1
|
Shi Y, Hu J, Xue T. Light, opsins, and life: Mammalian photophysiological functions beyond image perception. Neuron 2025:S0896-6273(25)00396-4. [PMID: 40527322 DOI: 10.1016/j.neuron.2025.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 05/12/2025] [Accepted: 05/23/2025] [Indexed: 06/19/2025]
Abstract
Light, a fundamental form of energy and sensory input, has significantly shaped life forms on Earth. In mammals, light perception through the eyes, which enables image formation, is crucial for survival. However, beyond image-forming (IF) vision, light also mediates non-image-forming (NIF) functions, such as circadian photoentrainment and the pupillary light reflex. Recent studies have further demonstrated that light influences a wide range of physiological and behavioral processes, including mood, metabolism, cognition, pain perception, sleep, and neuronal development. The diverse types of opsins, the major photosensitive proteins in mammals, are expressed not only in the rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) of the retina but also in extraocular tissues, such as the brain, skin, and adipose tissue. Opsins in both ocular and extraocular tissues jointly contribute to light detection and mediate diverse NIF functions. In this review, we focus on the NIF effects of light on mammals, emphasizing its regulation of physiological functions as well as the corresponding roles of light receptors and associated neuronal circuits. It also highlights the implications of these findings for human health, underscoring the need for a comprehensive understanding of the interactions between light and life.
Collapse
Affiliation(s)
- Yiming Shi
- State Key Laboratory of Eye Health, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiaxi Hu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Tian Xue
- State Key Laboratory of Eye Health, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Gonzalez LS, Fisher AA, Grover KE, Robinson JE. Examining the role of the photopigment melanopsin in the striatal dopamine response to light. Front Syst Neurosci 2025; 19:1568878. [PMID: 40242043 PMCID: PMC12000111 DOI: 10.3389/fnsys.2025.1568878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
The mesolimbic dopamine system is a set of subcortical brain circuits that plays a key role in reward processing, reinforcement, associative learning, and behavioral responses to salient environmental events. In our previous studies of the dopaminergic response to salient visual stimuli, we observed that dopamine release in the lateral nucleus accumbens (LNAc) of mice encoded information about the rate and magnitude of rapid environmental luminance changes from darkness. Light-evoked dopamine responses were rate-dependent, robust to the time of testing or stimulus novelty, and required phototransduction by rod and cone opsins. However, it is unknown if these dopaminergic responses also involve non-visual opsins, such as melanopsin, the primary photopigment expressed by intrinsically photosensitive retinal ganglion cells (ipRGCs). In the current study, we evaluated the role of melanopsin in the dopaminergic response to light in the LNAc using the genetically encoded dopamine sensor dLight1 and fiber photometry. By measuring light-evoked dopamine responses across a broad irradiance and wavelength range in constitutive melanopsin (Opn4) knockout mice, we were able to provide new insights into the ability of non-visual opsins to regulate the mesolimbic dopamine response to visual stimuli.
Collapse
Affiliation(s)
- L. Sofia Gonzalez
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Austen A. Fisher
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kassidy E. Grover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - J. Elliott Robinson
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Stewart D, Albrecht U. Beyond vision: effects of light on the circadian clock and mood-related behaviours. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:12. [PMID: 40092590 PMCID: PMC11906358 DOI: 10.1038/s44323-025-00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Light is a crucial environmental factor that influences various aspects of life, including physiological and psychological processes. While light is well-known for its role in enabling humans and other animals to perceive their surroundings, its influence extends beyond vision. Importantly, light affects our internal time-keeping system, the circadian clock, which regulates daily rhythms of biochemical and physiological processes, ultimately impacting mood and behaviour. The 24-h availability of light can have profound effects on our well-being, both physically and mentally, as seen in cases of jet lag and shift work. This review summarizes the intricate relationships between light, the circadian clock, and mood-related behaviours, exploring the underlying mechanisms and its implications for health.
Collapse
Affiliation(s)
- Dean Stewart
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Moderie C, Boivin DB. Pathophysiological Models of Hypersomnolence Associated With Depression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100445. [PMID: 39935825 PMCID: PMC11810709 DOI: 10.1016/j.bpsgos.2024.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 02/13/2025] Open
Abstract
Up to 25% of patients with depression experience hypersomnolence (e.g., excessive daytime sleepiness, hypersomnia, and/or sleep inertia), which is associated with treatment resistance, overall poorer outcomes, and safety concerns while driving. Hypersomnolence can result from various sleep/neurological disorders or side effects from medication but is often medically unexplained in depression. In this review, we aimed to summarize the different pathophysiological models of hypersomnolence in depression to discuss their impact on nosology and to foster the development of better tailored diagnostics and treatments. We identified several potential mechanisms underlying hypersomnolence including a daytime hypoactivity of dopaminergic and noradrenergic systems, nighttime GABA (gamma-aminobutyric acid) hypoactivation, hypoperfusion, and hypoconnectivity in the medial prefrontal cortex, as well as a longer circadian period and light hyposensitivity. In some patients with depression, nighttime hyperarousal can fragment sleep and result in a complaint of excessive daytime sleepiness, thus mimicking hypersomnolence. Others might adopt maladaptive behaviors such as spending excessive time in bed, a term coined clinophilia. Objective markers of hypersomnolence, such as ambulatory ad libitum polysomnography may facilitate distinguishing between conditions that mimic hypersomnolence. Our review identified several clinical targets for hypersomnolence in depression. Low-sodium oxybate, which is approved for idiopathic hypersomnia, needs additional study in patients with depression. Neuromodulation that targets prefrontal cortex anomalies should be systematically explored, while tailored light therapy protocols may mitigate light hyposensitivity. Additionally, cognitive behavioral therapy for hypersomnolence is being developed as a nonpharmacological adjunct to these treatments.
Collapse
Affiliation(s)
| | - Diane B. Boivin
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Gloston GF, Ward KC, Rodriguez-Torres GC, Gamble KL, Thomas SJ. Integrating Assessment of Circadian Rhythmicity to Improve Treatment Outcomes for Circadian Rhythm Sleep-Wake Disorders: Updates on New Treatments. CURRENT SLEEP MEDICINE REPORTS 2025; 11:8. [PMID: 39975943 PMCID: PMC11832606 DOI: 10.1007/s40675-025-00325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
Purpose of Review Despite advancements in basic circadian research, development of new diagnostic and treatment strategies for circadian rhythm sleep-wake disorders (CRSWDs) has been slow. Here, we review the most recent innovations in human circadian assessment and emerging new therapies for CRSWDs. Recent Findings Researchers have improved existing circadian assessment methods to overcome logistical barriers and developed novel circadian assessment methods. New treatments for CRSWDs involve pharmacological and behavioral treatments that modulate circadian phase, amplitude, and/or robustness of the central circadian clock. Summary Commercialization of these emerging tools will require overcoming barriers, such as additional testing to confirm the underlying pathology and mechanism of action of potential treatments. Clinicians and scientists are also called to survey adjacent fields and adopt existing diagnostic tools that may offer diagnostic clarity in CRSWDs. Lastly, we must continue to advocate for medical insurance coverage of current and future tools and technologies to improve patient care.
Collapse
Affiliation(s)
- Gabrielle F. Gloston
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Katherine C. Ward
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL USA
| | - G. Carolina Rodriguez-Torres
- Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35294-0017 USA
| | - Karen L. Gamble
- Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35294-0017 USA
| | - S. Justin Thomas
- Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35294-0017 USA
| |
Collapse
|
6
|
Rach H, Kilic‐Huck U, Geoffroy PA, Bourcier T, Braun S, Comtet H, Ruppert E, Hugueny L, Hebert M, Reynaud E, Bourgin P. The electroretinography to identify biomarkers of idiopathic hypersomnia and narcolepsy type 1. J Sleep Res 2025; 34:e14278. [PMID: 38993053 PMCID: PMC11744238 DOI: 10.1111/jsr.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Hypersomnia spectrum disorders are underdiagnosed and poorly treated due to their heterogeneity and absence of biomarkers. The electroretinography has been proposed as a proxy of central dysfunction and has proved to be valuable to differentiate certain psychiatric disorders. Hypersomnolence is a shared core feature in central hypersomnia and psychiatric disorders. We therefore aimed to identify biomarkers by studying the electroretinography profile in patients with narcolepsy type 1, idiopathic hypersomnia and in controls. Cone, rod and retinal ganglion cells electrical activity were recorded with flash-electroretinography in non-dilated eye of 31 patients with idiopathic hypersomnia (women 84%, 26.6 ± 5.9 years), 19 patients with narcolepsy type 1 (women 63%, 36.6 ± 12.7 years) and 43 controls (women 58%, 30.6 ± 9.3 years). Reduced cone a-wave amplitude (p = 0.039) and prolonged cone (p = 0.022) and rod b-wave (p = 0.009) latencies were observed in patients with narcolepsy type 1 as compared with controls, while prolonged photopic negative response-wave latency (retinal ganglion cells activity) was observed in patients with idiopathic hypersomnia as compared with controls (p = 0.033). The rod and cone b-wave latency clearly distinguished narcolepsy type 1 from idiopathic hypersomnia and controls (area under the curve > 0.70), and the photopic negative response-wave latency distinguished idiopathic hypersomnia and narcolepsy type 1 from controls with an area under the curve > 0.68. This first original study shows electroretinography anomalies observed in patients with hypersomnia. Narcolepsy type 1 is associated with impaired cone and rod responses, whereas idiopathic hypersomnia is associated with impaired retinal ganglion cells response, suggesting different phototransduction alterations in both hypersomnias. Although these results need to be confirmed with a larger sample size, the electroretinography may be a promising tool for clinicians to differentiate hypersomnia subtypes.
Collapse
Affiliation(s)
- Héloïse Rach
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Ulker Kilic‐Huck
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Pierre A. Geoffroy
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- Département de psychiatrie et d'addictologie, AP‐HP, GHU Paris Nord, DMU NeurosciencesHopital Bichat‐Claude BernardParisFrance
- Université de Paris, NeuroDiderot, Inserm, FHU I2‐D2ParisFrance
| | - Tristan Bourcier
- Department of Ophthalmology & Gepromed, Education DepartmentStrasbourg University HospitalStrasbourgFrance
| | - Sophie Braun
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Henri Comtet
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Elisabeth Ruppert
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Laurence Hugueny
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Marc Hebert
- Centre de Recherche CERVOCentre Intégré Universitaire de Santé et des Services Sociaux de la Capitale NationaleQuébecQuebecCanada
- Département d'Ophtalmologie et d'Oto‐Rhino‐Laryngologie‐Chirurgie Cervico‐Faciale, Faculté de MédecineUniversité LavalQuébecQuebecCanada
| | - Eve Reynaud
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| |
Collapse
|
7
|
Zeng Y, Rong R, You M, Zhu P, Zhang J, Xia X. Light-eye-body axis: exploring the network from retinal illumination to systemic regulation. Theranostics 2025; 15:1496-1523. [PMID: 39816683 PMCID: PMC11729557 DOI: 10.7150/thno.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
The human body is an intricate system, where diverse and complex signaling among different organs sustains physiological activities. The eye, as a primary organ for information acquisition, not only plays a crucial role in visual perception but also, as increasing evidence suggests, exerts a broad influence on the entire body through complex circuits upon receiving light signals which is called non-image-forming vision. However, the extent and mechanisms of light's impact on the body through the eyes remain insufficiently explored. There is also a dearth of comprehensive reviews elucidating the intricate interplay between light, the eye, and the systemic connections to the entire body. Herein, we propose the concept of the light-eye-body axis to systematically encapsulate the extensive non-image-forming effects of light signals received by the retina on the entire body. We reviewed the visual-neural structure basis of the light-eye-body axis, summarized the mechanism by which the eyes regulate the whole body and the current research status and challenges within the physiological and pathological processes involved in the light-eye-body axis. Future research should aim to expand the influence of the light-eye-body axis and explore its deeper mechanisms. Understanding and investigating the light-eye-body axis will contribute to improving lighting conditions to optimize health and guide the establishment of phototherapy standards in clinical practice.
Collapse
Affiliation(s)
- Yi Zeng
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Peng Zhu
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Jinglin Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| |
Collapse
|
8
|
Amiot V, Tomasoni M, Minier A, Gisselbaek S, Kawasaki A, Kostic C. PupilMetrics: a support system for preprocessing of pupillometric data and extraction of outcome measures. Sci Rep 2024; 14:28775. [PMID: 39567634 PMCID: PMC11579351 DOI: 10.1038/s41598-024-79920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
The rapid pupillary constriction to an abrupt light stimulus is signaled through an oligosynaptic neural pathway that dominates over other supranuclear influences on pupillary movement. A pupillometric recording of the pupil light reflex shows the steep change in pupil size from baseline to maximal constriction. However, when the pupil is recorded in darkness in the phase after light stimulation or in response to non-light stimuli like a sudden noise or cognitive activity, pupil size changes are small and slow. In such cases, pre-processing of pupil recordings to reduce the noise due to intrusion of various artifactual and non-evoked pupillary movements is particularly important but may be time-consuming. To address the paucity of automated tools for pupil light reflex analysis in pupillometry, we aimed to develop a software for automated, user-guided pupillometric data analysis. We identified two types of commonly observed artifacts on pupil recordings. We designed a software, called PupilMetrics, which imports and displays raw pupil data, detects and removes these two types of artifacts, and quantifies outcome measures like pupil size, response time, maximal contraction amplitude and PIPR. The right pupil of 29 healthy adults was recorded using a Neurolight pupillometer (IDMed, Marseilles) in response to 9 different light stimuli. Data analysis of the total 261 pupil responses were performed manually or automatically using PupilMetrics. High correlation was observed between PupilMetrics and manual analysis outcome measures across all stimuli (average R2 = 0.9891 and p < 0.0001) with a near 1-to-1 correspondence (Beta = 0.9940). PupilMetrics reduced the total analysis time from 30 h to under 1 h. PupilMetrics offers a time-efficient alternative to manual processing and delivers comparable results. Such software can facilitate standardization of pupillometry for clinical and research uses.
Collapse
Affiliation(s)
- Victor Amiot
- Platform for Research in Ocular Imaging, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Mattia Tomasoni
- Platform for Research in Ocular Imaging, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Astrid Minier
- Pupillography Lab, Neuro-Ophthalmology Unit, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 15 av. de France, 1004, Lausanne, VD, Switzerland
- Retinal Disorder Research Group, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 15 av. de France, 1004, Lausanne, VD, Switzerland
| | - Sara Gisselbaek
- Pupillography Lab, Neuro-Ophthalmology Unit, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 15 av. de France, 1004, Lausanne, VD, Switzerland
| | - Aki Kawasaki
- Pupillography Lab, Neuro-Ophthalmology Unit, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 15 av. de France, 1004, Lausanne, VD, Switzerland.
| | - Corinne Kostic
- Retinal Disorder Research Group, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 15 av. de France, 1004, Lausanne, VD, Switzerland.
| |
Collapse
|
9
|
Mani AK, Parvathi VD, Ravindran S. The Anti-Elixir Triad: Non-Synced Circadian Rhythm, Gut Dysbiosis, and Telomeric Damage. Med Princ Pract 2024:1-14. [PMID: 39536739 DOI: 10.1159/000542557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is an inevitable life process which is accelerated by lifestyle and environmental factors. It is an irreversible accretion of molecular and cellular damage associated with changes in the body composition and deterioration in physiological functions. Each cell (other than stem cells) reaches the limit of its ability to replicate, known as cellular or replicative senescence, and consequently, the organs lose their physiological functions, resulting in overall impairment. Other factors that promote aging include smoking, alcohol, UV rays, sleep habits, food, stress, sedentary lifestyle, and genetic abnormalities. These stress factors can alter our endogenous clock (the circadian rhythm) and the microbial commensals. As a result of the effect of these stressors, the microorganisms that generally support human physiological processes become baleful. The disturbance of natural physiology instigates many age-related pathologies, such as cardiovascular diseases, chronic obstructive pulmonary disorder, cerebrovascular diseases, opportunistic infections, high blood pressure, cancer, diabetes, kidney diseases, dementia, and Alzheimer's disease. The present review covers the three most essential processes of the circadian clock; the circadian gene mechanism and regulation, the mitotic clock (which plays a vital role in the telomere's attrition) and the gut microbiota and their metabolome that drive aging and lead to age-related pathologies. In conclusion, maintaining a synchronized circadian rhythm, a healthy gut microbiome, and telomere integrity is essential for mitigating the effects of aging and promoting longevity. The interplay among these factors underscores the importance of lifestyle choices in enhancing overall health and lifespan.
Collapse
Affiliation(s)
- Anup Kumar Mani
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumitha Ravindran
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
10
|
Zhu J, Wang S, Wu Y, Gu L, Ma Y, Wang Y, Wang L. Smartphone addiction habit is positively associated with coronary artery disease and its severity in Chinese adults: a case-control study. Front Cardiovasc Med 2024; 11:1374797. [PMID: 39253393 PMCID: PMC11381252 DOI: 10.3389/fcvm.2024.1374797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Background Coronary artery disease (CAD) has a high incidence and poor prognosis worldwide. It has been confirmed that smartphone addiction (SA) habit can increase the incidence of hypertension and obesity in adolescents. However, the association of SA with CAD and its severity in Chinese adults remains largely unknown. Methods A total of 700 Chinese adults (aged 18-70 years) including 350 CAD patients and 350 control subjects were enrolled. The Smartphone Addiction Scale Short Version (SAS-SV) was used to measure SA habit, and the Pittsburgh sleep quality index (PSQI) was used to assess sleep quality. Multiple logistic regression was employed to analyze the relationship between SA habit and CAD. Results After adjusting for age, smoking, hypertension, type 2 diabetes mellitus, and other risk factors, there was a significant association between SA habit and CAD in adults (p < 0.001). Subgroup analysis showed that there were statistical differences in the correlation between SA habit and CAD in the hypertension, ≤55 years age old, and female subgroups. Moreover, we performed a subgroup analysis based on the number of coronary artery lesions. The result showed that the rate of SA habit in the three-vessel disease group was the highest (p < 0.001). We applied Gensini score to evaluate the severity of coronary artery lesions (median Gensini score, 34) and divided all CAD patients into high Gensini score group (>34) and low Gensini score group (≤34), respectively. Compared with low Gensini score group, patients in high Gensini score group were more likely to have SA habit (p = 0.049). Conclusions There is a positive association of SA habit with CAD and its severity in Chinese adults.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Cardiology, Geriatric Hospital of Nanjing Medical University (Jiangsu Province Geriatric Hospital), Nanjing, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yujie Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaxin Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Dyer B, Yu SO, Brown RL, Lang RA, D'Souza SP. Defining spatial nonuniformities of all ipRGC types using an improved Opn4 cre recombinase mouse line. CELL REPORTS METHODS 2024; 4:100837. [PMID: 39127043 PMCID: PMC11384080 DOI: 10.1016/j.crmeth.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) play a crucial role in several physiological light responses. In this study, we generate an improved Opn4cre knockin allele (Opn4cre(DSO)), which faithfully reproduces endogenous Opn4 expression and improves compatibility with widely used reporters. We evaluated the efficacy and sensitivity of Opn4cre(DSO) for labeling in retina and brain and provide an in-depth comparison with the extensively utilized Opn4cre(Saha) line. Through this characterization, Opn4cre(DSO) demonstrated higher specificity in labeling ipRGCs with minimal recombination escape. Leveraging a combination of electrophysiological, molecular, and morphological analyses, we confirmed its sensitivity in detecting all ipRGC types (M1-M6) and defined their unique topographical distribution across the retina. In the brain, the Opn4cre(DSO) line labels ipRGC projections with minimal labeling of cell bodies. Overall, the Opn4cre(DSO) mouse line represents an improved tool for studying ipRGC function and distribution, offering a means to selectively target these cells to study light-regulated behaviors and physiology.
Collapse
Affiliation(s)
- Brannen Dyer
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sue O Yu
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA, USA
| | - R Lane Brown
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA, USA
| | - Richard A Lang
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Longcore T, Villanueva SAMB, Nguyen-Ngo K, Ghiani CA, Harrison B, Colwell CS. Relative importance of intensity and spectrum of artificial light at night in disrupting behavior of a nocturnal rodent. J Exp Biol 2024; 227:jeb247235. [PMID: 38873751 PMCID: PMC11418196 DOI: 10.1242/jeb.247235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
The influence of light spectral properties on circadian rhythms is of substantial interest to laboratory-based investigation of the circadian system and to field-based understanding of the effects of artificial light at night. The trade-offs between intensity and spectrum regarding masking behaviors are largely unknown, even for well-studied organisms. We used a custom LED illumination system to document the response of wild-type house mice (Mus musculus) to 1-h nocturnal exposure of all combinations of four intensity levels (0.01, 0.5, 5 and 50 lx) and three correlated color temperatures (CCT; 1750, 1950 and 3000 K). Higher intensities of light (50 lx) suppressed cage activity substantially, and consistently more for the higher CCT light (91% for 3000 K, 53% for 1750 K). At the lowest intensity (0.01 lx), mean activity was increased, with the greatest increases for the lowest CCT (12.3% increase at 1750 K, 3% increase at 3000 K). Multiple linear regression confirmed the influence of both CCT and intensity on changes in activity, with the scaled effect size of intensity 3.6 times greater than that of CCT. Activity suppression was significantly lower for male than for female mice. Assessment of light-evoked cFos expression in the suprachiasmatic nucleus at 50 lx showed no significant difference between high and low CCT exposure. The significant differences by spectral composition illustrate a need to account for light spectrum in circadian studies of behavior, and confirm that spectral controls can mitigate some, but certainly not all, of the effects of light pollution on species in the wild.
Collapse
Affiliation(s)
- Travis Longcore
- UCLA Institute of the Environment and Sustainability, 619 Charles E. Young Drive East, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, USA
| | - Sophia Anne Marie B. Villanueva
- UCLA Department of Integrative Biology and Physiology, 612 Charles E. Young Drive East, Box 957246, Los Angeles, CA 90095-7246, USA
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kyle Nguyen-Ngo
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Cristina A. Ghiani
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
- UCLA Department of Pathology and Laboratory Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1732, USA
| | - Benjamin Harrison
- Korrus, Inc., 837 North Spring Street, Suite 103, Los Angeles, CA 90012, USA
| | - Christopher S. Colwell
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Bidell D, Feige ND, Triphan T, Müller C, Pauls D, Helfrich-Förster C, Selcho M. Photoreceptors for immediate effects of light on circadian behavior. iScience 2024; 27:109819. [PMID: 38770135 PMCID: PMC11103378 DOI: 10.1016/j.isci.2024.109819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Animals need to sharpen their behavioral output in order to adapt to a variable environment. Hereby, light is one of the most pivotal environmental signals and thus behavioral plasticity in response to light can be observed in diurnal animals, including humans. Furthermore, light is the main entraining signal of the clock, yet immediate effects of light enhance or overwrite circadian output and thereby mask circadian behavior. In Drosophila, such masking effects are most evident as a lights-on response in two behavioral rhythms - the emergence of the adult insect from the pupa, called eclosion, and the diurnal rhythm of locomotor activity. Here, we show that the immediate effect of light on eclosion depends solely on R8 photoreceptors of the eyes. In contrast, the increase in activity by light at night is triggered by different cells and organs that seem to compensate for the loss of each other, potentially to ensure behavioral plasticity.
Collapse
Affiliation(s)
- Daniel Bidell
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Natalie-Danielle Feige
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Tilman Triphan
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Claudia Müller
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | | | - Mareike Selcho
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
14
|
Contreras E, Liang C, Mahoney HL, Javier JL, Luce ML, Labastida Medina K, Bozza T, Schmidt TM. Flp-recombinase mouse line for genetic manipulation of ipRGCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592761. [PMID: 38766000 PMCID: PMC11100754 DOI: 10.1101/2024.05.06.592761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Light has myriad impacts on behavior, health, and physiology. These signals originate in the retina and are relayed to the brain by more than 40 types of retinal ganglion cells (RGCs). Despite a growing appreciation for the diversity of RGCs, how these diverse channels of light information are ultimately integrated by the ~50 retinorecipient brain targets to drive these light-evoked effects is a major open question. This gap in understanding primarily stems from a lack of genetic tools that specifically label, manipulate, or ablate specific RGC types. Here, we report the generation and characterization of a new mouse line (Opn4FlpO), in which FlpO is expressed from the Opn4 locus, to manipulate the melanopsin-expressing, intrinsically photosensitive retinal ganglion cells. We find that the Opn4FlpO line, when crossed to multiple reporters, drives expression that is confined to ipRGCs and primarily labels the M1-M3 subtypes. Labeled cells in this mouse line show the expected intrinsic, melanopsin-based light response and morphological features consistent with the M1-M3 subtypes. In alignment with the morphological and physiological findings, we see strong innervation of non-image forming brain targets by ipRGC axons, and weaker innervation of image forming targets in Opn4FlpO mice labeled using AAV-based and FlpO-reporter lines. Consistent with the FlpO insertion disrupting the endogenous Opn4 transcript, we find that Opn4FlpO/FlpO mice show deficits in the pupillary light reflex, demonstrating their utility for behavioral research in future experiments. Overall, the Opn4FlpO mouse line drives Flp-recombinase expression that is confined to ipRGCs and most effectively drives recombination in M1-M3 ipRGCs. This mouse line will be of broad use to those interested in manipulating ipRGCs through a Flp-based recombinase for intersectional studies or in combination with other, non-Opn4 Cre driver lines.
Collapse
Affiliation(s)
- E Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL
- Northwestern University Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - C Liang
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - H L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - J L Javier
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - M L Luce
- Department of Neurobiology, Northwestern University, Evanston, IL
| | | | - T Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - T M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL
- Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
15
|
Dyer B, Yu SO, Lane Brown R, Lang RA, D’Souza SP. A new Opn4cre recombinase mouse line to target intrinsically photosensitive retinal ganglion cells (ipRGCs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589750. [PMID: 38659888 PMCID: PMC11042346 DOI: 10.1101/2024.04.16.589750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) play a crucial role in several physiological light responses. In this study we generate a new Opn4cre knock-in allele (Opn4cre(DSO)), in which cre is placed immediately downstream of the Opn4 start codon. This approach aims to faithfully reproduce endogenous Opn4 expression and improve compatibility with widely used reporters. We evaluated the efficacy and sensitivity of Opn4cre(DSO) for labeling in retina and brain, and provide an in-depth comparison with the extensively utilized Opn4cre(Saha) line. Through this characterization, Opn4cre(DSO) demonstrated higher specificity in labeling ipRGCs, with minimal recombination escape. Leveraging a combination of electrophysiological, molecular, and morphological analyses, we confirmed its sensitivity in detecting all ipRGC types (M1-M6). Using this new tool, we describe the topographical distributions of ipRGC types across the retinal landscape, uncovering distinct ventronasal biases for M5 and M6 types, setting them apart from their M1-M4 counterparts. In the brain, we find vastly different labeling patterns between lines, with Opn4cre(DSO) only labeling ipRGC axonal projections to their targets. The combination of off-target effects of Opn4cre(Saha) across the retina and brain, coupled with diminished efficiencies of both Cre lines when coupled to less sensitive reporters, underscores the need for careful consideration in experimental design and validation with any Opn4cre driver. Overall, the Opn4cre(DSO) mouse line represents an improved tool for studying ipRGC function and distribution, offering a means to selectively target these cells to study light-regulated behaviors and physiology.
Collapse
Affiliation(s)
- Brannen Dyer
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, OH
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, OH
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital Medical Center, OH
| | - Sue O. Yu
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA
| | - R. Lane Brown
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, OH
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, OH
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital Medical Center, OH
- Department of Ophthalmology, University of Cincinnati, OH
| | - Shane P. D’Souza
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, OH
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, OH
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital Medical Center, OH
| |
Collapse
|
16
|
Sangma JT, Renthlei Z, Trivedi AK. Bright daylight produces negative effects on affective and cognitive outcomes in nocturnal rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112885. [PMID: 38460431 DOI: 10.1016/j.jphotobiol.2024.112885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The daily light/dark cycle affects animals' learning, memory, and cognition. Exposure to insufficient daylight illumination negatively impacts emotion and cognition, leading to seasonal affective disorder characterized by depression, anxiety, low motivation, and cognitive impairment in diurnal animals. However, how this affects memory, learning, and cognition in nocturnal rodents is largely unknown. Here, we studied the effect of daytime light illuminance on memory, learning, cognition, and expression of mRNA levels in the hippocampus, thalamus, and cortex, the higher-order learning centers. Two experiments were performed. In experiment one, rats were exposed to 12 L:12D (12 h light and 12 h dark) with a 10, 100, or 1000 lx daytime light illuminance. After 30 days, various behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, and passive avoidance test) were performed. In experiment 2, rats since birth were raised either under constant bright light (250 lx; LL) or a daily light-dark cycle (12 L:12D). After four months, behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, passive avoidance test, Morris water maze, and Y-maze tests) were performed. At the end of experiments, rats were sampled, and mRNA expression of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (Trk), microRNA132 (miR132), Neurogranin (Ng), Growth Associated Protein 43 (Gap-43), cAMP Response Element-Binding Protein (Crebp), Glycogen synthase kinase-3β (Gsk3β), and Tumour necrosis factor-α (Tnf-α) were measured in the hippocampus, cortex, and thalamus of individual rats. Our results show that exposure to bright daylight (100 and 1000 lx; experiment 1) or constant light (experiment 2) compromises memory, learning, and cognition. Suppressed expression levels of these mRNA were also observed in the hypothalamus, cortex, and thalamus. These results suggest that light affects differently to different groups of animals.
Collapse
Affiliation(s)
- James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India
| | | | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| |
Collapse
|
17
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
18
|
Feigl B, Lewis SJ, Burr LD, Schweitzer D, Gnyawali S, Vagenas D, Carter DD, Zele AJ. Efficacy of biologically-directed daylight therapy on sleep and circadian rhythm in Parkinson's disease: a randomised, double-blind, parallel-group, active-controlled, phase 2 clinical trial. EClinicalMedicine 2024; 69:102474. [PMID: 38361993 PMCID: PMC10867415 DOI: 10.1016/j.eclinm.2024.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Background New non-pharmacological treatments for improving non-motor symptoms in Parkinson's disease (PD) are urgently needed. Previous light therapies for modifying sleep behaviour lacked standardised protocols and were not personalised for an individual patient chronotype. We aimed to assess the efficacy of a biologically-directed light therapy in PD that targets retinal inputs to the circadian system on sleep, as well as other non-motor and motor functions. Methods In this randomised, double-blind, parallel-group, active-controlled trial at the Queensland University of Technology, Australia, participants with mild to moderate PD were computer randomised (1:1) to receive one of two light therapies that had the same photometric luminance and visual appearance to allow blinding of investigators and participants to the intervention. One of these biologically-directed lights matched natural daylight (Day Mel), which is known to stimulate melanopsin cells. The light therapy of the other treatment arm of the study, specifically supplemented the stimulation of retinal melanopsin cells (Enhanced Mel), targeting deficits to the circadian system. Both lights were administered 30 min per day over 4-weeks and personalised to an individual patient's chronotype, while monitoring environmental light exposure with actigraphy. Co-primary endpoints were a change from baseline in mean sleep macrostructure (polysomnography, PSG) and an endocrine biomarker of circadian phase (dim light melatonin secretion onset, DLMO) at weeks 4 and 6. Participants data were analysed using an intention to treat principle. All endpoints were evaluated by applying a mixed model analysis. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12621000077864. Findings Between February 4, 2021 and August 8, 2022, 144 participants with PD were consecutively screened, 60 enrolled and randomly assigned to a light intervention. There was no significant difference in co-primary outcomes between randomised groups overall or at any individual timepoint during follow-up. The mean (95% CI) for PSG, N3% was 24.15 (19.82-28.48) for Day Mel (n = 23) and 19.34 (15.20-23.47) for the Enhanced Mel group (n = 25) in week 4 (p = 0.12); and 21.13 (16.99-25.28) for Day Mel (n = 26) and 18.48 (14.34-22.62) for the Enhanced Mel group (n = 25) in week 6, (p = 0.37). The mean (95% CI) DLMO (decimal time) was 19.82 (19.20-20.44) for Day Mel (n = 22) and 19.44 (18.85-20.04) for the Enhanced Mel group (n = 24) in week 4 (p = 0.38); and 19.90 (19.27-20.53) for Day Mel (n = 23) and 19.04 (18.44-19.64) for the Enhanced Mel group (n = 25) in week 6 (p = 0.05). However, both the controlled daylight (Day Mel) and the enhanced melanopsin (Enhanced Mel) interventions demonstrated significant improvement in primary PSG sleep macrostructure. The restorative deep sleep phase (PSG, N3) significantly improved at week 6 in both groups [model-based mean difference to baseline (95% CI): -3.87 (-6.91 to -0.83), p = 0.04]. There was a phase-advance in DLMO in both groups which did not reach statistical significance between groups at any time-point. There were no safety concerns or severe adverse events related to the intervention. Interpretation Both the controlled daylight and melanopsin booster light showed efficacy in improving measures of restorative deep sleep in people with mild to moderate PD. That there was no significant difference between the two intervention groups may be due to the early disease stage. The findings suggest that controlled indoor daylight that is personalised to the individuals' chronotype could be effective for improving sleep in early to moderate PD, and further studies evaluating controlled daylight interventions are now required utilising this standardised approach, including in advanced PD. Funding The Michael J Fox Foundation for Parkinson's Research, Shake IT Up Australia, National Health and Medical Research Council, and Australian Research Council.
Collapse
Affiliation(s)
- Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- Queensland Eye Institute, South Brisbane, QLD, 4101, Australia
| | - Simon J.G. Lewis
- Brain and Mind Centre, The University of Sydney, New South Wales, 2006, Australia
| | - Lucy D. Burr
- Department of Respiratory and Sleep Medicine, Mater Health, South Brisbane, QLD, 4101, Australia
- Mater Research, University of Queensland, QLD, 4072, Australia
| | - Daniel Schweitzer
- Centre of Neurosciences, Mater Health, South Brisbane, QLD, 4101, Australia
- Wesley Hospital, Auchenflower, QLD, 4066, Australia
| | - Subodh Gnyawali
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Dimitrios Vagenas
- School of Public Health and Social Work, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Drew D. Carter
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Andrew J. Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| |
Collapse
|
19
|
Dauchy RT, Hanifin JP, Brainard GC, Blask DE. Light: An Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:116-147. [PMID: 38211974 PMCID: PMC11022951 DOI: 10.30802/aalas-jaalas-23-000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 01/13/2024]
Abstract
Light is an environmental factor that is extrinsic to animals themselves and that exerts a profound influence on the regulation of circadian, neurohormonal, metabolic, and neurobehavioral systems of all animals, including research animals. These widespread biologic effects of light are mediated by distinct photoreceptors-rods and cones that comprise the conventional visual system and melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) of the nonvisual system that interact with the rods and cones. The rods and cones of the visual system, along with the ipRGCs of the nonvisual system, are species distinct in terms of opsins and opsin concentrations and interact with one another to provide vision and regulate circadian rhythms of neurohormonal and neurobehavioral responses to light. Here, we review a brief history of lighting technologies, the nature of light and circadian rhythms, our present understanding of mammalian photoreception, and current industry practices and standards. We also consider the implications of light for vivarium measurement, production, and technological application and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and well-being and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- ign, intergeniculate nucleus
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- k, kelvin temperature
- lan, light at night
- led, light-emitting diode
- lgn, lateral geniculate nucleus
- plr, pupillary light reflex
- pot, primary optic tract
- rht, retinohypothalamic tract
- scn, suprachiasmatic nuclei
- spd, spectral power distribution.
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana;,
| | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
20
|
Lucas RJ, Allen AE, Brainard GC, Brown TM, Dauchy RT, Didikoglu A, Do MTH, Gaskill BN, Hattar S, Hawkins P, Hut RA, McDowell RJ, Nelson RJ, Prins JB, Schmidt TM, Takahashi JS, Verma V, Voikar V, Wells S, Peirson SN. Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. PLoS Biol 2024; 22:e3002535. [PMID: 38470868 PMCID: PMC10931507 DOI: 10.1371/journal.pbio.3002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.
Collapse
Affiliation(s)
- Robert J. Lucas
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Timothy M. Brown
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, United States of America
| | - Altug Didikoglu
- Department of Neuroscience, Izmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Center for Life Science, Boston, Massachusetts, United States of America
| | - Brianna N. Gaskill
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, John Edward Porter Neuroscience Research Center, Bethesda, Maryland, United States of America
| | | | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Richard J. McDowell
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jan-Bas Prins
- The Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vandana Verma
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California, United States of America
| | - Vootele Voikar
- Laboratory Animal Center and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Feigl B, Lewis SJG, Rawashdeh O. Targeting sleep and the circadian system as a novel treatment strategy for Parkinson's disease. J Neurol 2024; 271:1483-1491. [PMID: 37943299 PMCID: PMC10896880 DOI: 10.1007/s00415-023-12073-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
There is a growing appreciation of the wide range of sleep-wake disturbances that occur frequently in Parkinson's disease. These are known to be associated with a range of motor and non-motor symptoms and significantly impact not only on the quality of life of the patient, but also on their bed partner. The underlying causes for fragmented sleep and daytime somnolence are no doubt multifactorial but there is clear evidence for circadian disruption in Parkinson's disease. This appears to be occurring not only as a result of the neuropathological changes that occur across a distributed neural network, but even down to the cellular level. Such observations indicate that circadian changes may in fact be a driver of neurodegeneration, as well as a cause for some of the sleep-wake symptoms observed in Parkinson's disease. Thus, efforts are now required to evaluate approaches including the prescription of precision medicine to modulate photoreceptor activation ratios that reflect daylight inputs to the circadian pacemaker, the use of small molecules to target clock genes, the manipulation of orexin pathways that could help restore the circadian system, to offer novel symptomatic and novel disease modifying strategies.
Collapse
Affiliation(s)
- Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- Queensland Eye Institute, South Brisbane, QLD, 4101, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
22
|
Chaigne C, Sapède D, Cousin X, Sanchou L, Blader P, Cau E. Contribution of the eye and of opn4xa function to circadian photoentrainment in the diurnal zebrafish. PLoS Genet 2024; 20:e1011172. [PMID: 38408087 PMCID: PMC10919856 DOI: 10.1371/journal.pgen.1011172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/07/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The eye is instrumental for controlling circadian rhythms in mice and human. Here, we address the conservation of this function in the zebrafish, a diurnal vertebrate. Using lakritz (lak) mutant larvae, which lack retinal ganglion cells (RGCs), we show that while a functional eye contributes to masking, it is largely dispensable for the establishment of circadian rhythms of locomotor activity. Furthermore, the eye is dispensable for the induction of a phase delay following a pulse of white light at CT 16 but contributes to the induction of a phase advance upon a pulse of white light at CT21. Melanopsin photopigments are important mediators of photoentrainment, as shown in nocturnal mammals. One of the zebrafish melanopsin genes, opn4xa, is expressed in RGCs but also in photosensitive projection neurons in the pineal gland. Pineal opn4xa+ projection neurons function in a LIGHT ON manner in contrast to other projection neurons which function in a LIGHT OFF mode. We generated an opn4xa mutant in which the pineal LIGHT ON response is impaired. This mutation has no effect on masking and circadian rhythms of locomotor activity, or for the induction of phase shifts, but slightly modifies period length when larvae are subjected to constant light. Finally, analysis of opn4xa;lak double mutant larvae did not reveal redundancy between the function of the eye and opn4xa in the pineal for the control of phase shifts after light pulses. Our results support the idea that the eye is not the sole mediator of light influences on circadian rhythms of locomotor activity and highlight differences in the circadian system and photoentrainment of behaviour between different animal models.
Collapse
Affiliation(s)
- Clair Chaigne
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077) Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse 3/UPS, CNRS, UPS, Toulouse, France
| | - Dora Sapède
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077) Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse 3/UPS, CNRS, UPS, Toulouse, France
- IRMB, Université de Montpellier, INSERM, Montpellier, France
| | - Xavier Cousin
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, INRAE, Route de Maguelone, Palavas, France
| | - Laurent Sanchou
- Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse 3/UPS, CNRS, UPS, Toulouse, France
| | - Patrick Blader
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077) Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse 3/UPS, CNRS, UPS, Toulouse, France
| | - Elise Cau
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077) Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse 3/UPS, CNRS, UPS, Toulouse, France
| |
Collapse
|
23
|
Fuchs F, Robin-Choteau L, Schneider A, Hugueny L, Ciocca D, Serchov T, Bourgin P. Delaying circadian sleep phase under ultradian light cycle causes time-of-day-dependent alteration of cognition and mood. Sci Rep 2023; 13:20313. [PMID: 37985784 PMCID: PMC10662432 DOI: 10.1038/s41598-023-44931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023] Open
Abstract
Light exerts powerful and pervasive effects on physiology and behaviour. These effects can be indirect, through clock synchronization and phase adjustment of circadian rhythms, or direct, independent of the circadian process. Exposure to light at inappropriate times, as commonly experienced in today's society, leads to increased prevalence of circadian, sleep and mood disorders as well as cognitive impairments. In mice, exposure to an ultradian 3.5 h light/3.5 h dark cycle (T7) for several days has been shown to impair behaviour through direct, non-circadian, photic effects, a claim we challenge here. We first confirmed that T7 cycle induces a lengthening of the circadian period resulting in a day by day phase-delay of both activity and sleep rhythms. Spatial novelty preference test performed at different circadian time points in mice housed under T7 cycle demonstrated that cognitive deficit was restrained to the subjective night. Mice under the same condition also showed a modification of stress-induced despair-like behaviour in the forced swim test. Therefore, our data demonstrate that ultradian light cycles cause time-of-day-dependent alteration of cognition and mood through clock period lengthening delaying circadian sleep phase, and not through a direct photic influence. These results are of critical importance for the clinical applications of light therapy in the medical field and for today's society to establish lighting recommendations for shift work, schools, hospitals and homes.
Collapse
Affiliation(s)
- Fanny Fuchs
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
- Sleep Disorders Center and CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, 1 place de l'Hôpital, 67000, Strasbourg, France
| | - Ludivine Robin-Choteau
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
- European Center for Diabetes Studies (CEED), Strasbourg, France
| | - Aline Schneider
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
| | - Laurence Hugueny
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
- Sleep Disorders Center and CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, 1 place de l'Hôpital, 67000, Strasbourg, France
| | - Dominique Ciocca
- Chronobiotron-UMS3415-CNRS/University of Strasbourg, Strasbourg, France
| | - Tsvetan Serchov
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France.
- Sleep Disorders Center and CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, 1 place de l'Hôpital, 67000, Strasbourg, France.
| |
Collapse
|
24
|
Contreras E, Bhoi JD, Sonoda T, Birnbaumer L, Schmidt TM. Melanopsin activates divergent phototransduction pathways in intrinsically photosensitive retinal ganglion cell subtypes. eLife 2023; 12:e80749. [PMID: 37937828 PMCID: PMC10712949 DOI: 10.7554/elife.80749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Melanopsin signaling within intrinsically photosensitive retinal ganglion cell (ipRGC) subtypes impacts a broad range of behaviors from circadian photoentrainment to conscious visual perception. Yet, how melanopsin phototransduction within M1-M6 ipRGC subtypes impacts cellular signaling to drive diverse behaviors is still largely unresolved. The identity of the phototransduction channels in each subtype is key to understanding this central question but has remained controversial. In this study, we resolve two opposing models of M4 phototransduction, demonstrating that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dispensable for this process and providing support for a pathway involving melanopsin-dependent potassium channel closure and canonical transient receptor potential (TRPC) channel opening. Surprisingly, we find that HCN channels are likewise dispensable for M2 phototransduction, contradicting the current model. We instead show that M2 phototransduction requires TRPC channels in conjunction with T-type voltage-gated calcium channels, identifying a novel melanopsin phototransduction target. Collectively, this work resolves key discrepancies in our understanding of ipRGC phototransduction pathways in multiple subtypes and adds to mounting evidence that ipRGC subtypes employ diverse phototransduction cascades to fine-tune cellular responses for downstream behaviors.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdisciplinary Biological Sciences Program, Northwestern UniversityEvanstonUnited States
| | - Jacob D Bhoi
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - Takuma Sonoda
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health SciencesDurhamUnited States
- Institute of Biomedical Research (BIOMED), Catholic University of ArgentinaBuenos AiresArgentina
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Department of Ophthalmology, Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
25
|
Kahan A, Mahe K, Dutta S, Kassraian P, Wang A, Gradinaru V. Immediate responses to ambient light in vivo reveal distinct subpopulations of suprachiasmatic VIP neurons. iScience 2023; 26:107865. [PMID: 37766975 PMCID: PMC10520357 DOI: 10.1016/j.isci.2023.107865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm pacemaker, the suprachiasmatic nucleus (SCN), mediates light entrainment via vasoactive intestinal peptide (VIP) neurons (SCNVIP). Yet, how these neurons uniquely respond and connect to intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin (Opn4) has not been determined functionally in freely behaving animals. To address this, we first used monosynaptic tracing from SCNVIP neurons in mice and identified two SCNVIP subpopulations. Second, we recorded calcium changes in response to ambient light, at both bulk and single-cell levels, and found two unique activity patterns in response to high- and low-intensity blue light. The activity patterns of both subpopulations could be manipulated by application of an Opn4 antagonist. These results suggest that the two SCNVIP subpopulations connect to two types of Opn4-expressing ipRGCs, likely M1 and M2, but only one is responsive to red light. These findings have important implications for our basic understanding of non-image-forming circadian light processing.
Collapse
Affiliation(s)
- Anat Kahan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Karan Mahe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sayan Dutta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
26
|
Richardson MES, Browne CA, Mazariegos CIH. Reversible suppression of circadian-driven locomotor rhythms in mice using a gradual fragmentation of the day-night cycle. Sci Rep 2023; 13:14423. [PMID: 37660212 PMCID: PMC10475134 DOI: 10.1038/s41598-023-41029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Circadian rhythms are regulated by molecular clockwork and drive 24-h behaviors such as locomotor activity, which can be rendered non-functional through genetic knockouts of clock genes. Circadian rhythms are robust in constant darkness (DD) but are modulated to become exactly 24 h by the external day-night cycle. Whether ill-timed light and dark exposure can render circadian behaviors non-functional to the extent of genetic knockouts is less clear. In this study, we discovered an environmental approach that led to a reduction or lack in rhythmic 24-h-circadian wheel-running locomotor behavior in mice (referred to as arrhythmicity). We first observed behavioral circadian arrhythmicity when mice were gradually exposed to a previously published disruptive environment called the fragmented day-night cycle (FDN-G), while maintaining activity alignment with the four dispersed fragments of darkness. Remarkably, upon exposure to constant darkness (DD) or constant light (LL), FDN-G mice lost any resemblance to the FDN-G-only phenotype and instead, exhibited sporadic activity bursts. Circadian rhythms are maintained in control mice with sudden FDN exposure (FDN-S) and fully restored in FDN-G mice either spontaneously in DD or after 12 h:12 h light-dark exposure. This is the first study to generate a light-dark environment that induces reversible suppression of circadian locomotor rhythms in mice.
Collapse
Affiliation(s)
- Melissa E S Richardson
- Department of Biological Sciences, Oakwood University, 7000 Adventist Blvd., Huntsville, AL, 35896, USA.
| | - Chérie-Akilah Browne
- Department of Biological Sciences, Oakwood University, 7000 Adventist Blvd., Huntsville, AL, 35896, USA
| | | |
Collapse
|
27
|
Chien SE, Yeh SL, Yamashita W, Tsujimura SI. Enhanced human contrast sensitivity with increased stimulation of melanopsin in intrinsically photosensitive retinal ganglion cells. Vision Res 2023; 209:108271. [PMID: 37331304 DOI: 10.1016/j.visres.2023.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
The intrinsically photosensitive retinal ganglion cells (ipRGCs) are known to serve non-image-forming functions, such as photoentrainment of the circadian rhythm and pupillary light reflex. However, how they affect human spatial vision is largely unknown. The spatial contrast sensitivity function (CSF), which measures contrast sensitivity as a function of spatial frequency, was used in the current study to investigate the function of ipRGCs in pattern vision. To compare the effects of different background lights on the CSF, we utilized the silent substitution technique. We manipulated the stimulation level of melanopsin (i.e., the visual pigment of ipRGCs) from the background light while keeping the cone stimulations constant, or vice versa. We conducted four experiments to measure the CSFs at various spatial frequencies, eccentricities, and levels of background luminance. Results showed that melanopsin stimulation from the background light enhances spatial contrast sensitivity across different eccentricities and luminance levels. Our finding that melanopsin contributes to CSF, combined with the receptive field analysis, suggests a role for the magnocellular pathway and challenges the conventional view that ipRGCs are primarily responsible for non-visual functions.
Collapse
Affiliation(s)
- Sung-En Chien
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; Ganzin Technology Inc., New Taipei City 23141, Taiwan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10617, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan; Center for Advanced Studies in the Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| | - Wakayo Yamashita
- Faculty of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Sei-Ichi Tsujimura
- Faculty of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan; Faculty of Design and Architecture, Nagoya City University, Nagoya 467-8501, Japan.
| |
Collapse
|
28
|
Wang G, Liu YF, Yang Z, Yu CX, Tong Q, Tang YL, Shao YQ, Wang LQ, Xu X, Cao H, Zhang YQ, Zhong YM, Weng SJ, Yang XL. Short-term acute bright light exposure induces a prolonged anxiogenic effect in mice via a retinal ipRGC-CeA circuit. SCIENCE ADVANCES 2023; 9:eadf4651. [PMID: 36947616 PMCID: PMC10032603 DOI: 10.1126/sciadv.adf4651] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Light modulates mood through various retina-brain pathways. We showed that mice treated with short-term acute bright light exposure displayed anxiety-related phenotypes in a prolonged manner even after the termination of the exposure. Such a postexposure anxiogenic effect depended upon melanopsin-based intrinsically photosensitive retinal ganglion cell (ipRGC) activities rather than rod/cone photoreceptor inputs. Chemogenetic manipulation of specific central nuclei demonstrated that the ipRGC-central amygdala (CeA) visual circuit played a key role in this effect. The corticosterone system was likely to be involved in this effect, as evidenced by enhanced expression of the glucocorticoid receptor (GR) protein in the CeA and the bed nucleus of the stria terminalis and by the absence of this effect in animals treated with the GR antagonist. Together, our findings reveal a non-image forming visual circuit specifically designed for "the delayed" extinction of anxiety against potential threats, thus conferring a survival advantage.
Collapse
Affiliation(s)
- Ge Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Feng Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chen-Xi Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qi Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li-Qin Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Dole M, Auboiroux V, Langar L, Mitrofanis J. A systematic review of the effects of transcranial photobiomodulation on brain activity in humans. Rev Neurosci 2023:revneuro-2023-0003. [PMID: 36927734 DOI: 10.1515/revneuro-2023-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
In recent years, transcranial photobiomodulation (tPBM) has been developing as a promising method to protect and repair brain tissues against damages. The aim of our systematic review is to examine the results available in the literature concerning the efficacy of tPBM in changing brain activity in humans, either in healthy individuals, or in patients with neurological diseases. Four databases were screened for references containing terms encompassing photobiomodulation, brain activity, brain imaging, and human. We also analysed the quality of the included studies using validated tools. Results in healthy subjects showed that even after a single session, tPBM can be effective in influencing brain activity. In particular, the different transcranial approaches - using a focal stimulation or helmet for global brain stimulation - seemed to act at both the vascular level by increasing regional cerebral blood flow (rCBF) and at the neural level by changing the activity of the neurons. In addition, studies also showed that even a focal stimulation was sufficient to induce a global change in functional connectivity across brain networks. Results in patients with neurological disease were sparser; nevertheless, they indicated that tPBM could improve rCBF and functional connectivity in several regions. Our systematic review also highlighted the heterogeneity in the methods and results generated, together with the need for more randomised controlled trials in patients with neurological diseases. In summary, tPBM could be a promising method to act on brain function, but more consistency is needed in order appreciate fully the underlying mechanisms and the precise outcomes.
Collapse
Affiliation(s)
- Marjorie Dole
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France
| | | | - Lilia Langar
- Univ. Grenoble Alpes, CHU Grenoble Alpes, Clinatec, 38000 Grenoble, France
| | - John Mitrofanis
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France.,Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
30
|
Duhart JM, Inami S, Koh K. Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 2023; 290:931-950. [PMID: 34908236 PMCID: PMC9198110 DOI: 10.1111/febs.16320] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The two-process model of sleep regulation posits two main processes regulating sleep: the circadian process controlled by the circadian clock and the homeostatic process that depends on the history of sleep and wakefulness. The model has provided a dominant conceptual framework for sleep research since its publication ~ 40 years ago. The time of day and prior wake time are the primary factors affecting the circadian and homeostatic processes, respectively. However, it is critical to consider other factors influencing sleep. Since sleep is incompatible with other behaviors, it is affected by the need for essential behaviors such as eating, foraging, mating, caring for offspring, and avoiding predators. Sleep is also affected by sensory inputs, sickness, increased need for memory consolidation after learning, and other factors. Here, we review multiple factors influencing sleep and discuss recent insights into the mechanisms balancing competing needs.
Collapse
Affiliation(s)
- José Manuel Duhart
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
- Present address: Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sho Inami
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
| |
Collapse
|
31
|
Fifel K, Yanagisawa M, Deboer T. Mechanisms of Sleep/Wake Regulation under Hypodopaminergic State: Insights from MitoPark Mouse Model of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203170. [PMID: 36515271 PMCID: PMC9929135 DOI: 10.1002/advs.202203170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Sleep/wake alterations are predominant in neurological and neuropsychiatric disorders involving dopamine dysfunction. Unfortunately, specific, mechanisms-based therapies for these debilitating sleep problems are currently lacking. The pathophysiological mechanisms of sleep/wake alterations within a hypodopaminergic MitoPark mouse model of Parkinson's disease (PD) are investigated. MitoPark mice replicate most PD-related sleep alterations, including sleep fragmentation, hypersomnia, and daytime sleepiness. Surprisingly, these alterations are not accounted for by a dysfunction in the circadian or homeostatic regulatory processes of sleep, nor by acute masking effects of light or darkness. Rather, the sleep phenotype is linked with the impairment of instrumental arousal and sleep modulation by behavioral valence. These alterations correlate with changes in high-theta (8-11.5 Hz) electroencephalogram power density during motivationally-charged wakefulness. These results demonstrate that sleep/wake alterations induced by dopamine dysfunction are mediated by impaired modulation of sleep by motivational valence and provide translational insights into sleep problems associated with disorders linked to dopamine dysfunction.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8575Japan
- Department of Cell and Chemical BiologyLaboratory of NeurophysiologyLeiden University Medical CenterP.O. Box 9600Leiden2300 RCThe Netherlands
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8575Japan
| | - Tom Deboer
- Department of Cell and Chemical BiologyLaboratory of NeurophysiologyLeiden University Medical CenterP.O. Box 9600Leiden2300 RCThe Netherlands
| |
Collapse
|
32
|
Dauchy RT, Blask DE. Vivarium Lighting as an Important Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:3-25. [PMID: 36755210 PMCID: PMC9936857 DOI: 10.30802/aalas-jaalas-23-000003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/22/2023]
Abstract
Light is an extrinsic factor that exerts widespread influence on the regulation of circadian, physiologic, hormonal, metabolic, and behavioral systems of all animals, including those used in research. These wide-ranging biologic effects of light are mediated by distinct photoreceptors, the melanopsin-containing intrinsically photosensitive retinal ganglion cells of the nonvisual system, which interact with the rods and cones of the conventional visual system. Here, we review the nature of light and circadian rhythms, current industry practices and standards, and our present understanding of the neurophysiology of the visual and nonvisual systems. We also consider the implications of this extrinsic factor for vivarium measurement, production, and technological application of light, and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and wellbeing and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- lan, light at night
- led, light-emitting diode
- plr, pupillary light reflex
- scn, suprachiasmatic nuclei
- spd, spectral power distribution
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
33
|
Flood MD, Veloz HLB, Hattar S, Carvalho-de-Souza JL. Robust visual cortex evoked potentials (VEP) in Gnat1 and Gnat2 knockout mice. Front Cell Neurosci 2022; 16:1090037. [PMID: 36605613 PMCID: PMC9807669 DOI: 10.3389/fncel.2022.1090037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin, imparting to themselves the ability to respond to light in the absence of input from rod or cone photoreceptors. Since their discovery ipRGCs have been found to play a significant role in non-image-forming aspects of vision, including circadian photoentrainment, neuroendocrine regulation, and pupillary control. In the past decade it has become increasingly clear that some ipRGCs also contribute directly to pattern-forming vision, the ability to discriminate shapes and objects. However, the degree to which melanopsin-mediated phototransduction, versus that of rods and cones, contributes to this function is still largely unknown. Earlier attempts to quantify this contribution have relied on genetic knockout models that target key phototransductive proteins in rod and cone photoreceptors, ideally to isolate melanopsin-mediated responses. In this study we used the Gnat1-/-; Gnat2cpfl3/cpfl3 mouse model, which have global knockouts for the rod and cone α-transducin proteins. These genetic modifications completely abolish rod and cone photoresponses under light-adapted conditions, locking these cells into a "dark" state. We recorded visually evoked potentials in these animals and found that they still showed robust light responses, albeit with reduced light sensitivity, with similar magnitudes to control mice. These responses had characteristics that were in line with a melanopsin-mediated signal, including delayed kinetics and increased saturability. Additionally, we recorded electroretinograms in a sub-sample of these mice and were unable to find any characteristic waveform related the activation of photoreceptors or second-order retinal neurons, suggesting ipRGCs as the origin of light responses. Our results show a profound ability for melanopsin phototransduction to directly contribute to the primary pattern-forming visual pathway.
Collapse
Affiliation(s)
- Michael D. Flood
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Hannah L. B. Veloz
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, MD, United States
| | - Joao L. Carvalho-de-Souza
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States,Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, United States,Department of Ophthalmology and Vision Science, College of Medicine, The University of Arizona, Tucson, AZ, United States,BIO5 Institute, The University of Arizona, Tucson, AZ, United States,*Correspondence: Joao L. Carvalho-de-Souza,
| |
Collapse
|
34
|
Brock O, Gelegen C, Sully P, Salgarella I, Jager P, Menage L, Mehta I, Jęczmień-Łazur J, Djama D, Strother L, Coculla A, Vernon AC, Brickley S, Holland P, Cooke SF, Delogu A. A Role for Thalamic Projection GABAergic Neurons in Circadian Responses to Light. J Neurosci 2022; 42:9158-9179. [PMID: 36280260 PMCID: PMC9761691 DOI: 10.1523/jneurosci.0112-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
The thalamus is an important hub for sensory information and participates in sensory perception, regulation of attention, arousal and sleep. These functions are executed primarily by glutamatergic thalamocortical neurons that extend axons to the cortex and initiate cortico-thalamocortical connectional loops. However, the thalamus also contains projection GABAergic neurons that do not extend axons toward the cortex. Here, we have harnessed recent insight into the development of the intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (LGv) to specifically target and manipulate thalamic projection GABAergic neurons in female and male mice. Our results show that thalamic GABAergic neurons of the IGL and LGv receive retinal input from diverse classes of retinal ganglion cells (RGCs) but not from the M1 intrinsically photosensitive retinal ganglion cell (ipRGC) type. We describe the synergistic role of the photoreceptor melanopsin and the thalamic neurons of the IGL/LGv in circadian entrainment to dim light. We identify a requirement for the thalamic IGL/LGv neurons in the rapid changes in vigilance states associated with circadian light transitions.SIGNIFICANCE STATEMENT The intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (LGv) are part of the extended circadian system and mediate some nonimage-forming visual functions. Here, we show that each of these structures has a thalamic (dorsal) as well as prethalamic (ventral) developmental origin. We map the retinal input to thalamus-derived cells in the IGL/LGv complex and discover that while RGC input is dominant, this is not likely to originate from M1ipRGCs. We implicate thalamic cells in the IGL/LGv in vigilance state transitions at circadian light changes and in overt behavioral entrainment to dim light, the latter exacerbated by concomitant loss of melanopsin expression.
Collapse
Affiliation(s)
- Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Cigdem Gelegen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Peter Sully
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Ishita Mehta
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Jagoda Jęczmień-Łazur
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Deyl Djama
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lauren Strother
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Angelica Coculla
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philip Holland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Wolfson Centre for Age Related Disease, King's College London, London SE1 1UL, United Kingdom
| | - Samuel F Cooke
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| |
Collapse
|
35
|
Allen AE. Circadian Regulation of the Rod Contribution to Mesopic Vision in Mice. J Neurosci 2022; 42:8795-8806. [PMID: 36216501 PMCID: PMC9698662 DOI: 10.1523/jneurosci.0486-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
At intermediate (mesopic) light levels, rods and cones are both active and can contribute to vision. This presents a challenge to the retina because the visual responses originating with rods and cones are distinct, yet their visual responses must be seamlessly combined. The current study aimed to establish how the circadian clock regulates rod and/or cone vision in these conditions, given the strong time-of-day change in the reliance on each photoreceptor. Visual responses were recorded in the retina and visual thalamus of anaesthetized male mice at distinct circadian time points, and the method of receptor silent substitution was used to selectively stimulate different photoreceptor types. With stimuli designed to only activate rods, responses in the mesopic range were highly rhythmic and peaked in amplitude in the subjective night. This rhythm was abolished following intravitreal injection of the gap junction blocker meclofenamic acid, consistent with a circadian variation in the strength of electrical coupling of photoreceptors. In contrast, responses to stimuli designed to only activate cones were arrhythmic within the mesopic to photopic range when adapted to the background irradiance. The outcome was that combined rod-plus-cone responses showed a stable contrast-response relationship across mesopic-photopic backgrounds in the circadian day, whereas at night, responses were significantly amplified at lower light levels. These data support the idea that the circadian clock is a key regulator of vision, in this case defining the relative amplitude of rod/cone vision across the mesopic transition according to time of day.SIGNIFICANCE STATEMENT Although the importance of circadian clocks in regulating vision has been long recognized, less is known about how the clock shapes vision in conditions where both rods and cones are active (mesopic conditions). Here, the novel approach of receptor silent substitution has been applied to trace rod and cone visual responses in mice across the circadian cycle and has identified pronounced rhythms in rod, but not cone, vision. This has the effect of boosting responses in dimmer backgrounds at night at the cost of impaired contrast-response stability across the mesopic to photopic range. Thus, the circadian clock drives anticipatory changes in the relative contribution of rods versus cones to vision, which match the prevailing visual environment.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
36
|
Li K, Wang Q, Wang L, Huang Y. Cognitive dysfunctions in high myopia: An overview of potential neural morpho-functional mechanisms. Front Neurol 2022; 13:1022944. [PMID: 36408499 PMCID: PMC9669364 DOI: 10.3389/fneur.2022.1022944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 10/28/2023] Open
Abstract
Dementia and cognitive impairment (CIM) carry high levels of mortality. Visual impairment (VI) is linked with CIM risk. High myopia (HM) is a chronic disease frequently leading to irreversible blindness. Current opinion has shifted from retinal injury as the cause of HM to the condition being considered an eye-brain disease. However, the pathogenesis of this disease and the manner in which neural structures are damaged are poorly understood. This review comprehensively discusses the relationship between HM, the central nervous system, and CIM, together with the novel concept of three visual pathways, and possible research perspectives.
Collapse
Affiliation(s)
- Kaixiu Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qun Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Endogenous opioid signaling in the retina modulates sleep/wake activity in mice. Neurobiol Sleep Circadian Rhythms 2022; 13:100078. [PMID: 35800978 PMCID: PMC9254600 DOI: 10.1016/j.nbscr.2022.100078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022] Open
|
38
|
Inami S, Sakai T. Circadian photoreceptors are required for light-dependent maintenance of long-term memory in Drosophila. Neurosci Res 2022; 185:62-66. [PMID: 36096270 DOI: 10.1016/j.neures.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022]
Abstract
In the fruit fly Drosophila melanogaster, environmental light is required for maintaining long-term memory (LTM). Furthermore, the Pigment dispersing factor (Pdf), which is a circadian neuropeptide, and the neuronal activity of Pdf neurons are essential for light-dependent maintenance of courtship LTM. Since Pdf neurons can sense light directly via circadian photoreceptors [Rhodopsin 7 (Rh7) and Cryptochrome (Cry)], it is possible that Rh7 and Cry in Pdf neurons are involved in the maintenance of LTM. In this study, using a courtship conditioning assay, we demonstrated that circadian photoreceptors in Pdf neurons are required for maintaining courtship LTM.
Collapse
Affiliation(s)
- Show Inami
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takaomi Sakai
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
| |
Collapse
|
39
|
Fifel K, El Farissi A, Cherasse Y, Yanagisawa M. Motivational and Valence-Related Modulation of Sleep/Wake Behavior are Mediated by Midbrain Dopamine and Uncoupled from the Homeostatic and Circadian Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200640. [PMID: 35794435 PMCID: PMC9403635 DOI: 10.1002/advs.202200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Motivation and its hedonic valence are powerful modulators of sleep/wake behavior, yet its underlying mechanism is still poorly understood. Given the well-established role of midbrain dopamine (mDA) neurons in encoding motivation and emotional valence, here, neuronal mechanisms mediating sleep/wake regulation are systematically investigated by DA neurotransmission. It is discovered that mDA mediates the strong modulation of sleep/wake states by motivational valence. Surprisingly, this modulation can be uncoupled from the classically employed measures of circadian and homeostatic processes of sleep regulation. These results establish the experimental foundation for an additional new factor of sleep regulation. Furthermore, an electroencephalographic marker during wakefulness at the theta range is identified that can be used to reliably track valence-related modulation of sleep. Taken together, this study identifies mDA signaling as an important neural substrate mediating sleep modulation by motivational valence.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Amina El Farissi
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| |
Collapse
|
40
|
Lok R, Woelders T, Gordijn MCM, van Koningsveld MJ, Oberman K, Fuhler SG, Beersma DGM, Hut RA. Bright Light During Wakefulness Improves Sleep Quality in Healthy Men: A Forced Desynchrony Study Under Dim and Bright Light (III). J Biol Rhythms 2022; 37:429-441. [PMID: 35730553 PMCID: PMC9326793 DOI: 10.1177/07487304221096910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Under real-life conditions, increased light exposure during wakefulness seems associated with improved sleep quality, quantified as reduced time awake during bed time, increased time spent in non-rapid eye movement (NREM) sleep, or increased power of the electroencephalogram delta band (0.5-4 Hz). The causality of these important relationships and their dependency on circadian phase and/or time awake has not been studied in depth. To disentangle possible circadian and homeostatic interactions, we employed a forced desynchrony protocol under dim light (6 lux) and under bright light (1300 lux) during wakefulness. Our protocol consisted of a fast cycling sleep-wake schedule (13 h wakefulness—5 h sleep; 4 cycles), followed by 3 h recovery sleep in a within-subject cross-over design. Individuals (8 men) were equipped with 10 polysomnography electrodes. Subjective sleep quality was measured immediately after wakening with a questionnaire. Results indicated that circadian variation in delta power was only detected under dim light. Circadian variation in time in rapid eye movement (REM) sleep and wakefulness were uninfluenced by light. Prior light exposure increased accumulation of delta power and time in NREM sleep, while it decreased wakefulness, especially during the circadian wake phase (biological day). Subjective sleep quality scores showed that participants rated their sleep quality better after bright light exposure while sleeping when the circadian system promoted wakefulness. These results suggest that high environmental light intensity either increases sleep pressure buildup during wakefulness or prevents the occurrence of micro-sleep, leading to improved quality of subsequent sleep.
Collapse
Affiliation(s)
- R Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,University of Groningen, Leeuwarden, the Netherlands.,Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - T Woelders
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - M C M Gordijn
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,Chrono@Work B.V., Groningen, the Netherlands
| | - M J van Koningsveld
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - K Oberman
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - S G Fuhler
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - D G M Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - R A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
41
|
Rach H, Kilic-Huck U, Reynaud E, Hugueny L, Peiffer E, Roy de Belleplaine V, Fuchs F, Bourgin P, Geoffroy PA. The melanopsin-mediated pupil response is reduced in idiopathic hypersomnia with long sleep time. Sci Rep 2022; 12:9018. [PMID: 35637236 PMCID: PMC9151765 DOI: 10.1038/s41598-022-13041-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Idiopathic hypersomnia (IH), characterized by an excessive day-time sleepiness, a prolonged total sleep time on 24 h and/or a reduced sleep latency, affects 1 in 2000 individuals from the general population. However, IH remains underdiagnosed and inaccurately treated despite colossal social, professional and personal impacts. The pathogenesis of IH is poorly known, but recent works have suggested possible alterations of phototransduction. In this context, to identify biomarkers of IH, we studied the Post-Illumination Pupil Response (PIPR) using a specific pupillometry protocol reflecting the melanopsin-mediated pupil response in IH patients with prolonged total sleep time (TST > 660 min) and in healthy subjects. Twenty-eight patients with IH (women 86%, 25.4 year-old ± 4.9) and 29 controls (women 52%, 27.1 year-old ± 3.9) were included. After correction on baseline pupil diameter, the PIPR was compared between groups and correlated to sociodemographic and sleep parameters. We found that patients with IH had a lower relative PIPR compared to controls (32.6 ± 9.9% vs 38.5 ± 10.2%, p = 0.037) suggesting a reduced melanopsin response. In addition, the PIPR was not correlated to age, chronotype, TST, nor depressive symptoms. The melanopsin-specific PIPR may be an innovative trait marker of IH and the pupillometry might be a promising tool to better characterize hypersomnia.
Collapse
|
42
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
43
|
Direct Effects of Light on Sleep under Ultradian Light-Dark Cycles Depend on Circadian Time and Pulses Duration. Clocks Sleep 2022; 4:208-218. [PMID: 35466270 PMCID: PMC9036312 DOI: 10.3390/clockssleep4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Ultradian light–dark cycles in rodents are a precious tool to study the direct effects of repeated light exposures on sleep, in order to better understand the underlying mechanisms. This study aims to precisely evaluate the effects of light and dark exposures, according to circadian time, on sleep and waking distribution and quality, and to determine if these effects depend on the duration of light and dark pulses. To do this, mice were exposed to 24 h-long ultradian light–dark cycles with different durations of pulses: T2 cycle (1 h of light/1 h of dark) and T7 cycle (3.5 h of light/3.5 h of dark). Exposure to light not only promotes NREM and REM sleep and inhibits wake, but also drastically alters alertness and modifies sleep depth. These effects are modulated by circadian time, appearing especially during early subjective night, and their kinetics is highly dependent on the duration of pulses, suggesting that in the case of pulses of longer duration, the homeostatic process could overtake light direct influence for shaping sleep and waking distribution.
Collapse
|
44
|
Maruani J, Geoffroy PA. Multi-Level Processes and Retina-Brain Pathways of Photic Regulation of Mood. J Clin Med 2022; 11:jcm11020448. [PMID: 35054142 PMCID: PMC8781294 DOI: 10.3390/jcm11020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Light exerts powerful biological effects on mood regulation. Whereas the source of photic information affecting mood is well established at least via intrinsically photosensitive retinal ganglion cells (ipRGCs) secreting the melanopsin photopigment, the precise circuits that mediate the impact of light on depressive behaviors are not well understood. This review proposes two distinct retina–brain pathways of light effects on mood: (i) a suprachiasmatic nucleus (SCN)-dependent pathway with light effect on mood via the synchronization of biological rhythms, and (ii) a SCN-independent pathway with light effects on mood through modulation of the homeostatic process of sleep, alertness and emotion regulation: (1) light directly inhibits brain areas promoting sleep such as the ventrolateral preoptic nucleus (VLPO), and activates numerous brain areas involved in alertness such as, monoaminergic areas, thalamic regions and hypothalamic regions including orexin areas; (2) moreover, light seems to modulate mood through orexin-, serotonin- and dopamine-dependent pathways; (3) in addition, light activates brain emotional processing areas including the amygdala, the nucleus accumbens, the perihabenular nucleus, the left hippocampus and pathways such as the retina–ventral lateral geniculate nucleus and intergeniculate leaflet–lateral habenula pathway. This work synthetizes new insights into the neural basis required for light influence mood
Collapse
Affiliation(s)
- Julia Maruani
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| | - Pierre A. Geoffroy
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, F-67000 Strasbourg, France
- GHU Paris—Psychiatry & Neurosciences, 1 Rue Cabanis, F-75014 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| |
Collapse
|
45
|
Lin Z, Hou G, Yao Y, Zhou Z, Zhu F, Liu L, Zeng L, Yang Y, Ma J. 40-Hz Blue Light Changes Hippocampal Activation and Functional Connectivity Underlying Recognition Memory. Front Hum Neurosci 2022; 15:739333. [PMID: 34975431 PMCID: PMC8716555 DOI: 10.3389/fnhum.2021.739333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Research on light modulation has typically examined the wavelength, intensity, and exposure time of light, and measured rhythm, sleep, and cognitive ability to evaluate the regulatory effects of light variables on physiological and cognitive functions. Although the frequency of light is one of the main dimensions of light, few studies have attempted to manipulate it to test the effect on brain activation and performance. Recently, 40-Hz light stimulation has been proven to significantly alleviate deficits in gamma oscillation of the hippocampus caused by Alzheimer’s disease. Although this oscillation is one of the key functional characteristics of performing memory tasks in healthy people, there is no evidence that 40-Hz blue light exposure can effectively regulate brain activities related to complex cognitive tasks. In the current study, we examined the difference in the effects of 40-Hz light or 0-Hz light exposure on brain activation and functional connectivity during a recognition memory task. Through joint augmentation of visual area activation, 40-Hz light enhanced brain areas mostly in the limbic system that are related to memory, such as the hippocampus and thalamus. Conversely, 0-Hz light enhanced brain areas mostly in the prefrontal cortex. Additionally, functional connection analysis, with the hippocampus as the seed point, showed that 40-Hz light enhanced connection with the superior parietal lobe and reduced the connection with the default network. These results indicate that light at a frequency of 40 Hz can change the activity and functional connection of memory-related core brain areas. They also indicate that in the use of light to regulate cognitive functions, its frequency characteristics merit attention.
Collapse
Affiliation(s)
- Zhenglong Lin
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Youli Yao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Zhifeng Zhou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Linjing Liu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Lingwu Zeng
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Yatao Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Junxian Ma
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
46
|
Tir S, Steel LCE, Tam SKE, Semo M, Pothecary CA, Vyazovskiy VV, Foster RG, Peirson SN. Rodent models in translational circadian photobiology. PROGRESS IN BRAIN RESEARCH 2022; 273:97-116. [PMID: 35940726 DOI: 10.1016/bs.pbr.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions. Much of our understanding of the fundamental mechanisms of the pRGCs, and the processes that they regulate, comes from mouse and other rodent models. Here we describe the contribution of rodent models to circadian photobiology, including both their strengths and limitations. In addition, we discuss how an appreciation of both rodent and human data is important for translational circadian photobiology. Such an approach enables a bi-directional flow of information whereby an understanding of basic mechanisms derived from mice can be integrated with studies from humans. Progress in this field is being driven forward at several levels of analysis, not least by the use of personalized light measurements and photoreceptor specific stimuli in human studies, and by studying the impact of environmental, rather than laboratory, lighting on different rodent models.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Laura C E Steel
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - S K E Tam
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ma'ayan Semo
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carina A Pothecary
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
47
|
Slow vision: Measuring melanopsin-mediated light effects in animal models. PROGRESS IN BRAIN RESEARCH 2022; 273:117-143. [DOI: 10.1016/bs.pbr.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Contreras E, Nobleman AP, Robinson PR, Schmidt TM. Melanopsin phototransduction: beyond canonical cascades. J Exp Biol 2021; 224:273562. [PMID: 34842918 PMCID: PMC8714064 DOI: 10.1242/jeb.226522] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Melanopsin is a visual pigment that is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs). It is involved in regulating non-image forming visual behaviors, such as circadian photoentrainment and the pupillary light reflex, while also playing a role in many aspects of image-forming vision, such as contrast sensitivity. Melanopsin was initially discovered in the melanophores of the skin of the frog Xenopus, and subsequently found in a subset of ganglion cells in rat, mouse and primate retinas. ipRGCs were initially thought to be a single retinal ganglion cell population, and melanopsin was thought to activate a single, invertebrate-like Gq/transient receptor potential canonical (TRPC)-based phototransduction cascade within these cells. However, in the 20 years since the discovery of melanopsin, our knowledge of this visual pigment and ipRGCs has expanded dramatically. Six ipRGC subtypes have now been identified in the mouse, each with unique morphological, physiological and functional properties. Multiple subtypes have also been identified in other species, suggesting that this cell type diversity is a general feature of the ipRGC system. This diversity has led to a renewed interest in melanopsin phototransduction that may not follow the canonical Gq/TRPC cascade in the mouse or in the plethora of other organisms that express the melanopsin photopigment. In this Review, we discuss recent findings and discoveries that have challenged the prevailing view of melanopsin phototransduction as a single pathway that influences solely non-image forming functions.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Alexis P. Nobleman
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Phyllis R. Robinson
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Authors for correspondence (; )
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL 60611, USA,Authors for correspondence (; )
| |
Collapse
|
49
|
Fasick JI, Algrain H, Samuels C, Mahadevan P, Schweikert LE, Naffaa ZJ, Robinson PR. Spectral tuning and deactivation kinetics of marine mammal melanopsins. PLoS One 2021; 16:e0257436. [PMID: 34653198 PMCID: PMC8519484 DOI: 10.1371/journal.pone.0257436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
In mammals, the photopigment melanopsin (Opn4) is found in a subset of retinal ganglion cells that serve light detection for circadian photoentrainment and pupil constriction (i.e., mydriasis). For a given species, the efficiency of photoentrainment and length of time that mydriasis occurs is determined by the spectral sensitivity and deactivation kinetics of melanopsin, respectively, and to date, neither of these properties have been described in marine mammals. Previous work has indicated that the absorbance maxima (λmax) of marine mammal rhodopsins (Rh1) have diversified to match the available light spectra at foraging depths. However, similar to the melanopsin λmax of terrestrial mammals (~480 nm), the melanopsins of marine mammals may be conserved, with λmax values tuned to the spectrum of solar irradiance at the water's surface. Here, we investigated the Opn4 pigments of 17 marine mammal species inhabiting diverse photic environments including the Infraorder Cetacea, as well as the Orders Sirenia and Carnivora. Both genomic and cDNA sequences were used to deduce amino acid sequences to identify substitutions most likely involved in spectral tuning and deactivation kinetics of the Opn4 pigments. Our results show that there appears to be no amino acid substitutions in marine mammal Opn4 opsins that would result in any significant change in λmax values relative to their terrestrial counterparts. We also found some marine mammal species to lack several phosphorylation sites in the carboxyl terminal domain of their Opn4 pigments that result in significantly slower deactivation kinetics, and thus longer mydriasis, compared to terrestrial controls. This finding was restricted to cetacean species previously found to lack cone photoreceptor opsins, a condition known as rod monochromacy. These results suggest that the rod monochromat whales rely on extended pupillary constriction to prevent photobleaching of the highly photosensitive all-rod retina when moving between photopic and scotopic conditions.
Collapse
Affiliation(s)
- Jeffry I. Fasick
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Haya Algrain
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Courtland Samuels
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Padmanabhan Mahadevan
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Lorian E. Schweikert
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Zaid J. Naffaa
- Department of Biological Sciences, Kean University, Union, New Jersey, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
50
|
Adhikari P, Pradhan A, Zele AJ, Feigl B. Supplemental light exposure improves sleep architecture in people with type 2 diabetes. Acta Diabetol 2021; 58:1201-1208. [PMID: 33851274 DOI: 10.1007/s00592-021-01712-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
AIMS People with type 2 diabetes (T2D) suffer from sleep disorders, with the mechanism not clearly understood. In T2D, the light transducing retinal photoreceptors that regulate sleep behaviours are dysfunctional; hence, we determine here whether supplemental light exposure ameliorates sleep quality and daytime sleepiness in T2D. METHODS Supplemental light (10,000 Lux, polychromatic) was self-administered for 30 min every morning for 14 days by ten participants with T2D with no diabetic retinopathy (DR). The effectiveness of supplemental light was assessed by comparing subjective sleep questionnaire (PSQI and ESS) scores and salivary dim light melatonin onset (DLMO) before and after the light exposure as well as with a self-maintained sleep diary during the light exposure. RESULTS Compared to the baseline, supplemental light significantly improved the excessive daytime sleepiness score (p = 0.004) and phase-advanced the DLMO on average by ~ 23 min. Sleep diary analyses showed that afternoon nap duration significantly shortened over the first week of supplemental light exposure (p = 0.019). Afternoon naps and midnight awakening were significantly longer in diabetic participants with thinner perifoveal retina. CONCLUSIONS In this case series, we provide initial evidence that supplemental bright light improves daytime sleepiness in T2D with no DR, with the critical period of light exposure showing a beneficial effect after one week. We infer that supplemental light augments photoreceptor signalling in T2D and therefore optimises circadian photoentrainment leading to improved sleep. Our findings inform the development of tailored light therapy protocols in future clinical trials for improving sleep architecture in diabetes.
Collapse
Affiliation(s)
- Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Asik Pradhan
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia.
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia.
- Queensland Eye Institute, Brisbane, Australia.
| |
Collapse
|