1
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Hashimoto J, Fujita E, Tanimoto K, Kondo S, Matsumoto-Miyai K. Effects of Cardiac Glycoside Digoxin on Dendritic Spines and Motor Learning Performance in Mice. Neuroscience 2024; 541:77-90. [PMID: 38278474 DOI: 10.1016/j.neuroscience.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Synapse formation following the generation of postsynaptic dendritic spines is essential for motor learning and functional recovery after brain injury. The C-terminal fragment of agrin cleaved by neurotrypsin induces dendritic spine formation in the adult hippocampus. Since the α3 subunit of sodium-potassium ATPase (Na/K ATPase) is a neuronal receptor for agrin in the central nervous system, cardiac glycosides might facilitate dendritic spine formation and subsequent improvements in learning. This study investigated the effects of cardiac glycoside digoxin on dendritic spine turnover and learning performance in mice. Golgi-Cox staining revealed that intraperitoneal injection of digoxin less than its IC50 in the brain significantly increased the density of long spines (≥2 µm) in the cerebral cortex in wild-type mice and neurotrypsin-knockout (NT-KO) mice showing impairment of activity-dependent spine formation. Although the motor learning performance of NT-KO mice was significantly lower than control wild-type mice under the control condition, low doses of digoxin enhanced performance to a similar degree in both strains. In NT-KO mice, lower digoxin doses equivalent to clinical doses also significantly improved motor learning performance. These data suggest that lower doses of digoxin could modify dendritic spine formation or recycling and facilitate motor learning in compensation for the disruption of neurotrypsin-agrin pathway.
Collapse
Affiliation(s)
- Junichi Hashimoto
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Erika Fujita
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Keisuke Tanimoto
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Suzuo Kondo
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Kazumasa Matsumoto-Miyai
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan.
| |
Collapse
|
3
|
Markina AA, Kazanskaya RB, Timoshina JA, Zavialov VA, Abaimov DA, Volnova AB, Fedorova TN, Gainetdinov RR, Lopachev AV. Na +,K +-ATPase and Cardiotonic Steroids in Models of Dopaminergic System Pathologies. Biomedicines 2023; 11:1820. [PMID: 37509460 PMCID: PMC10377002 DOI: 10.3390/biomedicines11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Alisa A Markina
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Rogneda B Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Julia A Timoshina
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
- Biological Department, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow, Russia
| | - Vladislav A Zavialov
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Denis A Abaimov
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Anna B Volnova
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Tatiana N Fedorova
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, 199034 Saint Petersburg, Russia
| | - Alexander V Lopachev
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| |
Collapse
|
4
|
Kinoshita PF, Orellana AM, Andreotti DZ, de Souza GA, de Mello NP, de Sá Lima L, Kawamoto EM, Scavone C. Consequences of the Lack of TNFR1 in Ouabain Response in the Hippocampus of C57BL/6J Mice. Biomedicines 2022; 10:biomedicines10112937. [PMID: 36428505 PMCID: PMC9688030 DOI: 10.3390/biomedicines10112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1β in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Giovanna Araujo de Souza
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Natalia Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence:
| |
Collapse
|
5
|
Kalocayova B, Snurikova D, Vlkovicova J, Navarova-Stara V, Michalikova D, Ujhazy E, Gasparova Z, Vrbjar N. Effect of handling on ATP utilization of cerebral Na,K-ATPase in rats with trimethyltin-induced neurodegeneration. Mol Cell Biochem 2021; 476:4323-4330. [PMID: 34427815 DOI: 10.1007/s11010-021-04239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Previously it was shown that for reduction of anxiety and stress of experimental animals, preventive handling seems to be one of the most effective methods. The present study was oriented on Na,K-ATPase, a key enzyme for maintaining proper concentrations of intracellular sodium and potassium ions. Malfunction of this enzyme has an essential role in the development of neurodegenerative diseases. It is known that this enzyme requires approximately 50% of the energy available to the brain. Therefore in the present study utilization of the energy source ATP by Na,K-ATPase in the frontal cerebral cortex, using the method of enzyme kinetics was investigated. As a model of neurodegeneration treatment with trimethyltin (TMT) was applied. Daily handling (10 min/day) of healthy rats and rats suffering neurodegeneration induced by administration of TMT in a dose of (7.5 mg/kg), at postnatal days 60-102 altered the expression of catalytic subunits of Na,K-ATPase as well as kinetic properties of this enzyme in the frontal cerebral cortex of adult male Wistar rats. In addition to the previously published beneficial effect on spatial memory, daily treatment of rats was accompanied by improved maintenance of sodium homeostasis in the frontal cortex. The key system responsible for this process, Na,K-ATPase, was able to utilize better the energy substrate ATP. In rats, manipulation of TMT-induced neurodegeneration promoted the expression of the α2 isoform of the enzyme, which is typical for glial cells. In healthy rats, manipulation was followed by increased expression of the α3 subunit, which is typical of neurons.
Collapse
Affiliation(s)
- Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Denisa Snurikova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jana Vlkovicova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Navarova-Stara
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Dominika Michalikova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Eduard Ujhazy
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Zdenka Gasparova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
6
|
Kinoshita PF, Orellana AMM, Nakao VW, de Souza Port's NM, Quintas LEM, Kawamoto EM, Scavone C. The Janus face of ouabain in Na + /K + -ATPase and calcium signalling in neurons. Br J Pharmacol 2021; 179:1512-1524. [PMID: 33644859 DOI: 10.1111/bph.15419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
Na+ /K+ -ATPase, a transmembrane protein essential for maintaining the electrochemical gradient across the plasma membrane, acts as a receptor for cardiotonic steroids such as ouabain. Cardiotonic steroids binding to Na+ /K+ -ATPase triggers signalling pathways or inhibits Na+ /K+ -ATPas activity in a concentration-dependent manner, resulting in a modulation of Ca2+ levels, which are essential for homeostasis in neurons. However, most of the pharmacological strategies for avoiding neuronal death do not target Na+ /K+ -ATPase activity due to its complexity and the poor understanding of the mechanisms involved in Na+ /K+ -ATPase modulation. The present review aims to discuss two points regarding the interplay between Na+ /K+ -ATPase and Ca2+ signalling in the brain. One, Na+ /K+ -ATPase impairment causing illness and neuronal death due to Ca2+ signalling and two, benefits to the brain by modulating Na+ /K+ -ATPase activity. These interactions play an essential role in neuronal cell fate determination and are relevant to find new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Watanabe Nakao
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natacha Medeiros de Souza Port's
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luis Eduardo Menezes Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Health Sciences Centre Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Lopachev AV, Lagarkova MA, Lebedeva OS, Ezhova MA, Kazanskaya RB, Timoshina YA, Khutorova AV, Akkuratov EE, Fedorova TN, Gainetdinov RR. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sci 2021; 11:brainsci11020203. [PMID: 33562186 PMCID: PMC7915459 DOI: 10.3390/brainsci11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.
Collapse
Affiliation(s)
- Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Correspondence:
| | - Maria A. Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Olga S. Lebedeva
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Margarita A. Ezhova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia;
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Yulia A. Timoshina
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasiya V. Khutorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny E. Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65 Stockholm, Sweden;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
8
|
Fronza MG, Baldinotti R, Sacramento M, Gutierres J, Carvalho FB, Fernandes MDC, Sousa FSS, Seixas FK, Collares T, Alves D, Pratico D, Savegnago L. Effect of QTC-4-MeOBnE Treatment on Memory, Neurodegeneration, and Neurogenesis in a Streptozotocin-Induced Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2021; 12:109-122. [PMID: 33315382 DOI: 10.1021/acschemneuro.0c00615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that drugs targeting neurogenesis and myelinization could be novel therapeutic targets against Alzheimer's disease (AD). Intracerebroventricular (icv) injection of streptozotocin (STZ) induces neurodegeneration through multiple mechanisms ultimately resulting in reduced adult neurogenesis. Previously, the multitarget compound QTC-4-MeOBnE (1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4-carboxamide) demonstrated beneficial effects in preclinical models of AD. Here we investigated its pharmacokinetics profile and the effect on memory impairments and neurodegeneration induced by STZ. Two icv injections of STZ resulted in significant cognitive and memory impairments, assessed by novel object recognition, Y-maze, social recognition, and step-down passive avoidance paradigms. These deficits were reversed in STZ-injected mice treated with QTC-4-MeOBnE. This effect was associated with reversion of neuronal loss in hippocampal dentate gyrus, reduced oxidative stress, and amelioration of synaptic function trough Na+/K+ ATPase and acetylcholinesterase activities. Furthermore, brains from QTC-4-MeOBnE-treated mice had a significant increase in adult neurogenesis and remyelination through Prox1/NeuroD1 and Wnt/β-catenin pathways. Overall, our findings support the potential anti-AD effect of QTC-4-MeOBnE through multiple pathways, all of which have been involved in the onset and progression of the disease.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Research Group on Neurobiotechnology−GPN, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Rodolfo Baldinotti
- Research Group on Neurobiotechnology−GPN, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Manoela Sacramento
- Laboratory of Clean Organic Synthesis−LASOL, Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, Pelotas, RS 96010-610, Brazil
| | - Jessié Gutierres
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Fabiano Barbosa Carvalho
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | - Marilda da Cruz Fernandes
- Pathology Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
| | | | - Fabiana K. Seixas
- Oncology Research Group, GPO, CDTec, UFPel, CDTec, Pelotas, RS 96010-610, Brazil
| | - Tiago Collares
- Oncology Research Group, GPO, CDTec, UFPel, CDTec, Pelotas, RS 96010-610, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis−LASOL, Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, Pelotas, RS 96010-610, Brazil
| | - Domenico Pratico
- Alzheimer’s Center at Temple−ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States of America
| | - Lucielli Savegnago
- Research Group on Neurobiotechnology−GPN, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| |
Collapse
|
9
|
Orlov SN, Tverskoi AM, Sidorenko SV, Smolyaninova LV, Lopina OD, Dulin NO, Klimanova EA. Na,K-ATPase as a target for endogenous cardiotonic steroids: What's the evidence? Genes Dis 2020; 8:259-271. [PMID: 33997173 PMCID: PMC8093582 DOI: 10.1016/j.gendis.2020.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
With an exception of few reports, the plasma concentration of ouabain and marinobufagenin, mostly studied cardiotonic steroids (CTS) assessed by immunoassay techniques, is less than 1 nM. During the last 3 decades, the implication of these endogenous CTS in the pathogenesis of hypertension and other volume-expanded disorders is widely disputed. The threshold for inhibition by CTS of human and rodent α1-Na,K-ATPase is ∼1 and 1000 nM, respectively, that rules out the functioning of endogenous CTS (ECTS) as natriuretic hormones and regulators of cell adhesion, cell-to-cell communication, gene transcription and translation, which are mediated by dissipation of the transmembrane gradients of monovalent cations. In several types of cells ouabain and marinobufagenin at concentrations corresponding to its plasma level activate Na,K-ATPase, decrease the [Na+]i/[K+]i-ratio and increase cell proliferation. Possible physiological significance and mechanism of non-canonical Na+i/K+i-dependent and Na+i/K+i-independent cell responses to CTS are discussed.
Collapse
Affiliation(s)
- Sergei N Orlov
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia.,Siberian State Medical University, Tomsk, 634050, Russia
| | | | - Svetlana V Sidorenko
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| | - Larisa V Smolyaninova
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| | - Olga D Lopina
- MV Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Elizaveta A Klimanova
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| |
Collapse
|
10
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium-and Potassium-Activated Adenosine Triphosphatase (Na +, K +-ATPase) Enzyme Activity: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1427. [PMID: 31010095 PMCID: PMC6518254 DOI: 10.3390/ijerph16081427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, several lines of evidence are provided to show that Na + , K + -ATPase activity exerts vital roles in normal brain development and function and that loss of enzyme activity is implicated in neurodevelopmental, neuropsychiatric and neurodegenerative disorders, as well as increased risk of cancer, metabolic, pulmonary and cardiovascular disease. Evidence is presented to show that fluoride (F) inhibits Na + , K + -ATPase activity by altering biological pathways through modifying the expression of genes and the activity of glycolytic enzymes, metalloenzymes, hormones, proteins, neuropeptides and cytokines, as well as biological interface interactions that rely on the bioavailability of chemical elements magnesium and manganese to modulate ATP and Na + , K + -ATPase enzyme activity. Taken together, the findings of this study provide unprecedented insights into the molecular mechanisms and biological pathways by which F inhibits Na + , K + -ATPase activity and contributes to the etiology and pathophysiology of diseases associated with impairment of this essential enzyme. Moreover, the findings of this study further suggest that there are windows of susceptibility over the life course where chronic F exposure in pregnancy and early infancy may impair Na + , K + -ATPase activity with both short- and long-term implications for disease and inequalities in health. These findings would warrant considerable attention and potential intervention, not to mention additional research on the potential effects of F intake in contributing to chronic disease.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, P72 YF10 Bandon, Co. Cork, Ireland.
| |
Collapse
|
11
|
Orellana AM, Leite JA, Kinoshita PF, Vasconcelos AR, Andreotti DZ, de Sá Lima L, Xavier GF, Kawamoto EM, Scavone C. Ouabain increases neuronal branching in hippocampus and improves spatial memory. Neuropharmacology 2018; 140:260-274. [PMID: 30099050 DOI: 10.1016/j.neuropharm.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Previous research shows Ouabain (OUA) to bind Na, K-ATPase, thereby triggering a number of signaling pathways, including the transcription factors NFᴋB and CREB. These transcription factors play a key role in the regulation of BDNF and WNT-β-catenin signaling cascades, which are involved in neuroprotection and memory regulation. This study investigated the effects of OUA (10 nM) in the modulation of the principal signaling pathways involved in morphological plasticity and memory formation in the hippocampus of adult rats. The results show intrahippocampal injection of OUA 10 nM to activate the Wnt/β-Catenin signaling pathway and to increase CREB/BDNF and NFᴋB levels. These effects contribute to important changes in the cellular microenvironment, resulting in enhanced levels of dendritic branching in hippocampal neurons, in association with an improvement in spatial reference memory and the inhibition of long-term memory extinction.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Diana Zukas Andreotti
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Bioscience, University of São Paulo, Adress: Rua do Matão, Travessa 14, 101, São Paulo, 05508-090, Brazil.
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| |
Collapse
|
12
|
Matagne V, Wondolowski J, Frerking M, Shahidullah M, Delamere NA, Sandau US, Budden S, Ojeda SR. Correcting deregulated Fxyd1 expression rescues deficits in neuronal arborization and potassium homeostasis in MeCP2 deficient male mice. Brain Res 2018; 1697:45-52. [PMID: 29902467 DOI: 10.1016/j.brainres.2018.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2 gene. In the absence of MeCP2, expression of FXYD domain-containing transport regulator 1 (FXYD1) is deregulated in the frontal cortex (FC) of mice and humans. Because Fxyd1 is a membrane protein that controls cell excitability by modulating Na+, K+-ATPase activity (NKA), an excess of Fxyd1 may reduce NKA activity and contribute to the neuronal phenotype of Mecp2 deficient (KO) mice. To determine if Fxyd1 can rescue these RTT deficits, we studied the male progeny of Fxyd1 null males bred to heterozygous Mecp2 female mice. Maximal NKA enzymatic activity was not altered by the loss of MeCP2, but it increased in mice lacking one Fxyd1 allele, suggesting that NKA activity is under Fxyd1 inhibitory control. Deletion of one Fxyd1 allele also prevented the increased extracellular potassium (K+) accumulation observed in cerebro-cortical neurons from Mecp2 KO animals in response to the NKA inhibitor ouabain, and rescued the loss of dendritic arborization observed in FC neurons of Mecp2 KO mice. These effects were gene-dose dependent, because the absence of Fxyd1 failed to rescue the MeCP2-dependent deficits, and mimicked the effect of MeCP2 deficiency in wild-type animals. These results indicate that excess of Fxyd1 in the absence of MeCP2 results in deregulation of endogenous K+ conductances functionally associated with NKA and leads to stunted neuronal growth.
Collapse
Affiliation(s)
- Valerie Matagne
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Joyce Wondolowski
- Neuroscience Graduate Program, Oregon Health and Sciences University, Portland, OR 97239, USA.
| | - Matthew Frerking
- Departments of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | - Ursula S Sandau
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Sarojini Budden
- Division of Developmental Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
13
|
Yang XS, Xu ZW, Yi TL, Xu RC, Li J, Zhang WB, Zhang S, Sun HT, Yu ZQ, Xu HX, Tu Y, Cheng SX. Ouabain suppresses the growth and migration abilities of glioma U‑87MG cells through inhibiting the Akt/mTOR signaling pathway and downregulating the expression of HIF‑1α. Mol Med Rep 2018; 17:5595-5600. [PMID: 29436645 PMCID: PMC5865999 DOI: 10.3892/mmr.2018.8587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
Glioma is one of the most malignant forms of brain tumor, and has been of persistent concern due to its high recurrence and mortality rates, and limited therapeutic options. As a cardiac glycoside, ouabain has widespread applications in congestive heart diseases due to its positive cardiac inotropic effect by inhibiting Na+/K+-ATPase. Previous studies have demonstrated that ouabain has antitumor activity in several types of human tumor, including glioma. However, the exact underlying mechanism remains to be elucidated. The purpose of present study was to elucidate the effect of ouabain on human glioma cell apoptosis and investigate the exact mechanism. U-87MG cells were treated with various concentrations of ouabain for 24 h, following which cell viability and survival rate were assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The dynamic changes and cell motility were observed using digital holographic microscopy. Additionally, western blot analysis and high-content screening assays were used to detect the protein expression levels of phosphorylated (p-)Akt, mammalian target of rapamycin (mTOR), p-mTOR and hypoxia-inducible factor (HIF)-1α, respectively. Compared with the control group, ouabain suppressed U-87MG cell survival, and attenuated cell motility in a dose-dependent manner (P<0.01). The downregulation of p-Akt, mTOR, p-mTOR and HIF-1α were observed following treatment with 2.5 and 25 µmol/l of ouabain. These results suggested that ouabain exerted suppressive effects on tumor cell growth and motility, leading to cell death via regulating the intracellular Akt/mTOR signaling pathway and inhibiting the expression of HIF-1α in glioma cells. The present study examined the mechanism underlying the antitumor property of ouabain, providing a novel potential therapeutic agent for glioma treatment.
Collapse
Affiliation(s)
- Xiao-Sa Yang
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Zhong-Wei Xu
- Central Laboratory of Logistics University of PAP, Tianjin 300309, P.R. China
| | - Tai-Long Yi
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Rui-Cheng Xu
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Logistics University of PAP, Tianjin 300309, P.R. China
| | - Jie Li
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Wen-Bin Zhang
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Sai Zhang
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Hong-Tao Sun
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Ze-Qi Yu
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Hao-Xiang Xu
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Yue Tu
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Shi-Xiang Cheng
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| |
Collapse
|
14
|
Plössl K, Royer M, Bernklau S, Tavraz NN, Friedrich T, Wild J, Weber BHF, Friedrich U. Retinoschisin is linked to retinal Na/K-ATPase signaling and localization. Mol Biol Cell 2017; 28:2178-2189. [PMID: 28615319 PMCID: PMC5531734 DOI: 10.1091/mbc.e17-01-0064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 01/30/2023] Open
Abstract
Retinoschisin binds to the extracellular domain of Na/K-ATPase subunit β2. Retinoschisin inhibits Na/K-ATPase–associated signaling cascades and affects Na/K-ATPase localization. The retinoschisin-Na/K-ATPase complex overlaps with signaling mediators. Defective Na/K-ATPase signaling by retinoschisin deficiency may promote retinal dystrophy. Mutations in the RS1 gene cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy. We recently showed that retinoschisin, the protein encoded by RS1, regulates ERK signaling and apoptosis in retinal cells. In this study, we explored an influence of retinoschisin on the functionality of the Na/K-ATPase, its interaction partner at retinal plasma membranes. We show that retinoschisin binding requires the β2-subunit of the Na/K-ATPase, whereas the α-subunit is exchangeable. Our investigations revealed no effect of retinoschisin on Na/K-ATPase–mediated ATP hydrolysis and ion transport. However, we identified an influence of retinoschisin on Na/K-ATPase–regulated signaling cascades and Na/K-ATPase localization. In addition to the known ERK deactivation, retinoschisin treatment of retinoschisin-deficient (Rs1h-/Y) murine retinal explants decreased activation of Src, an initial transmitter in Na/K-ATPase signal transduction, and of Ca2+ signaling marker Camk2. Immunohistochemistry on murine retinae revealed an overlap of the retinoschisin–Na/K-ATPase complex with proteins involved in Na/K-ATPase signaling, such as caveolin, phospholipase C, Src, and the IP3 receptor. Finally, retinoschisin treatment altered Na/K-ATPase localization in photoreceptors of Rs1h-/Y retinae. Taken together, our results suggest a regulatory effect of retinoschisin on Na/K-ATPase signaling and localization, whereas Na/K-ATPase-dysregulation caused by retinoschisin deficiency could represent an initial step in XLRS pathogenesis.
Collapse
Affiliation(s)
- Karolina Plössl
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Melanie Royer
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Sarah Bernklau
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Neslihan N Tavraz
- Institute of Chemistry, Technical University of Berlin, 10623 Berlin, Germany
| | - Thomas Friedrich
- Institute of Chemistry, Technical University of Berlin, 10623 Berlin, Germany
| | - Jens Wild
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Na⁺ i,K⁺ i-Dependent and -Independent Signaling Triggered by Cardiotonic Steroids: Facts and Artifacts. Molecules 2017; 22:molecules22040635. [PMID: 28420099 PMCID: PMC6153942 DOI: 10.3390/molecules22040635] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022] Open
Abstract
Na⁺,K⁺-ATPase is the only known receptor of cardiotonic steroids (CTS) whose interaction with catalytic α-subunits leads to inhibition of this enzyme. As predicted, CTS affect numerous cellular functions related to the maintenance of the transmembrane gradient of monovalent cations, such as electrical membrane potential, cell volume, transepithelial movement of salt and osmotically-obliged water, symport of Na⁺ with inorganic phosphate, glucose, amino acids, nucleotides, etc. During the last two decades, it was shown that side-by-side with these canonical Na⁺i/K⁺i-dependent cellular responses, long-term exposure to CTS affects transcription, translation, tight junction, cell adhesion and exhibits tissue-specific impact on cell survival and death. It was also shown that CTS trigger diverse signaling cascades via conformational transitions of the Na⁺,K⁺-ATPase α-subunit that, in turn, results in the activation of membrane-associated non-receptor tyrosine kinase Src, phosphatidylinositol 3-kinase and the inositol 1,4,5-triphosphate receptor. These findings allowed researchers to propose that endogenous CTS might be considered as a novel class of steroid hormones. We focus our review on the analysis of the relative impact Na⁺i,K⁺i-mediated and -independent pathways in cellular responses evoked by CTS.
Collapse
|
16
|
Plössl K, Weber BHF, Friedrich U. The X-linked juvenile retinoschisis protein retinoschisin is a novel regulator of mitogen-activated protein kinase signalling and apoptosis in the retina. J Cell Mol Med 2016; 21:768-780. [PMID: 27995734 PMCID: PMC5345684 DOI: 10.1111/jcmm.13019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/26/2016] [Indexed: 02/01/2023] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy in young males, caused by mutations in the RS1 gene. The function of the encoded protein, termed retinoschisin, and the molecular mechanisms underlying XLRS pathogenesis are still unresolved, although a direct interaction partner of the secreted retinoschisin, the retinal Na/K-ATPase, was recently identified. Earlier gene expression studies in retinoschisin-deficient (Rs1h-/Y ) mice provided a first indication of pathological up-regulation of mitogen-activated protein (MAP) kinase signalling in disease pathogenesis. To further investigate the role for retinoschisin in MAP kinase regulation, we exposed Y-79 cells and murine Rs1h-/Y retinae to recombinant retinoschisin and the XLRS-associated mutant RS1-C59S. Although normal retinoschisin stably bound to retinal cells, RS1-C59S exhibited a strongly reduced binding affinity. Simultaneously, exposure to normal retinoschisin significantly reduced phosphorylation of C-RAF and MAP kinases ERK1/2 in Y-79 cells and murine Rs1h-/Y retinae. Expression of MAP kinase target genes C-FOS and EGR1 was also down-regulated in both model systems. Finally, retinoschisin treatment decreased pro-apoptotic BAX-2 transcript levels in Y-79 cells and Rs1h-/Y retinae. Upon retinoschisin treatment, these cells showed increased resistance against apoptosis, reflected by decreased caspase-3 activity (in Y-79 cells) and increased photoreceptor survival (in Rs1h-/Y retinal explants). RS1-C59S did not influence C-RAF or ERK1/2 activation, C-FOS or EGR1 expression, or apoptosis. Our data imply that retinoschisin is a novel regulator of MAP kinase signalling and exerts an anti-apoptotic effect on retinal cells. We therefore discuss that disturbances of MAP kinase signalling by retinoschisin deficiency could be an initial step in XLRS pathogenesis.
Collapse
Affiliation(s)
- Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Properties of Na,K-ATPase in cerebellum of male and female rats: effects of acute and prolonged diabetes. Mol Cell Biochem 2016; 425:25-36. [DOI: 10.1007/s11010-016-2859-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/22/2016] [Indexed: 02/07/2023]
|
18
|
Shrivastava AN, Redeker V, Fritz N, Pieri L, Almeida LG, Spolidoro M, Liebmann T, Bousset L, Renner M, Léna C, Aperia A, Melki R, Triller A. α-synuclein assemblies sequester neuronal α3-Na+/K+-ATPase and impair Na+ gradient. EMBO J 2015; 34:2408-23. [PMID: 26323479 DOI: 10.15252/embj.201591397] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/21/2015] [Indexed: 11/09/2022] Open
Abstract
Extracellular α-synuclein (α-syn) assemblies can be up-taken by neurons; however, their interaction with the plasma membrane and proteins has not been studied specifically. Here we demonstrate that α-syn assemblies form clusters within the plasma membrane of neurons. Using a proteomic-based approach, we identify the α3-subunit of Na+/K+-ATPase (NKA) as a cell surface partner of α-syn assemblies. The interaction strength depended on the state of α-syn, fibrils being the strongest, oligomers weak, and monomers none. Mutations within the neuron-specific α3-subunit are linked to rapid-onset dystonia Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). We show that freely diffusing α3-NKA are trapped within α-syn clusters resulting in α3-NKA redistribution and formation of larger nanoclusters. This creates regions within the plasma membrane with reduced local densities of α3-NKA, thereby decreasing the efficiency of Na+ extrusion following stimulus. Thus, interactions of α3-NKA with extracellular α-syn assemblies reduce its pumping activity as its mutations in RDP/AHC.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Virginie Redeker
- Paris-Saclay Institute of Neuroscience CNRS, Gif-sur-Yvette, France
| | - Nicolas Fritz
- Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Laura Pieri
- Paris-Saclay Institute of Neuroscience CNRS, Gif-sur-Yvette, France
| | - Leandro G Almeida
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Maria Spolidoro
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Thomas Liebmann
- Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Luc Bousset
- Paris-Saclay Institute of Neuroscience CNRS, Gif-sur-Yvette, France
| | - Marianne Renner
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Clément Léna
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Anita Aperia
- Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ronald Melki
- Paris-Saclay Institute of Neuroscience CNRS, Gif-sur-Yvette, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| |
Collapse
|
19
|
Uhlén P, Fritz N, Smedler E, Malmersjö S, Kanatani S. Calcium signaling in neocortical development. Dev Neurobiol 2015; 75:360-8. [DOI: 10.1002/dneu.22273] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Per Uhlén
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Nicolas Fritz
- The Science for Life Laboratory; The Royal Institute of Technology; SE-171 77 Stockholm Sweden
| | - Erik Smedler
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; SE-171 77 Stockholm Sweden
| | - Seth Malmersjö
- Department of Chemical and Systems Biology; School of Medicine, Stanford University; Stanford California 94305
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; SE-171 77 Stockholm Sweden
| |
Collapse
|
20
|
Varela RB, Valvassori SS, Lopes-Borges J, Mariot E, Dal-Pont GC, Amboni RT, Bianchini G, Quevedo J. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J Psychiatr Res 2015; 61:114-21. [PMID: 25467060 DOI: 10.1016/j.jpsychires.2014.11.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Bipolar Disorder (BD) is one of the most severe psychiatric disorders. Despite adequate treatment, patients continue to have recurrent mood episodes, residual symptoms, and functional impairment. Some preclinical studies have shown that histone deacetylase inhibitors may act on manic-like behaviors. Neurotrophins have been considered important mediators in the pathophysiology of BD. The present study aims to investigate the effects of lithium (Li), valproate (VPA), and sodium butyrate (SB), an HDAC inhibitor, on BDNF, NGF and GDNF in the brain of rats subjected to an animal model of mania induced by ouabain. Wistar rats received a single ICV injection of ouabain or artificial cerebrospinal fluid. From the day following ICV injection, the rats were treated for 6 days with intraperitoneal injections of saline, Li, VPA or SB twice a day. In the 7th day after ouabain injection, locomotor activity was measured using the open-field test. The BDNF, NGF and GDNF levels were measured in the hippocampus and frontal cortex by sandwich-ELISA. Li, VPA or SB treatments reversed ouabain-related manic-like behavior. Ouabain decreased BDNF, NGF and GDNF levels in hippocampus and frontal cortex of rats. The treatment with Li, VPA or SB reversed these impairment induced by ouabain. In addition, Li, VPA and SB per se increased NGF and GDNF levels in hippocampus of rats. Our data support the notion that neurotrophic factors play a role in BD and in the mechanisms of the action of Li, VPA and SB.
Collapse
Affiliation(s)
- Roger B Varela
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Samira S Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil.
| | - Jéssica Lopes-Borges
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Edemilson Mariot
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Gustavo C Dal-Pont
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Rafaela T Amboni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Guilherme Bianchini
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
21
|
Krivoi II. Functional interactions of Na,K-ATPase with molecular environment. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s000635091405011x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
22
|
Laßek M, Weingarten J, Volknandt W. The synaptic proteome. Cell Tissue Res 2014; 359:255-65. [PMID: 25038742 DOI: 10.1007/s00441-014-1943-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/04/2014] [Indexed: 11/29/2022]
Abstract
Synapses are focal hot spots for signal transduction and plasticity in the brain. A synapse comprises an axon terminus, the presynapse, the synaptic cleft containing extracellular matrix proteins as well as adhesion molecules, and the postsynaptic density as target structure for chemical signaling. The proteomes of the presynaptic and postsynaptic active zones control neurotransmitter release and perception. These tasks demand short- and long-term structural and functional dynamics of the synapse mediated by its proteinaceous inventory. This review addresses subcellular fractionation protocols and the related proteomic approaches to the various synaptic subcompartments with an emphasis on the presynaptic active zone (PAZ). Furthermore, it discusses major constituents of the PAZ including the amyloid precursor protein family members. Numerous proteins regulating the rearrangement of the cytoskeleton are indicative of the functional and structural dynamics of the pre- and postsynapse. The identification of protein candidates of the synapse provides the basis for further analyzing the interaction of synaptic proteins with their targets, and the effect of their deletion opens novel insights into the functional role of these proteins in neuronal communication. The knowledge of the molecular interactome is also a prerequisite for understanding numerous neurodegenerative diseases.
Collapse
Affiliation(s)
- Melanie Laßek
- Molecular and Cellular Neurobiology, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
23
|
Brain Na(+), K(+)-ATPase Activity In Aging and Disease. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2014; 10:85-102. [PMID: 25018677 PMCID: PMC4092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/05/2014] [Indexed: 11/15/2022]
Abstract
Na(+)/K(+) pump or sodium- and potassium-activated adenosine 5'-triphosphatase (Na(+), K(+)-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K(+) with the exit of Na(+) from cells, being the responsible for Na(+)/K(+) equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na(+), K(+)-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na(+), K(+)-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca(2+) mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na(+), K(+)-ATPase involvement in signaling pathways, enzyme changes in diverse neurological diseases as well as during aging, have been summarized. Issues refer mainly to Na(+), K(+)-ATPase studies in ischemia, brain injury, depression and mood disorders, mania, stress, Alzheimer´s disease, learning and memory, and neuronal hyperexcitability and epilepsy.
Collapse
|
24
|
Laßek M, Weingarten J, Volknandt W. The Proteome of the Murine Presynaptic Active Zone. Proteomes 2014; 2:243-257. [PMID: 28250380 PMCID: PMC5302740 DOI: 10.3390/proteomes2020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/09/2014] [Accepted: 04/21/2014] [Indexed: 01/09/2023] Open
Abstract
The proteome of the presynaptic active zone controls neurotransmitter release and the short- and long-term structural and functional dynamics of the nerve terminal. The proteinaceous inventory of the presynaptic active zone has recently been reported. This review will evaluate the subcellular fractionation protocols and the proteomic approaches employed. A breakthrough for the identification of the proteome of the presynaptic active zone was the successful employment of antibodies directed against a cytosolic epitope of membrane integral synaptic vesicle proteins for the immunopurification of synaptic vesicles docked to the presynaptic plasma membrane. Combining immunopurification and subsequent analytical mass spectrometry, hundreds of proteins, including synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery, proteins involved in intracellular and extracellular signaling and a large variety of adhesion molecules, were identified. Numerous proteins regulating the rearrangement of the cytoskeleton are indicative of the functional and structural dynamics of the presynapse. This review will critically discuss both the experimental approaches and prominent protein candidates identified. Many proteins have not previously been assigned to the presynaptic release sites and may be directly involved in the short- and long-term structural modulation of the presynaptic compartment. The identification of proteinaceous constituents of the presynaptic active zone provides the basis for further analyzing the interaction of presynaptic proteins with their targets and opens novel insights into the functional role of these proteins in neuronal communication.
Collapse
Affiliation(s)
- Melanie Laßek
- Institute for Cell Biology and Neuroscience, Department Molecular and Cellular Neurobiology, Max von Laue Str. 13, 60438 Frankfurt am Main, Germany.
| | - Jens Weingarten
- Institute for Cell Biology and Neuroscience, Department Molecular and Cellular Neurobiology, Max von Laue Str. 13, 60438 Frankfurt am Main, Germany.
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Department Molecular and Cellular Neurobiology, Max von Laue Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Weingarten J, Lassek M, Mueller BF, Rohmer M, Lunger I, Baeumlisberger D, Dudek S, Gogesch P, Karas M, Volknandt W. The proteome of the presynaptic active zone from mouse brain. Mol Cell Neurosci 2014; 59:106-18. [PMID: 24534009 DOI: 10.1016/j.mcn.2014.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 01/07/2023] Open
Abstract
Neurotransmitter release as well as the structural and functional dynamics of the presynaptic active zone is controlled by proteinaceous components. Here we describe for the first time an experimental approach for the isolation of the presynaptic active zone from individual mouse brains, a prerequisite for understanding the functional inventory of the presynaptic protein network and for the later analysis of changes occurring in mutant mice. Using a monoclonal antibody against the ubiquitous synaptic vesicle protein SV2 we immunopurified synaptic vesicles docked to the presynaptic plasma membrane. Enrichment studies by means of Western blot analysis and mass spectrometry identified 485 proteins belonging to an impressive variety of functional categories. Our data suggest that presynaptic active zones represent focal hot spots that are not only involved in the regulation of neurotransmitter release but also in multiple structural and functional alterations the adult nerve terminal undergoes during neural activity in adult CNS. They furthermore open new avenues for characterizing alterations in the active zone proteome of mutant mice and their corresponding controls, including the various mouse models of neurological diseases.
Collapse
Affiliation(s)
- Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany
| | - Melanie Lassek
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany
| | - Benjamin F Mueller
- Institute of Pharmaceutical Chemistry, Cluster of Excellence "Macromolecular Complexes", Goethe-University, Frankfurt am Main, Germany
| | - Marion Rohmer
- Institute of Pharmaceutical Chemistry, Cluster of Excellence "Macromolecular Complexes", Goethe-University, Frankfurt am Main, Germany
| | - Ilaria Lunger
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany
| | | | - Simone Dudek
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany
| | - Patricia Gogesch
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Cluster of Excellence "Macromolecular Complexes", Goethe-University, Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Electrical Stimulation Induces Calcium-Dependent Neurite Outgrowth and Immediate Early Genes Expressions of Dorsal Root Ganglion Neurons. Neurochem Res 2013; 39:129-41. [DOI: 10.1007/s11064-013-1197-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
|
27
|
Abstract
The sodium-potassium ATPase (i.e., the "sodium pump") plays a central role in maintaining ionic homeostasis in all cells. Although the sodium pump is intrinsically electrogenic and responsive to dynamic changes in intracellular sodium concentration, its role in regulating neuronal excitability remains unclear. Here we describe a physiological role for the sodium pump in regulating the excitability of mouse neocortical layer 5 and hippocampal CA1 pyramidal neurons. Trains of action potentials produced long-lasting (∼20 s) afterhyperpolarizations (AHPs) that were insensitive to blockade of voltage-gated calcium channels or chelation of intracellular calcium, but were blocked by tetrodotoxin, ouabain, or the removal of extracellular potassium. Correspondingly, the AHP time course was similar to the decay of activity-induced increases in intracellular sodium, whereas intracellular calcium decayed at much faster rates. To determine whether physiological patterns of activity engage the sodium pump, we replayed in vitro a place-specific burst of 15 action potentials recorded originally in vivo in a CA1 "place cell" as the animal traversed the associated place field. In both layer 5 and CA1 pyramidal neurons, this "place cell train" generated small, long-lasting AHPs capable of reducing neuronal excitability for many seconds. Place-cell-train-induced AHPs were blocked by ouabain or removal of extracellular potassium, but not by intracellular calcium chelation. Finally, we found calcium contributions to the AHP to be temperature dependent: prominent at room temperature, but largely absent at 35°C. Our results demonstrate a previously unappreciated role for the sodium-potassium ATPase in regulating the excitability of neocortical and hippocampal pyramidal neurons.
Collapse
|
28
|
Ouabain activates NFκB through an NMDA signaling pathway in cultured cerebellar cells. Neuropharmacology 2013; 73:327-36. [DOI: 10.1016/j.neuropharm.2013.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 11/21/2022]
|
29
|
The Drosophila transcription factor Adf-1 (nalyot) regulates dendrite growth by controlling FasII and Staufen expression downstream of CaMKII and neural activity. J Neurosci 2013; 33:11916-31. [PMID: 23864680 DOI: 10.1523/jneurosci.1760-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Memory deficits in Drosophila nalyot mutants suggest that the Myb family transcription factor Adf-1 is an important regulator of developmental plasticity in the brain. However, the cellular functions for this transcription factor in neurons or molecular mechanisms by which it regulates plasticity remain unknown. Here, we use in vivo 3D reconstruction of identifiable larval motor neuron dendrites to show that Adf-1 is required cell autonomously for dendritic development and activity-dependent plasticity of motor neurons downstream of CaMKII. Adf-1 inhibition reduces dendrite growth and neuronal excitability, and results in motor deficits and altered transcriptional profiles. Surprisingly, analysis by comparative chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of Adf-1, RNA Polymerase II (Pol II), and histone modifications in Kc cells shows that Adf-1 binding correlates positively with high Pol II-pausing indices and negatively with active chromatin marks such as H3K4me3 and H3K27ac. Consistently, the expression of Adf-1 targets Staufen and Fasciclin II (FasII), identified through larval brain ChIP-Seq for Adf-1, is negatively regulated by Adf-1, and manipulations of these genes predictably modify dendrite growth. Our results imply mechanistic interactions between transcriptional and local translational machinery in neurons as well as conserved neuronal growth mechanisms mediated by cell adhesion molecules, and suggest that CaMKII, Adf-1, FasII, and Staufen influence crucial aspects of dendrite development and plasticity with potential implications for memory formation. Further, our experiments reveal molecular details underlying transcriptional regulation by Adf-1, and indicate active interaction between Adf-1 and epigenetic regulators of gene expression during activity-dependent neuronal plasticity.
Collapse
|
30
|
Neural progenitors organize in small-world networks to promote cell proliferation. Proc Natl Acad Sci U S A 2013; 110:E1524-32. [PMID: 23576737 DOI: 10.1073/pnas.1220179110] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coherent network activity among assemblies of interconnected cells is essential for diverse functions in the adult brain. However, cellular networks before formations of chemical synapses are poorly understood. Here, embryonic stem cell-derived neural progenitors were found to form networks exhibiting synchronous calcium ion (Ca(2+)) activity that stimulated cell proliferation. Immature neural cells established circuits that propagated electrical signals between neighboring cells, thereby activating voltage-gated Ca(2+) channels that triggered Ca(2+) oscillations. These network circuits were dependent on gap junctions, because blocking prevented electrotonic transmission both in vitro and in vivo. Inhibiting connexin 43 gap junctions abolished network activity, suppressed proliferation, and affected embryonic cortical layer formation. Cross-correlation analysis revealed highly correlated Ca(2+) activities in small-world networks that followed a scale-free topology. Graph theory predicts that such network designs are effective for biological systems. Taken together, these results demonstrate that immature cells in the developing brain organize in small-world networks that critically regulate neural progenitor proliferation.
Collapse
|
31
|
Doğanli C, Beck HC, Ribera AB, Oxvig C, Lykke-Hartmann K. α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish. J Biol Chem 2013; 288:8862-74. [PMID: 23400780 DOI: 10.1074/jbc.m112.421529] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)/K(+)-ATPases are transmembrane ion pumps that maintain ion gradients across the basolateral plasma membrane in all animal cells to facilitate essential biological functions. Mutations in the Na(+)/K(+)-ATPase α3 subunit gene (ATP1A3) cause rapid-onset dystonia-parkinsonism, a rare movement disorder characterized by sudden onset of dystonic spasms and slow movements. In the brain, ATP1A3 is principally expressed in neurons. In zebrafish, the transcripts of the two ATP1A3 orthologs, Atp1a3a and Atp1a3b, show distinct expression in the brain. Surprisingly, targeted knockdown of either Atp1a3a or Atp1a3b leads to brain ventricle dilation, a likely consequence of ion imbalances across the plasma membrane that cause accumulation of cerebrospinal fluid in the ventricle. The brain ventricle dilation is accompanied by a depolarization of spinal Rohon-Beard neurons in Atp1a3a knockdown embryos, suggesting impaired neuronal excitability. This is further supported by Atp1a3a or Atp1a3b knockdown results where altered responses to tactile stimuli as well as abnormal motility were observed. Finally, proteomic analysis identified several protein candidates highlighting proteome changes associated with the knockdown of Atp1a3a or Atp1a3b. Our data thus strongly support the role of α3Na(+)/K(+)-ATPase in zebrafish motility and brain development, associating for the first time the α3Na(+)/K(+)-ATPase deficiency with brain ventricle dilation.
Collapse
Affiliation(s)
- Canan Doğanli
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, DK-1057 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
32
|
Sibarov DA, Bolshakov AE, Abushik PA, Krivoi II, Antonov SM. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J Pharmacol Exp Ther 2012; 343:596-607. [PMID: 22927545 DOI: 10.1124/jpet.112.198341] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Using a fluorescent viability assay, immunocytochemistry, patch-clamp recordings, and Ca(2+) imaging analysis, we report that ouabain, a specific ligand of the Na(+),K(+)-ATPase cardiac glycoside binding site, can prevent glutamate receptor agonist-induced apoptosis in cultured rat cortical neurons. In our model of excitotoxicity, a 240-min exposure to 30 μM N-methyl-d-aspartate (NMDA) or kainate caused apoptosis in ∼50% of neurons. These effects were accompanied by a significant decrease in the number of neurons that were immunopositive for the antiapoptotic peptide Bcl-2. Apoptotic injury was completely prevented when the agonists were applied together with 0.1 or 1 nM ouabain, resulting in a greater survival of neurons, and the percentage of neurons expressing Bcl-2 remained similar to those obtained without agonist treatments. In addition, subnanomolar concentrations of ouabain prevented the increase of spontaneous excitatory postsynaptic current's frequency and the intracellular Ca(2+) overload induced by excitotoxic insults. Loading neurons with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or inhibition of the plasma membrane Na(+),Ca(2+)-exchanger by 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea methanesulfonate (KB-R7943) eliminated ouabain's effects on NMDA- or kainite-evoked enhancement of spontaneous synaptic activity. Our data suggest that during excitotoxic insults ouabain accelerates Ca(2+) extrusion from neurons via the Na(+),Ca(2+) exchanger. Because intracellular Ca(2+) accumulation caused by the activation of glutamate receptors and boosted synaptic activity represents a key factor in triggering neuronal apoptosis, up-regulation of Ca(2+) extrusion abolishes its development. These antiapoptotic effects are independent of Na(+),K(+)-ATPase ion transport function and are initiated by concentrations of ouabain that are within the range of an endogenous analog, suggesting a novel functional role for Na(+),K(+)-ATPase in neuroprotection.
Collapse
Affiliation(s)
- Dmitry A Sibarov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
33
|
Bioelectric state and cell cycle control of Mammalian neural stem cells. Stem Cells Int 2012; 2012:816049. [PMID: 23024660 PMCID: PMC3447385 DOI: 10.1155/2012/816049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/22/2012] [Indexed: 12/25/2022] Open
Abstract
The concerted action of ion channels and pumps establishing a resting membrane potential has been most thoroughly studied in the context of excitable cells, most notably neurons, but emerging evidences indicate that they are also involved in controlling proliferation and differentiation of nonexcitable somatic stem cells. The importance of understanding stem cell contribution to tissue formation during embryonic development, adult homeostasis, and regeneration in disease has prompted many groups to study and manipulate the membrane potential of stem cells in a variety of systems. In this paper we aimed at summarizing the current knowledge on the role of ion channels and pumps in the context of mammalian corticogenesis with particular emphasis on their contribution to the switch of neural stem cells from proliferation to differentiation and generation of more committed progenitors and neurons, whose lineage during brain development has been recently elucidated.
Collapse
|
34
|
Tokhtaeva E, Clifford RJ, Kaplan JH, Sachs G, Vagin O. Subunit isoform selectivity in assembly of Na,K-ATPase α-β heterodimers. J Biol Chem 2012; 287:26115-25. [PMID: 22696220 DOI: 10.1074/jbc.m112.370734] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To catalyze ion transport, the Na,K-ATPase must contain one α and one β subunit. When expressed by transfection in various expression systems, each of the four α subunit isoforms can assemble with each of the three β subunit isoforms and form an active enzyme, suggesting the absence of selective α-β isoform assembly. However, it is unknown whether in vivo conditions the α-β assembly is random or isoform-specific. The α(2)-β(2) complex was selectively immunoprecipitated by both anti-α(2) and anti-β(2) antibodies from extracts of mouse brain, which contains cells co-expressing multiple Na,K-ATPase isoforms. Neither α(1)-β(2) nor α(2)-β(1) complexes were detected in the immunoprecipitates. Furthermore, in MDCK cells co-expressing α(1), β(1), and β(2) isoforms, a greater fraction of the β(2) subunits was unassembled with α(1) as compared with that of the β(1) subunits, indicating preferential association of the α(1) isoform with the β(1) isoform. In addition, the α(1)-β(2) complex was less resistant to various detergents than the α(1)-β(1) complex isolated from MDCK cells or the α(2)-β(2) complex isolated from mouse brain. Therefore, the diversity of the α-β Na,K-ATPase heterodimers in vivo is determined not only by cell-specific co-expression of particular isoforms, but also by selective association of the α and β subunit isoforms.
Collapse
Affiliation(s)
- Elmira Tokhtaeva
- Department of Physiology, School of Medicine, UCLA and Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California 90073, USA
| | | | | | | | | |
Collapse
|
35
|
Pendyala G, Buescher JL, Fox HS. Methamphetamine and inflammatory cytokines increase neuronal Na+/K+-ATPase isoform 3: relevance for HIV associated neurocognitive disorders. PLoS One 2012; 7:e37604. [PMID: 22662178 PMCID: PMC3360751 DOI: 10.1371/journal.pone.0037604] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/26/2012] [Indexed: 11/18/2022] Open
Abstract
Methamphetamine (METH) abuse in conjunction with human immunodeficiency virus (HIV) exacerbates neuropathogenesis and accelerates neurocognitive impairments in the central nervous system (CNS), collectively termed HIV Associated Neurocognitive Disorders (HAND). Since both HIV and METH have been implicated in altering the synaptic architecture, this study focused on investigating alterations in synaptic proteins. Employing a quantitative proteomics approach on synaptosomes isolated from the caudate nucleus from two groups of rhesus monkeys chronically infected with simian immunodeficiency virus (SIV) differing by one regimen, METH treatment, we identified the neuron specific Na(+)/K(+)-ATPase alpha 1 isoform 3 (ATP1A3) to be up regulated after METH treatment, and validated its up regulation by METH in vitro. Further studies on signaling mechanisms revealed that the activation of ATP1A3 involves the extracellular regulated kinase (ERK) pathway. Given its function in maintaining ionic gradients and emerging role as a signaling molecule, changes in ATP1A3 yields insights into the mechanisms associated with HAND and interactions with drugs of abuse.
Collapse
Affiliation(s)
- Gurudutt Pendyala
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America.
| | | | | |
Collapse
|
36
|
Hiyoshi H, Abdelhady S, Segerström L, Sveinbjörnsson B, Nuriya M, Lundgren TK, Desfrere L, Miyakawa A, Yasui M, Kogner P, Johnsen JI, Andäng M, Uhlén P. Quiescence and γH2AX in neuroblastoma are regulated by ouabain/Na,K-ATPase. Br J Cancer 2012; 106:1807-15. [PMID: 22531632 PMCID: PMC3364115 DOI: 10.1038/bjc.2012.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Cellular quiescence is a state of reversible proliferation arrest that is induced by anti-mitogenic signals. The endogenous cardiac glycoside ouabain is a specific ligand of the ubiquitous sodium pump, Na,K-ATPase, also known to regulate cell growth through unknown signalling pathways. Methods: To investigate the role of ouabain/Na,K-ATPase in uncontrolled neuroblastoma growth we used xenografts, flow cytometry, immunostaining, comet assay, real-time PCR, and electrophysiology after various treatment strategies. Results: The ouabain/Na,K-ATPase complex induced quiescence in malignant neuroblastoma. Tumour growth was reduced by >50% when neuroblastoma cells were xenografted into immune-deficient mice that were fed with ouabain. Ouabain-induced S-G2 phase arrest, activated the DNA-damage response (DDR) pathway marker γH2AX, increased the cell cycle regulator p21Waf1/Cip1 and upregulated the quiescence-specific transcription factor hairy and enhancer of split1 (HES1), causing neuroblastoma cells to ultimately enter G0. Cells re-entered the cell cycle and resumed proliferation, without showing DNA damage, when ouabain was removed. Conclusion: These findings demonstrate a novel action of ouabain/Na,K-ATPase as a regulator of quiescence in neuroblastoma, suggesting that ouabain can be used in chemotherapies to suppress tumour growth and/or arrest cells to increase the therapeutic index in combination therapies.
Collapse
Affiliation(s)
- H Hiyoshi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lundgren TK, Nakahata K, Fritz N, Rebellato P, Zhang S, Uhlén P. RET PLCγ phosphotyrosine binding domain regulates Ca2+ signaling and neocortical neuronal migration. PLoS One 2012; 7:e31258. [PMID: 22355350 PMCID: PMC3280273 DOI: 10.1371/journal.pone.0031258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 01/04/2012] [Indexed: 12/15/2022] Open
Abstract
The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate various downstream effectors. Here we report that the RET receptor induces calcium (Ca2+) signaling and regulates neocortical neuronal progenitor migration through the Phospholipase-C gamma (PLCγ) binding domain Tyr1015. This signaling cascade releases Ca2+ from the endoplasmic reticulum through the inositol 1,4,5-trisphosphate receptor and stimulates phosphorylation of ERK1/2 and CaMKII. A point mutation at Tyr1015 on RET or small interfering RNA gene silencing of PLCγ block the GDNF-induced signaling cascade. Delivery of the RET mutation to neuronal progenitors in the embryonic ventricular zone using in utero electroporation reveal that Tyr1015 is necessary for GDNF-stimulated migration of neurons to the cortical plate. These findings demonstrate a novel RET mediated signaling pathway that elevates cytosolic Ca2+ and modulates neuronal migration in the developing neocortex through the PLCγ binding domain Tyr1015.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Calcium Signaling/physiology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Glial Cell Line-Derived Neurotrophic Factor/genetics
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Humans
- Immunoenzyme Techniques
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Mice
- Neocortex/embryology
- Neocortex/metabolism
- Neurons/cytology
- Neurons/metabolism
- Phospholipase C gamma/antagonists & inhibitors
- Phospholipase C gamma/genetics
- Phospholipase C gamma/metabolism
- Phosphorylation
- Phosphotyrosine/metabolism
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- T. Kalle Lundgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Katsutoshi Nakahata
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Fritz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Paola Rebellato
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Songbai Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
38
|
Bøttger P, Doğanlı C, Lykke-Hartmann K. Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 2011; 36:855-71. [PMID: 22067897 DOI: 10.1016/j.neubiorev.2011.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
The two autosomal dominantly inherited neurological diseases: familial hemiplegic migraine type 2 (FHM2) and familial rapid-onset of dystonia-parkinsonism (Familial RDP) are caused by in vivo mutations of specific alpha subunits of the sodium-potassium pump (Na(+)/K(+)-ATPase). Intriguingly, patients with classical FHM2 and RDP symptoms additionally suffer from other manifestations, such as epilepsy/seizures and developmental disabilities. Recent studies of FHM2 and RDP mouse models provide valuable tools for dissecting the vital roles of the Na(+)/K(+)-ATPases, and we discuss their relevance to the complex patient symptoms and manifestations. Thus, it is interesting that mouse models targeting a specific α-isoform cause different, although still comparable, phenotypes consistent with classical symptoms and other manifestations observed in FHM2 and RDP patients. This review highlights that use of mouse models have broad potentials for future research concerning migraine and dystonia-related diseases, which will contribute towards understanding the, yet unknown, pathophysiologies.
Collapse
Affiliation(s)
- Pernille Bøttger
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Denmark; Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, Denmark
| | | | | |
Collapse
|
39
|
Graham JF, Kurian D, Agarwal S, Toovey L, Hunt L, Kirby L, Pinheiro TJT, Banner SJ, Gill AC. Na+/K+-ATPase is present in scrapie-associated fibrils, modulates PrP misfolding in vitro and links PrP function and dysfunction. PLoS One 2011; 6:e26813. [PMID: 22073199 PMCID: PMC3206849 DOI: 10.1371/journal.pone.0026813] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/04/2011] [Indexed: 12/21/2022] Open
Abstract
Transmissible spongiform encephalopathies are characterised by widespread deposition of fibrillar and/or plaque-like forms of the prion protein. These aggregated forms are produced by misfolding of the normal prion protein, PrPC, to the disease-associated form, PrPSc, through mechanisms that remain elusive but which require either direct or indirect interaction between PrPC and PrPSc isoforms. A wealth of evidence implicates other non-PrP molecules as active participants in the misfolding process, to catalyse and direct the conformational conversion of PrPC or to provide a scaffold ensuring correct alignment of PrPC and PrPSc during conversion. Such molecules may be specific to different scrapie strains to facilitate differential prion protein misfolding. Since molecular cofactors may become integrated into the growing protein fibril during prion conversion, we have investigated the proteins contained in prion disease-specific deposits by shotgun proteomics of scrapie-associated fibrils (SAF) from mice infected with 3 different strains of mouse-passaged scrapie. Concomitant use of negative control preparations allowed us to identify and discount proteins that are enriched non-specifically by the SAF isolation protocol. We found several proteins that co-purified specifically with SAF from infected brains but none of these were reproducibly and demonstrably specific for particular scrapie strains. The α-chain of Na+/K+-ATPase was common to SAF from all 3 strains and we tested the ability of this protein to modulate in vitro misfolding of recombinant PrP. Na+/K+-ATPase enhanced the efficiency of disease-specific conversion of recombinant PrP suggesting that it may act as a molecular cofactor. Consistent with previous results, the same protein inhibited fibrillisation kinetics of recombinant PrP. Since functional interactions between PrPC and Na+/K+-ATPase have previously been reported in astrocytes, our data highlight this molecule as a key link between PrP function, dysfunction and misfolding.
Collapse
Affiliation(s)
- James F. Graham
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
| | - Dominic Kurian
- Institute for Animal Health, Compton, Newbury, Berkshire, United Kingdom
| | - Sonya Agarwal
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
| | - Lorna Toovey
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
| | - Lawrence Hunt
- Institute for Animal Health, Compton, Newbury, Berkshire, United Kingdom
| | - Louise Kirby
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
| | | | - Steven J. Banner
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
| | - Andrew C. Gill
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Kawamoto EM, Lima LS, Munhoz CD, Yshii LM, Kinoshita PF, Amara FG, Pestana RRF, Orellana AMM, Cipolla-Neto J, Britto LRG, Avellar MCW, Rossoni LV, Scavone C. Influence of N-methyl-D-aspartate receptors on ouabain activation of nuclear factor-κB in the rat hippocampus. J Neurosci Res 2011; 90:213-28. [PMID: 22006678 DOI: 10.1002/jnr.22745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 06/25/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023]
Abstract
It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-κB (NF-κB) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-κB binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-κB activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-κB, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-α (Tnf-α), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF-κB activation and increased NOS and α(2/3) -Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-κB activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-κB activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain.
Collapse
Affiliation(s)
- E M Kawamoto
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Feldmann T, Shahar M, Baba A, Matsuda T, Lichtstein D, Rosen H. The Na(+)/Ca(2+)-exchanger: an essential component in the mechanism governing cardiac steroid-induced slow Ca(2+) oscillations. Cell Calcium 2011; 50:424-32. [PMID: 21930298 DOI: 10.1016/j.ceca.2011.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 02/07/2023]
Abstract
Plasma membrane (PM) Na(+), K(+)-ATPase, plays crucial roles in numerous physiological processes. Cardiac steroids (CS), such as ouabain and bufalin, specifically bind to the Na(+), K(+)-ATPase and affect ionic homeostasis, signal transduction, and endocytosed membrane traffic. CS-like compounds, synthesized in and released from the adrenal gland, are considered a new family of steroid hormones. Previous studies showed that ouabain induces slow Ca(2+) oscillations in COS-7 cells by enhancing the interactions between Na(+), K(+)-ATPase, inositol 1,4,5-trisphosphate receptor (IP(3)R) and Ankyrin B (Ank-B) to form a Ca(2+) signaling micro-domain. The activation of this micro-domain, however, is independent of InsP3 generation. Thus, the mechanism underlying the induction of these slow Ca(2+) oscillations remained largely unclear. We now show that other CS, such as bufalin, can also induce Ca(2+) oscillations. These oscillations depend on extracellular Ca(2+) concentrations [Ca(2+)](out) and are inhibited by Ni(2+). Furthermore, we found that these slow oscillations are Na(+)(out) dependent, abolished by Na(+)/Ca(2+) exchanger1 (NCX1)-specific inhibitors and markedly attenuated by NCX1 siRNA knockdown. Based on these results, a model is presented for the CS-induced slow Ca(2+) oscillations in COS-7 cells.
Collapse
Affiliation(s)
- Tomer Feldmann
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Department of Microbiology and Molecular Genetics, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Vicencio JM, Estrada M, Galvis D, Bravo R, Contreras AE, Rotter D, Szabadkai G, Hill JA, Rothermel BA, Jaimovich E, Lavandero S. Anabolic androgenic steroids and intracellular calcium signaling: a mini review on mechanisms and physiological implications. Mini Rev Med Chem 2011; 11:390-8. [PMID: 21443511 DOI: 10.2174/138955711795445880] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/21/2011] [Indexed: 02/05/2023]
Abstract
Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses.
Collapse
Affiliation(s)
- J M Vicencio
- Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences/Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kirshenbaum GS, Saltzman K, Rose B, Petersen J, Vilsen B, Roder JC. Decreased neuronal Na+, K+ -ATPase activity in Atp1a3 heterozygous mice increases susceptibility to depression-like endophenotypes by chronic variable stress. GENES BRAIN AND BEHAVIOR 2011; 10:542-50. [PMID: 21418141 DOI: 10.1111/j.1601-183x.2011.00691.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unipolar depression and bipolar depression are prevalent and debilitating diseases in need of effective novel treatments. It is becoming increasingly evident that depressive disorders manifest from a combination of inherited susceptibility genes and environmental stress. Genetic mutations resulting in decreased neuronal Na(+) ,K(+) -ATPase (sodium-potassium adenosine triphosphatase) activity may put individuals at risk for depression given that decreased Na(+) ,K(+) -ATPase activity is observed in depressive disorders and animal models of depression. Here, we show that Na(+) ,K(+) -ATPase α3 heterozygous mice (Atp1a3(+/-) ), with 15% reduced neuronal Na(+) ,K(+) -ATPase activity, are vulnerable to develop increased depression-like endophenotypes in a chronic variable stress (CVS) paradigm compared to wild-type littermates (Atp1a3(+/+) ). In Atp1a3(+/+) mice CVS did not decrease Na(+) ,K(+) -ATPase activity, however led to despair-like behavior in the tail suspension test (TST), anhedonia in a sucrose preference test and a minimal decrease in sociability, whereas in Atp1a3(+/-) mice CVS decreased neuronal Na(+) ,K(+) -ATPase activity to 33% of wild-type levels, induced despair-like behavior in the TST, anhedonia in a sucrose preference test, anxiety in the elevated plus maze, a memory deficit in a novel object recognition task and sociability deficits in a social interaction test. We found that a mutation that decreases neuronal Na(+) ,K(+) -ATPase activity interacts with stress to exacerbate depression. Furthermore, we observed an interesting correlation between Na(+) ,K(+) -ATPase activity and mood that may relate to both unipolar depression and bipolar disorder. Pharmaceuticals that increase Na(+) ,K(+) -ATPase activity or block endogenous Na(+) , K(+) -ATPase inhibition may provide effective treatment for depressive disorders and preclude depression in susceptible individuals.
Collapse
Affiliation(s)
- G S Kirshenbaum
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Institute of Medical Science, University of Toronto, 600 University Avenue, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
Chen Y, Li X, Ye Q, Tian J, Jing R, Xie Z. Regulation of alpha1 Na/K-ATPase expression by cholesterol. J Biol Chem 2011; 286:15517-24. [PMID: 21362623 DOI: 10.1074/jbc.m110.204396] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol trafficking to the plasma membrane by compound U18666A had the same effect on α1 Na/K-ATPase. Similarly, the expression of α1, but not α2 and α3, Na/K-ATPase was significantly reduced in the target organs of Niemann-Pick type C mice where the intracellular cholesterol trafficking is blocked. Mechanistically, decreases in the plasma membrane cholesterol activated Src kinase and stimulated the endocytosis and degradation of α1 Na/K-ATPase through Src- and ubiquitination-dependent pathways. Thus, the new findings, taken together with what we have already reported, revealed a previously unrecognized feed-forward mechanism by which cells can utilize the Src-dependent interplay among Na/K-ATPase, caveolin-1, and cholesterol to effectively alter the structure and function of the plasma membrane.
Collapse
Affiliation(s)
- Yiliang Chen
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio 43614-2598, USA
| | | | | | | | | | | |
Collapse
|
45
|
Baczyk D, Kingdom JCP, Uhlén P. Calcium signaling in placenta. Cell Calcium 2011; 49:350-6. [PMID: 21236488 DOI: 10.1016/j.ceca.2010.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/19/2022]
Abstract
The placenta sustains the developing fetus throughout gestation and its major functions include nutrition, gas and waste exchange via a variety of passive or active mechanisms. Up to 30 g of calcium (Ca(2+)) actively crosses the trophoblast layer during human pregnancy. The Ca(2+) ion not only plays an important role for skeletal development but is also an essential second messenger. This review is intended to highlight the implications of Ca(2+) signaling during reproduction and specifically placentation. Initially, a Ca(2+) wave induces fertilization of the oocyte. The intracellular Ca(2+) concentration is key for the blastocyst implantation, proper placental development and function. Current knowledge of many proteins involved in placental Ca(2+) regulation and their function in pathologic conditions is largely limited. Recent studies, however, point to alterations in Ca(2+) homeostasis in placental pathologies such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR). A broader understanding of the role of Ca(2+) signaling during human reproduction may offer insight into impaired pregnancy outcomes.
Collapse
Affiliation(s)
- Dora Baczyk
- Research Centre for Women's and Infants' Health (RCWIH) at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
46
|
Franco M, Seyfried NT, Brand AH, Peng J, Mayor U. A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 2010; 10:M110.002188. [PMID: 20861518 PMCID: PMC3098581 DOI: 10.1074/mcp.m110.002188] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system.
Collapse
Affiliation(s)
- Maribel Franco
- CIC Biogune, Bizkaia Teknologi Parkea, 48160 Derio, Spain
| | | | | | | | | |
Collapse
|
47
|
En masse in vitro functional profiling of the axonal mechanosensitivity of sensory neurons. Proc Natl Acad Sci U S A 2010; 107:16336-41. [PMID: 20736349 DOI: 10.1073/pnas.0914705107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perception of the environment relies on somatosensory neurons. Mechanosensory, proprioceptor and many nociceptor subtypes of these neurons have specific mechanosensitivity profiles to adequately differentiate stimulus patterns. Nevertheless, the cellular basis of differential mechanosensation remains largely elusive. Successful transduction of sensory information relies on the recruitment of sensory neurons and mechanosensation occurring at their peripheral axonal endings in vivo. Conspicuously, existing in vitro models aimed to decipher molecular mechanisms of mechanosensation test single sensory neuron somata at any one time. Here, we introduce a compartmental in vitro chamber design to deliver precisely controlled mechanical stimulation of sensory axons with synchronous real-time imaging of Ca(2+) transients in neuronal somata that reliably reflect action potential firing patterns. We report of three previously not characterized types of mechanosensitive neuron subpopulations with distinct intrinsic axonal properties tuned specifically to static indentation or vibration stimuli, showing that different classes of sensory neurons are tuned to specific types of mechanical stimuli. Primary receptor currents of vibration neurons display rapidly adapting conductance reliably detected for every single stimulus during vibration and are consistently converted into action potentials. This result allows for the characterization of two critical steps of mechanosensation in vivo: primary signal detection and signal conversion into specific action potential firing patterns in axons.
Collapse
|
48
|
Uhlén P, Fritz N. Biochemistry of calcium oscillations. Biochem Biophys Res Commun 2010; 396:28-32. [DOI: 10.1016/j.bbrc.2010.02.117] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
|