuyoshi Ito
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Chikako Kiyotani
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|