1
|
Ren H, Pu Q, Yang X, Kashyap S, Liu S. Regulatory mechanisms of nitrogen homeostasis in insect growth and development. INSECT SCIENCE 2025. [PMID: 40287858 DOI: 10.1111/1744-7917.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Nitrogen is an essential element for the synthesis of proteins, nucleic acids, and various other critical biological molecules in insects. The maintenance of nitrogen homeostasis in insects is achieved through a balance of dietary intake, metabolic conversion, and excretion. Insects primarily acquire nitrogen from their diet, which is subsequently metabolized into amino acids, proteins, and other vital biomolecules following digestion and absorption. Excess nitrogen is excreted in forms such as uric acid, allantoin, allantoic acid, urea, and ammonia. Disruptions in nitrogen regulation can result in ammonia toxicity and abnormal production or excretion of nitrogenous metabolites, including uric acid, ultimately impairing insect development and survival. This review examines the mechanisms underlying nitrogen homeostasis in insects, with a focus on the intricate regulatory roles of carbohydrate metabolism, amino acid metabolism, uric acid metabolism, urea and polyamine metabolism, ammonia transport pathways, and symbiotic interactions. By elucidating these processes, this review aims to enhance our understanding of insect nutritional metabolism and developmental biology, while offering novel perspectives for the development of more effective pest management strategies.
Collapse
Affiliation(s)
- Houming Ren
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiaolin Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Symphony Kashyap
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Delamotte P, Montagne J. Dietary Lipids and Their Metabolism in the Midgut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39565560 DOI: 10.1007/5584_2024_835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Animals use dietary lipids to sustain their growth and survival. Insects can synthesize fatty acids (FAs) and are autotroph for a number of lipids, but auxotroph for specific lipids classes (e.g. sterols, polyunsaturated FAs). Once ingested, lipids are hydrolysed in the intestinal lumen and taken up into intestinal cells within specific regions of the insect digestive tract. These lipids can be either stored in the intestinal cells or exported through the haemolymph circulation to specific organs. In this chapter, we describe the various lipids provided by insect diets, their extracellular hydrolysis in the gut lumen and their intake and metabolic fate in the intestinal cells. This chapter emphasizes the critical role of the digestive tract and its regionalization in processing dietary lipids prior to their transfer to the requiring tissues.
Collapse
Affiliation(s)
- Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Cui J, Yao X, Ni Z, Zhao H, Yang Y, Xu H, Lu Z, Zhu P. Identification of salivary proteins in the rice leaf folder Cnaphalocrocis medinalis by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104191. [PMID: 39393440 DOI: 10.1016/j.ibmb.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Salivary proteins in the oral secretion (OS) of chewing insects play a crucial role in insect-plant interactions during feeding. The rice leaf folder Cnaphalocrocis medinalis, a notorious pest in global rice production, triggers defense responses during feeding, but little is known about its salivary proteins. In this study, we confirmed that C. medinalis releases OS during feeding. By employing transcriptomic analysis and liquid chromatography-tandem mass spectroscopy (LC-MS/MS), we examined the salivary proteins from labial salivary glands and OS from C. medinalis. A total of 14,397 genes were expressed at the RNA level and 229 salivary proteins were identified. Comparative analysis with other 25 arthropod species revealed that 43 proteins were unique to C. medinalis. Expression pattern analysis revealed that most of the selected genes were highly expressed in the gut and the larval stages (4th-5th instar). These findings provide a comprehensive resource for future functional studies of salivary proteins, offering new insights into the molecular mechanisms by which C. medinalis modulates plant defenses and potential applications in pest management.
Collapse
Affiliation(s)
- Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xianjing Yao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihan Ni
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongfeng Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
4
|
Maruoka T, Shirai Y, Daimon T, Fujii R, Dannoura M, Seidl-Adams I, Mori N, Yoshinaga N. Knock-Out of ACY-1 Like Gene in Spodoptera litura Supports the Notion that FACs Improve Nitrogen Metabolism. J Chem Ecol 2024; 50:573-580. [PMID: 38913104 PMCID: PMC11493783 DOI: 10.1007/s10886-024-01512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
Volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine were originally identified in the regurgitant of Spodoptera exigua larvae. These fatty acid amino acid conjugates (FACs) are known to be elicitors that induce plants to release volatile compounds which in turn attract natural enemies of the larvae such as parasitic wasps. FAC concentrations are regulated by enzymatic biosynthesis and hydrolysis in the intestine of Lepidoptera larvae. It has been proposed that FAC metabolism activates glutamine synthetase and plays an important role in nitrogen metabolism in larvae. In this study, we identified candidate genes encoding a FACs hydrolase in Spodoptera litura using genomic information of various related lepidopteran species in which FACs hydrolases have been reported. We analyzed the importance of FAC hydrolysis on caterpillar performance with CRISPR/Cas9 knock outs. Larvae of strains with an inactive FACs hydrolase excreted FACs in their feces. They absorbed 30% less nitrogen from the diet compared to WT caterpillars resulting in a reduction of their body weight of up to 40% compared to wild type caterpillars. These results suggest that the hydrolysis of FACs is an important metabolism for insects and that FACs are important for larval growth.
Collapse
Affiliation(s)
- Tsuyoshi Maruoka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Takaaki Daimon
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Rei Fujii
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Masako Dannoura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | | | - Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
5
|
Prajapati VK, Vijayan V, Vadassery J. Secret Weapon of Insects: The Oral Secretion Cocktail and Its Modulation of Host Immunity. PLANT & CELL PHYSIOLOGY 2024; 65:1213-1223. [PMID: 38877965 DOI: 10.1093/pcp/pcae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/04/2024]
Abstract
Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.
Collapse
Affiliation(s)
| | - Vishakh Vijayan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
6
|
Li L, Zhang X, Wang L, Gao M, Wang Y, Zhang Z, Yang X, Yang J. Protective effect of soluble dietary fiber from Rosa roxburghii Tratt residue on dextran sulfate sodium-induced ulcerative colitis by regulating serum metabolism and NF-κB pathway in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7258-7270. [PMID: 38629513 DOI: 10.1002/jsfa.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) refers to an idiopathic chronic inflammatory bowel disease that starts with inflammation of the intestinal mucosa. Dietary fiber plays a crucial role in maintaining the normal architecture of the intestinal mucosa. In this study, the protective effect and potential mechanism of soluble dietary fiber from Rosa roxburghii Tratt residue (SDFR) on dextran sulfate sodium (DSS)-induced UC mice were explored. RESULTS The results revealed that SDFR could ameliorate body weight loss and pathological injury, improve the structure and crypt destruction in colon in DSS-induced mice. Moreover, the levels of NO, IL-1β, TNF-α, MPO and protein expression of iNOS and COX-2 were decreased after administration of SDFR. Notably, nontargeted metabolomics analysis indicated that there were significant differences in 51 potential metabolites in serum between the DSS and control groups. SDFR intervention could regulate aberrant alterations of these metabolites and mitigate UC via regulating metabolic pathways, including arachidonic acid and glycerophospholipid metabolism. CONCLUSION This study provides novel evidence that SDFR could be used as a potential modulator to relieve UC. Also, the results provide a theoretical basis for the utilization of byproducts in Rosa roxburghii Tratt fruit processing. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lilang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Xiang Zhang
- Guizhou Vocational College of Foodstuff Engineering, Qingzhen, China
| | - Li Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Ming Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Yu Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Zhengrong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Xiaosheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Juan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| |
Collapse
|
7
|
Güngör E, Savary J, Adema K, Dijkhuizen LW, Keilwagen J, Himmelbach A, Mascher M, Koppers N, Bräutigam A, Van Hove C, Riant O, Nierzwicki-Bauer S, Schluepmann H. The crane fly glycosylated triketide δ-lactone cornicinine elicits akinete differentiation of the cyanobiont in aquatic Azolla fern symbioses. PLANT, CELL & ENVIRONMENT 2024; 47:2675-2692. [PMID: 38600764 DOI: 10.1111/pce.14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH4-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO2 draw-down during the Eocene geological past.
Collapse
Affiliation(s)
- Erbil Güngör
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Jérôme Savary
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kelvin Adema
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | | | | - Axel Himmelbach
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Nils Koppers
- Computational Biology, Center for Biotechnology and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Andrea Bräutigam
- Computational Biology, Center for Biotechnology and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Charles Van Hove
- Emeritus Professor from the Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
8
|
Kallure GS, Sahoo SS, Kale RS, Barvkar VT, Kontham R, Giri AP. Aminoacylase efficiently hydrolyses fatty acid amino acid conjugates of Helicoverpa armigera potentially to increase the pool of glutamine. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104070. [PMID: 38176573 DOI: 10.1016/j.ibmb.2024.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
One of the most prevalent bioactive molecules present in the oral secretion (OS) of lepidopteran insects is fatty acid amino acid conjugates (FACs). Insect dietary components have influence on the synthesis and retaining the pool of FACs in the OS. We noted differential and diet-specific accumulation of FACs in the OS of Helicoverpa armigera by using Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry. Interestingly, we identified FACs hydrolyzing enzyme aminoacylase (HaACY) in the OS of H. armigera through proteomic analysis. Next, we have cloned, expressed, and purified active recombinant HaACY in the bacterial system. Recombinant HaACY hydrolyzes all the six identified FACs in the OS of H. armigera larvae fed on host and non-host plants and releases respective fatty acid and glutamine. In these six FACs, fatty acid moieties vary while amino acid glutamine was common. Glutamine obtained upon hydrolysis of FACs by HaACY might serve as an amino acid pool for insect growth and development. To understand the substrate choices of HaACY, we chemically synthesized, purified, and characterized all the six FACs. Interestingly, rHaACY also shows hydrolysis of synthetic FACs into respective fatty acid and glutamine. Our results underline the importance of diet on accumulation of FACs and role of aminoacylase(s) in regulating the level of FACs and glutamine.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Shubhranshu Shekhar Sahoo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Rutuja S Kale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Ravindar Kontham
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Lin YH, Silven JJM, Wybouw N, Fandino RA, Dekker HL, Vogel H, Wu YL, de Koster C, Große-Wilde E, Haring MA, Schuurink RC, Allmann S. A salivary GMC oxidoreductase of Manduca sexta re-arranges the green leaf volatile profile of its host plant. Nat Commun 2023; 14:3666. [PMID: 37380635 DOI: 10.1038/s41467-023-39353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Green leaf volatiles (GLVs) are short-chain oxylipins that are emitted from plants in response to stress. Previous studies have shown that oral secretions (OS) of the tobacco hornworm Manduca sexta, introduced into plant wounds during feeding, catalyze the re-arrangement of GLVs from Z-3- to E-2-isomers. This change in the volatile signal however is bittersweet for the insect as it can be used by their natural enemies, as a prey location cue. Here we show that (3Z):(2E)-hexenal isomerase (Hi-1) in M. sexta's OS catalyzes the conversion of the GLV Z-3-hexenal to E-2-hexenal. Hi-1 mutants that were raised on a GLV-free diet showed developmental disorders, indicating that Hi-1 also metabolizes other substrates important for the insect's development. Phylogenetic analysis placed Hi-1 within the GMCβ-subfamily and showed that Hi-1 homologs from other lepidopterans could catalyze similar reactions. Our results indicate that Hi-1 not only modulates the plant's GLV-bouquet but also functions in insect development.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Juliette J M Silven
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Richard A Fandino
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, US
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Chris de Koster
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- EXTEMIT-K, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500, Prague, Czech Republic
| | - Michel A Haring
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Silke Allmann
- Green Life Sciences Research Cluster, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
10
|
Tumlinson JH. Complex and Beautiful: Unraveling the Intricate Communication Systems Among Plants and Insects. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:1-12. [PMID: 35834769 DOI: 10.1146/annurev-ento-021622-111028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
My research focuses on elucidating the chemical communication systems linking plants, herbivores, and natural enemies. My interests in integrating chemistry and agriculture led to my graduate studies in the emerging field of chemical ecology. My thesis research resulted in the identification, synthesis, and application of boll weevil sex pheromones. My research group subsequently developed chemical lures for more than 20 species of pest insects. I then shifted my focus to some of the first studies of the chemical signals produced by plants being attacked by herbivores. When insects feed, elicitors in the insects' oral secretions, such as volicitin, a fatty acid-amino acid conjugate elicitor, stimulate plants to release volatile organic compounds. Parasitoid wasps learn to associate these species-specific volatiles with their herbivore hosts. These volatiles also prime nearby plants to activate a faster and higher defense response upon attack. Throughout my career, I have collaborated with scientists from diverse disciplines to tackle fundamental questions in chemical ecology and create innovative solutions for insect management. Our collaborative research has fundamentally changed and improved our understanding of the ongoing coevolution of plants, their herbivores, and the natural enemies that attack those herbivores.
Collapse
Affiliation(s)
- James H Tumlinson
- Department of Entomology, Center for Chemical Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Grover S, Shinde S, Puri H, Palmer N, Sarath G, Sattler SE, Louis J. Dynamic regulation of phenylpropanoid pathway metabolites in modulating sorghum defense against fall armyworm. FRONTIERS IN PLANT SCIENCE 2022; 13:1019266. [PMID: 36507437 PMCID: PMC9732255 DOI: 10.3389/fpls.2022.1019266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Plants undergo dynamic metabolic changes at the cellular level upon insect infestation to better defend themselves. Phenylpropanoids, a hub of secondary plant metabolites, encompass a wide range of compounds that can contribute to insect resistance. Here, the role of sorghum (Sorghum bicolor) phenylpropanoids in providing defense against the chewing herbivore, fall armyworm (FAW), Spodoptera frugiperda, was explored. We screened a panel of nested association mapping (NAM) founder lines against FAW and identified SC1345 and Ajabsido as most resistant and susceptible lines to FAW, respectively, compared to reference parent, RTx430. Gene expression and metabolomic studies suggested that FAW feeding suppressed the expression level of genes involved in monolignol biosynthetic pathway and their associated phenolic intermediates at 10 days post infestation. Further, SC1345 genotype displayed elevated levels of flavonoid compounds after FAW feeding for 10 days, suggesting a diversion of precursors from lignin biosynthesis to the flavonoid pathway. Additionally, bioassays with sorghum lines having altered levels of flavonoids provided genetic evidence that flavonoids are crucial in providing resistance against FAW. Finally, the application of FAW regurgitant elevated the expression of genes associated with the flavonoid pathway in the FAW-resistant SC1345 genotype. Overall, our study indicates that a dynamic regulation of the phenylpropanoid pathway in sorghum plants imparts resistance against FAW.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sanket Shinde
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nathan Palmer
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
12
|
Takabayashi J. Herbivory-Induced Plant Volatiles Mediate Multitrophic Relationships in Ecosystems. PLANT & CELL PHYSIOLOGY 2022; 63:1344-1355. [PMID: 35866611 DOI: 10.1093/pcp/pcac107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Herbivory-induced plant volatiles (HIPVs) are involved in biotic interactions among plants as well as herbivorous and carnivorous arthropods. This review looks at the specificity in plant-carnivore communication mediated by specific blends of HIPVs as well as describes plant-herbivore and plant-plant communication mediated by specific HIPVs. Factors affecting the net benefits of HIPV production have also been examined. These specific means of communication results in high complexity in the 'interaction-information network', which should be explored further to elucidate the mechanism underlying the numerous species coexisting in ecosystems.
Collapse
Affiliation(s)
- Junji Takabayashi
- Center for Ecological Research, Kyoto University, 2-509-3, Hirano, Otsu, Shiga, 520-2113 Japan
| |
Collapse
|
13
|
Coolen S, van der Molen MR, Welte CU. The secret life of insect-associated microbes and how they shape insect-plant interactions. FEMS Microbiol Ecol 2022; 98:6643329. [PMID: 35830517 PMCID: PMC9409087 DOI: 10.1093/femsec/fiac083] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Insects are associated with a plethora of different microbes of which we are only starting to understand their role in shaping insect–plant interactions. Besides directly benefitting from symbiotic microbial metabolism, insects obtain and transmit microbes within their environment, making them ideal vectors and potential beneficiaries of plant diseases and microbes that alter plant defenses. To prevent damage, plants elicit stress-specific defenses to ward off insects and their microbiota. However, both insects and microbes harbor a wealth of adaptations that allow them to circumvent effective plant defense activation. In the past decades, it has become apparent that the enormous diversity and metabolic potential of insect-associated microbes may play a far more important role in shaping insect–plant interactions than previously anticipated. The latter may have implications for the development of sustainable pest control strategies. Therefore, this review sheds light on the current knowledge on multitrophic insect–microbe–plant interactions in a rapidly expanding field of research.
Collapse
Affiliation(s)
- Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Magda Rogowska- van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Jones AC, Felton GW, Tumlinson JH. The dual function of elicitors and effectors from insects: reviewing the 'arms race' against plant defenses. PLANT MOLECULAR BIOLOGY 2022; 109:427-445. [PMID: 34618284 DOI: 10.1007/s11103-021-01203-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
This review provides an overview, analysis, and reflection on insect elicitors and effectors (particularly from oral secretions) in the context of the 'arms race' with host plants. Following injury by an insect herbivore, plants rapidly activate induced defenses that may directly or indirectly affect the insect. Such defense pathways are influenced by a multitude of factors; however, cues from the insect's oral secretions are perhaps the most well studied mediators of such plant responses. The relationship between plants and their insect herbivores is often termed an 'evolutionary arms race' of strategies for each organism to either overcome defenses or to avoid attack. However, these compounds that can elicit a plant defense response that is detrimental to the insect may also benefit the physiology or metabolism of an insect species. Indeed, several insect elicitors of plant defenses (such as the fatty acid-amino acid conjugate, volicitin) are known to enhance an insect's ability to obtain nutritionally important compounds from plant tissue. Here we re-examine the well-known elicitors and effectors from chewing insects to demonstrate not only our incomplete understanding of the specific biochemical and molecular cascades involved in these interactions but also to consider the role of these compounds for the insect species itself. Finally, this overview discusses opportunities for research in the field of plant-insect interactions by utilizing tools such as genomics and proteomics to integrate the future study of these interactions through ecological, physiological, and evolutionary disciplines.
Collapse
Affiliation(s)
- Anne C Jones
- Biological Sciences Department, Virginia Polytechnic State and University, Blacksburg, VA, USA.
| | - Gary W Felton
- Entomology Department, Pennsylvania State University, University Park, PA, USA
| | - James H Tumlinson
- Entomology Department, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
16
|
Kallure GS, Kumari A, Shinde BA, Giri AP. Characterized constituents of insect herbivore oral secretions and their influence on the regulation of plant defenses. PHYTOCHEMISTRY 2022; 193:113008. [PMID: 34768189 DOI: 10.1016/j.phytochem.2021.113008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
For more than 350 million years, there have been ongoing dynamic interactions between plants and insects. In several cases, insects cause-specific feeding damage with ensuing herbivore-associated molecular patterns that invoke characteristic defense responses. During feeding on plant tissue, insects release oral secretions (OSs) containing a repertoire of molecules affecting plant defense (effectors). Some of these OS components might elicit a defense response to combat insect attacks (elicitors), while some might curb the plant defenses (suppressors). Few reports suggest that the synthesis and function of OS components might depend on the host plant and associated microorganisms. We review these intricate plant-insect interactions, during which there is a continuous exchange of molecules between plants and feeding insects along with the associated microorganisms. We further provide a list of commonly identified inducible plant produced defensive molecules released upon insect attack as well as in response to OS treatments of the plants. Thus, we describe how plants specialized and defense-related metabolism is modulated at innumerable phases by OS during plant-insect interactions. A molecular understanding of these complex interactions will provide a means to design eco-friendly crop protection strategies.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Archana Kumari
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Balkrishna A Shinde
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Department of Biotechnology, Shivaji University, Vidya Nagar, Kolhapur, 416004, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
17
|
Poretsky E, Ruiz M, Ahmadian N, Steinbrenner AD, Dressano K, Schmelz EA, Huffaker A. Comparative analyses of responses to exogenous and endogenous antiherbivore elicitors enable a forward genetics approach to identify maize gene candidates mediating sensitivity to herbivore-associated molecular patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1295-1316. [PMID: 34564909 DOI: 10.1111/tpj.15510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Crop damage by herbivorous insects remains a significant contributor to annual yield reductions. Following attack, maize (Zea mays) responds to herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs), activating dynamic direct and indirect antiherbivore defense responses. To define underlying signaling processes, comparative analyses between plant elicitor peptide (Pep) DAMPs and fatty acid-amino acid conjugate (FAC) HAMPs were conducted. RNA sequencing analysis of early transcriptional changes following Pep and FAC treatments revealed quantitative differences in the strength of response yet a high degree of qualitative similarity, providing evidence for shared signaling pathways. In further comparisons of FAC and Pep responses across diverse maize inbred lines, we identified Mo17 as part of a small subset of lines displaying selective FAC insensitivity. Genetic mapping for FAC sensitivity using the intermated B73 × Mo17 population identified a single locus on chromosome 4 associated with FAC sensitivity. Pursuit of multiple fine-mapping approaches further narrowed the locus to 19 candidate genes. The top candidate gene identified, termed FAC SENSITIVITY ASSOCIATED (ZmFACS), encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that belongs to the same family as a rice (Oryza sativa) receptor gene previously associated with the activation of induced responses to diverse Lepidoptera. Consistent with reduced sensitivity, ZmFACS expression was significantly lower in Mo17 as compared to B73. Transient heterologous expression of ZmFACS in Nicotiana benthamiana resulted in a significantly increased FAC-elicited response. Together, our results provide useful resources for studying early elicitor-induced antiherbivore responses in maize and approaches to discover gene candidates underlying HAMP sensitivity in grain crops.
Collapse
Affiliation(s)
- Elly Poretsky
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Miguel Ruiz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nazanin Ahmadian
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Keini Dressano
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric A Schmelz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alisa Huffaker
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
18
|
Krempl C, Joußen N, Reichelt M, Kai M, Vogel H, Heckel DG. Consumption of gossypol increases fatty acid-amino acid conjugates in the cotton pests Helicoverpa armigera and Heliothis virescens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21843. [PMID: 34490676 DOI: 10.1002/arch.21843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Gossypol is a toxic sesquiterpene dimer produced by cotton plants which deters herbivory by insects and vertebrates. Two highly reactive aldehyde groups contribute to gossypol toxicity by cross-linking herbivore proteins. We identified another consequence of consuming gossypol in two insect pests of cotton: increased amounts of fatty acid-amino acid conjugates (FACs). Eight different FACs in the feces of larval Helicoverpa armigera and Heliothis virescens increased when larvae consumed artificial diet containing gossypol, but not a gossypol derivative lacking free aldehyde groups (SB-gossypol). FACs are produced by joining plant-derived fatty acids with amino acids of insect origin in the larval midgut tissue by an unknown conjugase, and translocated into the gut lumen by an unknown transporter. FACs are hydrolyzed back into fatty acids and amino acids by an aminoacylase (L-ACY-1) in the gut lumen. The equilibrium level of FACs in the lumen is determined by a balance between conjugation and hydrolysis, which may differ among species. When heterologously expressed, L-ACY-1 of H. armigera but not H. virescens was inhibited by gossypol; consistent with the excretion of more FACs in the feces by H. armigera. FACs are known to benefit the plant host by inducing anti-herbivore defensive responses, and have been hypothesized to benefit the herbivore by acting as a surfactant and increasing nitrogen uptake efficiency. Thus in addition to its direct toxic effects, gossypol may negatively impact insect nitrogen uptake efficiency and amplify the signal used by the plant to elicit release of volatile compounds that attract parasitoids.
Collapse
Affiliation(s)
- Corinna Krempl
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole Joußen
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marco Kai
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
19
|
Papantoniou D, Vergara F, Weinhold A, Quijano T, Khakimov B, Pattison DI, Bak S, van Dam NM, Martínez-Medina A. Cascading Effects of Root Microbial Symbiosis on the Development and Metabolome of the Insect Herbivore Manduca sexta L. Metabolites 2021; 11:731. [PMID: 34822389 PMCID: PMC8622251 DOI: 10.3390/metabo11110731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Root mutualistic microbes can modulate the production of plant secondary metabolites affecting plant-herbivore interactions. Still, the main mechanisms underlying the impact of root mutualists on herbivore performance remain ambiguous. In particular, little is known about how changes in the plant metabolome induced by root mutualists affect the insect metabolome and post-larval development. By using bioassays with tomato plants (Solanum lycopersicum), we analyzed the impact of the arbuscular mycorrhizal fungus Rhizophagus irregularis and the growth-promoting fungus Trichoderma harzianum on the plant interaction with the specialist insect herbivore Manduca sexta. We found that root colonization by the mutualistic microbes impaired insect development, including metamorphosis. By using untargeted metabolomics, we found that root colonization by the mutualistic microbes altered the secondary metabolism of tomato shoots, leading to enhanced levels of steroidal glycoalkaloids. Untargeted metabolomics further revealed that root colonization by the mutualists affected the metabolome of the herbivore, leading to an enhanced accumulation of steroidal glycoalkaloids and altered patterns of fatty acid amides and carnitine-derived metabolites. Our results indicate that the changes in the shoot metabolome triggered by root mutualistic microbes can cascade up altering the metabolome of the insects feeding on the colonized plants, thus affecting the insect development.
Collapse
Affiliation(s)
- Dimitra Papantoniou
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Fredd Vergara
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Teresa Quijano
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná 97000, Mexico;
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark;
| | - David I. Pattison
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (D.I.P.); (S.B.)
| | - Søren Bak
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (D.I.P.); (S.B.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Ainhoa Martínez-Medina
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
20
|
Ling X, Gu S, Tian C, Guo H, Degen T, Turlings TCJ, Ge F, Sun Y. Differential Levels of Fatty Acid-Amino Acid Conjugates in the Oral Secretions of Lepidopteran Larvae Account for the Different Profiles of Volatiles. PEST MANAGEMENT SCIENCE 2021; 77:3970-3979. [PMID: 33866678 DOI: 10.1002/ps.6417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plants have evolved sophisticated defense responses to insect herbivore attack, which often involve elicitors in the insects' oral secretions. The major eliciting compounds in insect oral secretions across different species and their potency in inducing volatile emissions have not yet been fully characterized and compared. RESULTS Seven lepidopteran insects with variable duration of association with maize were selected, five species known as pests for a long time (Ostrinia furnacalis, Spodoptera exigua, Spodoptera litura, Mythimna separata, and Helicoverpa armigera) and two newly emerging pests (Athetis lepigone and Athetis dissimilis). Oral secretions of the newly emerging pests have the highest total contents of Fatty Acid-Amino Acid Conjugates (FACs), and their relative composition was well separated from that of the other five species in principal compound analysis. Redundancy analyses suggested that higher quantity of FACs was mainly responsible for the increases in maize volatiles, of which (E)-3,8-dimethyl-1,4,7-nonatriene (DMNT) and (E, E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) were the most strongly inducible compounds. Adding FACs to the oral secretion of S. litura larvae significantly increased the emissions of TMTT and DMNT, confirming the key role of FACs in inducing volatile emissions in maize plants. Additional experiments with artificial diet spiked with linolenic acid suggested that variation in FACs is due to differences in internal FAC degradation and fatty acid excretion. CONCLUSION Compared with two newly emerging pests A. lepigone and A. dissimilis, the long-term pests could diminish the volatile emission by maize through reducing the FAC content in their oral secretions, which may lower the risk of attracting natural enemies.
Collapse
Affiliation(s)
- Xiaoyu Ling
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Shimin Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Caihong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Thomas Degen
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Neuchâtel, Switzerland
| | - Ted C J Turlings
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Neuchâtel, Switzerland
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Arimura GI. Making Sense of the Way Plants Sense Herbivores. TRENDS IN PLANT SCIENCE 2021; 26:288-298. [PMID: 33277185 DOI: 10.1016/j.tplants.2020.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Plants are constantly threatened by herbivore attacks and must devise survival strategies. Some plants sense and respond to elicitors including specific molecules secreted by herbivores and molecules that are innate to plants. Elicitors activate diverse arrays of plant defense mechanisms that confer resistance to the predator. Recent new insights into the cellular pathways by which plants sense elicitors and elicit defense responses against herbivores are opening doors to a myriad of agricultural applications. This review focuses on the machinery of herbivory-sensing and on cellular and systemic/airborne signaling via elicitors, exemplified by the model case of interactions between Arabidopsis hosts and moths of the genus Spodoptera.
Collapse
Affiliation(s)
- Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
22
|
Sahaka M, Amara S, Wattanakul J, Gedi MA, Aldai N, Parsiegla G, Lecomte J, Christeller JT, Gray D, Gontero B, Villeneuve P, Carrière F. The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential α-linolenic acid. Food Funct 2020; 11:6710-6744. [PMID: 32687132 DOI: 10.1039/d0fo01040e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galactolipids, mainly monogalactosyl diglycerides and digalactosyl diglycerides are the main lipids found in the membranes of plants, algae and photosynthetic microorganisms like microalgae and cyanobacteria. As such, they are the main lipids present at the surface of earth. They may represent up to 80% of the fatty acid stocks, including a large proportion of polyunsaturated fatty acids mainly α-linolenic acid (ALA). Nevertheless, the interest in these lipids for nutrition and other applications remains overlooked, probably because they are dispersed in the biomass and are not as easy to extract as vegetable oils from oleaginous fruit and oil seeds. Another reason is that galactolipids only represent a small fraction of the acylglycerolipids present in modern human diet. In herbivores such as horses, fish and folivorous insects, galactolipids may however represent the main source of dietary fatty acids due to their dietary habits and digestion physiology. The development of galactolipase assays has led to the identification and characterization of the enzymes involved in the digestion of galactolipids in the gastrointestinal tract, as well as by microorganisms. Pancreatic lipase-related protein 2 (PLRP2) has been identified as an important factor of galactolipid digestion in humans, together with pancreatic carboxyl ester hydrolase (CEH). The levels of PLRP2 are particularly high in monogastric herbivores thus highlighting the peculiar role of PLRP2 in the digestion of plant lipids. Similarly, pancreatic lipase homologs are found to be expressed in the midgut of folivorous insects, in which a high galactolipase activity can be measured. In fish, however, CEH is the main galactolipase involved. This review discusses the origins and fatty acid composition of galactolipids and the physiological contribution of galactolipid digestion in various species. This overlooked aspect of lipid digestion ensures not only the intake of ALA from its main natural source, but also the main lipid source of energy for growth of some herbivorous species.
Collapse
Affiliation(s)
- Moulay Sahaka
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | - Sawsan Amara
- Lipolytech, Zone Luminy Biotech, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Jutarat Wattanakul
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Mohamed A Gedi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Goetz Parsiegla
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - John T Christeller
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - David Gray
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - Frédéric Carrière
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
23
|
Grissett L, Ali A, Coble AM, Logan K, Washington B, Mateson A, McGee K, Nkrumah Y, Jacobus L, Abraham E, Hann C, Bequette CJ, Hind SR, Schmelz EA, Stratmann JW. Survey of Sensitivity to Fatty Acid-Amino Acid Conjugates in the Solanaceae. J Chem Ecol 2020; 46:330-343. [PMID: 31989490 DOI: 10.1007/s10886-020-01152-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
Plants perceive insect herbivores via a sophisticated surveillance system that detects a range of alarm signals, including herbivore-associated molecular patterns (HAMPs). Fatty acid-amino acid conjugates (FACs) are HAMPs present in oral secretions (OS) of lepidopteran larvae that induce defense responses in many plant species. In contrast to eggplant (Solanum melongena), tomato (S. lycopersicum) does not respond to FACs present in OS from Manduca sexta (Lepidoptera). Since both plants are found in the same genus, we tested whether loss of sensitivity to FACs in tomato may be a domestication effect. Using highly sensitive MAP kinase (MAPK) phosphorylation assays, we demonstrate that four wild tomato species and the closely related potato (S. tuberosum) do not respond to the FACs N-linolenoyl-L-glutamine and N-linolenoyl-L-glutamic acid, excluding a domestication effect. Among other genera within the Solanaceae, we found that bell pepper (Capsicum annuum) is responsive to FACs, while there is a differential responsiveness to FACs among tobacco (Nicotiana) species, ranging from strong responsiveness in N. benthamiana to no responsiveness in N. knightiana. The Petunia lineage is one of the oldest lineages within the Solanaceae and P. hybrida was responsive to FACs. Collectively, we demonstrate that plant responsiveness to FACs does not follow simple phylogenetic relationships in the family Solanaceae. Instead, sensitivity to FACs is a dynamic ancestral trait present in monocots and eudicots that was repeatedly lost during the evolution of Solanaceae species. Although tomato is insensitive to FACs, we found that other unidentified factors in M. sexta OS induce defenses in tomato.
Collapse
Affiliation(s)
- Laquita Grissett
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Fred Hutchinson Cancer Research Center, University of Washington School of Dentistry, Seattle, WA, USA
| | - Azka Ali
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Anne-Marie Coble
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Khalilah Logan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Brandon Washington
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Abigail Mateson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Kelsey McGee
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Yaw Nkrumah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Leighton Jacobus
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Evelyn Abraham
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Department of Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Claire Hann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,R.J. Reynolds Tobacco, Winston-Salem, NC, USA
| | - Sarah R Hind
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
24
|
Weiss LC, Albada B, Becker SM, Meckelmann SW, Klein J, Meyer M, Schmitz OJ, Sommer U, Leo M, Zagermann J, Metzler-Nolte N, Tollrian R. Identification of Chaoborus kairomone chemicals that induce defences in Daphnia. Nat Chem Biol 2018; 14:1133-1139. [DOI: 10.1038/s41589-018-0164-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/11/2018] [Indexed: 11/09/2022]
|
25
|
Santamaria ME, Arnaiz A, Gonzalez-Melendi P, Martinez M, Diaz I. Plant Perception and Short-Term Responses to Phytophagous Insects and Mites. Int J Mol Sci 2018; 19:E1356. [PMID: 29751577 PMCID: PMC5983831 DOI: 10.3390/ijms19051356] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/03/2022] Open
Abstract
Plant⁻pest relationships involve complex processes encompassing a network of molecules, signals, and regulators for overcoming defenses they develop against each other. Phytophagous arthropods identify plants mainly as a source of food. In turn, plants develop a variety of strategies to avoid damage and survive. The success of plant defenses depends on rapid and specific recognition of the phytophagous threat. Subsequently, plants trigger a cascade of short-term responses that eventually result in the production of a wide range of compounds with defense properties. This review deals with the main features involved in the interaction between plants and phytophagous insects and acari, focusing on early responses from the plant side. A general landscape of the diverse strategies employed by plants within the first hours after pest perception to block the capability of phytophagous insects to develop mechanisms of resistance is presented, with the potential of providing alternatives for pest control.
Collapse
Affiliation(s)
- M Estrella Santamaria
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Ana Arnaiz
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Pablo Gonzalez-Melendi
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Universidad Politecnica de Madrid (UPM), Pozuelo de Alarcon, 28223 Madrid, Spain.
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain.
| |
Collapse
|
26
|
Block A, Christensen SA, Hunter CT, Alborn HT. Herbivore-derived fatty-acid amides elicit reactive oxygen species burst in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1235-1245. [PMID: 29301018 DOI: 10.1093/jxb/erx449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/27/2017] [Indexed: 05/07/2023]
Abstract
Reactive oxygen species (ROS) can be elicited by many forms of stress, including pathogen attack, abiotic stress, damage and insect infestation. Perception of microbe- or damage-associated elicitors triggers an ROS burst in many plant species; however, the impact of herbivore fatty-acid amides on ROS elicitation remains largely unexplored. In this study we show that the lepidopteran-derived fatty-acid amide elicitor N-linolenoyl-L-glutamine (GLN18:3) can induce a ROS burst in multiple plant species. Furthermore, in Arabidopsis this ROS burst is partially dependent on the plasma membrane localized NADPH oxidases RBOHD and RBOHF, and an Arabidopsis rbohD/F double mutant produces enhanced GLN18:3-induced jasmonic acid. Quantification of GLN18:3-induced ROS in phytohormone-deficient lines revealed that in Arabidopsis reduced levels of jasmonic acid resulted in a larger elicitor-induced ROS burst, while in tomato reduction of either jasmonic acid or salicylic acid led to higher induced ROS production. These data indicate that GLN18:3-induced ROS is antagonistic to jasmonic acid production in these species. In biological assays, rbohD/F mutant plants were more resistant to the generalist herbivores Spodoptera exigua and Trichoplusia ni but not to the specialist Plutella xylostella. Collectively, these results demonstrate that in Arabidopsis herbivore-induced ROS may negatively regulate plant defense responses to herbivory.
Collapse
Affiliation(s)
- Anna Block
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Shawn A Christensen
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Charles T Hunter
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Hans T Alborn
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| |
Collapse
|
27
|
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:703-728. [PMID: 29160609 DOI: 10.1111/tpj.13773] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
Herbivorous arthropods have interacted with plants for millions of years. During feeding they release chemical cues that allow plants to detect the attack and mount an efficient defense response. A signaling cascade triggers the expression of hundreds of genes, which encode defensive proteins and enzymes for synthesis of toxic metabolites. This direct defense is often complemented by emission of volatiles that attract beneficial parasitoids. In return, arthropods have evolved strategies to interfere with plant defenses, either by producing effectors to inhibit detection and downstream signaling steps, or by adapting to their detrimental effect. In this review, we address the current knowledge on the molecular and chemical dialog between plants and herbivores, with an emphasis on co-evolutionary aspects.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
28
|
Cheng Q, Gu S, Liu Z, Wang CZ, Li X. Expressional divergence of the fatty acid-amino acid conjugate-hydrolyzing aminoacylase 1 (L-ACY-1) in Helicoverpa armigera and Helicoverpa assulta. Sci Rep 2017; 7:8721. [PMID: 28821781 PMCID: PMC5562920 DOI: 10.1038/s41598-017-09185-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
How FACs-producing generalist and specialist herbivores regulate their FACs-hydrolyzing enzyme L-ACY-1 to balance FACs’ beneficial vs. detrimental effects remains unknown. To address this question, we compared L-ACY-1 expression in Helicoverpa armigera and Helicoverpa assulta, a pair of closely related sibling species differing mainly in their host range, by the same sets of hostplants, protein to digestible carbohydrate (P:C) ratios, or allelochemical. L-ACY-1 expression remained low/unchanged in H. armigera, but was induced by hot pepper fruits and repressed by cotton bolls in H. assulta. The representative allelochemicals of the tested hostplants significantly (capsaicin) or insignificantly (gossypol and nicotine) induced L-ACY-1 expression in H. armigera, but insignificantly inhibited (capsaicin and gossypol) or induced (nicotine) it in H. assulta. L-ACY-1 expression remained low/unaltered on balanced (P50:C50 and P53:C47) or protein-biased diets and induced on carbohydrate-biased diets in H. armigera, but was at the highest level on balanced diets and reduced on either protein- or carbohydrate-biased diets in H. assulta. Furthermore, L-ACY-1 expression was significantly higher in H. assulta than in H. armigera for most of feeding treatments. Such expressional divergences suggest that FACs are utilized mainly for removal of excessive nitrogen in generalists but for nitrogen assimilation in specialists.
Collapse
Affiliation(s)
- Qian Cheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Department of Entomology and BIO5 Institute, The University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
29
|
Nakata R, Kimura Y, Aoki K, Yoshinaga N, Teraishi M, Okumoto Y, Huffaker A, Schmelz EA, Mori N. Inducible De Novo Biosynthesis of Isoflavonoids in Soybean Leaves by Spodoptera litura Derived Elicitors: Tracer Techniques Aided by High Resolution LCMS. J Chem Ecol 2016; 42:1226-1236. [PMID: 27826811 DOI: 10.1007/s10886-016-0786-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/18/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Isoflavonoids are a characteristic family of natural products in legumes known to mediate a range of plant-biotic interactions. For example, in soybean (Glycine max: Fabaceae) multiple isoflavones are induced and accumulate in leaves following attack by Spodoptera litura (Lepidoptera: Noctuidae) larvae. To quantitatively examine patterns of activated de novo biosynthesis, soybean (Var. Enrei) leaves were treated with a combination of plant defense elicitors present in S. litura gut content extracts and L-α-[13C9, 15N]phenylalanine as a traceable isoflavonoid precursor. Combined treatments promoted significant increases in 13C-labeled isoflavone aglycones (daidzein, formononetin, and genistein), 13C-labeled isoflavone 7-O-glucosides (daidzin, ononin, and genistin), and 13C-labeled isoflavone 7-O-(6″-O-malonyl-β-glucosides) (malonyldaidzin, malonylononin, and malonylgenistin). In contrast levels of 13C-labeled flavones and flavonol (4',7-dihydroxyflavone, kaempferol, and apigenin) were not significantly altered. Curiously, application of fatty acid-amino acid conjugate (FAC) elicitors present in S. litura gut contents, namely N-linolenoyl-L-glutamine and N-linoleoyl-L-glutamine, both promoted the induced accumulation of isoflavone 7-O-glucosides and isoflavone 7-O-(6″-O-malonyl-β-glucosides), but not isoflavone aglycones in the leaves. These results demonstrate that at least two separate reactions are involved in elicitor-induced soybean leaf responses to the S. litura gut contents: one is the de novo biosynthesis of isoflavone conjugates induced by FACs, and the other is the hydrolysis of the isoflavone conjugates to yield isoflavone aglycones. Gut content extracts alone displayed no hydrolytic activity. The quantitative analysis of isoflavone de novo biosynthesis, with respect to both aglycones and conjugates, affords a useful bioassay system for the discovery of additional plant defense elicitor(s) in S. litura gut contents that specifically promote hydrolysis of isoflavone conjugates.
Collapse
Affiliation(s)
- Ryu Nakata
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Yuki Kimura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Kenta Aoki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Naoko Yoshinaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093-0380, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093-0380, USA
| | - Naoki Mori
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto, 606-8502, Japan.
| |
Collapse
|
30
|
Shinya T, Hojo Y, Desaki Y, Christeller JT, Okada K, Shibuya N, Galis I. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Sci Rep 2016; 6:32537. [PMID: 27581373 PMCID: PMC5007475 DOI: 10.1038/srep32537] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata's OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature.
Collapse
Affiliation(s)
- Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - John T. Christeller
- The New Zealand Institute for Plant & Food Research, Palmerston North 4442, New Zealand
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
31
|
Karban R, Orrock JL, Preisser EL, Sih A. A comparison of plants and animals in their responses to risk of consumption. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:1-8. [PMID: 27262943 DOI: 10.1016/j.pbi.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Both plants and animals reduce their risk of being eaten by detecting and responding to herbivore and predator cues. Plants tend to be less mobile and rely on more local information perceived with widely dispersed and redundant tissues. As such, plants can more easily multi-task. Plants are more tolerant of damage and use damage to their own tissues as reliable cues of risk; plants have a higher threshold before responding to the threat of herbivory. Plants also use diverse cues that include fragments of plant tissue and molecular patterns from herbivores, herbivore feeding, or microbial associates of herbivores. Instead of fleeing from attackers, plants reallocate valuable resources to organs at less risk. They minimize unnecessary defenses against unrealized risks and costs of failing to defend against actual risk. Plants can remember and learn, although these abilities are poorly understood.
Collapse
Affiliation(s)
- Richard Karban
- Department of Entomology and Nematology, University of California, Davis, CA 95616, United States.
| | - John L Orrock
- Department of Zoology, University of Wisconsin, Madison, WI 53706, United States
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, United States
| |
Collapse
|
32
|
Yoshinaga N. Physiological function and ecological aspects of fatty acid-amino acid conjugates in insects†. Biosci Biotechnol Biochem 2016; 80:1274-82. [DOI: 10.1080/09168451.2016.1153956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
In tritrophic interactions, plants recognize herbivore-produced elicitors and release a blend of volatile compounds (VOCs), which work as chemical cues for parasitoids or predators to locate their hosts. From detection of elicitors to VOC emissions, plants utilize sophisticated systems that resemble the plant–microbe interaction system. Fatty acid–amino acid conjugates (FACs), a class of insect elicitors, resemble compounds synthesized by microbes in nature. Recent evidence suggests that the recognition of insect elicitors by an ancestral microbe-associated defense system may be the origin of tritrophic interactions mediated by FACs. Here we discuss our findings in light of how plants have customized this defense to be effective against insect herbivores, and how some insects have successfully adapted to these defenses.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Abstract
Plants collectively produce hundreds of thousands of specialized metabolites that are not required for growth or development. Each species has a qualitatively unique profile, with variation among individuals, growth stages, and tissues. By the 1950s, entomologists began to recognize the supreme importance of these metabolites in shaping insect herbivore communities. Plant defense theories arose to address observed patterns of variation, but provided few testable hypotheses because they did not distinguish clearly among proximate and ultimate causes. Molecular plant-insect interaction research has since revealed the sophistication of plant metabolic, developmental, and signaling networks. This understanding at the molecular level, rather than theoretical predictions, has driven the development of new hypotheses and tools and pushed the field forward. We reflect on the utility of the functional perspective provided by the optimal defense theory, and propose a conceptual model of plant defense as a series of layers each at a different level of analysis, illustrated by advances in the molecular ecology of plant-insect interactions.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; ,
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; ,
| |
Collapse
|
34
|
LeClair G, Williams M, Silk P, Eveleigh E, Mayo P, Brophy M, Francis B. Spruce Budworm (Lepidoptera: Tortricidae) Oral Secretions II: Chemistry. ENVIRONMENTAL ENTOMOLOGY 2015; 44:1531-1543. [PMID: 26454474 DOI: 10.1093/ee/nvv149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
As sessile organisms, plants have evolved different methods to defend against attacks and have adapted their defense measures to discriminate between mechanical damage and herbivory by insects. One of the ways that plant defenses are triggered is via elicitors from insect oral secretions (OS). In this study, we investigated the ability of second-instar (L2) spruce budworm [SBW; Choristoneura fumiferana (Clemens)] to alter the volatile organic compounds (VOCs) of four conifer species [Abies balsamea (L.) Mill., Picea mariana (Miller) B.S.P., Picea glauca (Moench) Voss, Picea rubens (Sargent)] and found that the emission profiles from all host trees were drastically changed after herbivory. We then investigated whether some of the main elicitors (fatty acid conjugates [FACs], β-glucosidase, and glucose oxidase) studied were present in SBW OS. FACs (glutamine and glutamic acid) based on linolenic, linoleic, oleic, and stearic acids were all observed in varying relative quantities. Hydroxylated FACs, such as volicitin, were not observed. Enzyme activity for β-glucosidase was also measured and found present in SBW OS, whereas glucose oxidase activity was not found in the SBW labial glands. These results demonstrate that SBW L2 larvae have the ability to induce VOC emissions upon herbivory and that SBW OS contain potential elicitors to induce these defensive responses. These data will be useful to further evaluate whether these elicitors can separately induce the production of specific VOCs and to investigate whether and how these emissions benefit the plant.
Collapse
|
35
|
Schmelz EA. Impacts of insect oral secretions on defoliation-induced plant defense. CURRENT OPINION IN INSECT SCIENCE 2015; 9:7-15. [PMID: 32846712 DOI: 10.1016/j.cois.2015.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 05/24/2023]
Abstract
Plant responses to biotic stress involve non-self perception, signaling, and altered defense phenotypes. During attack, defoliating insects deposit gland secretions (GS) and complex foregut derived oral secretions (OS) that include GS and combined products of plant, insect, and microbial interactions. GS-derived and OS-derived biochemicals that trigger defense are termed Herbivore Associated Molecular Patterns (HAMPs) while those that promote susceptibility are termed effectors. These functions are highly context and species specific. The magnitude and direction of plant responses are orchestrated by the interaction of damage, OS/GS components, predicted receptor-ligand interactions, ion fluxes, protein kinase signaling cascades, phytohormone interactions, transcription factor activation, altered translation, and defense biosynthesis. Unlike plant-pathogen recognition, a remaining challenge is the discovery of plant receptors for defoliator-derived HAMPs.
Collapse
Affiliation(s)
- Eric A Schmelz
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0380, United States.
| |
Collapse
|
36
|
Mescher MC, De Moraes CM. Role of plant sensory perception in plant-animal interactions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:425-33. [PMID: 25371503 DOI: 10.1093/jxb/eru414] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The sedentary lifestyle of plants can give the false impression that they are passive participants in interactions with other organisms and the broader environment. In fact, plants have evolved sophisticated perceptual abilities that allow them to monitor and respond to a wide range of changing biotic and abiotic conditions. In this paper, we discuss recent research exploring the diverse ways in which plant sensory abilities mediate interactions between plants and animals, especially insects. Such interactions include the detection and capture of animal prey by carnivorous plants, active plant responses to pollinator visitation, the perception of various cues associated with the immediate presence and feeding of herbivores, and plant responses to (olfactory) cues indicating the threat of future herbivory. We are only beginning to understand the full range of sensory cues that mediate such interactions and to elucidate the mechanisms by which plants perceive, interpret, and respond to them. Nevertheless, it is clear that plants continually gather information about their environments via a range of sensory modalities and actively respond in ways that profoundly influence their interactions with other organisms.
Collapse
Affiliation(s)
- Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Consuelo M De Moraes
- Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
37
|
Yoshinaga N, Ishikawa C, Seidl-Adams I, Bosak E, Aboshi T, Tumlinson JH, Mori N. N-(18-hydroxylinolenoyl)-L-glutamine: a newly discovered analog of volicitin in Manduca sexta and its elicitor activity in plants. J Chem Ecol 2014; 40:484-90. [PMID: 24817386 DOI: 10.1007/s10886-014-0436-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/13/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Plants attacked by insect herbivores release a blend of volatile organic compounds (VOCs) that serve as chemical cues for host location by parasitic wasps, natural enemies of the herbivores. Volicitin, N-(17-hydroxylinolenoyl)-L-glutamine, is one of the most active VOC elicitors found in herbivore regurgitants. Our previous study revealed that hydroxylation on the 17th position of the linolenic acid moiety of N-linolenoyl-L-glutamine increases by more than three times the elicitor activity in corn plants. Here, we identified N-(18-hydroxylinolenoyl)-L-glutamine (18OH-volicitin) from larval gut contents of tobacco hornworm (THW), Manduca sexta. Eggplant and tobacco, two solanaceous host plants of THW larvae, and corn, a non-host plant, responded differently to this new elicitor. Eggplant and tobacco seedlings emitted twice the amount of VOCs when 18OH-volicitin was applied to damaged leaf surfaces compared to N-linolenoyl-L-glutamine, while both these fatty acid amino acid conjugates (FACs) elicited a similar response in corn seedlings. In both solanaceous plants, there was no significant difference in the elicitor activity of 17OH- and 18OH-volicitin. Interestingly, other lepidopteran species that have 17OH-type volicitin also attack solanaceous plants. These data suggest that plants have developed herbivory-detection systems customized to their herbivorous enemies.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan,
| | | | | | | | | | | | | |
Collapse
|
38
|
Yoshinaga N, Abe H, Morita S, Yoshida T, Aboshi T, Fukui M, Tumlinson JH, Mori N. Plant volatile eliciting FACs in lepidopteran caterpillars, fruit flies, and crickets: a convergent evolution or phylogenetic inheritance? Front Physiol 2014; 5:121. [PMID: 24744735 PMCID: PMC3978339 DOI: 10.3389/fphys.2014.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/13/2014] [Indexed: 12/02/2022] Open
Abstract
Fatty acid amino acid conjugates (FACs), first identified in lepidopteran caterpillar spit as elicitors of plant volatile emission, also have been reported as major components in gut tracts of Drosophila melanogaster and cricket Teleogryllus taiwanemma. The profile of FAC analogs in these two insects was similar to that of tobacco hornworm Manduca sexta, showing glutamic acid conjugates predominantly over glutamine conjugates. The physiological function of FACs is presumably to enhance nitrogen assimilation in Spodoptera litura larvae, but in other insects it is totally unknown. Whether these insects share a common synthetic mechanism of FACs is also unclear. In this study, the biosynthesis of FACs was examined in vitro in five lepidopteran species (M. sexta, Cephonodes hylas, silkworm, S. litura, and Mythimna separata), fruit fly larvae and T. taiwanemma. The fresh midgut tissues of all of the tested insects showed the ability to synthesize glutamine conjugates in vitro when incubated with glutamine and sodium linolenate. Such direct conjugation was also observed for glutamic acid conjugates in all the insects but the product amount was very small and did not reflect the in vivo FAC patterns in each species. In fruit fly larvae, the predominance of glutamic acid conjugates could be explained by a shortage of substrate glutamine in midgut tissues, and in M. sexta, a rapid hydrolysis of glutamine conjugates has been reported. In crickets, we found an additional unique biosynthetic pathway for glutamic acid conjugates. T. taiwanemma converted glutamine conjugates to glutamic acid conjugates by deaminating the side chain of the glutamine moiety. Considering these findings together with previous results, a possibility that FACs in these insects are results of convergent evolution cannot be ruled out, but it is more likely that the ancestral insects had the glutamine conjugates and crickets and other insects developed glutamic acid conjugates in a different way.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Hiroaki Abe
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Sayo Morita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Tetsuya Yoshida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Takako Aboshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Masao Fukui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - James H Tumlinson
- Department of Entomology, Center for Chemical Ecology, Pennsylvania State University University Park, PA, USA
| | - Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| |
Collapse
|
39
|
Wang L, Wu J. The essential role of jasmonic acid in plant-herbivore interactions--using the wild tobacco Nicotiana attenuata as a model. J Genet Genomics 2013; 40:597-606. [PMID: 24377866 DOI: 10.1016/j.jgg.2013.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/28/2022]
Abstract
The plant hormone jasmonic acid (JA) plays a central role in plant defense against herbivores. Herbivore damage elicits a rapid and transient JA burst in the wounded leaves and JA functions as a signal to mediate the accumulation of various secondary metabolites that confer resistance to herbivores. Nicotiana attenuata is a wild tobacco species that inhabits western North America. More than fifteen years of study and its unique interaction with the specialist herbivore insect Manduca sexta have made this plant one of the best models for studying plant-herbivore interactions. Here we review the recent progress in understanding the elicitation of JA accumulation by herbivore-specific elicitors, the regulation of JA biosynthesis, JA signaling, and the herbivore-defense traits in N. attenuata.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
40
|
Dinh ST, Baldwin IT, Galis I. The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuata plants. PLANT PHYSIOLOGY 2013; 162:2106-24. [PMID: 23784463 PMCID: PMC3729786 DOI: 10.1104/pp.113.221150] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/17/2013] [Indexed: 05/03/2023]
Abstract
Nicotiana attenuata plants can distinguish the damage caused by herbivore feeding from other types of damage by perceiving herbivore-associated elicitors, such as the fatty acid-amino acid conjugates (FACs) in oral secretions (OS) of Manduca sexta larvae, which are introduced into wounds during feeding. However, the transduction of FAC signals into downstream plant defense responses is still not well established. We identified a novel FAC-regulated protein in N. attenuata (NaHER1; for herbivore elicitor regulated) and show that it is an indispensable part of the OS signal transduction pathway. N. attenuata plants silenced in the expression of NaHER1 by RNA interference (irHER1) were unable to amplify their defenses beyond basal, wound-induced levels in response to OS elicitation. M. sexta larvae performed 2-fold better when reared on irHER1 plants, which released less volatile organic compounds (indirect defense) and had strongly reduced levels of several direct defense metabolites, including trypsin proteinase inhibitors, 17-hydroxygeranyllinallool diterpene glycosides, and caffeoylputrescine, after real and/or simulated herbivore attack. In parallel to impaired jasmonate signaling and metabolism, irHER1 plants were more drought sensitive and showed reduced levels of abscisic acid (ABA) in the leaves, suggesting that silencing of NaHER1 interfered with ABA metabolism. Because treatment of irHER1 plants with ABA results in both the accumulation of significantly more ABA catabolites and the complete restoration of normal wild-type levels of OS-induced defense metabolites, we conclude that NaHER1 acts as a natural suppressor of ABA catabolism after herbivore attack, which, in turn, activates the full defense profile and resistance against herbivores.
Collapse
Affiliation(s)
- Son Truong Dinh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D–07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D–07745 Jena, Germany
| | | |
Collapse
|
41
|
Hettenhausen C, Baldwin IT, Wu J. Nicotiana attenuata MPK4 suppresses a novel jasmonic acid (JA) signaling-independent defense pathway against the specialist insect Manduca sexta, but is not required for the resistance to the generalist Spodoptera littoralis. THE NEW PHYTOLOGIST 2013; 199:787-99. [PMID: 23672856 PMCID: PMC4996321 DOI: 10.1111/nph.12312] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/03/2013] [Indexed: 05/18/2023]
Abstract
How plants tailor their defense responses to attack from different insects remains largely unknown. Here, we studied the role of a mitogen-activated protein kinase (MAPK), MPK4, in the resistance of a wild tobacco Nicotiana attenuata to two herbivores, the specialist Manduca sexta and the generalist Spodoptera littoralis. Stably transformed N. attenuata plants silenced in MPK4 (irMPK4) were generated and characterized for traits important for defense against herbivores. Only the oral secretions (OS) from M. sexta, but not the OS from S. littoralis or mechanical wounding, induced elevated levels of jasmonic acid (JA) in irMPK4 plants relative to the wild-type plants. Moreover, silencing of MPK4 strongly increased the resistance of N. attenuata to M. sexta in a fashion that was independent of COI1 (CORONATINE INSENSITIVE1)-mediated JA signaling. Untargeted metabolomic screening identified several new MPK4-dependent putative defensive compounds against M. sexta. By contrast, silencing of MPK4 did not affect the growth of the generalist insect S. littoralis, and we propose that this was because of the very low levels of fatty acid-amino acid conjugates (FACs) in S. littoralis OS. Thus, MPK4 is likely to be a key signaling element that enables plants to tailor defense responses to different attackers.
Collapse
Affiliation(s)
| | - Ian T. Baldwin
- Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | | |
Collapse
|
42
|
Ali JG, Agrawal AA. Specialist versus generalist insect herbivores and plant defense. TRENDS IN PLANT SCIENCE 2012; 17:293-302. [PMID: 22425020 DOI: 10.1016/j.tplants.2012.02.006] [Citation(s) in RCA: 442] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 05/20/2023]
Abstract
There has been a long-standing hypothesis that specialist and generalist insects interact with plants in distinct ways. Although many tests exist, they typically compare only one species of each, they sometimes confound specialization and feeding guild, and often do not link chemical or transcriptional measures of the plant to actual resistance. In this review, we synthesize current data on whether specialists and generalists actually differ, with special attention to comparisons of their differential elicitation of plant responses. Although we find few consistencies in plant induction by specialists versus generalists, feeding guilds are predictive of differential plant responses. We outline a novel set of predictions based on current coevolutionary hypotheses and make methodological suggestions for improved comparisons of specialists and generalists.
Collapse
Affiliation(s)
- Jared G Ali
- Department of Ecology and Evolutionary Biology, Cornell University, E425 Corson Hall, Ithaca, NY 14853-2701, USA.
| | | |
Collapse
|
43
|
Kuhns EH, Seidl-Adams I, Tumlinson JH. Heliothine caterpillars differ in abundance of a gut lumen aminoacylase (L-ACY-1)-Suggesting a relationship between host preference and fatty acid amino acid conjugate metabolism. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:408-412. [PMID: 22266147 DOI: 10.1016/j.jinsphys.2012.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 05/31/2023]
Abstract
Fatty acid amino acid conjugates (FACs) in the oral secretions of Lepidopteran larvae are responsible for eliciting plant defense responses. FACs are present despite fitness costs which suggests that they are important for larval survival. In previous work, an aminoacylase (L-ACY-1) was identified as the enzyme responsible for hydrolysis of FACs within the larvae gut. This gene is present in three related Heliothine species: Heliothis virescens, Helicoverpa zea, and Heliothis subflexa. Transcript levels in gut tissues are predictive of protein abundance and enzyme activity in the frass. H. zea has the least amount of L-ACY-1 present in gut tissue and frass, while H. virescens has intermediate protein levels and H. subflexa has the highest amount of L-ACY-1 in gut tissue as well as in frass samples. These species differ in their host range and protein intake targets, and recently, it has been shown that FACs, the substrates of L-ACY-1, are involved in nitrogen metabolism. The correlation between protein intake and degree of host range specialization suggests that this aminoacylase may allow specialized larvae to obtain nitrogen requirements despite limitations in diet heterogeneity.
Collapse
Affiliation(s)
- Emily H Kuhns
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
44
|
|
45
|
Kuhns EH, Seidl-Adams I, Tumlinson JH. A lepidopteran aminoacylase (L-ACY-1) in Heliothis virescens (Lepidoptera: Noctuidae) gut lumen hydrolyzes fatty acid-amino acid conjugates, elicitors of plant defense. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:32-40. [PMID: 22056272 DOI: 10.1016/j.ibmb.2011.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/04/2011] [Accepted: 10/17/2011] [Indexed: 05/31/2023]
Abstract
Fatty acid-amino acid conjugates (FACs) have been identified in Lepidopteran larvae as elicitors of plant defenses. Plant responses include the production of primary defense compounds and induction of secondary defense strategies including attraction of parasitoid wasps. These elicitors are present despite fitness costs, suggesting that they are important for the larvae's survival. In order to exploit FAC-mediated plant defense responses in agricultural settings, an understanding of FAC purpose and metabolism is crucial. To clarify their role, enzymes involved in this metabolism are being investigated. In this work a previously undiscovered FAC hydrolase was purified from Heliothis virescens frass by liquid chromatography and PAGE techniques and was identified as an aminoacylase-like protein (L-ACY-1) using MALDI-ToF/ToF and Edman sequencing. The full length gene was cloned and expressed in Escherichia coli and a polyclonal antibody against L-ACY-1 was made. L-ACY-1 was confirmed to be responsible for FAC hydrolysis activity through inhibition of N-linolenoyl-l-glutamine hydrolysis by titration with the polyclonal anti-L-ACY-1 antibody. L-ACY-1 activity is dependent on a divalent cation. This is the first time an aminoacylase has been described from an insect. L-ACY-1 appears to play a vastly different role in insects than ACYs do in mammals and may be involved in maintaining glutamine supplies for gut tissue metabolism. Identification of L-ACY-1, a FAC hydrolase, clarifies a previously uncharacterized portion of FAC metabolism.
Collapse
Affiliation(s)
- Emily H Kuhns
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
46
|
Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G. Nicotiana attenuata LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. THE PLANT CELL 2011; 23:3512-32. [PMID: 21926334 PMCID: PMC3203443 DOI: 10.1105/tpc.111.088229] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 09/05/2011] [Indexed: 05/18/2023]
Abstract
Nicotiana attenuata has the capacity to respond specifically to herbivory by its natural herbivore, Manduca sexta, through the perception of elicitors in larval oral secretions. We demonstrate that Lectin receptor kinase 1 (LecRK1) functions during M. sexta herbivory to suppress the insect-mediated inhibition of jasmonic acid (JA)-induced defense responses. Gene function analysis performed by reducing LecRK1 expression in N. attenuata by both virus-induced gene silencing and inverted repeated RNA interference (ir-lecRK1 plants) revealed that LecRK1 was essential to mount a full defense response against M. sexta folivory; larvae growing on ir-lecRK1 plants were 40 to 100% larger than those growing on wild-type plants. The insect-induced accumulation of nicotine, diterpene-glucosides, and trypsin protease inhibitors, as well as the expression of Thr deaminase, was severalfold reduced in ir-lecRK1 plants compared with the wild type. The accumulation of JA and JA-Ile was unaffected during herbivory in ir-lecRK1 plants; however, salicylic acid (SA) accumulation was increased by twofold. The expression of nahG in ir-lecRK1 plants prevented the increased accumulation of SA and restored the defense response against M. sexta herbivory. The results suggest that LecRK1 inhibits the accumulation of SA during herbivory, although other mechanisms may also be affected.
Collapse
Affiliation(s)
| | | | | | - Gustavo Bonaventure
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|
47
|
Bonaventure G, VanDoorn A, Baldwin IT. Herbivore-associated elicitors: FAC signaling and metabolism. TRENDS IN PLANT SCIENCE 2011; 16:294-9. [PMID: 21354852 DOI: 10.1016/j.tplants.2011.01.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/13/2010] [Accepted: 01/31/2011] [Indexed: 05/19/2023]
Abstract
The recognition of insect and pathogen attack requires the plant's ability to perceive chemical cues generated by the attacker. In contrast to the recognition of microbe-associated molecular patterns and effectors, little is known about the molecular recognition of herbivore-associated elicitors (HAEs) and the signaling mechanisms operating in plants after their perception. HAE perception depends strongly on the natural history of both plants and insects and it is therefore expected that many of the responses induced by different HAEs are specific to the species involved in the interaction. The interaction between Nicotiana attenuata and the specialist lepidopteran Manduca sexta presents a relevant biological system to understand HAE perception and signal transduction systems in plants.
Collapse
Affiliation(s)
- Gustavo Bonaventure
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans-Knoell-Str. 8, D-07745 Jena, Germany.
| | | | | |
Collapse
|
48
|
Abstract
Plants have evolved sophisticated systems to cope with herbivore challenges. When plants perceive herbivore-derived physical and chemical cues, such as elicitors in insects' oral secretions and compounds in oviposition fluids, plants dramatically reshape their transcriptomes, proteomes, and metabolomes. All these herbivory-induced changes are mediated by elaborate signaling networks, which include receptors/sensors, Ca(2+) influxes, kinase cascades, reactive oxygen species, and phytohormone signaling pathways. Furthermore, herbivory induces defense responses not only in the wounded regions but also in undamaged regions in the attacked leaves and in distal intact (systemic) leaves. Here, we review recent progress in understanding plant perception of herbivory and oviposition, and the herbivory-induced early signaling events and their biological functions. We consider the intraspecific phenotypic diversity of plant responses to herbivory and discuss the underlying genetic variation. We also discuss new tools and technical challenges in studying plant-herbivore interactions.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| | | |
Collapse
|
49
|
Lait CG, Lobaido MJ, Wiester AJ, Kossak S, Tumlinson JH. Comparative kinetics of fatty acid-amino acid conjugate elicitor biosynthesis by midgut tissue microsomes of Lepidopterous caterpillar larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 75:264-274. [PMID: 21104884 DOI: 10.1002/arch.20392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
N-Linolenoyl-L-glutamine is one of several structurally similar fatty acid-amino acid conjugate (FAC) elicitors found in the oral secretions of Lepidopterous caterpillars and its biosynthesis is catalyzed by membrane-associated alimentary tissue enzyme(s). FAC elicitors comprise 17-hydroxylated or non-hydroxylated linolenic acid coupled with L-glutamine or L-glutamate by an amide bond. We demonstrate in vitro biosynthesis of N-linolenoyl-L-glutamine by Manduca sexta, Heliothis virescens, and Helicoverpa zea tissue microsomes. Comparison of N-linolenoyl-L-glutamine biosynthesis kinetics for these species suggests that concurrent biosynthesis and hydrolysis contribute to proportions of FAC elicitors found in their oral secretions. The apparent K(m) values for coupling of sodium linolenate were 8.75±0.79, 14.3±3.7 and 20.7±3.4 mM and V(max) values were 2.92±0.14, 6.81±1.2 and 4.95±0.55 nmol/min/mg protein for H. zea, H. virescens and M. sexta, respectively. The K(m) values for coupling of L-glutamine were 10.5±0.26, 22.3±2.0 and 18.9±2.4 mM and V(max) values were 1.78±0.21, 3.71±0.50 and 2.49±0.41 nmol/min/mg of protein for H. zea, H. virescens and M. sexta, respectively.
Collapse
Affiliation(s)
- Cameron G Lait
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, Agricultural Sciences & Industries Building, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
50
|
VanDoorn A, Kallenbach M, Borquez AA, Baldwin IT, Bonaventure G. Rapid modification of the insect elicitor N-linolenoyl-glutamate via a lipoxygenase-mediated mechanism on Nicotiana attenuata leaves. BMC PLANT BIOLOGY 2010; 10:164. [PMID: 20696061 PMCID: PMC3095298 DOI: 10.1186/1471-2229-10-164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 08/09/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Some plants distinguish mechanical wounding from herbivore attack by recognizing specific constituents of larval oral secretions (OS) which are introduced into plant wounds during feeding. Fatty acid-amino acid conjugates (FACs) are major constituents of Manduca sexta OS and strong elicitors of herbivore-induced defense responses in Nicotiana attenuata plants. RESULTS The metabolism of one of the major FACs in M. sexta OS, N-linolenoyl-glutamic acid (18:3-Glu), was analyzed on N. attenuata wounded leaf surfaces. Between 50 to 70% of the 18:3-Glu in the OS or of synthetic 18:3-Glu were metabolized within 30 seconds of application to leaf wounds. This heat-labile process did not result in free alpha-linolenic acid (18:3) and glutamate but in the biogenesis of metabolites both more and less polar than 18:3-Glu. Identification of the major modified forms of this FAC showed that they corresponded to 13-hydroxy-18:3-Glu, 13-hydroperoxy-18:3-Glu and 13-oxo-13:2-Glu. The formation of these metabolites occurred on the wounded leaf surface and it was dependent on lipoxygenase (LOX) activity; plants silenced in the expression of NaLOX2 and NaLOX3 genes showed more than 50% reduced rates of 18:3-Glu conversion and accumulated smaller amounts of the oxygenated derivatives compared to wild-type plants. Similar to 18:3-Glu, 13-oxo-13:2-Glu activated the enhanced accumulation of jasmonic acid (JA) in N. attenuata leaves whereas 13-hydroxy-18:3-Glu did not. Moreover, compared to 18:3-Glu elicitation, 13-oxo-13:2-Glu induced the differential emission of two monoterpene volatiles (beta-pinene and an unidentified monoterpene) in irlox2 plants. CONCLUSIONS The metabolism of one of the major elicitors of herbivore-specific responses in N. attenuata plants, 18:3-Glu, results in the formation of oxidized forms of this FAC by a LOX-dependent mechanism. One of these derivatives, 13-oxo-13:2-Glu, is an active elicitor of JA biosynthesis and differential monoterpene emission.
Collapse
Affiliation(s)
- Arjen VanDoorn
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, D-07745 Jena, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, D-07745 Jena, Germany
| | - Alejandro A Borquez
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, D-07745 Jena, Germany
| | - Gustavo Bonaventure
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, D-07745 Jena, Germany
| |
Collapse
|