1
|
Sassi A, Bakhtiar MTB, Khattak MMAK, Haron NB, Kaderi MAB, Rostam MAB, Jusoh HBM. Biological Roles of Selected microRNAs in Glucose Metabolism as a Candidate Biomarker for Diabetes Mellitus. Mol Nutr Food Res 2025:e70077. [PMID: 40285561 DOI: 10.1002/mnfr.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a medical disorder characterized by high blood sugar levels resulting from a lack of insulin caused by impaired activity of 𝛽-cells and/or the inability of insulin to efficiently transport glucose from the bloodstream into cells, a condition referred to as insulin resistance. This occurs not only in insulin-sensitive tissues such as muscles, adipose tissue, and the liver, but also in the gastrointestinal tract, which may be caused by a defect in the insulin signaling pathway. MicroRNAs (miRNAs) are RNA molecules that do not code for proteins and play a role in multiple pathways. Several studies have suggested that specific miRNAs could potentially be used as biomarkers for diagnosing diabetes. These miRNAs regulate the formation of pancreatic islets, the differentiation of β-cells, the secretion of insulin, and the control of glucose metabolism. miRNA-mediated pathways are associated with human genetic illnesses resulting from mutations in the maturation process of miRNAs. The changes in miRNAs impact their ability to bind to mRNA targets, hence modifying gene expression. This review provides a concise overview of the latest studies investigating the correlation between miRNA expression and the regulation of glucose levels in cases of β-cell malfunction and insulin resistance.
Collapse
Affiliation(s)
- Assia Sassi
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Muhammad Taher Bin Bakhtiar
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Muhammad Muzaffar Ali Khan Khattak
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Normah Binti Haron
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Arifin Bin Kaderi
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Muhamad Ashraf Bin Rostam
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Hanapi Bin Mat Jusoh
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
2
|
Mohamed Abdelgawwad El-Sehrawy AA, Mohammed MH, Salahldin OD, Uthirapathy S, Ballal S, Kalia R, Arya R, Joshi KK, Kadim AS, Kadhim AJ. Crosstalk between microRNA and inflammation; critical regulator of diabetes. Exp Cell Res 2025; 447:114507. [PMID: 40058448 DOI: 10.1016/j.yexcr.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
A growing body of evidence indicates that microRNAs (miRNAs may be used as biomarkers for the diagnosis, prognosis, and treatment of diabetes, given their changed expression profile as the disease progresses. There is growing interest in using individual miRNAs or whole miRNA clusters linked to diabetes as therapeutic targets because of their abnormal expression and functioning. In diabetes, miRNAs are also involved in inflammatory and immunological responses. Additionally, the inflammatory response controls the generation, processing, and stability of pre- or mature miRNAs and miRNA biogenesis. With a comprehensive grasp of molecular biological activities and the signaling axis, this review emphasizes the critical functions of miRNAs in inflammatory and immunological processes in diabetes. We further emphasized the potential role of these miRNAs in controlling inflammation associated with diabetes. This assessment will direct the shift from many studies to practical applications for tailored diabetes treatment and assist in identifying new therapeutic targets and approaches.
Collapse
Affiliation(s)
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-maarif University, Anbar, Iraq.
| | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India.
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India; Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India.
| | - Arshed Shakir Kadim
- Radiological Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq.
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq.
| |
Collapse
|
3
|
Chen Y, Jiang Q, Xing X, Yuan T, Li P. Clinical research progress on β-cell dysfunction in T2DM development in the Chinese population. Rev Endocr Metab Disord 2025; 26:31-53. [PMID: 39382753 DOI: 10.1007/s11154-024-09914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/10/2024]
Abstract
The prevalence of type-2 diabetes mellitus (T2DM) has increased over 10-fold in the past 40 years in China, which now has the largest T2DM population in the world. Insulin resistance and β-cell dysfunction are the typical features of T2DM. Although both factors play a role, decreased β-cell function and β-cell mass are the predominant factors for progression to T2DM. Considering the differences between Chinese T2DM patients and those of other ethnicities, it is important to characterize β-cell dysfunction in Chinese patients during T2DM progression. Herein, we reviewed the studies on the relationships between β-cell function and T2DM progression in the Chinese population and discussed the differences among individuals of varying ethnicities. Meanwhile, we summarized the risk factors and current treatments of T2DM in Chinese individuals and discussed their impacts on β-cell function with the hope of identifying a better T2DM therapy.
Collapse
Affiliation(s)
- Yibing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Xiaowei Xing
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China.
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China.
| |
Collapse
|
4
|
Wang H. Anti-NMDA Receptor Encephalitis, Human Papillomavirus, and microRNA. Curr Med Chem 2025; 32:771-787. [PMID: 38549528 DOI: 10.2174/0109298673264615231124072130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/20/2023] [Accepted: 10/26/2023] [Indexed: 02/19/2025]
Abstract
BACKGROUND Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is a rare autoimmune disease, which is caused by antibodies attacking NMDA receptors in the brain. Previous studies revealed that this disorder might be induced by vaccination. Vaccination is the most useful strategy to prevent human or animal infectious diseases. Although vaccines can produce immunity against diseases, at low risk, they may trigger serious adverse events. Anti-NMDA receptor encephalitis has been studied to be related to the H1N1 (influenza A virus subtype H1N1), tetanus/diphtheria/pertussis and polio vaccine, Japanese encephalitis, yellow fever, and coronavirus disease 2019 (COVID-19) vaccination. Several cases have been reported that anti-NMDA receptor encephalitis could also be triggered by the human papillomavirus (HPV) vaccine. However, there is a lack of studies to investigate the underlying mechanism. METHODS In this paper, the association between anti-NMDA receptor encephalitis and HPV vaccination is discussed in terms of their microRNA (miRNA) biomarkers. Phylogenetic tree and distance similarity analyses are used to explore the relationship between their miRNA biomarkers. RESULTS The results show a higher degree of similarity between miRNA biomarkers associated with HPV and anti-NMDA receptor encephalitis or related vaccines when compared to the overall miRNAs. It indicates that while the risk of HPV triggering anti-NMDA receptor encephalitis is low, a connection between anti-NMDA receptor encephalitis and HPV vaccination cannot be ruled out. CONCLUSION This finding suggests that in cases where individuals receiving HPV vaccination experience psychiatric or neurological symptoms, it should be considered to diagnose anti-NMDA receptor encephalitis, given the exclusion of other possible complications.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Ortiz-Melo MT, Campos JE, Sánchez-Guzmán E, Herrera-Aguirre ME, Castro-Muñozledo F. Regulation of corneal epithelial differentiation: miR-141-3p promotes the arrest of cell proliferation and enhances the expression of terminal phenotype. PLoS One 2024; 19:e0315296. [PMID: 39642122 PMCID: PMC11623785 DOI: 10.1371/journal.pone.0315296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024] Open
Abstract
In recent years, different laboratories have provided evidence on the role of miRNAs in regulation of corneal epithelial metabolism, permeability and wound healing, as well as their alteration after surgery and in some ocular pathologies. We searched the available databases reporting miRNA expression in the human eye, looking for miRNAs highly expressed in central cornea, which could be crucial for maintenance of the epithelial phenotype. Using the rabbit RCE1(5T5) cell line as a model of corneal epithelial differentiation, we describe the participation of miR-141-3p as a possible negative regulator of the proliferative/migratory phenotype in corneal epithelial cells. The expression of miR-141-3p followed a time course similar to the differentiation-linked KRT3 cytokeratin, being delayed 24-48 hours relative to PAX6 expression; such result suggested that miR-141-3p only regulates the expression of terminal phenotype. Inhibition of miR-141-3p led to increased cell proliferation and motility, and induced the expression of molecular makers characteristic of an Epithelial Mesenchymal Transition (EMT). Comparison between the transcriptional profile of cells in which miR-141-3p was knocked down, and the transcriptomes from proliferative non-differentiated and differentiated stratified epithelia suggest that miR-141-3p is involved in the expression of terminal differentiation mediating the arrest of cell proliferation and inhibiting the EMT in highly motile early differentiating cells.
Collapse
Affiliation(s)
- María Teresa Ortiz-Melo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Jorge E. Campos
- Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Erika Sánchez-Guzmán
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
6
|
Pokharel DR, Maskey A, Kafle R, Batajoo A, Dahal P, Raut R, Adhikari S, Manandhar B, Manandhar KD. Evaluation of circulating plasma miR-9, miR-29a, miR-192, and miR-375 as potential biomarkers for predicting prediabetes and type 2 diabetes in Nepali adult population. Noncoding RNA Res 2024; 9:1324-1332. [PMID: 39104712 PMCID: PMC11298881 DOI: 10.1016/j.ncrna.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Circulating plasma miRNAs have emerged as potential early predictors of glucometabolic disorders. However, their biomarker potential remains unvalidated in populations with diverse genetic backgrounds, races, and ethnicities. This study aims to validate the biomarker potential of plasma miR-9, miR-29a, miR-192, and miR-375 for early detection of prediabetes and type 2 diabetes mellitus (T2DM) in Nepali populations that represent distinct genetic backgrounds, races, and ethnicities. A total of 46 adults, categorized into healthy controls (n = 25), prediabetes (n = 9), and T2DM (n = 12) groups, were enrolled. Baseline sociodemographic, anthropometric, and clinical characteristics were collected. Fold change in plasma expression of all four miRNAs was quantified using RT-qPCR against the RNU6B reference gene. Their biomarker potential was determined by receiver operating characteristic (ROC) curve analysis. Multivariate discriminant function and hierarchical cluster analyses were used to evaluate the effectiveness of the miRNA panel in reclassifying study participants who were initially categorized according to their glucose tolerance status. Plasma expression of all four miRNAs was significantly upregulated in T2DM patients compared to normoglycemic controls. Furthermore, the expression of only miR-29a and miR-375 was upregulated in T2DM patients than in prediabetic individuals. Notably, only miR-192 expression was significantly upregulated in prediabetic individuals than in the normoglycemic controls. The miRNA expression profiles had the potential of reclassifying the participants into three original groups with an accuracy of 69.6 %. ROC curve analysis identified miR-192 as the predictor for both prediabetes and T2DM, while miR-9, miR-29a, miR-192, and miR-375 were predictive only for T2DM. The specific set of miRNA combinations significantly improved their predictive accuracy. This study validates the early predictive biomarker potential of plasma miR-9, miR-29a, miR-192, and miR-375 also in the Nepali population and paves the way for future translational studies to validate their utility in clinical laboratories.
Collapse
Affiliation(s)
- Daya Ram Pokharel
- Department of Biochemistry, Manipal College of Medical Sciences, Pokhara-16, Kaski, Nepal
| | - Abhishek Maskey
- Department of Medicine, Manipal Teaching Hospital, Pokhara-11, Kaski, Nepal
| | - Ramchandra Kafle
- Department of Medicine, Manipal Teaching Hospital, Pokhara-11, Kaski, Nepal
| | - Ashim Batajoo
- Department of Medicine, Manipal Teaching Hospital, Pokhara-11, Kaski, Nepal
| | - Prajwal Dahal
- Department of Medicine, Manipal Teaching Hospital, Pokhara-11, Kaski, Nepal
| | - Roji Raut
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Shailesh Adhikari
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Binod Manandhar
- Department of Mathematical Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Krishna Das Manandhar
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
7
|
Capetini VC, Quintanilha BJ, Garcia BREV, Rogero MM. Dietary modulation of microRNAs in insulin resistance and type 2 diabetes. J Nutr Biochem 2024; 133:109714. [PMID: 39097171 DOI: 10.1016/j.jnutbio.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The prevalence of type 2 diabetes is increasing worldwide. Various molecular mechanisms have been proposed to interfere with the insulin signaling pathway. Recent advances in proteomics and genomics indicate that one such mechanism involves the post-transcriptional regulation of insulin signaling by microRNA (miRNA). These noncoding RNAs typically induce messenger RNA (mRNA) degradation or translational repression by interacting with the 3' untranslated region (3'UTR) of target mRNA. Dietary components and patterns, which can either enhance or impair the insulin signaling pathway, have been found to regulate miRNA expression in both in vitro and in vivo studies. This review provides an overview of the current knowledge of how dietary components influence the expression of miRNAs related to the control of the insulin signaling pathway and discusses the potential application of these findings in precision nutrition.
Collapse
Affiliation(s)
- Vinícius Cooper Capetini
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil; Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, Department of Pharmacology, King's College London, London, United Kingdom.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | - Bruna Ruschel Ewald Vega Garcia
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| |
Collapse
|
8
|
Krishnan P, Branco RCS, Weaver SA, Chang G, Lee CC, Syed F, Evans-Molina C. miR-146a-5p mediates inflammation-induced β cell mitochondrial dysfunction and apoptosis. J Biol Chem 2024; 300:107827. [PMID: 39342996 PMCID: PMC11538863 DOI: 10.1016/j.jbc.2024.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with proinflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with β cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in β cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with proinflammatory cytokines (interleukin-1β, interferonγ, and tumor necrosis factor α) to model type 1 diabetes in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress and led to mitochondrial membrane depolarization, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased insulin secretion, mitochondrial DNA copy number, respiration rate, and ATP production. Further, RNA-seq data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers were observed in islets derived from nonobese diabetic mice. Collectively, these data suggest that miR-146a-5p may promote β cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.
Collapse
Affiliation(s)
- Preethi Krishnan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Renato Chaves Souto Branco
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Staci A Weaver
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Garrick Chang
- Department of Physics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chih-Chun Lee
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Farooq Syed
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Roudebush VA Medical Center, Indianapolis, Indiana, USA.
| |
Collapse
|
9
|
Elsayed AK, Aldous N, Alajez NM, Abdelalim EM. Identifying miRNA Signatures Associated with Pancreatic Islet Dysfunction in a FOXA2-Deficient iPSC Model. Stem Cell Rev Rep 2024; 20:1915-1931. [PMID: 38916841 PMCID: PMC11445299 DOI: 10.1007/s12015-024-10752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The pathogenesis of diabetes involves complex changes in the expression profiles of mRNA and non-coding RNAs within pancreatic islet cells. Recent progress in induced pluripotent stem cell (iPSC) technology have allowed the modeling of diabetes-associated genes. Our recent study using FOXA2-deficient human iPSC models has highlighted an essential role for FOXA2 in the development of human pancreas. Here, we aimed to provide further insights on the role of microRNAs (miRNAs) by studying the miRNA-mRNA regulatory networks in iPSC-derived islets lacking the FOXA2 gene. Consistent with our previous findings, the absence of FOXA2 significantly downregulated the expression of islet hormones, INS, and GCG, alongside other key developmental genes in pancreatic islets. Concordantly, RNA-Seq analysis showed significant downregulation of genes related to pancreatic development and upregulation of genes associated with nervous system development and lipid metabolic pathways. Furthermore, the absence of FOXA2 in iPSC-derived pancreatic islets resulted in significant alterations in miRNA expression, with 61 miRNAs upregulated and 99 downregulated. The upregulated miRNAs targeted crucial genes involved in diabetes and pancreatic islet cell development. In contrary, the absence of FOXA2 in islets showed a network of downregulated miRNAs targeting genes related to nervous system development and lipid metabolism. These findings highlight the impact of FOXA2 absence on pancreatic islet development and suggesting intricate miRNA-mRNA regulatory networks affecting pancreatic islet cell development.
Collapse
Affiliation(s)
- Ahmed K Elsayed
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Stem Cell Core, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Noura Aldous
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
10
|
Carmona-Maurici J, Ricart-Jané D, Viñas A, López-Tejero MD, Eskubi-Turró I, Miñarro A, Baena-Fustegueras JA, Peinado-Onsurbe J, Pardina E. Circulating miRNAs as Biomarkers of Subclinical Atherosclerosis Associated with Severe Obesity before and after Bariatric Surgery. Obes Facts 2024; 17:602-612. [PMID: 39236703 PMCID: PMC11661843 DOI: 10.1159/000541175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
INTRODUCTION Severe obesity results in high cardiovascular risk (CVR), increasing morbidity, and mortality. New and improved methods are needed to detect cardiovascular diseases rapidly in severe obesity. microRNAs (miRNAs) has shown promise as diagnostic tools. This study aimed to identify plasma miRNAs useful as biomarkers of CVR in people with severe obesity. METHODS The study included 66 people with severe obesity classified in groups with atheroma (n = 32) and free of plaques (n = 34). Plasma samples were collected 1 month before bariatric surgery and at 6 and 12 months of follow-up. Participants were screened for the levels of 188 miRNAs, and 24 promising candidates were individually validated by quantitative polymerase chain reaction. RESULTS After validation, 5 of the 24 miRNAs showed significant differences over time in both groups: miR-375 increased after bariatric surgery, whereas miR-144-5p, miR-20a-3p, miR-145-5p, and miR-21-3p exhibited decreased expression after bariatric surgery. The expression of 3 of the 24 miRNAs also differed between patients with and without atheroma: subjects with plaque had lower miR-126 but higher miR-21-3p and miR-133a-3p. Only miR-133a-3p exhibited exceptional discriminatory ability between subjects with and without plaque (area under the curve, 0.90; 95% confidence interval, 0.81-0.99). CONCLUSION A specific signature of c-miRNA comprising miR-375, miR-144-5p, miR-20a-3p, miR-145-5p, and miR-21-3p may facilitate CVR monitoring after bariatric surgery. Furthermore, miR-21-3p, miR-126-3p, and miR-133a-3p show potential as specific biomarkers for subclinical atherosclerosis, with miR-133a-3p potentially able to diagnose subclinical atherosclerosis early in severe obesity.
Collapse
Affiliation(s)
- Júlia Carmona-Maurici
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - David Ricart-Jané
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Anna Viñas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Maria Dolores López-Tejero
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Iratxe Eskubi-Turró
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Miñarro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Juan Antonio Baena-Fustegueras
- Gastrointestinal Surgery Department, Arnau de Vilanova University Hospital, IRB Lleida, University of Lleida, Lleida, Spain
| | - Julia Peinado-Onsurbe
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Eva Pardina
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Krishnan P, Branco RCS, Weaver SA, Chang G, Lee CC, Syed F, Evans-Molina C. miR-146a-5p mediates inflammation-induced β cell mitochondrial dysfunction and apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585543. [PMID: 38562689 PMCID: PMC10983918 DOI: 10.1101/2024.03.18.585543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with pro-inflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with β cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in β cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with pro-inflammatory cytokines (IL-1β, IFNγ, and TNFα) to model type 1 diabetes (T1D) in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress and led to mitochondrial membrane depolarization, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased insulin secretion, mitochondrial DNA copy number, respiration rate, and ATP production Further, RNA sequencing data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers was observed in islets derived from NOD mice. Collectively, these data suggest that miR-146a-5p may promote β cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.
Collapse
Affiliation(s)
- Preethi Krishnan
- Department of Medicine, Indianapolis, IN 46202, USA
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
| | - Renato Chaves Souto Branco
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indianapolis, IN 46202, USA
| | - Staci A. Weaver
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA
| | - Garrick Chang
- Department of Physics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chih-Chun Lee
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indianapolis, IN 46202, USA
| | - Farooq Syed
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indianapolis, IN 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indianapolis, IN 46202, USA
- Department of Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Department of Center for Diabetes and Metabolic Diseases, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indianapolis, IN 46202, USA
- Department of Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Kitamura RA, Hummel D, Ustione A, Piston DW, Urano F. Dual role of neuroplastin in pancreatic β cells: Regulating insulin secretion and promoting islet inflammation. Proc Natl Acad Sci U S A 2024; 121:e2411234121. [PMID: 39666939 PMCID: PMC11331099 DOI: 10.1073/pnas.2411234121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 12/14/2024] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident secretory protein that reduces inflammation and promotes proliferation in pancreatic β cells. Numerous studies have highlighted the potential of MANF as a therapeutic agent for diabetes mellitus (DM), making it essential to understand the mechanisms underlying MANF's functions. In our previous search for a molecule that mediates MANF signaling, we identified Neuroplastin (NPTN) as a binding partner of MANF that localizes on the cell surface. However, the roles of NPTN in pancreatic β cells remain unclear. In this study, we generated β cell-specific Nptn knockout (KO) mice and conducted metabolic characterization. NPTN deficiency improved glucose tolerance by increasing insulin secretion and β cell mass in the pancreas. Moreover, proliferation and mitochondrial numbers in β cells increased in Nptn KO islets. These phenotypes resulted from elevated cytosolic Ca2+ levels and subsequent activation of downstream molecules. Simultaneously, we demonstrated that NPTN induces the expression of proinflammatory cytokines via the TRAF6-NF-κB axis in β cells. Additionally, NPTN deficiency conferred resistance to streptozotocin-induced diabetic phenotypes. Finally, exogenous MANF treatment in islets or β cells led to similar phenotypes as those observed in NPTN-deficient models. These results indicate that NPTN plays important roles in the regulation of insulin secretion, proliferation, and mitochondrial quantity, as well as proinflammatory responses, which are antagonized by MANF treatment. Thus, targeting the MANF-NPTN interaction may lead to a novel treatment for improving β cell functions in DM.
Collapse
Affiliation(s)
- Rie Asada Kitamura
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO63110
| | - Devynn Hummel
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO63110
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO63110
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO63110
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
13
|
Kane E, Mak TC, Latreille M. MicroRNA-7 regulates endocrine progenitor delamination and endocrine cell mass in developing pancreatic islets. iScience 2024; 27:110332. [PMID: 39055950 PMCID: PMC11269303 DOI: 10.1016/j.isci.2024.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
β-cell replenishment in patients with diabetes through cadaveric islet transplantation has been successful; however, it requires long-term immunosuppression and suitable islet donors are scarce. Stepwise in vitro differentiation of pluripotent stem cells into β-cells represents a viable alternative, but limitations in our current understanding of in vivo islet endocrine differentiation constrains its clinical use. Here, we show that microRNA-7 (miR-7) is highly expressed in embryonic pancreatic endocrine progenitors. Genetic deletion of the miR-7 gene family in endocrine progenitors leads to reduced islet endocrine cell mass, due to endocrine progenitors failing to delaminate from the epithelial plexus. This is associated with a reduction in neurogenin-3 levels and increased expression of Sry-box transcription factor 9. Further, we observe that a significant number of endocrine progenitors lacking miR-7 differentiate into ductal cells. Our study suggests that increasing miR-7 expression could improve efficiency of in vitro differentiation and augment stem cell-derived β-cell terminal maturity.
Collapse
Affiliation(s)
- Eva Kane
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Tracy C.S. Mak
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Mathieu Latreille
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
14
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
15
|
Carr ER, Higgins PB, McClenaghan NH, Flatt PR, McCloskey AG. MicroRNA regulation of islet and enteroendocrine peptides: Physiology and therapeutic implications for type 2 diabetes. Peptides 2024; 176:171196. [PMID: 38492669 DOI: 10.1016/j.peptides.2024.171196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The pathogenesis of type 2 diabetes (T2D) is associated with dysregulation of glucoregulatory hormones, including both islet and enteroendocrine peptides. Microribonucleic acids (miRNAs) are short noncoding RNA sequences which post transcriptionally inhibit protein synthesis by binding to complementary messenger RNA (mRNA). Essential for normal cell activities, including proliferation and apoptosis, dysregulation of these noncoding RNA molecules have been linked to several diseases, including diabetes, where alterations in miRNA expression within pancreatic islets have been observed. This may occur as a compensatory mechanism to maintain beta-cell mass/function (e.g., downregulation of miR-7), or conversely, lead to further beta-cell demise and disease progression (e.g., upregulation of miR-187). Thus, targeting miRNAs has potential for novel diagnostic and therapeutic applications in T2D. This is reinforced by the success seen to date with miRNA-based therapeutics for other conditions currently in clinical trials. In this review, differential expression of miRNAs in human islets associated with T2D will be discussed along with further consideration of their effects on the production and secretion of islet and incretin hormones. This analysis further unravels the therapeutic potential of miRNAs and offers insights into novel strategies for T2D management.
Collapse
Affiliation(s)
- E R Carr
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland; Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P B Higgins
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland
| | - N H McClenaghan
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - A G McCloskey
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland.
| |
Collapse
|
16
|
Sangali P, Abdullahi S, Nosrati M, Khosravi-Asrami OF, Mahrooz A, Bagheri A. Altered expression of miR-375 and miR-541 in type 2 diabetes patients with and without coronary artery disease (CAD): the potential of miR-375 as a CAD biomarker. J Diabetes Metab Disord 2024; 23:1101-1106. [PMID: 38932834 PMCID: PMC11196532 DOI: 10.1007/s40200-024-01391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/13/2024] [Indexed: 06/28/2024]
Abstract
Background MicroRNAs (miRNAs, miRs) have been linked to beta-cell pathologies and have also shown potential as biomarkers for cardiovascular disease. This study aimed to evaluate the expression of miR-375 and miR-541 in T2D patients with and without CAD, in order to determine the potential of these miRNAs as biomarkers for assessing CAD risk. Methods This study was conducted on 106 patients with T2D who underwent coronary angiographic examination. Reverse transcription was performed using the cDNA synthesis kit. Real-time PCR was performed using the SYBR Green method and specific primers. The ability to predict which person had developed CAD was evaluated by calculating the area under the receiver-operating characteristic (ROC) curve (AUC). Results The expression of miR-375 was significantly higher in samples from CAD patients compared to those without CAD (p = 0.009). While the expression of miR-541 was also higher in CAD patients, the difference was not statistically significant. In terms of predicting CAD, miR-375 was found to be a suitable predictor with an AUC of 0.74 (p = 0.01), while miR-541 was not. With a cut-off value of 0.016 for miR-375, the sensitivity was 67% and the specificity was 80%. Conclusion Our results indicated that circulating levels of miR-375 and miR-541 were elevated in T2D patients with CAD compared to those without CAD. This suggests that miR-375 could potentially be used as a non-invasive biomarker for the diagnosis of CAD in T2D patients.
Collapse
Affiliation(s)
- Parisa Sangali
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Sara Abdullahi
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Omeh Farveh Khosravi-Asrami
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Abdolkarim Mahrooz
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Rashid G, Khan NA, Elsori D, Youness RA, Hassan H, Siwan D, Seth N, Kamal MA, Rizvi S, Babker AM, Hafez W. miRNA expression in PCOS: unveiling a paradigm shift toward biomarker discovery. Arch Gynecol Obstet 2024; 309:1707-1723. [PMID: 38316651 DOI: 10.1007/s00404-024-07379-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that affects a substantial percentage of women, estimated at around 9-21%. This condition can lead to anovulatory infertility in women of childbearing age and is often accompanied by various metabolic disturbances, including hyperandrogenism, insulin resistance, obesity, type-2 diabetes, and elevated cholesterol levels. The development of PCOS is influenced by a combination of epigenetic alterations, genetic mutations, and changes in the expression of non-coding RNAs, particularly microRNAs (miRNAs). MicroRNAs, commonly referred to as non-coding RNAs, are approximately 22 nucleotides in length and primarily function in post-transcriptional gene regulation, facilitating mRNA degradation and repressing translation. Their dynamic expression in different cells and tissues contributes to the regulation of various biological and cellular pathways. As a result, they have become pivotal biomarkers for various diseases, including PCOS, demonstrating intricate associations with diverse health conditions. The aberrant expression of miRNAs has been detected in the serum of women with PCOS, with overexpression and dysregulation of these miRNAs playing a central role in the atypical expression of endocrine hormones linked to PCOS. This review takes a comprehensive approach to explore the upregulation and downregulation of various miRNAs present in ovarian follicular cells, granulosa cells, and theca cells of women diagnosed with PCOS. Furthermore, it discusses the potential for a theragnostic approach using miRNAs to better understand and manage PCOS.
Collapse
Affiliation(s)
- Gowhar Rashid
- Department of Medical Lab Technology, Amity Medical School, Amity University Haryana, Gurugram, India.
| | - Nihad Ashraf Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, 110025, India
| | | | - Rana A Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo, Egypt
| | - Homa Hassan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Namrata Seth
- Department of Biotechnology, Indian Institute of Science and Technology, Bhopal, 462066, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saliha Rizvi
- Department of Biotechnology, Era University, Lucknow, India
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Wael Hafez
- The Medical Research Division, Department of Internal Medicine, the National Research Centre, Cairo, Egypt
| |
Collapse
|
18
|
Stuart SH, Ahmed ACC, Kilikevicius L, Robinson GE. Effects of microRNA-305 knockdown on brain gene expression associated with division of labor in honey bee colonies (Apis mellifera). J Exp Biol 2024; 227:jeb246785. [PMID: 38517067 PMCID: PMC11112348 DOI: 10.1242/jeb.246785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Division of labor in honey bee colonies is based on the behavioral maturation of adult workers that involves a transition from working in the hive to foraging. This behavioral maturation is associated with distinct task-related transcriptomic profiles in the brain and abdominal fat body that are related to multiple regulatory factors including juvenile hormone (JH) and queen mandibular pheromone (QMP). A prominent physiological feature associated with behavioral maturation is a loss of abdominal lipid mass as bees transition to foraging. We used transcriptomic and physiological analyses to study whether microRNAs (miRNAs) are involved in the regulation of division of labor. We first identified two miRNAs that showed patterns of expression associated with behavioral maturation, ame-miR-305-5p and ame-miR-375-3p. We then downregulated the expression of these two miRNAs with sequence-specific antagomirs. Neither ame-miR-305-5p nor ame-miR-375-3p knockdown in the abdomen affected abdominal lipid mass on their own. Similarly, knockdown of ame-miR-305-5p in combination with JH or QMP also did not affect lipid mass. By contrast, ame-miR-305-5p knockdown in the abdomen caused substantial changes in gene expression in the brain. Brain gene expression changes included genes encoding transcription factors previously implicated in behavioral maturation. The results of these functional genomic experiments extend previous correlative associations of microRNAs with honey bee division of labor and point to specific roles for ame-miR-305-5p.
Collapse
Affiliation(s)
- Sarai H. Stuart
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Amy C. Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Kilikevicius
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gene E. Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Wang SH, Zhao Y, Wang CC, Chu F, Miao LY, Zhang L, Zhuo L, Chen X. RFEM: A framework for essential microRNA identification in mice based on rotation forest and multiple feature fusion. Comput Biol Med 2024; 171:108177. [PMID: 38422957 DOI: 10.1016/j.compbiomed.2024.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
With the increasing number of microRNAs (miRNAs), identifying essential miRNAs has become an important task that needs to be solved urgently. However, there are few computational methods for essential miRNA identification. Here, we proposed a novel framework called Rotation Forest for Essential MicroRNA identification (RFEM) to predict the essentiality of miRNAs in mice. We first constructed 1,264 miRNA features of all miRNA samples by fusing 38 miRNA features obtained from the PESM paper and 1,226 miRNA functional features calculated based on miRNA-target gene interactions. Then, we employed 182 training samples with 1,264 features to train the rotation forest model, which was applied to compute the essentiality scores of the candidate samples. The main innovations of RFEM were as follows: 1) miRNA functional features were introduced to enrich the diversity of miRNA features; 2) the rotation forest model used decision tree as the base classifier and could increase the difference among base classifiers through feature transformation to achieve better ensemble results. Experimental results show that RFEM significantly outperformed two previous models with the AUC (AUPR) of 0.942 (0.944) in three comparison experiments under 5-fold cross validation, which proved the model's reliable performance. Moreover, ablation study was further conducted to demonstrate the effectiveness of the novel miRNA functional features. Additionally, in the case studies of assessing the essentiality of unlabeled miRNAs, experimental literature confirmed that 7 of the top 10 predicted miRNAs have crucial biological functions in mice. Therefore, RFEM would be a reliable tool for identifying essential miRNAs.
Collapse
Affiliation(s)
- Shu-Hao Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China; Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chun-Chun Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fei Chu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China; Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Lian-Ying Miao
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325000, China.
| | - Xing Chen
- School of Science, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
20
|
Zhang M, Han Y. MicroRNAs in chronic pediatric diseases (Review). Exp Ther Med 2024; 27:100. [PMID: 38356668 PMCID: PMC10865459 DOI: 10.3892/etm.2024.12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024] Open
Abstract
MicroRNAs are small non-coding RNAs with a length of 20-24 nucleotides. They bind to the 3'-untranslated region of target genes to induce the degradation of target mRNAs or inhibit their translation. Therefore, they are involved in the regulation of development, apoptosis, proliferation, differentiation and other biological processes (including hormone secretion, signaling and viral infections). Chronic diseases in children may be difficult to treat and are often associated with malnutrition resulting from a poor diet. Consequently, further complications, disease aggravation and increased treatment costs impose a burden on patients and their families. Existing evidence suggests that microRNAs are involved in various chronic non-neoplastic diseases in children. The present review discusses the roles of microRNAs in five major chronic diseases in children, namely, diabetes mellitus, congenital heart diseases, liver diseases, bronchial asthma and epilepsy, providing a theoretical basis for them to become therapeutic biomarkers in chronic pediatric diseases.
Collapse
Affiliation(s)
- Mingyao Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yanhua Han
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
21
|
Huang R, Chen J, Guo B, Jiang C, Sun W. Diabetes-induced male infertility: potential mechanisms and treatment options. Mol Med 2024; 30:11. [PMID: 38225568 PMCID: PMC10790413 DOI: 10.1186/s10020-023-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Male infertility is a physiological phenomenon in which a man is unable to impregnate a fertile woman during a 12-month period of continuous, unprotected sexual intercourse. A growing body of clinical and epidemiological evidence indicates that the increasing incidence of male reproductive problems, especially infertility, shows a very similar trend to the incidence of diabetes within the same age range. In addition, a large number of previous in vivo and in vitro experiments have also suggested that the complex pathophysiological changes caused by diabetes may induce male infertility in multiple aspects, including hypothalamic-pituitary-gonadal axis dysfunction, spermatogenesis and maturation disorders, testicular interstitial cell damage erectile dysfunction. Based on the above related mechanisms, a large number of studies have focused on the potential therapeutic association between diabetes progression and infertility in patients with diabetes and infertility, providing important clues for the treatment of this population. In this paper, we summarized the research results of the effects of diabetes on male reproductive function in recent 5 years, elaborated the potential pathophysiological mechanisms of male infertility induced by diabetes, and reviewed and prospected the therapeutic measures.
Collapse
Affiliation(s)
- Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Jiawang Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Weiming Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000.
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
22
|
Yan D, Song Y, Zhang B, Cao G, Zhou H, Li H, Sun H, Deng M, Qiu Y, Yi W, Sun Y. Progress and application of adipose-derived stem cells in the treatment of diabetes and its complications. Stem Cell Res Ther 2024; 15:3. [PMID: 38167106 PMCID: PMC10763319 DOI: 10.1186/s13287-023-03620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Diabetes mellitus (DM) is a serious chronic metabolic disease that can lead to many serious complications, such as cardiovascular disease, retinopathy, neuropathy, and kidney disease. Once diagnosed with diabetes, patients need to take oral hypoglycemic drugs or use insulin to control blood sugar and slow down the progression of the disease. This has a significant impact on the daily life of patients, requiring constant monitoring of the side effects of medication. It also imposes a heavy financial burden on individuals, their families, and even society as a whole. Adipose-derived stem cells (ADSCs) have recently become an emerging therapeutic modality for DM and its complications. ADSCs can improve insulin sensitivity and enhance insulin secretion through various pathways, thereby alleviating diabetes and its complications. Additionally, ADSCs can promote tissue regeneration, inhibit inflammatory reactions, and reduce tissue damage and cell apoptosis. The potential mechanisms of ADSC therapy for DM and its complications are numerous, and its extensive regenerative and differentiation ability, as well as its role in regulating the immune system and metabolic function, make it a powerful tool in the treatment of DM. Although this technology is still in the early stages, many studies have already proven its safety and effectiveness, providing new treatment options for patients with DM or its complications. Although based on current research, ADSCs have achieved some results in animal experiments and clinical trials for the treatment of DM, further clinical trials are still needed before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Dongxu Yan
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Guojie Cao
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Haitao Zhou
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Hao Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Meng Deng
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Yufeng Qiu
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
23
|
Sharma K, Saini N, Hasija Y. Identifying the mitochondrial metabolism network by integration of machine learning and explainable artificial intelligence in skeletal muscle in type 2 diabetes. Mitochondrion 2024; 74:101821. [PMID: 38040172 DOI: 10.1016/j.mito.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Imbalance in glucose metabolism and insulin resistance are two primary features of type 2 diabetes/diabetes mellitus. Its etiology is linked to mitochondrial dysfunction in skeletal muscle tissue. The mitochondria are vital organelles involved in ATP synthesis and metabolism. The underlying biological pathways leading to mitochondrial dysfunction in type 2 diabetes can help us understand the pathophysiology of the disease. In this study, the mitochondrial gene expression dataset were retrieved from the GSE22309, GSE25462, and GSE18732 using Mitocarta 3.0, focusing specifically on genes that are associated with mitochondrial function in type 2 disease. Feature selection on the expression dataset of skeletal muscle tissue from 107 control patients and 70 type 2 diabetes patients using the XGBoost algorithm having the highest accuracy. For interpretation and analysis of results linked to the disease by examining the feature importance deduced from the model was done using SHAP (SHapley Additive exPlanations). Next, to comprehend the biological connections, study of protein-protien and mRNA-miRNA networks was conducted using String and Mienturnet respectively. The analysis revealed BDH1, YARS2, AKAP10, RARS2, MRPS31, were potential mitochondrial target genes among the other twenty genes. These genes are mainly involved in the transport and organization of mitochondria, regulation of its membrane potential, and intrinsic apoptotic signaling etc. mRNA-miRNA interaction network revealed a significant role of miR-375; miR-30a-5p; miR-16-5p; miR-129-5p; miR-1229-3p; and miR-1224-3p; in the regulation of mitochondrial function exhibited strong associations with type 2 diabetes. These results might aid in the creation of novel targets for therapy and type 2 diabetes biomarkers.
Collapse
Affiliation(s)
- Kritika Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - Neeru Saini
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|
24
|
Hernández-Gómez KG, Avila-Nava A, González-Salazar LE, Noriega LG, Serralde-Zúñiga AE, Guizar-Heredia R, Medina-Vera I, Gutiérrez-Solis AL, Torres N, Tovar AR, Guevara-Cruz M. Modulation of MicroRNAs and Exosomal MicroRNAs after Dietary Interventions for Obesity and Insulin Resistance: A Narrative Review. Metabolites 2023; 13:1190. [PMID: 38132872 PMCID: PMC10745452 DOI: 10.3390/metabo13121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs approximately 22 nucleotides in length. Their main function is to regulate gene expression at the posttranscriptional level by inhibiting the translation of messenger RNAs (mRNAs). miRNAs originate in the cell nucleus from specific genes, where they can perform their function. However, they can also be found in serum, plasma, or other body fluids travelling within vesicles called exosomes and/or bound to proteins or other particles such as lipoproteins. miRNAs can form complexes outside the cell where they are synthesized, mediating paracrine and endocrine communication between different tissues. In this way, they can modulate the gene expression and function of distal cells. It is known that the expression of miRNAs can be affected by multiple factors, such as the nutritional or pathological state of the individual, or even in conditions such as obesity, insulin resistance, or after any dietary intervention. In this review, we will analyse miRNAs whose expression and circulation are affected in conditions of obesity and insulin resistance, as well as the changes generated after a dietary intervention, with the purpose of identifying new possible biomarkers of early response to nutritional treatment in these conditions.
Collapse
Affiliation(s)
- Karla G. Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán, Mérida 97130, Mexico; (A.A.-N.); (A.L.G.-S.)
| | - Luis E. González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (L.E.G.-S.); (A.E.S.-Z.)
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
| | - Aurora E. Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (L.E.G.-S.); (A.E.S.-Z.)
| | - Rocio Guizar-Heredia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, 14380 Mexico City, Mexico
| | - Ana Ligia Gutiérrez-Solis
- Hospital Regional de Alta Especialidad de la Península de Yucatán, Mérida 97130, Mexico; (A.A.-N.); (A.L.G.-S.)
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (K.G.H.-G.); (L.G.N.); (R.G.-H.); (N.T.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, 14380 Mexico City, Mexico
| |
Collapse
|
25
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
26
|
Wan S, Xie J, Liang Y, Yu X. Pathological roles of bone marrow adipocyte-derived monocyte chemotactic protein-1 in type 2 diabetic mice. Cell Death Discov 2023; 9:412. [PMID: 37957155 PMCID: PMC10643445 DOI: 10.1038/s41420-023-01708-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a prevalent public health concern, with beta-cell dysfunction involved in its pathogenesis. Bone marrow adipose tissue (BMAT) increases in both the quantity and area in individuals with T2DM along with heightened monocyte chemotactic protein-1 (MCP-1) secretion. This study aims to investigate the influence and underlying mechanisms of MCP-1 originating from bone marrow adipocytes (BMAs) on systemic glucose homeostasis in T2DM. Initially, a substantial decrease in the proliferation and glucose-stimulated insulin secretion (GSIS) of islet cells was observed. Moreover, a comparative analysis between the control (Ctrl) group and db/db mice revealed significant alterations in the gene expression profiles of whole bone marrow cells, with a noteworthy upregulation of Mcp-1. And the primary enriched pathways included chemokine signaling pathway and AGE-RAGE signaling pathway in diabetic complications. In addition, the level of MCP-1 was distinctly elevated in BMA-derived conditional media (CM), leading to a substantial inhibition of proliferation, GSIS and the protein level of phosphorylated Akt (p-Akt) in Min6 cells. After blocking MCP-1 pathway, we observed a restoration of p-Akt and the proliferation of islet cells, resulting in a marked improvement in disordered glucose homeostasis. In summary, there is an accumulation of BMAs in T2DM, which secrete excessive MCP-1, exacerbating the abnormal accumulation of BMAs in the bone marrow cavity through paracrine signaling. The upregulated MCP-1, in turn, worsens glucose metabolism disorder by inhibiting the proliferation and insulin secretion of islet cells through an endocrine pathway. Inhibiting MCP-1 signaling can partially restore the proliferation and insulin secretion of islet cells, ultimately ameliorating glucose metabolism disorder. It's worth noting that to delve deeper into the impact of MCP-1 derived from BMAs on islet cells and its potential mechanisms, it is imperative to develop genetically engineered mice with conditional Mcp-1 knockout from BMAs.
Collapse
Affiliation(s)
- Shan Wan
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Liang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Hung YH, Capeling M, Villanueva JW, Kanke M, Shanahan MT, Huang S, Cubitt R, Rinaldi VD, Schimenti JC, Spence JR, Sethupathy P. Integrative genome-scale analyses reveal post-transcriptional signatures of early human small intestinal development in a directed differentiation organoid model. BMC Genomics 2023; 24:641. [PMID: 37884859 PMCID: PMC10601309 DOI: 10.1186/s12864-023-09743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Meghan Capeling
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan W Villanueva
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael T Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Cubitt
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Vera D Rinaldi
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
28
|
Satyadev N, Rivera MI, Nikolov NK, Fakoya AOJ. Exosomes as biomarkers and therapy in type 2 diabetes mellitus and associated complications. Front Physiol 2023; 14:1241096. [PMID: 37745252 PMCID: PMC10515224 DOI: 10.3389/fphys.2023.1241096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent metabolic disorders worldwide. However, T2DM still remains underdiagnosed and undertreated resulting in poor quality of life and increased morbidity and mortality. Given this ongoing burden, researchers have attempted to locate new therapeutic targets as well as methodologies to identify the disease and its associated complications at an earlier stage. Several studies over the last few decades have identified exosomes, small extracellular vesicles that are released by cells, as pivotal contributors to the pathogenesis of T2DM and its complications. These discoveries suggest the possibility of novel detection and treatment methods. This review provides a comprehensive presentation of exosomes that hold potential as novel biomarkers and therapeutic targets. Additional focus is given to characterizing the role of exosomes in T2DM complications, including diabetic angiopathy, diabetic cardiomyopathy, diabetic nephropathy, diabetic peripheral neuropathy, diabetic retinopathy, and diabetic wound healing. This study reveals that the utilization of exosomes as diagnostic markers and therapies is a realistic possibility for both T2DM and its complications. However, the majority of the current research is limited to animal models, warranting further investigation of exosomes in clinical trials. This review represents the most extensive and up-to-date exploration of exosomes in relation to T2DM and its complications.
Collapse
Affiliation(s)
- Nihal Satyadev
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Milagros I. Rivera
- University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis
| | | | | |
Collapse
|
29
|
Chen X, Sokirniy I, Wang X, Jiang M, Mseis-Jackson N, Williams C, Mayes K, Jiang N, Puls B, Du Q, Shi Y, Li H. MicroRNA-375 Is Induced during Astrocyte-to-Neuron Reprogramming and Promotes Survival of Reprogrammed Neurons when Overexpressed. Cells 2023; 12:2202. [PMID: 37681934 PMCID: PMC10486704 DOI: 10.3390/cells12172202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
While astrocyte-to-neuron (AtN) reprogramming holds great promise in regenerative medicine, the molecular mechanisms that govern this unique biological process remain elusive. To understand the function of miRNAs during the AtN reprogramming process, we performed RNA-seq of both mRNAs and miRNAs on human astrocyte (HA) cultures upon NeuroD1 overexpression. Bioinformatics analyses showed that NeuroD1 not only activated essential neuronal genes to initiate the reprogramming process but also induced miRNA changes in HA. Among the upregulated miRNAs, we identified miR-375 and its targets, neuronal ELAVL genes (nELAVLs), which encode a family of RNA-binding proteins and were also upregulated by NeuroD1. We further showed that manipulating the miR-375 level regulated nELAVLs' expression during NeuroD1-mediated reprogramming. Interestingly, miR-375/nELAVLs were also induced by the reprogramming factors Neurog2 and ASCL1 in HA, suggesting a conserved function to neuronal reprogramming, and by NeuroD1 in the mouse astrocyte culture and spinal cord. Functionally, we showed that miR-375 overexpression improved NeuroD1-mediated reprogramming efficiency by promoting cell survival at early stages in HA and did not appear to compromise the maturation of the reprogrammed neurons. Lastly, overexpression of miR-375-refractory ELAVL4 induced apoptosis and reversed the cell survival-promoting effect of miR-375 during AtN reprogramming. Together, we demonstrated a neuroprotective role of miR-375 during NeuroD1-mediated AtN reprogramming.
Collapse
Affiliation(s)
- Xuanyu Chen
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ivan Sokirniy
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Wang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mei Jiang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Natalie Mseis-Jackson
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Christine Williams
- Department of Chemistry & Biochemistry, College of Science & Mathematics, Augusta University, Augusta, GA 30912, USA
| | - Kristopher Mayes
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Na Jiang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Brendan Puls
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Quansheng Du
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yang Shi
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Hedong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
30
|
Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM. A Review of micro RNAs changes in T2DM in animals and humans. J Diabetes 2023; 15:649-664. [PMID: 37329278 PMCID: PMC10415875 DOI: 10.1111/1753-0407.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin secretion lost by islets of Langerhans and the resistance of target tissues to insulin action, which are two critical features in T2DM development. Based on recently highlighted research that plasma concentration of inflammatory mediators such as tumor necrosis factor α and interleukin-6 are elevated in insulin-resistant and T2DM, and it raises novel question marks about the processes causing inflammation in both situations. Over the past few decades, microRNAs (miRNAs), a class of short, noncoding RNA molecules, have been discovered to be involved in the regulation of inflammation, insulin resistance, and T2DM pathology. These noncoding RNAs are specifically comprised of RNA-induced silencing complexes and regulate the expression of specific protein-coding genes through various mechanisms. There is extending evidence that describes the expression profile of a special class of miRNA molecules altered during T2DM development. These modifications can be observed as potential biomarkers for the diagnosis of T2DM and related diseases. In this review study, after reviewing the possible mechanisms involved in T2DM pathophysiology, we update recent information on the miRNA roles in T2DM, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Mohammad Reza Afsharmanesh
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Zeinab Mohammadi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Azad Reza Mansourian
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
31
|
Jiang H, Zheng S, Qian Y, Zhou Y, Dai H, Liang Y, He Y, Gao R, Lv H, Zhang J, Xia Z, Bian W, Yang T, Fu Q. Restored UBE2C expression in islets promotes β-cell regeneration in mice by ubiquitinating PER1. Cell Mol Life Sci 2023; 80:226. [PMID: 37486389 PMCID: PMC11072275 DOI: 10.1007/s00018-023-04868-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Insulin deficiency may be due to the reduced proliferation capacity of islet β-cell, contributing to the onset of diabetes. It is therefore imperative to investigate the mechanism of the β-cell regeneration in the islets. NKX6.1, one of the critical β-cell transcription factors, is a pivotal element in β-cell proliferation. The ubiquitin-binding enzyme 2C (UBE2C) was previously reported as one of the downstream molecules of NKX6.1 though the exact function and mechanism of UBE2C in β-cell remain to be elucidated. Here, we determined a subpopulation of islet β-cells highly expressing UBE2C, which proliferate actively. We also discovered that β-cell compensatory proliferation was induced by UBE2C via the cell cycle renewal pathway in weaning and high-fat diet (HFD)-fed mice. Moreover, the reduction of β-cell proliferation led to insulin deficiency in βUbe2cKO mice and, therefore, developed type 2 diabetes. UBE2C was found to regulate PER1 degradation through the ubiquitin-proteasome pathway via its association with a ubiquitin ligase, CUL1. PER1 inhibition rescues UBE2C knockout-induced β-cell growth inhibition both in vivo and in vitro. Notably, overexpression of UBE2C via lentiviral transduction in pancreatic islets was able to relaunch β-cell proliferation in STZ-induced diabetic mice and therefore partially alleviated hyperglycaemia and glucose intolerance. This study indicates that UBE2C positively regulates β-cell proliferation by promoting ubiquitination and degradation of the biological clock suppressor PER1. The beneficial effect of UBE2C on islet β-cell regeneration suggests a promising application in treating diabetic patients with β-cell deficiency.
Collapse
Affiliation(s)
- Hemin Jiang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Zheng
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Qian
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuncai Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Dai
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yucheng Liang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunqiang He
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Gao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Lv
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqing Xia
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxuan Bian
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Qi Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Yeh YT, Sona C, Yan X, Li Y, Pathak A, McDermott MI, Xie Z, Liu L, Arunagiri A, Wang Y, Cazenave-Gassiot A, Ghosh A, von Meyenn F, Kumarasamy S, Najjar SM, Jia S, Wenk MR, Traynor-Kaplan A, Arvan P, Barg S, Bankaitis VA, Poy MN. Restoration of PITPNA in Type 2 diabetic human islets reverses pancreatic beta-cell dysfunction. Nat Commun 2023; 14:4250. [PMID: 37460527 PMCID: PMC10352338 DOI: 10.1038/s41467-023-39978-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Defects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction. Conditional deletion of Pitpna in the beta-cells of Ins-Cre, Pitpnaflox/flox mice leads to hyperglycemia resulting from decreasing glucose-stimulated insulin secretion (GSIS) and reducing pancreatic beta-cell mass. Furthermore, PITPNA silencing in human islets confirms its role in PtdIns-4-P synthesis and leads to impaired insulin granule maturation and docking, GSIS, and proinsulin processing with evidence of ER stress. Restoration of PITPNA in islets of T2D human subjects reverses these beta-cell defects and identify PITPNA as a critical target linked to beta-cell failure in T2D.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA
| | - Chandan Sona
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA
| | - Xin Yan
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock, 18147, Germany
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany
| | - Yunxiao Li
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock, 18147, Germany
| | - Adrija Pathak
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mark I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Zhigang Xie
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Liangwen Liu
- Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Yuting Wang
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
| | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Shiqi Jia
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
| | - Alexis Traynor-Kaplan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
- ATK Analytics, Innovation and Discovery, LLC, North Bend, WA, 98045, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Sebastian Barg
- Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew N Poy
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA.
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA.
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany.
| |
Collapse
|
33
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17-25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
34
|
Chen X, Sokirniy I, Wang X, Jiang M, Mseis-Jackson N, Williams C, Mayes K, Jiang N, Puls B, Du Q, Shi Y, Li H. MicroRNA-375 is induced during astrocyte-to-neuron reprogramming and promotes survival of reprogrammed neurons when overexpressed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548401. [PMID: 37503054 PMCID: PMC10369893 DOI: 10.1101/2023.07.10.548401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While astrocyte-to-neuron (AtN) reprogramming holds great promise in regenerative medicine, the molecular mechanisms that govern this unique biological process remain elusive. MicroRNAs (miRNAs), as post-transcriptional regulators of gene expression, play crucial roles during development and under various pathological conditions. To understand the function of miRNAs during AtN reprogramming process, we performed RNA-seq of both mRNAs and miRNAs on human astrocyte (HA) cultures upon NeuroD1 overexpression. Bioinformatics analyses showed that NeuroD1 not only activates essential neuronal genes to initiate reprogramming process but also induces miRNA changes in HA. Among the upregulated miRNAs, we identified miR-375 and its targets, neuronal ELAVL genes ( nELAVLs ), which encode a family of RNA-binding proteins and are also upregulated by NeuroD1. We further showed that manipulating miR-375 level regulates nELAVLs expression during NeuroD1-mediated reprogramming. Interestingly, miR-375/ nELAVLs are also induced by reprogramming factors Neurog2 and ASCL1 in HA suggesting a conserved function to neuronal reprogramming, and by NeuroD1 in the mouse astrocyte culture and spinal cord. Functionally, we showed that miR-375 overexpression improves NeuroD1-mediated reprogramming efficiency by promoting cell survival at early stages in HA even in cultures treated with the chemotherapy drug Cisplatin. Moreover, miR-375 overexpression doesn't appear to compromise maturation of the reprogrammed neurons in long term HA cultures. Lastly, overexpression of miR-375-refractory ELAVL4 induces apoptosis and reverses the cell survival-promoting effect of miR-375 during AtN reprogramming. Together, we demonstrate a neuro-protective role of miR-375 during NeuroD1-mediated AtN reprogramming and suggest a strategy of combinatory overexpression of NeuroD1 and miR-375 for improving neuronal reprogramming efficiency.
Collapse
|
35
|
Natalicchio A, Montagnani M, Gallo M, Marrano N, Faggiano A, Zatelli MC, Mazzilli R, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Giuffrida D, Gori S, Ragni A, Renzelli V, Russo A, Franchina T, Tuveri E, Sciacca L, Monami M, Cirino G, Di Cianni G, Colao A, Avogaro A, Cinieri S, Silvestris N, Giorgino F. MiRNA dysregulation underlying common pathways in type 2 diabetes and cancer development: an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view. ESMO Open 2023; 8:101573. [PMID: 37263082 PMCID: PMC10245125 DOI: 10.1016/j.esmoop.2023.101573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Increasing evidence suggests that patients with diabetes, particularly type 2 diabetes (T2D), are characterized by an increased risk of developing different types of cancer, so cancer could be proposed as a new T2D-related complication. On the other hand, cancer may also increase the risk of developing new-onset diabetes, mainly caused by anticancer therapies. Hyperinsulinemia, hyperglycemia, and chronic inflammation typical of T2D could represent possible mechanisms involved in cancer development in diabetic patients. MicroRNAs (miRNAs) are a subset of non-coding RNAs, ⁓22 nucleotides in length, which control the post-transcriptional regulation of gene expression through both translational repression and messenger RNA degradation. Of note, miRNAs have multiple target genes and alteration of their expression has been reported in multiple diseases, including T2D and cancer. Accordingly, specific miRNA-regulated pathways are involved in the pathogenesis of both conditions. In this review, a panel of experts from the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provide a critical view of the evidence about the involvement of miRNAs in the pathophysiology of both T2D and cancer, trying to identify the shared miRNA signature and pathways able to explain the strong correlation between the two conditions, as well as to envision new common pharmacological approaches.
Collapse
Affiliation(s)
- A Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - M Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - N Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - M C Zatelli
- Section of Endocrinology, Geriatrics, and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - R Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - A Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - S Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - D Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - S Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - T Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - E Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Carbonia, Sardinia, Italy
| | - L Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, Catania, Italy
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Firenze, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Di Cianni
- Diabetes Unit, Livorno Hospital, Livorno, Italy
| | - A Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - F Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
36
|
Hochberg JT, Sohal A, Handa P, Maliken BD, Kim TK, Wang K, Gochanour E, Li Y, Rose JB, Nelson JE, Lindor KD, LaRusso NF, Kowdley KV. Serum miRNA profiles are altered in patients with primary sclerosing cholangitis receiving high-dose ursodeoxycholic acid. JHEP Rep 2023; 5:100729. [PMID: 37179785 PMCID: PMC10172698 DOI: 10.1016/j.jhepr.2023.100729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/15/2023] Open
Abstract
Background & Aims Primary sclerosing cholangitis (PSC) is a chronic, progressive cholestatic liver disease that can lead to end-stage liver disease and cholangiocarcinoma. High-dose ursodeoxycholic acid (hd-UDCA, 28-30 mg/kg/day) was evaluated in a previous multicentre, randomised placebo-controlled trial; however, the study was discontinued early because of increased liver-related serious adverse events (SAEs), despite improvement in serum liver biochemical tests. We investigated longitudinal changes in serum miRNA and cytokine profiles over time among patients treated with either hd-UDCA or placebo in this trial as potential biomarkers for PSC and response to hd-UDCA, as well as to understand the toxicity associated with hd-UDCA treatment. Methods Thirty-eight patients with PSC were enrolled in a multicentred, randomised, double-blinded trial of hd-UDCA vs. placebo. Results Significant alterations in serum miRNA profiles were found over time in both patients treated with hd-UDCA or placebo. Additionally, there were striking differences between miRNA profiles in patients treated with hd-UDCA compared with placebo. In patients treated with placebo, the changes in concentration of serum miRNAs miR-26a, miR-199b-5p, miR-373, and miR-663 suggest alterations of inflammatory and cell proliferative processes consistent with disease progression. However, patients treated with hd-UDCA exhibited a more pronounced differential expression of serum miRNAs, suggesting that hd-UDCA induces significant cellular miRNA changes and tissue injury. Pathway enrichment analysis for UDCA-associated miRNAs suggested unique dysregulation of cell cycle and inflammatory response pathways. Conclusions Patients with PSC have distinct miRNAs in the serum and bile, although the implications of these unique patterns have not been studied longitudinally or in relation to adverse events related to hd-UDCA. Our study demonstrates marked changes in miRNA serum profiles with hd-UDCA treatment and suggests mechanisms for the increased liver toxicity with therapy. Impact and implications Using serum samples from patients with PSC enrolled in a clinical trial comparing hd-UDCA with placebo, our study found distinct miRNA changes in patients with PSC who are treated with hd-UDCA over a period of time. Our study also noted distinct miRNA patterns in patients who developed SAEs during the study period.
Collapse
Affiliation(s)
- Jessica T. Hochberg
- Liver Institute Northwest, Seattle, WA, USA
- Seattle Children’s Hospital/University of Washington, Seattle, WA, USA
- Miami Transplant Institute at University of Miami, Miami, FL, USA
| | | | - Priya Handa
- Benaroya Research Institute, Seattle, WA, USA
| | | | | | - Kai Wang
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Yu Li
- Benaroya Research Institute, Seattle, WA, USA
| | | | | | - Keith D. Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, MN, USA
| | | | - Kris V. Kowdley
- Liver Institute Northwest, Seattle, WA, USA
- Corresponding author. Address: Liver Institute Northwest, 3216 NE 45th Pl Suite 212, Seattle, WA 98105, USA; Tel.: +1(206) 536-3030.
| |
Collapse
|
37
|
Xu F, Xia C, Dou L, Huang X. Knowledge mapping of exosomes in metabolic diseases: a bibliometric analysis (2007-2022). Front Endocrinol (Lausanne) 2023; 14:1176430. [PMID: 37223047 PMCID: PMC10200891 DOI: 10.3389/fendo.2023.1176430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Background Research on exosomes in metabolic diseases has been gaining attention, but a comprehensive and objective report on the current state of research is lacking. This study aimed to conduct a bibliometric analysis of publications on "exosomes in metabolic diseases" to analyze the current status and trends of research using visualization methods. Methods The web of science core collection was searched for publications on exosomes in metabolic diseases from 2007 to 2022. Three software packages, VOSviewer, CiteSpace, and R package "bibliometrix" were used for the bibliometric analysis. Results A total of 532 papers were analyzed, authored by 29,705 researchers from 46 countries/regions and 923 institutions, published in 310 academic journals. The number of publications related to exosomes in metabolic diseases is gradually increasing. China and the United States were the most productive countries, while Ciber Centro de Investigacion Biomedica en Red was the most active institution. The International Journal of Molecular Sciences published the most relevant studies, and Plos One received the most citations. Khalyfa, Abdelnaby published the most papers and Thery, C was the most cited. The ten most co-cited references were considered as the knowledge base. After analysis, the most common keywords were microRNAs, biomarkers, insulin resistance, expression, and obesity. Applying basic research related on exosomes in metabolic diseases to clinical diagnosis and treatment is a research hotspot and trend. Conclusion This study provides a comprehensive summary of research trends and developments in exosomes in metabolic diseases through bibliometrics. The information points out the research frontiers and hot directions in recent years and will provide a reference for researchers in this field.
Collapse
Affiliation(s)
- Fangzhi Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Chenxi Xia
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| |
Collapse
|
38
|
Serbis A, Giapros V, Tsamis K, Balomenou F, Galli-Tsinopoulou A, Siomou E. Beta Cell Dysfunction in Youth- and Adult-Onset Type 2 Diabetes: An Extensive Narrative Review with a Special Focus on the Role of Nutrients. Nutrients 2023; 15:2217. [PMID: 37432389 PMCID: PMC10180650 DOI: 10.3390/nu15092217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023] Open
Abstract
Traditionally a disease of adults, type 2 diabetes (T2D) has been increasingly diagnosed in youth, particularly among adolescents and young adults of minority ethnic groups. Especially, during the recent COVID-19 pandemic, obesity and prediabetes have surged not only in minority ethnic groups but also in the general population, further raising T2D risk. Regarding its pathogenesis, a gradually increasing insulin resistance due to central adiposity combined with a progressively defective β-cell function are the main culprits. Especially in youth-onset T2D, a rapid β-cell activity decline has been observed, leading to higher treatment failure rates, and early complications. In addition, it is well established that both the quantity and quality of food ingested by individuals play a key role in T2D pathogenesis. A chronic imbalance between caloric intake and expenditure together with impaired micronutrient intake can lead to obesity and insulin resistance on one hand, and β-cell failure and defective insulin production on the other. This review summarizes our evolving understanding of the pathophysiological mechanisms involved in defective insulin secretion by the pancreatic islets in youth- and adult-onset T2D and, further, of the role various micronutrients play in these pathomechanisms. This knowledge is essential if we are to curtail the serious long-term complications of T2D both in pediatric and adult populations.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| |
Collapse
|
39
|
Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes. Nat Commun 2023; 14:878. [PMID: 36797282 PMCID: PMC9935529 DOI: 10.1038/s41467-023-36582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Intrahepatic islet transplantation is the standard cell therapy for β cell replacement. However, the shortage of organ donors and an unsatisfactory engraftment limit its application to a selected patients with type 1 diabetes. There is an urgent need to identify alternative strategies based on an unlimited source of insulin producing cells and innovative scaffolds to foster cell interaction and integration to orchestrate physiological endocrine function. We previously proposed the use of decellularized lung as a scaffold for β cell replacement with the final goal of engineering a vascularized endocrine organ. Here, we prototyped this technology with the integration of neonatal porcine islet and healthy subject-derived blood outgrowth endothelial cells to engineer a xenogeneic vascularized endocrine pancreas. We validated ex vivo cell integration and function, its engraftment and performance in a preclinical model of diabetes. Results showed that this technology not only is able to foster neonatal pig islet maturation in vitro, but also to perform in vivo immediately upon transplantation and for over 18 weeks, compared to normal performance within 8 weeks in various state of the art preclinical models. Given the recent progress in donor pig genetic engineering, this technology may enable the assembly of immune-protected functional endocrine organs.
Collapse
|
40
|
Taylor HJ, Hung YH, Narisu N, Erdos MR, Kanke M, Yan T, Grenko CM, Swift AJ, Bonnycastle LL, Sethupathy P, Collins FS, Taylor DL. Human pancreatic islet microRNAs implicated in diabetes and related traits by large-scale genetic analysis. Proc Natl Acad Sci U S A 2023; 120:e2206797120. [PMID: 36757889 PMCID: PMC9963967 DOI: 10.1073/pnas.2206797120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Genetic studies have identified ≥240 loci associated with the risk of type 2 diabetes (T2D), yet most of these loci lie in non-coding regions, masking the underlying molecular mechanisms. Recent studies investigating mRNA expression in human pancreatic islets have yielded important insights into the molecular drivers of normal islet function and T2D pathophysiology. However, similar studies investigating microRNA (miRNA) expression remain limited. Here, we present data from 63 individuals, the largest sequencing-based analysis of miRNA expression in human islets to date. We characterized the genetic regulation of miRNA expression by decomposing the expression of highly heritable miRNAs into cis- and trans-acting genetic components and mapping cis-acting loci associated with miRNA expression [miRNA-expression quantitative trait loci (eQTLs)]. We found i) 84 heritable miRNAs, primarily regulated by trans-acting genetic effects, and ii) 5 miRNA-eQTLs. We also used several different strategies to identify T2D-associated miRNAs. First, we colocalized miRNA-eQTLs with genetic loci associated with T2D and multiple glycemic traits, identifying one miRNA, miR-1908, that shares genetic signals for blood glucose and glycated hemoglobin (HbA1c). Next, we intersected miRNA seed regions and predicted target sites with credible set SNPs associated with T2D and glycemic traits and found 32 miRNAs that may have altered binding and function due to disrupted seed regions. Finally, we performed differential expression analysis and identified 14 miRNAs associated with T2D status-including miR-187-3p, miR-21-5p, miR-668, and miR-199b-5p-and 4 miRNAs associated with a polygenic score for HbA1c levels-miR-216a, miR-25, miR-30a-3p, and miR-30a-5p.
Collapse
Affiliation(s)
- Henry J. Taylor
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, CambridgeCB2 0BB, UK
- Heart and Lung Research Institute, University of Cambridge, CambridgeCB2 0BB, UK
| | - Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Michael R. Erdos
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Matthew Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Caleb M. Grenko
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Amy J. Swift
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Lori L. Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Francis S. Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - D. Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
41
|
Sufianov A, Kostin A, Begliarzade S, Kudriashov V, Ilyasova T, Liang Y, Mukhamedzyanov A, Beylerli O. Exosomal non coding RNAs as a novel target for diabetes mellitus and its complications. Noncoding RNA Res 2023; 8:192-204. [PMID: 36818396 PMCID: PMC9929646 DOI: 10.1016/j.ncrna.2023.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a first-line priority among the problems facing medical science and public health in almost all countries of the world. The main problem of DM is the high incidence of damage to the cardiovascular system, which in turn leads to diseases such as myocardial infarction, stroke, gangrene of the lower extremities, blindness and chronic renal failure. As a result, the study of the molecular genetic mechanisms of the pathogenesis of DM is of critical importance for the development of new diagnostic and therapeutic strategies. Molecular genetic aspects of the etiology and pathogenesis of diabetes mellitus are intensively studied in well-known laboratories around the world. One of the strategies in this direction is to study the role of exosomes in the pathogenesis of DM. Exosomes are microscopic extracellular vesicles with a diameter of 30-100 nm, released into the intercellular space by cells of various tissues and organs. The content of exosomes depends on the cell type and includes mRNA, non-coding RNAs, DNA, and so on. Non-coding RNAs, a group of RNAs with limited transcriptional activity, have been discovered to play a significant role in regulating gene expression through epigenetic and posttranscriptional modulation, such as silencing of messenger RNA. One of the problems of usage exosomes in DM is the identification of the cellular origin of exosomes and the standardization of protocols for molecular genetic studies in clinical laboratories. In addition, the question of the target orientation of exosomes and their targeted activity requires additional study. Solving these and other problems will make it possible to use exosomes for the diagnosis and delivery of drugs directly to target cells in DM. This study presents an analysis of literature data on the role of exosomes and ncRNAs in the development and progression of DM, as well as the prospects for the use of exosomes in clinical practice in this disease.
Collapse
Affiliation(s)
- Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia,Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| | - Sema Begliarzade
- Republican Clinical Perinatal Center, Ufa, Republic of Bashkortostan, 450106, Russia
| | | | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia,Corresponding author. Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|
42
|
Aldous N, Elsayed AK, Alajez NM, Abdelalim EM. iPSC-Derived Pancreatic Progenitors Lacking FOXA2 Reveal Alterations in miRNA Expression Targeting Key Pancreatic Genes. Stem Cell Rev Rep 2023; 19:1082-1097. [PMID: 36749553 DOI: 10.1007/s12015-023-10515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
Recently, we reported that forkhead box A2 (FOXA2) is required for the development of human pancreatic α- and β-cells. However, whether miRNAs play a role in regulating pancreatic genes during pancreatic development in the absence of FOXA2 expression is largely unknown. Here, we aimed to capture the dysregulated miRNAs and to identify their pancreatic-specific gene targets in pancreatic progenitors (PPs) derived from wild-type induced pluripotent stem cells (WT-iPSCs) and from iPSCs lacking FOXA2 (FOXA2-/-iPSCs). To identify differentially expressed miRNAs (DEmiRs), and genes (DEGs), two different FOXA2-/-iPSC lines were differentiated into PPs. FOXA2-/- PPs showed a significant reduction in the expression of the main PP transcription factors (TFs) in comparison to WT-PPs. RNA sequencing analysis demonstrated significant reduction in the mRNA expression of genes involved in the development and function of exocrine and endocrine pancreas. Furthermore, miRNA profiling identified 107 downregulated and 111 upregulated DEmiRs in FOXA2-/- PPs compared to WT-PPs. Target prediction analysis between DEmiRs and DEGs identified 92 upregulated miRNAs, predicted to target 1498 downregulated genes in FOXA2-/- PPs. Several important pancreatic TFs essential for pancreatic development were targeted by multiple DEmiRs. Selected DEmiRs and DEGs were further validated using RT-qPCR. Our findings revealed that FOXA2 expression is crucial for pancreatic development through regulating the expression of pancreatic endocrine and exocrine genes targeted by a set of miRNAs at the pancreatic progenitor stage. These data provide novel insights of the effect of FOXA2 deficiency on miRNA-mRNA regulatory networks controlling pancreatic development and differentiation.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed K Elsayed
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar. .,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
43
|
Rudge MVC, Alves FCB, Hallur RLS, Oliveira RG, Vega S, Reyes DRA, Floriano JF, Prudencio CB, Garcia GA, Reis FVDS, Emanueli C, Fuentes G, Cornejo M, Toledo F, Valenzuela-Hinrichsen A, Guerra C, Grismaldo A, Valero P, Barbosa AMP, Sobrevia L. Consequences of the exposome to gestational diabetes mellitus. Biochim Biophys Acta Gen Subj 2023; 1867:130282. [PMID: 36436753 DOI: 10.1016/j.bbagen.2022.130282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including those from the environment, diet, behaviour, and endogenous processes. The exposome concept and the 2030 Agenda for the Sustainable Development Goals (SDGs) from the United Nations are the basis for understanding the aetiology and consequences of non-communicable diseases, including gestational diabetes mellitus (GDM). Pregnancy may be developed in an environment with adverse factors part of the immediate internal medium for fetus development and the external medium to which the pregnant woman is exposed. The placenta is the interface between maternal and fetal compartments and acts as a protective barrier or easing agent to transfer exposome from mother to fetus. Under and over-nutrition in utero, exposure to adverse environmental pollutants such as heavy metals, endocrine-disrupting chemicals, pesticides, drugs, pharmaceuticals, lifestyle, air pollutants, and tobacco smoke plays a determinant role in the development of GDM. This phenomenon is worsened by metabolic stress postnatally, such as obesity which increases the risk of GDM and other diseases. Clinical risk factors for GDM development include its aetiology. It is proposed that knowledge-based interventions to change the potential interdependent ecto-exposome and endo-exposome could avoid the occurrence and consequences of GDM.
Collapse
Affiliation(s)
- Marilza V C Rudge
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil.
| | - Fernanda C B Alves
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Raghavendra L S Hallur
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Centre for Biotechnology, Pravara Institute of Medical Sciences (DU), Loni-413736, Rahata Taluk, Ahmednagar District, Maharashtra, India
| | - Rafael G Oliveira
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Sofia Vega
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - David R A Reyes
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Juliana F Floriano
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Caroline B Prudencio
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Gabriela A Garcia
- São Paulo State University (UNESP), School of Sciences, Postgraduate Program in Materials Science and Technology (POSMAT), 17033-360 Bauru, São Paulo, Brazil
| | - Fabiana V D S Reis
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Gonzalo Fuentes
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Cornejo
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta 02800, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Andrés Valenzuela-Hinrichsen
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Catalina Guerra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Adriana Grismaldo
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paola Valero
- Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Angelica M P Barbosa
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University (UNESP), 17525-900 Marília, São Paulo, Brazil
| | - Luis Sobrevia
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
44
|
Khare S, Jiang L, Cabrara DP, Apte U, Pritchard MT. Global Transcriptomics of Congenital Hepatic Fibrosis in Autosomal Recessive Polycystic Kidney Disease using PCK rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524760. [PMID: 36711494 PMCID: PMC9882327 DOI: 10.1101/2023.01.19.524760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Congenital hepatic fibrosis / Autosomal recessive polycystic kidney disease (CHF/ARPKD) is an inherited neonatal disease induced by mutations in the PKHD1 gene and characterized by cysts, and robust pericystic fibrosis in liver and kidney. The PCK rat is an excellent animal model which carries a Pkhd1 mutation and exhibits similar pathophysiology. We performed RNA-Seq analysis on liver samples from PCK rats over a time course of postnatal day (PND) 15, 20, 30, and 90 using age-matched Sprague-Dawley (SD) rats as controls to characterize molecular mechanisms of CHF/ARPKD pathogenesis. A comprehensive differential gene expression (DEG) analysis identified 1298 DEGs between PCK and SD rats. The genes overexpressed in the PCK rats at PND 30 and 90 were involved cell migration (e.g. Lamc2, Tgfb2 , and Plet1 ), cell adhesion (e.g. Spp1, Adgrg1 , and Cd44 ), and wound healing (e.g. Plat, Celsr1, Tpm1 ). Connective tissue growth factor ( Ctgf ) and platelet-derived growth factor ( Pdgfb ), two genes associated with fibrosis, were upregulated in PCK rats at all time-points. Genes associated with MHC class I molecules (e.g. RT1-A2 ) or involved in ribosome assembly (e.g. Pes1 ) were significantly downregulated in PCK rats. Upstream regulator analysis showed activation of proteins involved tissue growth (MTPN) and inflammation (STAT family members) and chromatin remodeling (BRG1), and inhibition of proteins involved in hepatic differentiation (HNF4α) and reduction of fibrosis (SMAD7). The increase in mRNAs of four top upregulated genes including Reg3b, Aoc1, Tm4sf20 , and Cdx2 was confirmed at the protein level using immunohistochemistry. In conclusion, these studies indicate that a combination of increased inflammation, cell migration and wound healing, and inhibition of hepatic function, decreased antifibrotic gene expression are the major underlying pathogenic mechanisms in CHF/ARPKD.
Collapse
|
45
|
Glucose Homeostasis and Pancreatic Islet Size Are Regulated by the Transcription Factors Elk-1 and Egr-1 and the Protein Phosphatase Calcineurin. Int J Mol Sci 2023; 24:ijms24010815. [PMID: 36614256 PMCID: PMC9821712 DOI: 10.3390/ijms24010815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatic β-cells synthesize and secrete insulin. A key feature of diabetes mellitus is the loss of these cells. A decrease in the number of β-cells results in decreased biosynthesis of insulin. Increasing the number of β-cells should restore adequate insulin biosynthesis leading to adequate insulin secretion. Therefore, identifying proteins that regulate the number of β-cells is a high priority in diabetes research. In this review article, we summerize the results of three sophisticated transgenic mouse models showing that the transcription factors Elk-1 and Egr-1 and the Ca2+/calmodulin-regulated protein phosphatase calcineurin control the formation of sufficiently large pancreatic islets. Impairment of the biological activity of Egr-1 and Elk-1 in pancreatic β-cells leads to glucose intolerance and dysregulation of glucose homeostasis, the process that maintains glucose concentration in the blood within a narrow range. Transgenic mice expressing an activated calcineurin mutant also had smaller islets and showed hyperglycemia. Calcineurin induces dephosphorylation of Elk-1 which subsequently impairs Egr-1 biosynthesis and the biological functions of Elk-1 and Egr-1 to regulate islet size and glucose homeostasis.
Collapse
|
46
|
Lin X, Cheng L, Wan Y, Yan Y, Zhang Z, Li X, Wu J, Wang X, Xu M. Ang II Controls the Expression of Mapkap1 by miR-375 and Affects the Function of Islet β Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:1186-1200. [PMID: 36748222 PMCID: PMC10514520 DOI: 10.2174/1871530323666230206121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND The RAS system is involved in the regulation of islet function, but its regulation remains unclear. OBJECTIVE This study investigates the role of an islet-specific miR-375 in the effect of RAS system on islet β-cells. METHODS miR-375 mimics and inhibitors were transfected into insulin-secreting MIN6 cells in the presence or absence of RAS component. RESULTS Compared to control, in Ang II-treated MIN6 cells, miR-375 mimic transfection results in a decrement in cell viability and Akt-Ser levels (0.739±0.05 vs. 0.883±0.06 and 0.40±0.04 vs. 0.79±0.04, respectively), while the opposite occurred in miR-375 inhibitor-transfected cells (1.032±0.11 vs. 0.883±0.06 and 0.98±0.05 vs. 0.79±0.04, respectively, P<0.05). Mechanistically, transfection of miR- 375 mimics into Ang II-treated MIN6 cells significantly reduced the expression of Mapkap1 protein (0.97±0.15 vs. 0.63±0.06, P<0.05); while miR-375 inhibitor-transfected cells elevated Mapkap1 expression level (0.35±0.11 vs. 0.90±0.05, P<0.05), without changes in mRNA expression. Transfection of miR-375 specific inhibitors TSB-Mapkap1 could elevate Mapkap1 (1.62±0.02 vs. 0.68±0.01, P<0.05), while inhibition of Mapkap1 could significantly reduce the level of Akt-Ser473 phosphorylation (0.60±0.14 vs. 1.80±0.27, P<0.05). CONCLUSION The effects of Ang II on mouse islet β cells were mediated by miR-375 through miR- 375/Mapkap 1 axis. This targeted regulation may occur by affecting Akt phosphorylation of β cells. These results may provide new ideas and a scientific basis for further development of miRNA-targeted islet protection measures.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Lin Cheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yuerong Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Zhuo Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaohui Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Jiayun Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| |
Collapse
|
47
|
Abstract
Zhao Y, Liu C, Zhang X, Yan X. Angelica polysaccharide alleviates TNF-α-induced MIN6 cell damage a through the up-regulation microRNA-143. BioFactors. 2022;49:200. https://doi.org/10.1002/biof.1588 This article, published online on 20 November 2019 in Wiley Online Library, has been retracted by agreement between the International Union of Biochemistry and Molecular Biology, the Editor in Chief (Dr. Angelo Azzi), and Wiley Periodicals LLC. The retraction has been agreed following an investigation based on allegations raised by a third party. Evidence for image manipulation was found in figures 1, 2, 4, and 5. As a result, the conclusions of this article are considered to be invalid.
Collapse
|
48
|
Brenu EW, Harris M, Hamilton-Williams EE. Circulating biomarkers during progression to type 1 diabetes: A systematic review. Front Endocrinol (Lausanne) 2023; 14:1117076. [PMID: 36817583 PMCID: PMC9935596 DOI: 10.3389/fendo.2023.1117076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
AIM Progression to type 1 diabetes (T1D) is defined in stages and clinical disease is preceded by a period of silent autoimmunity. Improved prediction of the risk and rate of progression to T1D is needed to reduce the prevalence of diabetic ketoacidosis at presentation as well as for staging participants for clinical trials. This systematic review evaluates novel circulating biomarkers associated with future progression to T1D. METHODS PubMed, Ovid, and EBSCO databases were used to identify a comprehensive list of articles. The eligibility criteria included observational studies that evaluated the usefulness of circulating markers in predicting T1D progression in at-risk subjects <20 years old. RESULTS Twenty-six studies were identified, seventeen were cohort studies and ten were case control studies. From the 26 studies, 5 found evidence for protein and lipid dysregulation, 11 identified molecular markers while 12 reported on changes in immune parameters during progression to T1D. An increased risk of T1D progression was associated with the presence of altered gene expression, immune markers including regulatory T cell dysfunction and higher short-lived effector CD8+ T cells in progressors. DISCUSSION Several circulating biomarkers are dysregulated before T1D diagnosis and may be useful in predicting either the risk or rate of progression to T1D. Further studies are required to validate these biomarkers and assess their predictive accuracy before translation into broader use. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero, identifier (CRD42020166830).
Collapse
Affiliation(s)
- Ekua W. Brenu
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Mark Harris
- Endocrinology Department, Queensland Children’s Hospital, South Brisbane, QLD, Australia
| | - Emma E. Hamilton-Williams
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- *Correspondence: Emma E. Hamilton-Williams,
| |
Collapse
|
49
|
Keller DM, Perez IG. Dual regulation of miR-375 and CREM genes in pancreatic beta cells. Islets 2022; 14:139-148. [PMID: 35377267 PMCID: PMC8986308 DOI: 10.1080/19382014.2022.2060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
MicroRNA-375 (miR-375) is upregulated in the islets of some diabetics and is correlated with poor outcome. Previous work in our laboratory showed that cyclic adenosine monophosphate (cAMP) reduces miR-375 expression and could provide a way to restore normal miR-375 levels, however the transcription repression mechanism is unknown. Using a chromatin immunoprecipitation assay we show that cAMP response element modulator (CREM) binds to the miR-375 promoter 3-fold above background and we find that CREM represses transcription from the miR-375 promoter 1.8-fold. While investigating miR-375 target genes we discovered that several microRNA:mRNA target prediction algorithms listed human CREM as a target gene of miR-375. The predicted binding site is conserved in primates but not in other species. We found that indeed miR-375 binds to the predicted site on human CREM and represses translation of a green fluorescent protein reporter gene by 30%. These findings suggest a primate-specific double-negative feedback loop, a mechanism that would keep these important β-cell regulators in check.
Collapse
Affiliation(s)
- David M. Keller
- Department of Biological Sciences, California State University Chico, Chico, CA, USA
- CONTACT David M. Keller Department of Biological Sciences, California State University, Chico, 900 W. 1st St, Chico, CA95929 linkedin.com/in/keller-david-6529485b
| | - Isis G. Perez
- Department of Biological Sciences, California State University Chico, Chico, CA, USA
| |
Collapse
|
50
|
Cowan E, Karagiannopoulos A, Eliasson L. MicroRNAs in Type 2 Diabetes: Focus on MicroRNA Profiling in Islets of Langerhans. Methods Mol Biol 2022; 2592:113-142. [PMID: 36507989 DOI: 10.1007/978-1-0716-2807-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Differential expression of microRNAs (miRNAs) is observed in many diseases including type 2 diabetes (T2D). Insulin secretion from pancreatic beta cells is central for the regulation of blood glucose levels and failure to release enough insulin results in hyperglycemia and T2D. The importance in T2D pathogenesis of single miRNAs in beta cells has been described; however, to get the full picture, high-throughput miRNA sequencing is necessary. Here we describe a method using small RNA sequencing, from sample preparation to expression analysis using bioinformatic tools. In the end, a tutorial on differential expression analysis is presented in R using publicly available data.
Collapse
Affiliation(s)
- Elaine Cowan
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences - Malmö, Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre, and Skåne University Hospital (SUS), Malmö, Sweden
| | - Alexandros Karagiannopoulos
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences - Malmö, Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre, and Skåne University Hospital (SUS), Malmö, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences - Malmö, Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre, and Skåne University Hospital (SUS), Malmö, Sweden.
| |
Collapse
|