1
|
von Mentzer A, Svennerholm AM. Colonization factors of human and animal-specific enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 2024; 32:448-464. [PMID: 38052687 DOI: 10.1016/j.tim.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Colonization factors (CFs) are major virulence factors of enterotoxigenic Escherichia coli (ETEC). This pathogen is among the most common causes of bacterial diarrhea in children in low- and middle-income countries, travelers, and livestock. CFs are major candidate antigens in vaccines under development as preventive measures against ETEC infections in humans and livestock. Recent molecular studies have indicated that newly identified CFs on human ETEC are closely related to animal ETEC CFs. Increased knowledge of pathogenic mechanisms, immunogenicity, regulation, and expression of ETEC CFs, as well as the possible spread of animal ETEC to humans, may facilitate the future development of ETEC vaccines for humans and animals. Here, we present an updated review of CFs in ETEC.
Collapse
Affiliation(s)
- Astrid von Mentzer
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden; Wellcome Sanger Institute, Hinxton, UK.
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
2
|
Zhou S, Yu KOA, Mabrouk MT, Jahagirdar D, Huang WC, Guerra JA, He X, Ortega J, Poole ST, Hall ER, Gomez-Duarte OG, Maciel M, Lovell JF. Antibody induction in mice by liposome-displayed recombinant enterotoxigenic Escherichia coli (ETEC) colonization antigens. Biomed J 2023; 46:100588. [PMID: 36925108 PMCID: PMC10711177 DOI: 10.1016/j.bj.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) strains cause infectious diarrhea and colonize host intestine epithelia via surface-expressed colonization factors. Colonization factor antigen I (CFA/I), a prevalent ETEC colonization factor, is a vaccine target since antibodies directed to this fimbria can block ETEC adherence and prevent diarrhea. METHODS Two recombinant antigens derived from CFA/I were investigated with a vaccine adjuvant system that displays soluble antigens on the surface of immunogenic liposomes. The first antigen, CfaEB, is a chimeric fusion protein comprising the minor (CfaE) and major (CfaB) subunits of CFA/I. The second, CfaEad, is the adhesin domain of CfaE. RESULTS Owing to their His-tag, recombinant CfaEB and CfaEad, spontaneously bound upon admixture with nanoliposomes containing cobalt-porphyrin phospholipid (CoPoP), as well as a synthetic monophosphoryl lipid A (PHAD) adjuvant. Intramuscular immunization of mice with sub-microgram doses CfaEB or CfaEad admixed with CoPoP/PHAD liposomes elicited serum IgG and intestinal IgA antibodies. The smaller CfaEad antigen benefitted more from liposome display. Serum and intestine antibodies from mice immunized with liposome-displayed CfaEB or CfaEad recognized native CFA/I fimbria as evidenced by immunofluorescence and hemagglutination inhibition assays using the CFA/I-expressing H10407 ETEC strain. CONCLUSION These data show that colonization factor-derived recombinant ETEC antigens exhibit immunogenicity when delivered in immunogenic particle-based formulations.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Karl O A Yu
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Moustafa T Mabrouk
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Julio A Guerra
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Xuedan He
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Steven T Poole
- Naval Medical Research Center, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Eric R Hall
- Naval Medical Research Center, Silver Spring, MD, USA
| | - Oscar G Gomez-Duarte
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Milton Maciel
- Naval Medical Research Center, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; Department of Microbiology and Immunology, Uniformed Services University Health System, Bethesda, MD, USA.
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
3
|
Jonsmoen UL, Malyshev D, Öberg R, Dahlberg T, Aspholm ME, Andersson M. Endospore pili: Flexible, stiff, and sticky nanofibers. Biophys J 2023; 122:2696-2706. [PMID: 37218131 PMCID: PMC10397575 DOI: 10.1016/j.bpj.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Species belonging to the Bacillus cereus group form endospores (spores) whose surface is decorated with micrometers-long and nanometers-wide endospore appendages (Enas). The Enas have recently been shown to represent a completely novel class of Gram-positive pili. They exhibit remarkable structural properties making them extremely resilient to proteolytic digestion and solubilization. However, little is known about their functional and biophysical properties. In this work, we apply optical tweezers to manipulate and assess how wild-type and Ena-depleted mutant spores immobilize on a glass surface. Furthermore, we utilize optical tweezers to extend S-Ena fibers to measure their flexibility and tensile stiffness. Finally, by oscillating single spores, we examine how the exosporium and Enas affect spores' hydrodynamic properties. Our results show that S-Enas (μm-long pili) are not as effective as L-Enas in immobilizing spores to glass surfaces but are involved in forming spore-to-spore connections, holding the spores together in a gel-like state. The measurements also show that S-Enas are flexible but tensile stiff fibers, which support structural data suggesting that the quaternary structure is composed of subunits arranged in a complex to produce a bendable fiber (helical turns can tilt against each other) with limited axial fiber extensibility. Finally, the results show that the hydrodynamic drag is 1.5 times higher for wild-type spores expressing S- and L-Enas compared with mutant spores expressing only L-Enas or "bald spores" lacking Ena, and 2 times higher compared with spores of the exosporium-deficient strain. This study unveils novel findings on the biophysics of S- and L-Enas, their role in spore aggregation, binding of spores to glass, and their mechanical behavior upon exposure to drag forces.
Collapse
Affiliation(s)
- Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | - Marina E Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
4
|
Stone AE, Rambaran S, Trinh IV, Estrada M, Jarand CW, Williams BS, Murrell AE, Huerter CM, Bai W, Palani S, Nakanishi Y, Laird RM, Poly FM, Reed WF, White JA, Norton EB. Route and antigen shape immunity to dmLT-adjuvanted vaccines to a greater extent than biochemical stress or formulation excipients. Vaccine 2023; 41:1589-1601. [PMID: 36732163 PMCID: PMC10308557 DOI: 10.1016/j.vaccine.2023.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
A key aspect to vaccine efficacy is formulation stability. Biochemical evaluations provide information on optimal compositions or thermal stability but are routinely validated by ex vivo analysis and not efficacy in animal models. Here we assessed formulations identified to improve or reduce stability of the mucosal adjuvant dmLT being investigated in polio and enterotoxigenic E. coli (ETEC) clinical vaccines. We observed biochemical changes to dmLT protein with formulation or thermal stress, including aggregation or subunit dissociation or alternatively resistance against these changes with specific buffer compositions. However, upon injection or mucosal vaccination with ETEC fimbriae adhesin proteins or inactivated polio virus, experimental findings indicated immunization route and co-administered antigen impacted vaccine immunogenicity more so than dmLT formulation stability (or instability). These results indicate the importance of both biochemical and vaccine-derived immunity assessment in formulation optimization. In addition, these studies have implications for use of dmLT in clinical settings and for delivery in resource poor settings.
Collapse
Affiliation(s)
- Addison E Stone
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Saraswatie Rambaran
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ivy V Trinh
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Curtis W Jarand
- Department of Physics and Engineering Physics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Blake S Williams
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Amelie E Murrell
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chelsea M Huerter
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - William Bai
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Surya Palani
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Renee M Laird
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA; Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Frederic M Poly
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Wayne F Reed
- Department of Physics and Engineering Physics, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
5
|
Mohammadkhani F, Mousavi Gargari SL, Nazarian S, Mafi M. Protective effects of anti-CfaB-EtpA-LTB IgY antibody against adherence and toxicity of enterotoxigenic Escherichia coli (ETEC). J Appl Microbiol 2023; 134:6994376. [PMID: 36662123 DOI: 10.1093/jambio/lxad013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
AIM Production of IgY antibodies against CfaB-EtpA-LTB (CEL) chimeric protein and evaluation of its protective effects against enterotoxigenic Escherichia coli (ETEC) by in vivo and in vitro investigation. METHODS AND RESULTS Indirect ELISA and immunoblotting methods were applied to assess the immunogenicity and specificity of IgYs and also to evaluate the efficacy of IgYs in binding prevention and neutralizing the heat-labile (LT) toxin of ETEC bacteria. The results indicated that the anti-CEL IgY at a concentration of 2 mg ml-1 could decrease the bacterial adhesion to HT-29 cells by 74% compared to the control group.At a concentration of 750 μg ml-1, the IgY antibody managed to neutralize the disruptive LT toxin effect on the Y1 cell line. At a concentration of 2 mg ml-1, 81% reduction was observed in the fluid accumulation in the ileal loop assay. CONCLUSION According to our findings, passive immunotherapy with anti-CEL IgY can prevent bacterial colonization and toxicity, thus facilitating in controlling the enteric diseases caused by ETEC infection.
Collapse
Affiliation(s)
| | | | - Shahram Nazarian
- Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, 1651155017, Iran
| | - Maryam Mafi
- Department of Biology, Shahed University, Tehran, 3319118651, Iran
| |
Collapse
|
6
|
Vallier M, Suwandi A, Ehrhardt K, Belheouane M, Berry D, Čepić A, Galeev A, Johnsen JM, Grassl GA, Baines JF. Pathometagenomics reveals susceptibility to intestinal infection by Morganella to be mediated by the blood group-related B4galnt2 gene in wild mice. Gut Microbes 2023; 15:2164448. [PMID: 36683151 PMCID: PMC9872957 DOI: 10.1080/19490976.2022.2164448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious disease is widely considered to be a major driver of evolution. A preponderance of signatures of balancing selection at blood group-related genes is thought to be driven by inherent trade-offs in susceptibility to disease. B4galnt2 is subject to long-term balancing selection in house mice, where two divergent allele classes direct alternative tissue-specific expression of a glycosyltransferase in the intestine versus blood vessels. The blood vessel allele class leads to prolonged bleeding times similar to von Willebrand disease in humans, yet has been maintained for millions of years. Based on in vivo functional studies in inbred lab strains, it is hypothesized that the cost of prolonged bleeding times may be offset by an evolutionary trade-off involving susceptibility to a yet unknown pathogen(s). To identify candidate pathogens for which resistance could be mediated by B4galnt2 genotype, we here employed a novel "pathometagenomic" approach in a wild mouse population, which combines bacterial 16S rRNA gene-based community profiling with histopathology of gut tissue. Through subsequent isolation, genome sequencing and controlled experiments in lab mice, we show that the presence of the blood vessel allele is associated with resistance to a newly identified subspecies of Morganella morganii, a clinically important opportunistic pathogen. Given the increasing importance of zoonotic events, the approach outlined here may find useful application in the detection of emerging diseases in wild animal populations.
Collapse
Affiliation(s)
- Marie Vallier
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - Meriem Belheouane
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Aleksa Čepić
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alibek Galeev
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jill M. Johnsen
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
7
|
Genetic Characteristics of the Transmissible Locus of Stress Tolerance (tLST) and tLST Harboring Escherichia coli as Revealed by Large-Scale Genomic Analysis. Appl Environ Microbiol 2022; 88:e0218521. [PMID: 35285715 DOI: 10.1128/aem.02185-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transmissible locus of stress tolerance (tLST) confers resistance to multiple stresses in E. coli. Utilizing 18,959 E. coli genomes available in the NCBI database, we investigated the prevalence, phylogenetic distribution, and configuration patterns of tLST, and correlations between tLST, and virulence and antimicrobial resistance (AMR) genes in E. coli. Four tLST variants were found in 2.7% of E. coli, with the most prevalent (77.1%) variant being tLST1 followed by tLST2 (8.3%), tLST3b (8.3%) and tLST3a (6.3%). The majority (93%) of those tLST were in E. coli belonging to phylogroup A in which the prevalence was 10.4%. tLST was also found in phylogroup B1 (0.5%) and C (0.5%) but not found in B2 or D-G. An additional 1% of the 18,959 E. coli genomes harbored tLST fragments to various extent. Phylogenetic analysis revealed both intra- and interspecies transmission of both chromosomal and plasmid-borne tLST, with E. coli showing a preference of chromosomal over plasmid-borne tLST. The presence of tLST and virulence genes in E. coli was overall negatively correlated, but tLST was found in all genomes of a subgroup of enterotoxigenic E. coli (ST2332). Of note, no Shiga toxin-producing E. coli (n = 3,492) harbored tLST. The prevalence of tLST and AMR genes showed different temporal trends over the period 1985 to 2019. However, a substantial fraction of tLST positive E. coli harbor AMR genes, posing a threat to public health. In conclusion, this study improves our understanding of the genetic characteristics of tLST and E. coli harboring tLST. IMPORTANCE This study, through a large-scale genomic analysis, demonstrated that the genomic island tLST related to multiple stress resistance (such as extreme heat resistance and oxidative stress tolerance) in E. coli is differentially present in subgroups of E. coli and is strongly associated with certain phylogenetic background of the host strain. The study also shows the transmission mechanisms of tLST in E. coli and other bacterial species. The overall negative association of tLST, and virulence genes and antimicrobial (AMR) genes suggest the selective pressures for the acquisition and transmission of these traits likely differ. Even so, the high prevalence of tLST in the enterotoxigenic E. coli clone ST2332 and co-occurrence of tLST and AMR genes in E. coli are concerning. Thus, the findings better our understanding of tLST evolution and provide information for risk assessment of tLST harboring bacteria.
Collapse
|
8
|
Liu Y, Maciel M, O’Dowd A, Poole ST, Rollenhagen JE, Etobayeva IV, Savarino SJ. Development and Comparison of a Panel of Modified CS17 Fimbrial Tip Adhesin Proteins as Components for an Adhesin-Based Vaccine against Enterotoxigenic Escherichia coli. Microorganisms 2021; 9:microorganisms9081646. [PMID: 34442726 PMCID: PMC8401227 DOI: 10.3390/microorganisms9081646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea in travelers and children in resource-limited countries. ETEC colonization factors, fimbrial tip adhesins and enterotoxins are key virulence factors, and thus have been studied as vaccine candidates. Some prevalent colonization factors, including CFA/I and CS17, belong to the class 5 family. We previously found that passive oral administration of hyperimmune bovine colostral IgG (bIgG) raised against dscCfaE (donor strand complemented CFA/I tip adhesin) protected volunteers against CFA/I+ ETEC challenge, while anti-dscCsbD bIgG (CS17 tip adhesin) did not confer protection. These findings led us to develop and optimize a panel of alternative CsbD-based vaccine candidates based on allele matching and in silico protein engineering. Physicochemical characterizations revealed that an optimized vaccine candidate dscCsbDLSN139(P218A/G3) had the greatest thermal stability among the six tested dscCsbD adhesins, whereas the overall secondary structures and solubility of these adhesins had no obvious differences. Importantly, dscCsbDLSN139(P218A/G3) elicited significantly higher CS17+ ETEC hemagglutination inhibition titers in sera from mice intranasally immunized with the panel of dscCsbD adhesins, while no significant difference was observed among heterologous neutralizing titers. Our results strongly advocate for the incorporation of these modifications into a new generation of CsbD-based ETEC vaccine candidates.
Collapse
Affiliation(s)
- Yang Liu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (M.M.J.); (A.O.); (S.T.P.); (J.E.R.)
- Correspondence:
| | - Milton Maciel
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (M.M.J.); (A.O.); (S.T.P.); (J.E.R.)
| | - Aisling O’Dowd
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (M.M.J.); (A.O.); (S.T.P.); (J.E.R.)
| | - Steven T. Poole
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (M.M.J.); (A.O.); (S.T.P.); (J.E.R.)
| | - Julianne E. Rollenhagen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (M.M.J.); (A.O.); (S.T.P.); (J.E.R.)
| | - Irina V. Etobayeva
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (I.V.E.); (S.J.S.)
| | - Stephen J. Savarino
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (I.V.E.); (S.J.S.)
| |
Collapse
|
9
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
10
|
Asmani F, Khavari-Nejad RA, Salmanian AH, Amani J. In Silico designing and immunogenic production of the multimeric CfaB*ST, CfaE, LTB antigen as a peptide vaccine against Enterotoxigenic Escherichia coli. Microb Pathog 2021; 158:105087. [PMID: 34256098 DOI: 10.1016/j.micpath.2021.105087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most frequent bacterial cause of diarrhea particularly reported in children of developing countries and also travelers. Enterotoxins and colonization factor antigens (CFAs) are two major virulence factors in ETEC pathogenesis. Colonization factor antigen I (CFA/I) includes major pilin subunit CfaB, and a minor adhesive subunit (CfaE), and enterotoxins consisting of heat-labile toxin subunit B (LTB) and heat-stable toxin (ST). Chimeric proteins (CCL) carrying epitopes and adjuvant sequences increase the possibility of eliciting a broad cellular or effective immune response. In the present study, a chimeric candidate vaccine containing CfaB*ST, CfaE, and LTB (CCL) was designed via in silico techniques. This chimeric gene was synthesized by using codon usage of E. coli for increasing the expression of the recombinant protein. After designing the chimeric construct, it showed a high antigenicity index estimated by the vaxiJen server. Linear and conformational B-cell epitopes were identified and indicated suitable immunogenicity of this multimeric recombinant protein. Thermodynamic analyses for mRNA structures revealed the appropriate folding of the RNA representative good stability of this molecule. In silico scanning was done to predict the 3D structure of the protein, and modeling was validated using the Ramachandran plot analysis. The chimeric protein (rCCL) was expressed in a prokaryotic expression system (E. coli), purified, and analyzed for their immunogenic properties. It was revealed that the production of a high titer of antibody produced in immunized mice could neutralize the ETEC using the rabbit ileal loop tests. The results indicated that the protein inferred from the recombinant protein (rCCL) construct could act as a proper vaccine candidate against three critical causative agents of diarrheal bacteria at the same time.
Collapse
Affiliation(s)
- Farzaneh Asmani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Baker JL, Dahlberg T, Bullitt E, Andersson M. Impact of an alpha helix and a cysteine-cysteine disulfide bond on the resistance of bacterial adhesion pili to stress. Proc Natl Acad Sci U S A 2021; 118:e2023595118. [PMID: 34011607 PMCID: PMC8166124 DOI: 10.1073/pnas.2023595118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli express adhesion pili that mediate attachment to host cell surfaces and are exposed to body fluids in the urinary and gastrointestinal tracts. Pilin subunits are organized into helical polymers, with a tip adhesin for specific host binding. Pili can elastically unwind when exposed to fluid flow forces, reducing the adhesin load, thereby facilitating sustained attachment. Here we investigate biophysical and structural differences of pili commonly expressed on bacteria that inhabit the urinary and intestinal tracts. Optical tweezers measurements reveal that class 1a pili of uropathogenic E. coli (UPEC), as well as class 1b of enterotoxigenic E. coli (ETEC), undergo an additional conformational change beyond pilus unwinding, providing significantly more elasticity to their structure than ETEC class 5 pili. Examining structural and steered molecular dynamics simulation data, we find that this difference in class 1 pili subunit behavior originates from an α-helical motif that can unfold when exposed to force. A disulfide bond cross-linking β-strands in class 1 pili stabilizes subunits, allowing them to tolerate higher forces than class 5 pili that lack this covalent bond. We suggest that these extra contributions to pilus resiliency are relevant for the UPEC niche, since resident bacteria are exposed to stronger, more transient drag forces compared to those experienced by ETEC bacteria in the mucosa of the intestinal tract. Interestingly, class 1b ETEC pili include the same structural features seen in UPEC pili, while requiring lower unwinding forces that are more similar to those of class 5 ETEC pili.
Collapse
Affiliation(s)
- Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ 08628;
| | | | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118
| | | |
Collapse
|
12
|
Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design. Sci Rep 2021; 11:2751. [PMID: 33531570 PMCID: PMC7854682 DOI: 10.1038/s41598-021-81895-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 11/15/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is estimated to cause approximately 380,000 deaths annually during sporadic or epidemic outbreaks worldwide. Development of vaccines against ETEC is very challenging due to the vast heterogeneity of the ETEC strains. An effective vaccines would have to be multicomponent to provide coverage of over ten ETEC strains with genetic variabilities. There is currently no vaccine licensed to prevent ETEC. Nanobodies are successful new biologics in treating mucosal infectious disease as they recognize conserved epitopes on hypervariable pathogens. Cocktails consisting of multiple nanobodies could provide even broader epitope coverage at a lower cost compared to monoclonal antibodies. Identification of conserved epitopes by nanobodies can also assist reverse engineering of an effective vaccine against ETEC. By screening nanobodies from immunized llamas and a naïve yeast display library against adhesins of colonization factors, we identified single nanobodies that show cross-protective potency against eleven major pathogenic ETEC strains in vitro. Oral administration of nanobodies led to a significant reduction of bacterial colonization in animals. Moreover, nanobody-IgA fusion showed extended inhibitory activity in mouse colonization compared to commercial hyperimmune bovine colostrum product used for prevention of ETEC-induced diarrhea. Structural analysis revealed that nanobodies recognized a highly-conserved epitope within the putative receptor binding region of ETEC adhesins. Our findings support further rational design of a pan-ETEC vaccine to elicit robust immune responses targeting this conserved epitope.
Collapse
|
13
|
Cross-Reactivity, Epitope Mapping, and Potency of Monoclonal Antibodies to Class 5 Fimbrial Tip Adhesins of Enterotoxigenic Escherichia coli. Infect Immun 2020; 88:IAI.00246-20. [PMID: 32839190 PMCID: PMC7573445 DOI: 10.1128/iai.00246-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/08/2020] [Indexed: 12/26/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading diarrheagenic bacterial pathogen among travelers and children in resource-limited regions. Adherence to host intestinal cells mediated by ETEC fimbriae is believed to be a critical first step in ETEC pathogenesis. These fimbriae are categorized into related classes based on sequence similarity, with members of the class 5 fimbrial family being the best characterized. The eight related members of the ETEC class 5 fimbrial family are subdivided into three subclasses (5a, 5b, and 5c) that share similar structural arrangements, including a fimbrial tip adhesin. Enterotoxigenic Escherichia coli (ETEC) is a leading diarrheagenic bacterial pathogen among travelers and children in resource-limited regions. Adherence to host intestinal cells mediated by ETEC fimbriae is believed to be a critical first step in ETEC pathogenesis. These fimbriae are categorized into related classes based on sequence similarity, with members of the class 5 fimbrial family being the best characterized. The eight related members of the ETEC class 5 fimbrial family are subdivided into three subclasses (5a, 5b, and 5c) that share similar structural arrangements, including a fimbrial tip adhesin. However, sequence variability among the class 5 adhesins may hinder the generation of cross-protective antibodies. To better understand functional epitopes of the class 5 adhesins and their ability to induce intraclass antibody responses, we produced 28 antiadhesin monoclonal antibodies (MAbs) to representative adhesins CfaE, CsbD, and CotD, respectively. We determined the MAb cross-reactivities, localized the epitopes, and measured functional activities as potency in inhibition of hemagglutination induced by class 5 fimbria-bearing ETEC. The MAbs’ reactivities to a panel of class 5 adhesins in enzyme-linked immunosorbent assays (ELISAs) revealed several reactivity patterns, including individual adhesin specificity, intrasubclass specificity, intersubclass specificity, and class-wide cross-reactivity, suggesting that some conserved epitopes, including two conserved arginines, are shared by the class 5 adhesins. However, the cross-reactive MAbs had functional activities limited to strains expressing colonization factor antigen I (CFA/I), coli surface antigen 17 (CS17), or CS1, suggesting that the breadth of functional activities of the MAbs was more restricted than the repertoire of cross-reactivities measured by ELISA. The results imply that multivalent adhesin-based ETEC vaccines or prophylactics need more than one active component to reach broad protection.
Collapse
|
14
|
A first in human clinical trial assessing the safety and immunogenicity of transcutaneously delivered enterotoxigenic Escherichia coli fimbrial tip adhesin with heat-labile enterotoxin with mutation R192G. Vaccine 2020; 38:7040-7048. [DOI: 10.1016/j.vaccine.2020.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/04/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023]
|
15
|
He LH, Wang H, Liu Y, Kang M, Li T, Li CC, Tong AP, Zhu YB, Song YJ, Savarino SJ, Prouty MG, Xia D, Bao R. Chaperone-tip adhesin complex is vital for synergistic activation of CFA/I fimbriae biogenesis. PLoS Pathog 2020; 16:e1008848. [PMID: 33007034 PMCID: PMC7531860 DOI: 10.1371/journal.ppat.1008848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
Colonization factor CFA/I defines the major adhesive fimbriae of enterotoxigenic Escherichia coli and mediates bacterial attachment to host intestinal epithelial cells. The CFA/I fimbria consists of a tip-localized minor adhesive subunit, CfaE, and thousands of copies of the major subunit CfaB polymerized into an ordered helical rod. Biosynthesis of CFA/I fimbriae requires the assistance of the periplasmic chaperone CfaA and outer membrane usher CfaC. Although the CfaE subunit is proposed to initiate the assembly of CFA/I fimbriae, how it performs this function remains elusive. Here, we report the establishment of an in vitro assay for CFA/I fimbria assembly and show that stabilized CfaA-CfaB and CfaA-CfaE binary complexes together with CfaC are sufficient to drive fimbria formation. The presence of both CfaA-CfaE and CfaC accelerates fimbria formation, while the absence of either component leads to linearized CfaB polymers in vitro. We further report the crystal structure of the stabilized CfaA-CfaE complex, revealing features unique for biogenesis of Class 5 fimbriae.
Collapse
Affiliation(s)
- Li-hui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Yang Liu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Mei Kang
- Department of Laboratory medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-cheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ai-ping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-bo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-jie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Stephen J. Savarino
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Michael G. Prouty
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
OXA-181-Producing Extraintestinal Pathogenic Escherichia coli Sequence Type 410 Isolated from a Dog in Portugal. Antimicrob Agents Chemother 2020; 64:AAC.02298-19. [PMID: 31964797 DOI: 10.1128/aac.02298-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Two multidrug-resistant and carbapenemase-producing Escherichia coli clones of sequence type 410 were isolated from fecal samples of a dog with skin infection on admission to an animal hospital in Portugal and 1 month after discharge. Whole-genome sequencing revealed a 126,409-bp Col156/IncFIA/IncFII multidrug resistance plasmid and a 51,479-bp IncX3 bla OXA-181-containing plasmid. The chromosome and plasmids carried virulence genes characteristic for uropathogenic E. coli, indicating that dogs may carry multidrug-resistant E. coli isolates related to those causing urinary tract infections in humans.
Collapse
|
17
|
Evaluation of the reactogenicity, adjuvanticity and antigenicity of LT(R192G) and LT(R192G/L211A) by intradermal immunization in mice. PLoS One 2019; 14:e0224073. [PMID: 31682624 PMCID: PMC6827915 DOI: 10.1371/journal.pone.0224073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
The development of an effective subunit vaccine is frequently complicated by the difficulty of eliciting protective immune responses, often requiring the co-administration of an adjuvant. Heat-labile toxin (LT), an enterotoxin expressed by enterotoxigenic E. coli (ETEC) with an AB5 structure similar to cholera toxin, is a strong adjuvant. While the mucosa represents the natural route of exposure to LT and related toxins, the clinical utility of LT and similar adjuvants given by mucosal routes has been limited by toxicity, as well as the association between intranasal delivery of LT and Bell's palsy. Single and double amino acid mutants of LT, LT(R192G)/mLT and LT(R192G/L211A)/dmLT respectively, have been proposed as alternatives to reduce the toxicity associated with the holotoxin. In the present study, we compared mLT and dmLT given via a non-mucosal route (i.e. intradermally) to investigate their adjuvanticity when co-administrated with an enterotoxigenic E. coli vaccine candidate, CfaEB. Antigenicity (i.e. ability to elicit response against LT) and reactogenicity at the injection site were also evaluated. BALB/c mice were immunized by the intradermal route with CfaEB plus increasing doses of either mLT or dmLT (0.01 to 2.5 μg). Both adjuvants induced dose-dependent skin reactogenicity, with dmLT being less reactogenic than mLT. Both adjuvants significantly boosted the anti-CfaE IgG and functional hemagglutination inhibiting (HAI) antibody responses, compared to the antigen alone. In addition to inducing anti-LT responses, even at the lowest dose tested (0.01 μg), the adjuvants also prompted in vitro cytokine responses (IFN-γ, IL-4, IL-5, IL-10 and IL-17) that followed different patterns, depending on the protein used for stimulation (CfaE or LTB) and/or the dose used for immunization. The two LT mutants evaluated here, mLT and dmLT, are potent adjuvants for intradermal immunization and should be further investigated for the intradermal delivery of subunit ETEC vaccines.
Collapse
|
18
|
Intradermal or Sublingual Delivery and Heat-Labile Enterotoxin Proteins Shape Immunologic Responses to a CFA/I Fimbria-Derived Subunit Antigen Vaccine against Enterotoxigenic Escherichia coli. Infect Immun 2019; 87:IAI.00460-19. [PMID: 31427449 DOI: 10.1128/iai.00460-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of infectious diarrhea in children, travelers, and deployed military personnel. As such, development of a vaccine would be advantageous for public health. One strategy is to use subunits of colonization factors combined with antigen/adjuvant toxoids as an ETEC vaccine. Here, we investigated the intradermal (i.d.) or sublingual (s.l.) delivery of CFA/I fimbrial antigens, including CfaEB and a CfaE-heat-labile toxin B subunit (LTB) chimera admixed with double mutant heat-labile toxin (LT) LT-R192G/L211A (dmLT). In addition, we compared dmLT with other LT proteins to better understand the generation of adjuvanted fimbrial and toxoid immunity as well as the influence on any local skin reactogenicity. We demonstrate that immunization with dmLT admixed with CfaEB induces robust serum and fecal antibody responses to CFA/I fimbriae and LT but that i.d. formulations are not optimal for s.l. delivery. Improved s.l. vaccination outcomes were observed when higher doses of dmLT (1 to 5 μg) were admixed with CfaEB or, even better, when a CfaE-LTB chimera antigen was used instead. Serum anti-CFA/I total antibodies, detected by enzyme-linked immunosorbent assay, were the best predictor of functional antibodies, based on the inhibition of red blood cell agglutination by ETEC. Immunization with other LT proteins or formulations with altered B-subunit binding during i.d. immunization (e.g., by addition of 5% lactose, LTA1, or LT-G33D) minimally altered the development of antibody responses and cytokine recall responses but reduced skin reactogenicity at the injection site. These results reveal how formulations and delivery parameters shape the adaptive immune responses to a toxoid and fimbria-derived subunit vaccine against ETEC.
Collapse
|
19
|
Zheng W, Andersson M, Mortezaei N, Bullitt E, Egelman E. Cryo-EM structure of the CFA/I pilus rod. IUCRJ 2019; 6:815-821. [PMID: 31576215 PMCID: PMC6760452 DOI: 10.1107/s2052252519007966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are common agents of diarrhea for travelers and a major cause of mortality in children in developing countries. To attach to intestinal cells ETEC express colonization factors, among them CFA/I, which are the most prevalent factors and are the archetypical representative of class 5 pili. The helical quaternary structure of CFA/I can be unwound under tensile force and it has been shown that this mechanical property helps bacteria to withstand shear forces from fluid motion. We report in this work the CFA/I pilus structure at 4.3 Å resolution from electron cryomicroscopy (cryo-EM) data, and report details of the donor strand complementation. The CfaB pilins modeled into the cryo-EM map allow us to identify the buried surface area between subunits, and these regions are correlated to quaternary structural stability in class 5 and chaperone-usher pili. In addition, from the model built using the EM structure we also predicted that residue 13 (proline) of the N-terminal β-strand could have a major impact on the filament's structural stability. Therefore, we used optical tweezers to measure and compare the stability of the quaternary structure of wild type CFA/I and a point-mutated CFA/I with a propensity for unwinding. We found that pili with this mutated CFA/I require a lower force to unwind, supporting our hypothesis that Pro13 is important for structural stability. The high-resolution CFA/I pilus structure presented in this work and the analysis of structural stability will be useful for the development of novel antimicrobial drugs that target adhesion pili needed for initial attachment and sustained adhesion of ETEC.
Collapse
Affiliation(s)
- Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | | | - Esther Bullitt
- Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Edward Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
20
|
Brown JW, Badahdah A, Iticovici M, Vickers TJ, Alvarado DM, Helmerhorst EJ, Oppenheim FG, Mills JC, Ciorba MA, Fleckenstein JM, Bullitt E. A Role for Salivary Peptides in the Innate Defense Against Enterotoxigenic Escherichia coli. J Infect Dis 2019. [PMID: 29528423 DOI: 10.1093/infdis/jiy032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Diarrheal disease from enterotoxigenic Escherichia coli (ETEC) causes significant worldwide morbidity and mortality in young children residing in endemic countries and is the leading cause of traveler's diarrhea. As ETEC enters the body through the oral cavity and cotransits the digestive tract with salivary components, we hypothesized that the antimicrobial activity of salivary proteins might extend beyond the oropharynx into the proximal digestive tract. Results Here, we show that the salivary peptide histatin-5 binds colonization factor antigen I pili, thereby blocking adhesion of ETEC to intestinal epithelial cells. Mechanistically, we demonstrate that histatin-5 stiffens the typically dynamic pili, abolishing their ability to function as spring-like shock absorbers, thereby inhibiting colonization within the turbulent vortices of chyme in the gastrointestinal tract. Conclusions Our data represent the first report of a salivary component exerting specific antimicrobial activity against an enteric pathogen and suggest that histatin-5 and related peptides might be exploited for prophylactic and/or therapeutic uses. Numerous viruses, bacteria, and fungi traverse the oropharynx to cause disease, so there is considerable opportunity for various salivary components to neutralize these pathogens prior to arrival at their target organ. Identification of additional salivary components with unexpectedly broad antimicrobial spectra should be a priority.
Collapse
Affiliation(s)
- Jeffrey W Brown
- Department of Physiology and Biophysics, Boston University School of Medicine, Massachusetts.,Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Arwa Badahdah
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Massachusetts
| | - Micah Iticovici
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Tim J Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - David M Alvarado
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Eva J Helmerhorst
- Department of Molecular and Cell Biology, Boston University, Massachusetts
| | - Frank G Oppenheim
- Department of Molecular and Cell Biology, Boston University, Massachusetts.,Department of Biochemistry, Henry M. Goldman School of Dental Medicine, Boston University, Massachusetts
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.,Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Matthew A Ciorba
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.,Department of Molecular Microbiology and Microbial Pathogenesis Program, Washington University School of Medicine, St Louis, Missouri.,Department of USA Medicine Service, Veterans Affairs Medical Center, St Louis, Missouri
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Massachusetts
| |
Collapse
|
21
|
Pakharukova N, McKenna S, Tuittila M, Paavilainen S, Malmi H, Xu Y, Parilova O, Matthews S, Zavialov AV. Archaic and alternative chaperones preserve pilin folding energy by providing incomplete structural information. J Biol Chem 2018; 293:17070-17080. [PMID: 30228191 DOI: 10.1074/jbc.ra118.004170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/14/2018] [Indexed: 11/06/2022] Open
Abstract
Adhesive pili are external component of fibrous adhesive organelles and help bacteria attach to biotic or abiotic surfaces. The biogenesis of adhesive pili via the chaperone-usher pathway (CUP) is independent of external energy sources. In the classical CUP, chaperones transport assembly-competent pilins in a folded but expanded conformation. During donor-strand exchange, pilins subsequently collapse, producing a tightly packed hydrophobic core and releasing the necessary free energy to drive fiber formation. Here, we show that pilus biogenesis in non-classical, archaic, and alternative CUPs uses a different source of conformational energy. High-resolution structures of the archaic Csu-pili system from Acinetobacter baumannii revealed that non-classical chaperones employ a short donor strand motif that is insufficient to fully complement the pilin fold. This results in chaperone-bound pilins being trapped in a substantially unfolded intermediate. The exchange of this short motif with the longer donor strand from adjacent pilin provides the full steric information essential for folding, and thereby induces a large unfolded-to-folded conformational transition to drive assembly. Our findings may inform the development of anti-adhesion drugs (pilicides) to combat bacterial infections.
Collapse
Affiliation(s)
- Natalia Pakharukova
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Sophie McKenna
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Minna Tuittila
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Sari Paavilainen
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Henri Malmi
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Yingqi Xu
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Olena Parilova
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Steve Matthews
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Anton V Zavialov
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| |
Collapse
|
22
|
Fleckenstein JM. Providing Structure to Enterotoxigenic Escherichia coli Vaccine Development. J Infect Dis 2018; 216:1-3. [PMID: 28541516 DOI: 10.1093/infdis/jix146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 01/09/2023] Open
Affiliation(s)
- James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine.,Medicine Service, Veterans Affairs Medical Center, St. Louis, Missouri
| |
Collapse
|
23
|
Laird RM, Ma Z, Dorabawila N, Pequegnat B, Omari E, Liu Y, Maue AC, Poole ST, Maciel M, Satish K, Gariepy CL, Schumack NM, McVeigh AL, Poly F, Ewing CP, Prouty MG, Monteiro MA, Savarino SJ, Guerry P. Evaluation of a conjugate vaccine platform against enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni and Shigella. Vaccine 2018; 36:6695-6702. [PMID: 30269917 DOI: 10.1016/j.vaccine.2018.09.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/08/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni (CJ), and Shigella sp. are major causes of bacterial diarrhea worldwide, but there are no licensed vaccines against any of these pathogens. Most current approaches to ETEC vaccines are based on recombinant proteins that are involved in virulence, particularly adhesins. In contrast, approaches to Shigella and CJ vaccines have included conjugate vaccines in which Shigella lipopolysaccharides (LPS) or CJ capsule polysaccharides are chemically conjugated to proteins. We have explored the feasibility of developing a multi-pathogen vaccine by using ETEC proteins as conjugating partners for CJ and Shigella polysaccharides. We synthesized three vaccines in which two CJ polysaccharides were conjugated to two recombinant ETEC adhesins based on CFA/I (CfaEB) and CS6 (CssBA), and LPS from Shigella flexneri was also conjugated to CfaEB. The vaccines were immunogenic in mice as monovalent, bivalent and trivalent formulations. Importantly, functional antibodies capable of inducing hemaglutination inhibition (HAI) of a CFA/I expressing ETEC strain were induced in all vaccines containing CfaEB. These data suggest that conjugate vaccines could be a platform for a multi-pathogen, multi-serotype vaccine against the three major causes of diarrheal disease worldwide.
Collapse
Affiliation(s)
- Renee M Laird
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Zuchao Ma
- Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Nelum Dorabawila
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Brittany Pequegnat
- Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Eman Omari
- Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Yang Liu
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Alexander C Maue
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Steven T Poole
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Milton Maciel
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Kavyashree Satish
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Christina L Gariepy
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Nina M Schumack
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Annette L McVeigh
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Frédéric Poly
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Cheryl P Ewing
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Michael G Prouty
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mario A Monteiro
- Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Stephen J Savarino
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
24
|
Crofts AA, Giovanetti SM, Rubin EJ, Poly FM, Gutiérrez RL, Talaat KR, Porter CK, Riddle MS, DeNearing B, Brubaker J, Maciel M, Alcala AN, Chakraborty S, Prouty MG, Savarino SJ, Davies BW, Trent MS. Enterotoxigenic E. coli virulence gene regulation in human infections. Proc Natl Acad Sci U S A 2018; 115:E8968-E8976. [PMID: 30126994 PMCID: PMC6156659 DOI: 10.1073/pnas.1808982115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a global diarrheal pathogen that utilizes adhesins and secreted enterotoxins to cause disease in mammalian hosts. Decades of research on virulence factor regulation in ETEC has revealed a variety of environmental factors that influence gene expression, including bile, pH, bicarbonate, osmolarity, and glucose. However, other hallmarks of the intestinal tract, such as low oxygen availability, have not been examined. Further, determining how ETEC integrates these signals in the complex host environment is challenging. To address this, we characterized ETEC's response to the human host using samples from a controlled human infection model. We found ETEC senses environmental oxygen to globally influence virulence factor expression via the oxygen-sensitive transcriptional regulator fumarate and nitrate reduction (FNR) regulator. In vitro anaerobic growth replicates the in vivo virulence factor expression profile, and deletion of fnr in ETEC strain H10407 results in a significant increase in expression of all classical virulence factors, including the colonization factor antigen I (CFA/I) adhesin operon and both heat-stable and heat-labile enterotoxins. These data depict a model of ETEC infection where FNR activity can globally influence virulence gene expression, and therefore proximity to the oxygenated zone bordering intestinal epithelial cells likely influences ETEC virulence gene expression in vivo. Outside of the host, ETEC biofilms are associated with seasonal ETEC epidemics, and we find FNR is a regulator of biofilm production. Together these data suggest FNR-dependent oxygen sensing in ETEC has implications for human infection inside and outside of the host.
Collapse
Affiliation(s)
- Alexander A Crofts
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Simone M Giovanetti
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Erica J Rubin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Frédéric M Poly
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910
| | - Ramiro L Gutiérrez
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910
| | - Kawsar R Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910
| | - Mark S Riddle
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910
| | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Jessica Brubaker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Milton Maciel
- Immunology, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Ashley N Alcala
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Michael G Prouty
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910
| | - Stephen J Savarino
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910
| | - Bryan W Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602;
- Center of Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, GA 30602
| |
Collapse
|
25
|
Glyco-engineered cell line and computational docking studies reveals enterotoxigenic Escherichia coli CFA/I fimbriae bind to Lewis a glycans. Sci Rep 2018; 8:11250. [PMID: 30050155 PMCID: PMC6062558 DOI: 10.1038/s41598-018-29258-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
We have previously reported clinical data to suggest that colonization factor I (CFA/I) fimbriae of enterotoxigenic Escherichia coli (ETEC) can bind to Lewis a (Lea), a glycan epitope ubiquitous in the small intestinal mucosa of young children (<2 years of age), and individuals with a genetic mutation of FUT2. To further elucidate the physiological binding properties of this interaction, we engineered Chinese Hamster Ovary (CHO-K1) cells to express Lea or Leb determinants on both N- and O-glycans. We used our glyco-engineered CHO-K1 cell lines to demonstrate that CfaB, the major subunit of ETEC CFA/I fimbriae, as well as four related ETEC fimbriae, bind more to our CHO-K1 cell-line expressing Lea, compared to cells carrying Leb or the CHO-K1 wild-type glycan phenotype. Furthermore, using in-silico docking analysis, we predict up to three amino acids (Glu25, Asn27, Thr29) found in the immunoglobulin (Ig)-like groove region of CfaB of CFA/I and related fimbriae, could be important for the preferential and higher affinity binding of CFA/I fimbriae to the potentially structurally flexible Lea glycan. These findings may lead to a better molecular understanding of ETEC pathogenesis, aiding in the development of vaccines and/or anti-infection therapeutics.
Collapse
|
26
|
Xu D, Liao C, Zhang B, Tolbert WD, He W, Dai Z, Zhang W, Yuan W, Pazgier M, Liu J, Yu J, Sansonetti PJ, Bevins CL, Shao Y, Lu W. Human Enteric α-Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion. Immunity 2018; 48:1233-1244.e6. [PMID: 29858013 PMCID: PMC6051418 DOI: 10.1016/j.immuni.2018.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/18/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023]
Abstract
Shigella is a Gram-negative bacterium that causes bacillary dysentery worldwide. It invades the intestinal epithelium to elicit intense inflammation and tissue damage, yet the underlying mechanisms of its host selectivity and low infectious inoculum remain perplexing. Here, we report that Shigella co-opts human α-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, to enhance its adhesion to and invasion of mucosal tissues. HD5 promoted Shigella infection in vitro in a structure-dependent manner. Shigella, commonly devoid of an effective host-adhesion apparatus, preferentially targeted HD5 to augment its ability to colonize the intestinal epithelium through interactions with multiple bacterial membrane proteins. HD5 exacerbated infectivity and Shigella-induced pathology in a culture of human colorectal tissues and three animal models. Our findings illuminate how Shigella exploits innate immunity by turning HD5 into a virulence factor for infection, unveiling a mechanism of action for this highly proficient human pathogen.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chongbing Liao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bing Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - W David Tolbert
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wangxiao He
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhijun Dai
- Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Wei Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marzena Pazgier
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jiankang Liu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jun Yu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | | | - Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Yongping Shao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Wuyuan Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, Bueno SM, Kalergis AM, Riedel CA. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol 2018; 9:432. [PMID: 29593681 PMCID: PMC5857604 DOI: 10.3389/fmicb.2018.00432] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.
Collapse
Affiliation(s)
- Maria C Opazo
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Elizabeth M Ortega-Rocha
- Laboratorio de Inmunobiología, Facultad de Medicina, Departamento de Biología Celular y Tisular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Irenice Coronado-Arrázola
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Helene Boudin
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Michel Neunlist
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad, Metropolitana, Chile
| | - Claudia A Riedel
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
28
|
Zeng L, Zhang L, Wang P, Meng G. Structural basis of host recognition and biofilm formation by Salmonella Saf pili. eLife 2017; 6:28619. [PMID: 29125121 PMCID: PMC5700814 DOI: 10.7554/elife.28619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Pili are critical in host recognition, colonization and biofilm formation during bacterial infection. Here, we report the crystal structures of SafD-dsc and SafD-SafA-SafA (SafDAA-dsc) in Saf pili. Cell adherence assays show that SafD and SafA are both required for host recognition, suggesting a poly-adhesive mechanism for Saf pili. Moreover, the SafDAA-dsc structure, as well as SAXS characterization, reveals an unexpected inter-molecular oligomerization, prompting the investigation of Saf-driven self-association in biofilm formation. The bead/cell aggregation and biofilm formation assays are used to demonstrate the novel function of Saf pili. Structure-based mutants targeting the inter-molecular hydrogen bonds and complementary architecture/surfaces in SafDAA-dsc dimers significantly impaired the Saf self-association activity and biofilm formation. In summary, our results identify two novel functions of Saf pili: the poly-adhesive and self-associating activities. More importantly, Saf-Saf structures and functional characterizations help to define a pili-mediated inter-cellular oligomerizaiton mechanism for bacterial aggregation, colonization and ultimate biofilm formation.
Collapse
Affiliation(s)
- Longhui Zeng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
29
|
Savarino SJ, McKenzie R, Tribble DR, Porter CK, O'Dowd A, Cantrell JA, Sincock SA, Poole ST, DeNearing B, Woods CM, Kim H, Grahek SL, Brinkley C, Crabb JH, Bourgeois AL. Prophylactic Efficacy of Hyperimmune Bovine Colostral Antiadhesin Antibodies Against Enterotoxigenic Escherichia coli Diarrhea: A Randomized, Double-Blind, Placebo-Controlled, Phase 1 Trial. J Infect Dis 2017; 216:7-13. [PMID: 28541500 DOI: 10.1093/infdis/jix144] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/17/2017] [Indexed: 11/13/2022] Open
Abstract
Background Tip-localized adhesive proteins of bacterial fimbriae from diverse pathogens confer protection in animal models, but efficacy in humans has not been reported. Enterotoxigenic Escherichia coli (ETEC) commonly elaborate colonization factors comprising a minor tip adhesin and major stalk-forming subunit. We assessed the efficacy of antiadhesin bovine colostral IgG (bIgG) antibodies against ETEC challenge in volunteers. Methods Adults were randomly assigned (1:1:1) to take oral hyperimmune bIgG raised against CFA/I minor pilin subunit (CfaE) tip adhesin or colonization factor I (CFA/I) fimbraie (positive control) or placebo. Two days before challenge, volunteers began a thrice-daily, 7-day course of investigational product administered in sodium bicarbonate 15 minutes after each meal. On day 3, subjects drank 1 × 109 colony-forming units of colonization factor I (CFA/I)-ETEC strain H10407 with buffer. The primary efficacy endpoint was diarrhea within 120 hours of challenge. Results After enrollment and randomization, 31 volunteers received product, underwent ETEC challenge, and were included in the per protocol efficacy analysis. Nine of 11 placebos developed diarrhea, 7 experiencing moderate to severe disease. Protective efficacy of 63% (P = .03) and 88% (P = .002) was observed in the antiadhesin bIgG and positive control groups, respectively. Conclusions Oral administration of anti-CFA/I minor pilin subunit (CfaE) antibodies conferred significant protection against ETEC, providing the first clinical evidence that fimbrial tip adhesins function as protective antigens.
Collapse
Affiliation(s)
| | - Robin McKenzie
- Johns Hopkins Bloomberg School of Public Health.,Johns Hopkins School of Medicine, Baltimore
| | | | - Chad K Porter
- Naval Medical Research Center, Silver Spring, Maryland
| | | | | | | | | | | | | | - Hye Kim
- Johns Hopkins School of Medicine, Baltimore
| | | | - Carl Brinkley
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | |
Collapse
|
30
|
Even C, Marlière C, Ghigo JM, Allain JM, Marcellan A, Raspaud E. Recent advances in studying single bacteria and biofilm mechanics. Adv Colloid Interface Sci 2017; 247:573-588. [PMID: 28754382 DOI: 10.1016/j.cis.2017.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022]
Abstract
Bacterial biofilms correspond to surface-associated bacterial communities embedded in hydrogel-like matrix, in which high cell density, reduced diffusion and physico-chemical heterogeneity play a protective role and induce novel behaviors. In this review, we present recent advances on the understanding of how bacterial mechanical properties, from single cell to high-cell density community, determine biofilm tri-dimensional growth and eventual dispersion and we attempt to draw a parallel between these properties and the mechanical properties of other well-studied hydrogels and living systems.
Collapse
|
31
|
Duan Q, Lee KH, Nandre RM, Garcia C, Chen J, Zhang W. MEFA (multiepitope fusion antigen)-Novel Technology for Structural Vaccinology, Proof from Computational and Empirical Immunogenicity Characterization of an Enterotoxigenic Escherichia coli (ETEC) Adhesin MEFA. ACTA ACUST UNITED AC 2017; 8. [PMID: 28944092 PMCID: PMC5606245 DOI: 10.4172/2157-7560.1000367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vaccine development often encounters the challenge of virulence heterogeneity. Enterotoxigenic Escherichia coli (ETEC) bacteria producing immunologically heterogeneous virulence factors are a leading cause of children's diarrhea and travelers' diarrhea. Currently, we do not have licensed vaccines against ETEC bacteria. While conventional methods continue to make progress but encounter challenge, new computational and structure-based approaches are explored to accelerate ETEC vaccine development. In this study, we applied a structural vaccinology concept to construct a structure-based multiepitope fusion antigen (MEFA) to carry representing epitopes of the seven most important ETEC adhesins [CFA/I, CFA/II (CS1-CS3), CFA/IV (CS4-CS6)], simulated antigenic structure of the CFA/I/II/IV MEFA with computational atomistic modeling and simulation, characterized immunogenicity in mouse immunization, and examined the potential of structure-informed vaccine design for ETEC vaccine development. A tag-less recombinant MEFA protein (CFA/I/II/IV MEFA) was effectively expressed and extracted. Molecular dynamics simulations indicated that this MEFA immunogen maintained a stable secondary structure and presented epitopes on the protein surface. Empirical data showed that mice immunized with the tagless CFA/I/II/IV MEFA developed strong antigen-specific antibody responses, and mouse serum antibodies significantly inhibited in vitro adherence of bacteria expressing these seven adhesins. These results revealed congruence of antigen immunogenicity between computational simulation and empirical mouse immunization and indicated this tag-less CFA/I/II/IV MEFA potentially an antigen for a broadly protective ETEC vaccine, suggesting a potential application of MEFA-based structural vaccinology for vaccine design against ETEC and likely other pathogens.
Collapse
Affiliation(s)
- Qiangde Duan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Kuo Hao Lee
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Rahul M Nandre
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Carolina Garcia
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Jianhan Chen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Weiping Zhang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| |
Collapse
|
32
|
Sheikh A, Rashu R, Begum YA, Kuhlman FM, Ciorba MA, Hultgren SJ, Qadri F, Fleckenstein JM. Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host interactions. PLoS Negl Trop Dis 2017; 11:e0005586. [PMID: 28531220 PMCID: PMC5456409 DOI: 10.1371/journal.pntd.0005586] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/02/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), defined by their elaboration of heat-labile (LT) and/or heat-stable (ST) enterotoxins, are a common cause of diarrheal illness in developing countries. Efficient delivery of these toxins requires ETEC to engage target host enterocytes. This engagement is accomplished using a variety of pathovar-specific and conserved E. coli adhesin molecules as well as plasmid encoded colonization factors. Some of these adhesins undergo significant transcriptional modulation as ETEC encounter intestinal epithelia, perhaps suggesting that they cooperatively facilitate interaction with the host. Among genes significantly upregulated on cell contact are those encoding type 1 pili. We therefore investigated the role played by these pili in facilitating ETEC adhesion, and toxin delivery to model intestinal epithelia. We demonstrate that type 1 pili, encoded in the E. coli core genome, play an essential role in ETEC virulence, acting in concert with plasmid-encoded pathovar specific colonization factor (CF) fimbriae to promote optimal bacterial adhesion to cultured intestinal epithelium (CIE) and to epithelial monolayers differentiated from human small intestinal stem cells. Type 1 pili are tipped with the FimH adhesin which recognizes mannose with stereochemical specificity. Thus, enhanced production of highly mannosylated proteins on intestinal epithelia promoted FimH-mediated ETEC adhesion, while conversely, interruption of FimH lectin-epithelial interactions with soluble mannose, anti-FimH antibodies or mutagenesis of fimH effectively blocked ETEC adhesion. Moreover, fimH mutants were significantly impaired in delivery of both heat-stable and heat-labile toxins to the target epithelial cells in vitro, and these mutants were substantially less virulent in rabbit ileal loop assays, a classical model of ETEC pathogenesis. Collectively, our data suggest that these highly conserved pili play an essential role in virulence of these diverse pathogens.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Rasheduzzaman Rashu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Mohakhali, Dhaka, Bangladesh
| | - Yasmin Ara Begum
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Mohakhali, Dhaka, Bangladesh
| | - F. Matthew Kuhlman
- Division of Infectious Disease, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Matthew A. Ciorba
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research (CWIDR), Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Mohakhali, Dhaka, Bangladesh
| | - James M. Fleckenstein
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Division of Infectious Disease, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Medicine Service, Veterans Affairs Medical Center, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
33
|
Antibodies Damage the Resilience of Fimbriae, Causing Them To Be Stiff and Tangled. J Bacteriol 2016; 199:JB.00665-16. [PMID: 27795330 DOI: 10.1128/jb.00665-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/12/2016] [Indexed: 01/23/2023] Open
Abstract
As adhesion fimbriae are a major virulence factor for many pathogenic Gram-negative bacteria, they are also potential targets for antibodies. Fimbriae are commonly required for initiating the colonization that leads to disease, and their success as adhesion organelles lies in their ability to both initiate and sustain bacterial attachment to epithelial cells. The ability of fimbriae to unwind and rewind their helical filaments presumably reduces their detachment from tissue surfaces with the shear forces that accompany significant fluid flow. Therefore, the disruption of functional fimbriae by inhibiting this resilience should have high potential for use as a vaccine to prevent disease. In this study, we show that two characteristic biomechanical features of fimbrial resilience, namely, the extension force and the extension length, are significantly altered by the binding of antibodies to fimbriae. The fimbriae that were studied are normally expressed on enterotoxigenic Escherichia coli, which are a major cause of diarrheal disease. This alteration in biomechanical properties was observed with bivalent polyclonal antifimbrial antibodies that recognize major pilin subunits but not with the Fab fragments of these antibodies. Thus, we propose that the mechanism by which bound antibodies disrupt the uncoiling of natural fimbria under force is by clamping together layers of the helical filament, thereby increasing their stiffness and reducing their resilience during fluid flow. In addition, we propose that antibodies tangle fimbriae via bivalent binding, i.e., by binding to two individual fimbriae and linking them together. Use of antibodies to disrupt physical properties of fimbriae may be generally applicable to the large number of Gram-negative bacteria that rely on these surface-adhesion molecules as an essential virulence factor. IMPORTANCE Our study shows that the resiliency of colonization factor antigen I (CFA/I) and coli surface antigen 2 (CS2) fimbriae, which are current targets for vaccine development, can be compromised significantly in the presence of antifimbrial antibodies. It is unclear how the humoral immune system specifically interrupts infection after the attachment of enterotoxigenic Escherichia coli (ETEC) to the epithelial surface. Our study indicates that immunoglobulins, in addition to their well-documented role in adaptive immunity, can mechanically damage the resilience of fimbriae of surface-attached ETEC, thereby revealing a new mode of action. Our data suggest a mechanism whereby antibodies coat adherent and free-floating bacteria to impede fimbrial resilience. Further elucidation of this possible mechanism is likely to inform the development and refinement of preventive vaccines against ETEC diarrhea.
Collapse
|
34
|
Gheibi Hayat SM, Mousavi Gargari SL, Nazarian S. Construction and immunogenic properties of a chimeric protein comprising CfaE, CfaB and LTB against Enterotoxigenic Escherichia coli. Biologicals 2016; 44:503-510. [DOI: 10.1016/j.biologicals.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 01/17/2023] Open
|
35
|
Bao R, Liu Y, Savarino SJ, Xia D. Off-pathway assembly of fimbria subunits is prevented by chaperone CfaA of CFA/I fimbriae from enterotoxigenic E. coli. Mol Microbiol 2016; 102:975-991. [PMID: 27627030 DOI: 10.1111/mmi.13530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
Abstract
The assembly of the class 5 colonization factor antigen I (CFA/I) fimbriae of enterotoxigenic E. coli was proposed to proceed via the alternate chaperone-usher pathway. Here, we show that in the absence of the chaperone CfaA, CfaB, the major pilin subunit of CFA/I fimbriae, is able to spontaneously refold and polymerize into cyclic trimers. CfaA kinetically traps CfaB to form a metastable complex that can be stabilized by mutations. Crystal structure of the stabilized complex reveals distinctive interactions provided by CfaA to trap CfaB in an assembly competent state through donor-strand complementation (DSC) and cleft-mediated anchorage. Mutagenesis indicated that DSC controls the stability of the chaperone-subunit complex and the cleft-mediated anchorage of the subunit C-terminus additionally assist in subunit refolding. Surprisingly, over-stabilization of the chaperone-subunit complex led to delayed fimbria assembly, whereas destabilizing the complex resulted in no fimbriation. Thus, CfaA acts predominantly as a kinetic trap by stabilizing subunit to avoid its off-pathway self-polymerization that results in energetically favorable trimers and could serve as a driving force for CFA/I pilus assembly, representing an energetic landscape unique to class 5 fimbria assembly.
Collapse
Affiliation(s)
- Rui Bao
- Division of Infectious Diseases, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospitals, Sichuan University, Chengdu, 610041, China.,Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yang Liu
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, 20910-7500, USA
| | - Stephen J Savarino
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, 20910-7500, USA.,Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814-4799, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
36
|
Zakrisson J, Singh B, Svenmarker P, Wiklund K, Zhang H, Hakobyan S, Ramstedt M, Andersson M. Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4521-9. [PMID: 27088225 DOI: 10.1021/acs.langmuir.5b03845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacterial cells display a diverse array of surface organelles that are important for a range of processes such as intercellular communication, motility and adhesion leading to biofilm formation, infections, and bacterial spread. More specifically, attachment to host cells by Gram-negative bacteria are mediated by adhesion pili, which are nanometers wide and micrometers long fibrous organelles. Since these pili are significantly thinner than the wavelength of visible light, they cannot be detected using standard light microscopy techniques. At present, there is no fast and simple method available to investigate if a single cell expresses pili while keeping the cell alive for further studies. In this study, we present a method to determine the presence of pili on a single bacterium. The protocol involves imaging the bacterium to measure its size, followed by predicting the fluid drag based on its size using an analytical model, and thereafter oscillating the sample while a single bacterium is trapped by an optical tweezer to measure its effective fluid drag. Comparison between the predicted and the measured fluid drag thereby indicate the presence of pili. Herein, we verify the method using polymer coated silica microspheres and Escherichia coli bacteria expressing adhesion pili. Our protocol can in real time and within seconds assist single cell studies by distinguishing between piliated and nonpiliated bacteria.
Collapse
Affiliation(s)
- Johan Zakrisson
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Bhupender Singh
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Pontus Svenmarker
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Krister Wiklund
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Hanqing Zhang
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Shoghik Hakobyan
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Madeleine Ramstedt
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Magnus Andersson
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| |
Collapse
|
37
|
Binding of CFA/I Pili of Enterotoxigenic Escherichia coli to Asialo-GM1 Is Mediated by the Minor Pilin CfaE. Infect Immun 2016; 84:1642-1649. [PMID: 26975993 DOI: 10.1128/iai.01562-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/06/2016] [Indexed: 11/20/2022] Open
Abstract
CFA/I pili are representatives of a large family of related pili that mediate the adherence of enterotoxigenic Escherichia coli to intestinal epithelial cells. They are assembled via the alternate chaperone-usher pathway and consist of two subunits, CfaB, which makes up the pilus shaft and a single pilus tip-associated subunit, CfaE. The current model of pilus-mediated adherence proposes that CFA/I has two distinct binding activities; the CfaE subunit is responsible for binding to receptors of unknown structure on erythrocyte and intestinal epithelial cell surfaces, while CfaB binds to various glycosphingolipids, including asialo-GM1. In this report, we present two independent lines of evidence that, contrary to the existing model, CfaB does not bind to asialo-GM1 independently of CfaE. Neither purified CfaB subunits nor CfaB assembled into pili bind to asialo-GM1. Instead, we demonstrate that binding activity toward asialo-GM1 resides in CfaE and this is essential for pilus binding to Caco-2 intestinal epithelial cells. We conclude that the binding activities of CFA/I pili for asialo-GM1, erythrocytes, and intestinal cells are inseparable, require the same amino acid residues in CfaE, and therefore depend on the same or very similar binding mechanisms.
Collapse
|
38
|
Xu Q, Shoji M, Shibata S, Naito M, Sato K, Elsliger MA, Grant JC, Axelrod HL, Chiu HJ, Farr CL, Jaroszewski L, Knuth MW, Deacon AM, Godzik A, Lesley SA, Curtis MA, Nakayama K, Wilson IA. A Distinct Type of Pilus from the Human Microbiome. Cell 2016; 165:690-703. [PMID: 27062925 DOI: 10.1016/j.cell.2016.03.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 01/08/2016] [Accepted: 03/07/2016] [Indexed: 11/28/2022]
Abstract
Pili are proteinaceous polymers of linked pilins that protrude from the cell surface of many bacteria and often mediate adherence and virulence. We investigated a set of 20 Bacteroidia pilins from the human microbiome whose structures and mechanism of assembly were unknown. Crystal structures and biochemical data revealed a diverse protein superfamily with a common Greek-key β sandwich fold with two transthyretin-like repeats that polymerize into a pilus through a strand-exchange mechanism. The assembly mechanism of the central, structural pilins involves proteinase-assisted removal of their N-terminal β strand, creating an extended hydrophobic groove that binds the C-terminal donor strands of the incoming pilin. Accessory pilins at the tip and base have unique structural features specific to their location, allowing initiation or termination of the assembly. The Bacteroidia pilus, therefore, has a biogenesis mechanism that is distinct from other known pili and likely represents a different type of bacterial pilus.
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics, http://www.jcsg.org; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Satoshi Shibata
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Keiko Sato
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joanna C Grant
- Joint Center for Structural Genomics, http://www.jcsg.org; Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Herbert L Axelrod
- Joint Center for Structural Genomics, http://www.jcsg.org; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Carol L Farr
- Joint Center for Structural Genomics, http://www.jcsg.org; Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org; Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093, USA; Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mark W Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org; Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Ashley M Deacon
- Joint Center for Structural Genomics, http://www.jcsg.org; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org; Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093, USA; Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott A Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Michael A Curtis
- Centre for Immunology and Infectious Disease (CIID), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | - Ian A Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Mortezaei N, Singh B, Zakrisson J, Bullitt E, Andersson M. Biomechanical and structural features of CS2 fimbriae of enterotoxigenic Escherichia coli. Biophys J 2016; 109:49-56. [PMID: 26153701 DOI: 10.1016/j.bpj.2015.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 12/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrhea worldwide, and infection of children in under-developed countries often leads to high mortality rates. Isolated ETEC expresses a plethora of colonization factors (fimbriae/pili), of which CFA/I and CFA/II, which are assembled via the alternate chaperone pathway (ACP), are among the most common. Fimbriae are filamentous structures whose shafts are primarily composed of helically arranged single pilin-protein subunits, with a unique biomechanical ability to unwind and rewind. A sustained ETEC infection, under adverse conditions of dynamic shear forces, is primarily attributed to this biomechanical feature of ETEC fimbriae. Recent understanding about the role of fimbriae as virulence factors points to an evolutionary adaptation of their structural and biomechanical features. In this work, we investigated the biophysical properties of CS2 fimbriae from the CFA/II group. Homology modeling of its major structural subunit, CotA, reveals structural clues related to the niche in which they are expressed. Using optical-tweezers force spectroscopy, we found that CS2 fimbriae unwind at a constant force of 10 pN and have a corner velocity (i.e., the velocity at which the force required for unwinding rises exponentially with increased speed) of 1300 nm/s. The biophysical properties of CS2 fimbriae assessed in this work classify them into a low-force unwinding group of fimbriae together with the CFA/I and CS20 fimbriae expressed by ETEC strains. The three fimbriae are expressed by ETEC, colonize in similar gut environments, and exhibit similar biophysical features, but differ in their biogenesis. Our observation suggests that the environment has a strong impact on the biophysical characteristics of fimbriae expressed by ETEC.
Collapse
Affiliation(s)
| | - Bhupender Singh
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | | | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
40
|
Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli. Infect Immun 2016; 84:1112-1122. [PMID: 26831466 DOI: 10.1128/iai.01001-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliCa nd fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of a EPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of a EPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The a EPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of a EPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process.
Collapse
|
41
|
Characterization of oligomeric assembly of colonization factor CS6 from enterotoxigenic Escherichia coli. Microbiology (Reading) 2016; 162:72-83. [DOI: 10.1099/mic.0.000180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Immunogenicity of a prototype enterotoxigenic Escherichia coli adhesin vaccine in mice and nonhuman primates. Vaccine 2016; 34:284-291. [DOI: 10.1016/j.vaccine.2015.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/06/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022]
|
43
|
Fleckenstein JM, Rasko DA. Overcoming Enterotoxigenic Escherichia coli Pathogen Diversity: Translational Molecular Approaches to Inform Vaccine Design. Methods Mol Biol 2016; 1403:363-83. [PMID: 27076141 DOI: 10.1007/978-1-4939-3387-7_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a genetically diverse E. coli pathovar that share in the ability to produce heat-labile toxin and/or heat-stable toxins. While these pathogens contribute substantially to the burden of diarrheal illness in developing countries, at present, there is no suitable broadly protective vaccine to prevent these common infections. Most vaccine development attempts to date have followed a classical approach involving a relatively small group of antigens. The extraordinary underlying genetic plasticity of E. coli has confounded the antigen valency requirements based on this approach. The recent discovery of additional virulence proteins within this group of pathogens, as well as the availability of whole-genome sequences from hundreds of ETEC strains to facilitate identification of conserved molecules, now permits a reconsideration of the classical approaches, and the exploration of novel antigenic targets to complement existing strategies overcoming antigenic diversity that has impeded progress toward a broadly protective vaccine. Progress to date in antigen discovery and methods currently available to explore novel immunogens are outlined here.
Collapse
Affiliation(s)
- James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Campus Box 8051, 660 South Euclid Avenue, St. Louis, MO, USA.
- Molecular Microbiology and Molecular Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Medicine Service, Veterans Affairs Medical Center, St. Louis, MO, USA.
| | - David A Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
Pakharukova N, Garnett JA, Tuittila M, Paavilainen S, Diallo M, Xu Y, Matthews SJ, Zavialov AV. Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis. PLoS Pathog 2015; 11:e1005269. [PMID: 26587649 PMCID: PMC4654587 DOI: 10.1371/journal.ppat.1005269] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Gram-negative pathogens express fibrous adhesive organelles that mediate targeting to sites of infection. The major class of these organelles is assembled via the classical, alternative and archaic chaperone-usher pathways. Although non-classical systems share a wider phylogenetic distribution and are associated with a range of diseases, little is known about their assembly mechanisms. Here we report atomic-resolution insight into the structure and biogenesis of Acinetobacter baumannii Csu and Escherichia coli ECP biofilm-mediating pili. We show that the two non-classical systems are structurally related, but their assembly mechanism is strikingly different from the classical assembly pathway. Non-classical chaperones, unlike their classical counterparts, maintain subunits in a substantially disordered conformational state, akin to a molten globule. This is achieved by a unique binding mechanism involving the register-shifted donor strand complementation and a different subunit carboxylate anchor. The subunit lacks the classical pre-folded initiation site for donor strand exchange, suggesting that recognition of its exposed hydrophobic core starts the assembly process and provides fresh inspiration for the design of inhibitors targeting chaperone-usher systems.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
| | - James A. Garnett
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Minna Tuittila
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
| | - Sari Paavilainen
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
| | - Mamou Diallo
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Steve J. Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Anton V. Zavialov
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
- * E-mail:
| |
Collapse
|
45
|
Maternal vaccination with a fimbrial tip adhesin and passive protection of neonatal mice against lethal human enterotoxigenic Escherichia coli challenge. Infect Immun 2015; 83:4555-64. [PMID: 26371126 DOI: 10.1128/iai.00858-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/04/2015] [Indexed: 01/27/2023] Open
Abstract
Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 10(7) bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation.
Collapse
|
46
|
Zakrisson J, Wiklund K, Servin M, Axner O, Lacoursière C, Andersson M. Rigid multibody simulation of a helix-like structure: the dynamics of bacterial adhesion pili. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:291-300. [PMID: 25851543 DOI: 10.1007/s00249-015-1021-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
We present a coarse-grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymer's force-extension response. With building blocks representing individual subunits, the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include the effects of both unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and results in this work give enhanced understanding of how a pilus unwinds under the action of external forces and provide a new perspective of the complex bacterial adhesion processes.
Collapse
Affiliation(s)
- Johan Zakrisson
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Maddaloni M, Kochetkova I, Jun S, Callis G, Thornburg T, Pascual DW. Milk-based nutraceutical for treating autoimmune arthritis via the stimulation of IL-10- and TGF-β-producing CD39+ regulatory T cells. PLoS One 2015; 10:e0117825. [PMID: 25629976 PMCID: PMC4309564 DOI: 10.1371/journal.pone.0117825] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/01/2015] [Indexed: 01/12/2023] Open
Abstract
Autoimmune diseases arise from the loss of tolerance to self, and because the etiologies of such diseases are largely unknown, symptomatic treatments rely on anti-inflammatory and analgesic agents. Tolerogenic treatments that can reverse disease are preferred, but again, often thwarted by not knowing the responsible auto-antigens (auto-Ags). Hence, a viable alternative to stimulating regulatory T cells (Tregs) is to induce bystander tolerance. Colonization factor antigen I (CFA/I) has been shown to evoke bystander immunity and to hasten Ag-specific Treg development independent of auto-Ag. To translate in treating human autoimmune diseases, the food-based Lactococcus was engineered to express CFA/I fimbriae, and Lactococcus-CFA/I fermented milk fed to arthritic mice proved highly efficacious. Protection occurred via CD39+ Tregs producing TGF-β and IL-10 to potently suppress TNF-α production and neutrophil influx into the joints. Thus, these data demonstrate the feasibility of oral nutraceuticals for treating arthritis, and potency of protection against arthritis was improved relative to that obtained with Salmonella-CFA/I.
Collapse
Affiliation(s)
- Massimo Maddaloni
- Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida, 32611, United States of America
| | - Irina Kochetkova
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, 59717, United States of America
| | - SangMu Jun
- Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida, 32611, United States of America
| | - Gayle Callis
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, 59717, United States of America
| | - Theresa Thornburg
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, 59717, United States of America
| | - David W. Pascual
- Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida, 32611, United States of America
- * E-mail:
| |
Collapse
|
48
|
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of life-threatening diarrheal disease around the world. The major aspects of ETEC virulence are colonization of the small intestine and the secretion of enterotoxins which elicit diarrhea. Intestinal colonization is mediated, in part, by adhesins displayed on the bacterial cell surface. As colonization of the intestine is the critical first step in the establishment of an infection, it represents a potential point of intervention for the prevention of infections. Therefore, colonization factors (CFs) have been important subjects of research in the field of ETEC virulence. Research in this field has revealed that ETEC possesses a large array of serologically distinct CFs that differ in composition, structure, and function. Most ETEC CFs are pili (fimbriae) or related fibrous structures, while other adhesins are simple outer membrane proteins lacking any macromolecular structure. This chapter reviews the genetics, structure, function, and regulation of ETEC CFs and how such studies have contributed to our understanding of ETEC virulence and opened up potential opportunities for the development of preventive and therapeutic interventions.
Collapse
|
49
|
Savar NS, Dashti A, Darzi Eslam E, Jahanian-Najafabadi A, Jafari A. Antigenicity and immunogenicity of fused B-subunit of heat labile toxin of Escherichia coli and colonization factor antigen I polyepitopes. J Microbiol Methods 2014; 106:40-46. [DOI: 10.1016/j.mimet.2014.07.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/27/2014] [Accepted: 07/28/2014] [Indexed: 11/30/2022]
|
50
|
Zeinalzadeh N, Salmanian AH, Ahangari G, Sadeghi M, Amani J, Bathaie SZ, Jafari M. Design and characterization of a chimeric multiepitope construct containing CfaB, heat-stable toxoid, CssA, CssB, and heat-labile toxin subunit B of enterotoxigenic Escherichia coli: a bioinformatic approach. Biotechnol Appl Biochem 2014; 61:517-27. [PMID: 24372617 DOI: 10.1002/bab.1196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 12/19/2013] [Indexed: 05/14/2025]
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are the most common cause of bacterial diarrhea in children in developing countries and travelers to these areas. Enterotoxins and colonization factors (CFs) are two key virulence factors in ETEC pathogenesis, and the heterogeneity of the CFs is the bottleneck in reaching an effective vaccine. In this study, a candidate subunit vaccine, which is composed of CfaB, CssA and CssB, structural subunits of colonization factor antigen I and CS6 CFs, labile toxin subunit B, and the binding subunit of heat-labile and heat-stable toxoid, was designed to provide broad-spectrum protection against ETEC. The different features of chimeric gene, its mRNA stability, and chimeric protein properties were analyzed by using bioinformatic tools. The optimized chimeric gene was chemically synthesized and expressed successfully in a prokaryotic host. The purified protein was used for assessment of bioinformatic data by experimental methods.
Collapse
Affiliation(s)
- Narges Zeinalzadeh
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e-Pajoohesh, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|