1
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Mukherjee A, Islam S, Kieser RE, Kiss DL, Mukherjee C. Long noncoding RNAs are substrates for cytoplasmic capping enzyme. FEBS Lett 2023; 597:947-961. [PMID: 36856012 PMCID: PMC11119571 DOI: 10.1002/1873-3468.14603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 03/02/2023]
Abstract
Cytoplasmic capping returns a cap to specific mRNAs, thus protecting uncapped RNAs from decay. Prior to the identification of cytoplasmic capping, uncapped mRNAs were thought to be degraded. Here, we test whether long noncoding RNAs (lncRNAs) are substrates of the cytoplasmic capping enzyme (cCE). The subcellular localisation of 14 lncRNAs associated with sarcomas were examined in U2OS osteosarcoma cells. We used 5' rapid amplification of cDNA ends (RACE) to assay uncapped forms of these lncRNAs. Inhibiting cytoplasmic capping elevated uncapped forms of selected lncRNAs indicating a plausible role of cCE in targeting them. Analysis of published cap analysis of gene expression (CAGE) data shows increased prevalence of certain 5'-RACE cloned sequences, suggesting that these uncapped lncRNAs are targets of cytoplasmic capping.
Collapse
Affiliation(s)
- Avik Mukherjee
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Safirul Islam
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Rachel E Kieser
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Daniel L Kiss
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
- Houston Methodist Cancer Center, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | | |
Collapse
|
3
|
Abstract
The non-catalytic region of tyrosine kinase (Nck) family of adaptors, consisting of Nck1 and Nck2, contributes to selectivity and specificity in the flow of cellular information by recruiting components of signaling networks. Known to play key roles in cytoskeletal remodeling, Nck adaptors modulate host cell-pathogen interactions, immune cell receptor activation, cell adhesion and motility, and intercellular junctions in kidney podocytes. Genetic inactivation of both members of the Nck family results in embryonic lethality; however, viability of mice lacking either one of these adaptors suggests partial functional redundancy. In this Cell Science at a Glance and the accompanying poster, we highlight the molecular organization and functions of the Nck family, focusing on key interactions and pathways, regulation of cellular processes, development, homeostasis and pathogenesis, as well as emerging and non-redundant functions of Nck1 compared to those of Nck2. This article thus aims to provide a timely perspective on the biology of Nck adaptors and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| |
Collapse
|
4
|
Alfaidi M, Scott ML, Orr AW. Sinner or Saint?: Nck Adaptor Proteins in Vascular Biology. Front Cell Dev Biol 2021; 9:688388. [PMID: 34124074 PMCID: PMC8187788 DOI: 10.3389/fcell.2021.688388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Nck family of modular adaptor proteins, including Nck1 and Nck2, link phosphotyrosine signaling to changes in cytoskeletal dynamics and gene expression that critically modulate cellular phenotype. The Nck SH2 domain interacts with phosphotyrosine at dynamic signaling hubs, such as activated growth factor receptors and sites of cell adhesion. The Nck SH3 domains interact with signaling effectors containing proline-rich regions that mediate their activation by upstream kinases. In vascular biology, Nck1 and Nck2 play redundant roles in vascular development and postnatal angiogenesis. However, recent studies suggest that Nck1 and Nck2 differentially regulate cell phenotype in the adult vasculature. Domain-specific interactions likely mediate these isoform-selective effects, and these isolated domains may serve as therapeutic targets to limit specific protein-protein interactions. In this review, we highlight the function of the Nck adaptor proteins, the known differences in domain-selective interactions, and discuss the role of individual Nck isoforms in vascular remodeling and function.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Matthew L Scott
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States.,Department of Cell Biology and Anatomy, LSU Health - Shreveport, Shreveport, LA, United States.,Department of Molecular & Cellular Physiology, LSU Health - Shreveport, Shreveport, LA, United States
| |
Collapse
|
5
|
Zhou X, Bao W, Zhang D, Yang Y, Du X, Qiu G. NCK1-AS1 promotes the progression of lung squamous cell carcinoma through transcriptionally upregulating NCK1 via interacting with MYC. Cancer Biol Ther 2021; 22:196-203. [PMID: 33629937 DOI: 10.1080/15384047.2020.1842717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a prevalent subtype of nonsmall cell lung cancer (NSCLC). Dysregulated long noncoding RNAs (lncRNAs) are increasingly identified as pivotal modulators in cancer progression. NCK1 divergent transcript (NCK1-AS1) is a lncRNA that has been proven to be oncogenic in different types of human cancers. However, whether it exerts similar functions in LUSC remains to be elusive. The present study focused on investigating the influence of NCK1-AS1 on the cellular process in LUSC and exploring its underlying mechanism. Through online bioinformatics analysis, we obtained a high NCK1-AS1 level in LUSC tissues. Meanwhile, we confirmed that NCK1-AS1 was upregulated in LUSC cells. Gain- or loss-of-function assays suggested that NCK1-AS1 prompted cell proliferation and migration, whilst impeded cell apoptosis in LUSC. Mechanistically, we revealed that NCK1-AS1 induced the upregulation of its nearby gene NCK adaptor protein 1 (NCK1) at the transcriptional level by interacting with the transcription factor MYC proto-oncogene (MYC). Rescue assays indicated that NCK1 participated in the regulation of NCK1-AS1 on LUSC progression. In conclusion, we firstly demonstrated the oncogenic role of NCK1-AS1 in LUSC and illustrated its downstream molecular mechanism.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Wuan Bao
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Danhong Zhang
- Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Yang Yang
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xianghui Du
- Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Guoqin Qiu
- Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Diab A, Qi J, Shahin I, Milligan C, Fawcett JP. NCK1 Regulates Amygdala Activity to Control Context-dependent Stress Responses and Anxiety in Male Mice. Neuroscience 2020; 448:107-125. [PMID: 32946951 DOI: 10.1016/j.neuroscience.2020.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Anxiety disorder (AD) is characterized by the development of maladaptive neuronal circuits and changes to the excitatory/inhibitory (E/I) balance of the central nervous system. Although AD is considered to be heritable, specific genetic markers remain elusive. Recent genome-wide association studies (GWAS) studies have identified non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), a gene that codes for an intracellular adaptor protein involved in actin dynamics, as an important gene in the regulation of mood. Using a murine model in which NCK1 is inactivated, we show that male, but not female, mice display increased levels of context-dependent anxiety-like behaviors along with an increase in circulating serum corticosterone relative to control. Treatment of male NCK1 mutant mice with a positive allosteric modulator of the GABAA receptor rescued the anxiety-like behaviors implicating NCK1 in regulating neuronal excitability. These defects are not attributable to apparent defects in gross brain structure or in axon guidance. However, when challenged in an approach-avoidance conflict paradigm, male NCK1-deficient mice have decreased neuronal activation in the prefrontal cortex (PFC), as well as decreased activation of inhibitory interneurons in the basolateral amygdala (BLA). Finally, NCK1 deficiency results in loss of dendritic spine density in principal neurons of the BLA. Taken together, these data implicate NCK1 in the control of E/I balance in BLA. Our work identifies a novel role for NCK1 in the regulation of sex-specific neuronal circuitry necessary for controlling anxiety-like behaviors. Further, our work points to this animal model as a useful preclinical tool for the study of novel anxiolytics and its significance towards understanding sex differences in anxiolytic function.
Collapse
Affiliation(s)
- Antonios Diab
- Department of Pharmacology, Dalhousie University, Canada
| | - Jiansong Qi
- Department of Pharmacology, Dalhousie University, Canada
| | - Ibrahim Shahin
- Department of Pharmacology, Dalhousie University, Canada
| | | | - James P Fawcett
- Department of Pharmacology, Dalhousie University, Canada; Department of Surgery, Dalhousie University, Canada.
| |
Collapse
|
7
|
Kefalas G, Jouvet N, Baldwin C, Estall JL, Larose L. Peptide-based sequestration of the adaptor protein Nck1 in pancreatic β cells enhances insulin biogenesis and protects against diabetogenic stresses. J Biol Chem 2018; 293:12516-12524. [PMID: 29941454 DOI: 10.1074/jbc.ra118.002728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/16/2018] [Indexed: 01/14/2023] Open
Abstract
One feature of diabetes is the failure of pancreatic β cells to produce insulin, but the molecular mechanisms leading to this failure remain unclear. Increasing evidence supports a role for protein kinase R-like endoplasmic reticulum kinase (PERK) in the development and function of healthy pancreatic β cells. Previously, our group identified the adaptor protein Nck1 as a negative regulator of PERK. Indeed, we demonstrated that Nck1, by directly binding PERK autophosphorylated on Tyr561, limits PERK activation and signaling. Accordingly, we found that stable depletion of Nck1 in β cells promotes PERK activation and signaling, increases insulin biosynthesis, and improves cell viability in response to diabetes-related stresses. Herein, we explored the therapeutic potential of abrogating the interaction between Nck and PERK to improve β-cell function and survival. To do so, we designed and used a peptide containing the minimal PERK sequence involved in binding Nck1 conjugated to the cell-permeable protein transduction domain from the HIV protein TAT. In the current study, we confirm that the synthetic TAT-Tyr(P)561 phosphopeptide specifically binds the SH2 domain of Nck and prevents Nck interaction with PERK, thereby promoting basal PERK activation. Moreover, we report that treatment of β cells with TAT-Tyr(P)561 inhibits glucolipotoxicity-induced apoptosis, whereas it enhances insulin production and secretion. Taken together, our results support the potential of sequestering Nck using a synthetic peptide to enhance basal PERK activation and create more robust β cells.
Collapse
Affiliation(s)
- George Kefalas
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and
| | - Nathalie Jouvet
- the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Cindy Baldwin
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Jennifer L Estall
- the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and .,the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Louise Larose
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada, .,the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and
| |
Collapse
|
8
|
Salton GD, Laurino CCFC, Mega NO, Delgado-Cañedo A, Setterblad N, Carmagnat M, Xavier RM, Cirne-Lima E, Lenz G, Henriques JAP, Laurino JP. Deletion of eIF2β lysine stretches creates a dominant negative that affects the translation and proliferation in human cell line: A tool for arresting the cell growth. Cancer Biol Ther 2017; 18:560-570. [PMID: 28692326 DOI: 10.1080/15384047.2017.1345383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Eukaryote initiation factor 2 subunit β (eIF2β) plays a crucial role in regulation protein synthesis, which mediates the interaction of eIF2 with mRNA. eIF2β contains evolutionarily conserved polylysine stretches in amino-terminal region and a zinc finger motif in the carboxy-terminus. METHODS The gene eIF2β was cloned under tetracycline transcription control and the polylysine stretches were deleted by site-directed mutagenesis (eIF2βΔ3K). The plasmid was transfected into HEK 293 TetR cells. These cells were analyzed for their proliferative and translation capacities as well as cell death rate. Experiments were performed using gene reporter assays, western blotting, flow cytometry, cell sorting, cell proliferation assays and confocal immunofluorescence. RESULTS eIF2βΔ3K affected negatively the protein synthesis, cell proliferation and cell survival causing G2 cell cycle arrest and increased cell death, acting in a negative dominant manner against the native protein. Polylysine stretches are also essential for eIF2β translocated from the cytoplasm to the nucleus, accumulating in the nucleolus and eIF2βΔ3K did not make this translocation. DISCUSSION eIF2β is involved in the protein synthesis process and should act in nuclear processes as well. eIF2βΔ3K reduces cell proliferation and causes cell death. Since translation control is essential for normal cell function and survival, the development of drugs or molecules that inhibit translation has become of great interest in the scenario of proliferative disorders. In conclusion, our results suggest the dominant negative eIF2βΔ3K as a therapeutic strategy for the treatment of proliferative disorders and that eIF2β polylysine stretch domains are promising targets for this.
Collapse
Affiliation(s)
- Gabrielle Dias Salton
- a Post-Graduation Program in Cellular and Molecular Biology, Molecular Radiobiology Laboratory, Biotechnology Center , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil , Cryobiology Unit and Umbilical Cord Blood Bank, Hemotherapy Service , Hospital de Clínicas de Porto Alegre , Porto Alegre (RS) , Brazil
| | - Claudia Cilene Fernandes Correia Laurino
- b Molecular Biology for Auto-immune and Infectious Diseases Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil . Embriology and Cellular Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre; Faculdade de Veterinária , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil . Faculdade Nossa Senhora de Fátima , Caxias do Sul (RS) , Brazil . Instituto Brasileiro de Saúde , Porto Alegre (RS) , Brazil
| | - Nicolás Oliveira Mega
- c Animal Biology Post-Graduation Program , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil
| | - Andrés Delgado-Cañedo
- d Biotechnology Research Center for Interdisciplinary Research , Universidade Federal do Pampa , São Gabriel (RS) , Brazil
| | - Niclas Setterblad
- e Imaging, Cell Selection and Genomics Platform , Institut Universitaire d'Hématologie, Hôpital Saint-Louis , Paris , France
| | - Maryvonnick Carmagnat
- f Immunology and Histocompatibility Laboratory AP-HP , INSERM UMRS 940, Institut Universitaire d'Hématologie , Paris , France
| | - Ricardo Machado Xavier
- g Molecular Biology for Auto-immune and Infectious Diseases Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil
| | - Elizabeth Cirne-Lima
- h Embriology and Cellular Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre; Faculdade de Veterinária , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil
| | - Guido Lenz
- i Cell Signaling Laboratory, Biophysics Department, Biotechnology Center and Post-Graduation Program in Cellular and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil
| | - João Antonio Pêgas Henriques
- j Molecular Radiobiology Laboratory, Biotechnology Center and Post-Graduation Program in Cellular and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) ; Biotechnology Institute , Universidade de Caxias do Sul , Caxias do Sul (RS) , Brazil
| | - Jomar Pereira Laurino
- k Biotechnology Institute , Universidade de Caxias do Sul, Caxias do Sul (RS) and Instituto Brasileiro de Saúde , Porto Alegre (RS) , Brazil
| |
Collapse
|
9
|
Dusseault J, Li B, Haider N, Goyette MA, Côté JF, Larose L. Nck2 Deficiency in Mice Results in Increased Adiposity Associated With Adipocyte Hypertrophy and Enhanced Adipogenesis. Diabetes 2016; 65:2652-66. [PMID: 27325288 DOI: 10.2337/db15-1559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/09/2016] [Indexed: 11/13/2022]
Abstract
Obesity results from an excessive expansion of white adipose tissue (WAT) from hypertrophy of preexisting adipocytes and enhancement of precursor differentiation into mature adipocytes. We report that Nck2-deficient mice display progressive increased adiposity associated with adipocyte hypertrophy. A negative relationship between the expression of Nck2 and WAT expansion was recapitulated in humans such that reduced Nck2 protein and mRNA levels in human visceral WAT significantly correlate with the degree of obesity. Accordingly, Nck2 deficiency promotes an adipogenic program that not only enhances adipocyte differentiation and lipid droplet formation but also results in dysfunctional elevated lipogenesis and lipolysis activities in mouse WAT as well as in stromal vascular fraction and 3T3-L1 preadipocytes. We provide strong evidence to support that through a mechanism involving primed PERK activation and signaling, Nck2 deficiency in adipocyte precursors is associated with enhanced adipogenesis in vitro and adiposity in vivo. Finally, in agreement with elevated circulating lipids, Nck2-deficient mice develop glucose intolerance, insulin resistance, and hepatic steatosis. Taken together, these findings reveal that Nck2 is a novel regulator of adiposity and suggest that Nck2 is important in limiting WAT expansion and dysfunction in mice and humans.
Collapse
Affiliation(s)
- Julie Dusseault
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Bing Li
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Nida Haider
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Marie-Anne Goyette
- Institut de Recherches Cliniques de Montréal (Université de Montréal), Montreal, Quebec, Canada
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal (Université de Montréal), Montreal, Quebec, Canada
| | - Louise Larose
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
10
|
mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun 2016; 7:11127. [PMID: 27040916 PMCID: PMC4822005 DOI: 10.1038/ncomms11127] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/23/2016] [Indexed: 02/02/2023] Open
Abstract
Ternary complex (TC) and eIF4F complex assembly are the two major rate-limiting steps in translation initiation regulated by eIF2α phosphorylation and the mTOR/4E-BP pathway, respectively. How TC and eIF4F assembly are coordinated, however, remains largely unknown. We show that mTOR suppresses translation of mRNAs activated under short-term stress wherein TC recycling is attenuated by eIF2α phosphorylation. During acute nutrient or growth factor stimulation, mTORC1 induces eIF2β phosphorylation and recruitment of NCK1 to eIF2, decreases eIF2α phosphorylation and bolsters TC recycling. Accordingly, eIF2β mediates the effect of mTORC1 on protein synthesis and proliferation. In addition, we demonstrate a formerly undocumented role for CK2 in regulation of translation initiation, whereby CK2 stimulates phosphorylation of eIF2β and simultaneously bolsters eIF4F complex assembly via the mTORC1/4E-BP pathway. These findings imply a previously unrecognized mode of translation regulation, whereby mTORC1 and CK2 coordinate TC and eIF4F complex assembly to stimulate cell proliferation. Ternary complex (TC) and eIF4F complex assembly are rate-limiting steps in translation initiation that are regulated by eIF2α phosphorylation and the mTOR/4E-BP pathway. Here the authors show that the protein kinases mTORC1 and CK2 coordinate TC and eIF4F complex assembly through eIF2β to stimulate cell proliferation.
Collapse
|
11
|
Kurochkina N, Guha U, Lu Z. SH Domains and Epidermal Growth Factor Receptors. SH DOMAINS 2015:133-158. [DOI: 10.1007/978-3-319-20098-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Lettau M, Kabelitz D, Janssen O. SDF1α-induced interaction of the adapter proteins Nck and HS1 facilitates actin polymerization and migration in T cells. Eur J Immunol 2014; 45:551-61. [PMID: 25359136 DOI: 10.1002/eji.201444473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 10/07/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022]
Abstract
Noncatalytic region of tyrosine kinase (Nck) is an adapter protein that comprises one SH2 (Src homology) domain and three SH3 domains. Nck links receptors and receptor-associated tyrosine kinases or adapter proteins to proteins that regulate the actin cytoskeleton. Whereas the SH2 domain binds to phosphorylated receptors or associated phosphoproteins, individual interactions of the SH3 domains with proline-based recognition motifs result in the formation of larger protein complexes. In T cells, changes in cell polarity and morphology during T-cell activation and effector function require the T-cell receptor-mediated recruitment and activation of actin-regulatory proteins to initiate cytoskeletal reorganization at the immunological synapse. We previously identified the adapter protein HS1 as a putative Nck-interacting protein. We now demonstrate that the SH2 domain of Nck specifically interacts with HS1 upon phosphorylation of its tyrosine residue 378. We report that in human T cells, ligation of the chemokine receptor CXCR4 by stromal cell-derived factor 1α (SDF1α) induces a rapid and transient phosphorylation of tyrosine 378 of HS1 resulting in an increased association with Nck. Consequently, siRNA-mediated downregulation of HS1 and/or Nck impairs SDF1α-induced actin polymerization and T-cell migration.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | |
Collapse
|
13
|
Li H, Dusseault J, Larose L. Nck1 depletion induces activation of the PI3K/Akt pathway by attenuating PTP1B protein expression. Cell Commun Signal 2014; 12:71. [PMID: 25398386 PMCID: PMC4236421 DOI: 10.1186/s12964-014-0071-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/19/2014] [Indexed: 12/17/2022] Open
Abstract
Background Activation of the PI3K/Akt pathway mediates crucial cellular functions regulated by receptor tyrosine kinases, such as cell growth, proliferation, survival and metabolism. Previously, we reported that the whole-body knockout of the Src homology domain-containing adaptor protein Nck1 improves overall glucose homeostasis and insulin-induced activation of the PI3K/Akt pathway in liver of obese mice. The aim of the current study is to elucidate the mechanism by which Nck1 depletion regulates hepatic insulin signaling. Results Here, we demonstrate that Nck1 regulates the activation of the PI3K/Akt pathway in a protein tyrosine phosphatase 1B (PTP1B)-dependent mechanism. Indeed, depletion of Nck1 by siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation. In accordance, primary hepatocytes isolated from Nck1−/− mice also display enhanced Akt activation in response to insulin. Activation of the PI3K/Akt pathway in Nck1-depleted HepG2 cells relies on higher levels of tyrosine-phosphorylated proteins and correlates with decreased PTP1B levels. Interestingly, Nck1 and PTP1B in cells are found in a common molecular complex and their interaction is dependent on the SH3 domains of Nck1. Finally, Nck1 depletion in HepG2 cells neither affects PTP1B gene transcription nor PTP1B protein stability, suggesting that Nck1 modulates PTP1B expression at the translational level. Conclusion Our study provides strong evidence supporting that the adaptor protein Nck1 interacts with PTP1B and also regulates PTP1B expression. In this manner, Nck1 plays a role in regulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hui Li
- Department of Medicine, Polypeptide Laboratory, McGill University and The Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Julie Dusseault
- Department of Medicine, Polypeptide Laboratory, McGill University and The Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Louise Larose
- Department of Medicine, Polypeptide Laboratory, McGill University and The Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
14
|
Mukherjee C, Bakthavachalu B, Schoenberg DR. The cytoplasmic capping complex assembles on adapter protein nck1 bound to the proline-rich C-terminus of Mammalian capping enzyme. PLoS Biol 2014; 12:e1001933. [PMID: 25137142 PMCID: PMC4138027 DOI: 10.1371/journal.pbio.1001933] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/11/2014] [Indexed: 12/03/2022] Open
Abstract
mRNA capping and decapping requires a cytoplasmic complex to maintain and/or restore the 5′ cap on a subset of the mammalian transcriptome; Nck1, an SH2/SH3 adapter, creates a scaffold upon which the cytoplasmic capping complex forms. Cytoplasmic capping is catalyzed by a complex that contains capping enzyme (CE) and a kinase that converts RNA with a 5′-monophosphate end to a 5′ diphosphate for subsequent addition of guanylic acid (GMP). We identify the proline-rich C-terminus as a new domain of CE that is required for its participation in cytoplasmic capping, and show the cytoplasmic capping complex assembles on Nck1, an adapter protein with functions in translation and tyrosine kinase signaling. Binding is specific to Nck1 and is independent of RNA. We show by sedimentation and gel filtration that Nck1 and CE are together in a larger complex, that the complex can assemble in vitro on recombinant Nck1, and Nck1 knockdown disrupts the integrity of the complex. CE and the 5′ kinase are juxtaposed by binding to the adjacent domains of Nck1, and cap homeostasis is inhibited by Nck1 with inactivating mutations in each of these domains. These results identify a new domain of CE that is specific to its function in cytoplasmic capping, and a new role for Nck1 in regulating gene expression through its role as the scaffold for assembly of the cytoplasmic capping complex. We previously described a cyclical process of mRNA decapping and recapping termed “cap homeostasis.” Recapping is catalyzed by a complex of cytoplasmic proteins that includes the enzyme known to catalyze nuclear capping, and a kinase that converts RNA with a 5′-monophosphate end to a 5′-diphosphate capping substrate. The current study shows these two enzymatic activities are brought together in the cytoplasmic capping complex as both bind to adjacent domains of the adapter protein Nck1. Nck1 is a cytoplasmic protein best known for transducing receptor tyrosine kinase signaling. We identify a proline-rich sequence at the C-terminus of a human capping enzyme that is required for binding to Nck1, and we show that this interaction is required for integrity of the cytoplasmic capping complex. Depletion of Nck1 causes the cytoplasmic capping complex to dissociate. The inhibition of cytoplasmic capping by Nck1 with mutations in either the 5′-kinase or capping enzyme binding sites identified a functional role for Nck1 in cap homeostasis and a previously unknown function for Nck1 in cell biology.
Collapse
Affiliation(s)
- Chandrama Mukherjee
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Baskar Bakthavachalu
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel R. Schoenberg
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lettau M, Kliche S, Kabelitz D, Janssen O. The adapter proteins ADAP and Nck cooperate in T cell adhesion. Mol Immunol 2014; 60:72-9. [PMID: 24769494 DOI: 10.1016/j.molimm.2014.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Nck adapter proteins link receptor and receptor-associated tyrosine kinases with proteins implicated in the regulation of the actin cytoskeleton. Nck is involved in a multitude of receptor-initiated signaling pathways and its physiological role thus covers aspects of tissue development and homeostasis, malignant transformation/invasiveness of tumour cells and also immune cell function. In T cells, changes of cell polarity and morphology associated with cellular activation and effector function crucially rely on the T cell receptor-mediated recruitment and activation of different actin-regulatory proteins to orchestrate and drive cytoskeletal reorganization at the immunological synapse. In a former approach to determine the interactome of Nck in human T cells, we identified the adapter protein ADAP as a Nck-interacting protein. This adhesion and degranulation-promoting adapter protein had already been implicated in the inside-out activation of integrins. Employing co-immunoprecipitations, we demonstrate that both Nck family members Nck1 and Nck2 coprecipitate with ADAP. Specifically, Nck interacts via its Src homology 2 domain with phosphorylated tyrosine Y595DDV and Y651DDV sites of ADAP. Moreover, we show that endogenous ADAP is phosphorylated in primary human T cell blasts and thus associates with Nck. At the functional level, ADAP and Nck adapter proteins cooperatively facilitate T cell adhesion to the LFA-1 ligand ICAM-1. Our data indicate that the ADAP/Nck complex might provide a means to link integrin activation with the actin cytoskeleton.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg 17, D-24105 Kiel, Germany.
| |
Collapse
|
16
|
Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA. Dissecting the roles of tyrosines 490 and 785 of TrkA protein in the induction of downstream protein phosphorylation using chimeric receptors. J Biol Chem 2013; 288:16606-16618. [PMID: 23589303 DOI: 10.1074/jbc.m113.475285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Receptor tyrosine kinases generally act by forming phosphotyrosine-docking sites on their own endodomains that propagate signals through cascades of post-translational modifications driven by the binding of adaptor/effector proteins. The pathways that are stimulated in any given receptor tyrosine kinase are a function of the initial docking sites that are activated and the availability of downstream participants. In the case of the Trk receptors, which are activated by nerve growth factor, there are only two established phosphotyrosine-docking sites (Tyr-490 and Tyr-785 on TrkA) that are known to be directly involved in signal transduction. Taking advantage of this limited repertoire of docking sites and the availability of PC12 cell lines stably transfected with chimeric receptors composed of the extracellular domain of the PDGF receptor and the transmembrane and intracellular domains of TrkA, the downstream TrkA-induced phosphoproteome was assessed for the "native" receptor and mutants lacking Tyr-490 or both Tyr-490 and Tyr-785. Basal phosphorylation levels were compared with those formed after 20 min of stimulation with PDGF. Several thousand phosphopeptides were identified after TiO2 enrichment, and many were up- or down-regulated by receptor activation. The modified proteins in the native sample contained many of the well established participants in TrkA signaling. The results from the mutant receptors allowed grouping of these downstream targets by their dependence on the two characterized docking site(s). A clear subset that was not dependent on either Tyr-490 or Tyr-785 emerged, providing direct evidence that there are other sites on TrkA that are involved in downstream signaling.
Collapse
Affiliation(s)
- Jordane Biarc
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158.
| | - A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Ralph A Bradshaw
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158; Department of Physiology and Biophysics, University of California, Irvine, California 92697
| |
Collapse
|
17
|
Gadhia SR, Calabro AR, Barile FA. Trace metals alter DNA repair and histone modification pathways concurrently in mouse embryonic stem cells. Toxicol Lett 2012; 212:169-79. [DOI: 10.1016/j.toxlet.2012.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 12/31/2022]
|
18
|
Abstract
Nck is an adaptor protein composed of three N-terminal Src Homology (SH) 3 domains followed by a unique C‑terminal SH2 domain. Like other SH2/SH3 domains-containing adaptor proteins, Nck mediates signal transduction from activated cell surface receptors by directing the flow of information to elicit properly orchestrated cell responses. In this way, Nck appears to be unique in its contribution to a wide variety of cellular processes. Moreover, in addition to the typical signal/pY-SH2/SH3-effectors mode of signaling, Nck also transduces signals through an inverse mode of -signaling (signal-SH3/SH2-pY/effectors) and from various cell compartments. Since Nck contributes to important morphogenic and mitogenic processes, deregulated expression of Nck could be detrimental to cellular homeostasis. In agreement, Nck expression has been found upregulated in numerous types of cancer. In this paper we delineate the main molecular -signaling -complexes associated with Nck, focusing on those involved in cancer progression.
Collapse
Affiliation(s)
- Mélissa Labelle-Côté
- Faculté de médecine, Université McGill, édifice Strathcona, Montréal, Québec, H3A 2B2 Canada.
| | | |
Collapse
|
19
|
Latreille M, Laberge MK, Bourret G, Yamani L, Larose L. Deletion of Nck1 attenuates hepatic ER stress signaling and improves glucose tolerance and insulin signaling in liver of obese mice. Am J Physiol Endocrinol Metab 2011; 300:E423-34. [PMID: 20587749 DOI: 10.1152/ajpendo.00088.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity has been shown to create stress in the endoplasmic reticulum (ER), and that initiates the activation of the unfolded protein response (UPR). This has been reported to cause insulin resistance in selective tissues through activation of the inositol-requiring enzyme 1α (IRE1α)-c-Jun NH(2)-terminal kinase (JNK) pathway, which results in the phosphorylation of the insulin receptor substrate-1 (IRS-1) at an inhibitory site and blocks insulin receptor signaling. In this study, we report that the Src homology domain-containing adaptor protein Nck1, previously shown to modulate the UPR, is of functional importance in obesity-induced ER stress signaling and inhibition of insulin actions. We have examined obese Nck1(-/-) and Nck1(+/+) mice for glucose tolerance, insulin sensitivity, and signaling as well as for ER stress markers and IRS-1 phosphorylation at Ser(307). Our findings show that obese Nck1-deficient mice display improved glucose disposal accompanied by enhanced insulin signaling in liver. This correlates with attenuated IRE1α and JNK activation and IRS-1 phosphorylation at Ser(307) compared with obese wild-type mice. Consistent with our in vivo data, we report that downregulation of Nck1 using siRNA in HepG2 cells results in decreased thapsigargin-induced IRE1α activation and signaling and IRS-1 phosphorylation at Ser(307), whereas it markedly enhances insulin signaling. Overall, in liver and in cultured cells, we show that depletion of Nck1 attenuates the UPR signal and its inhibitory action on insulin signaling. Taken all together, our findings implicate Nck1 in regulating the UPR, which secondary to obesity impairs glucose homeostasis and insulin actions.
Collapse
Affiliation(s)
- Mathieu Latreille
- Polypeptide Hormone Laboratory, Department of Experimental Medicine, Research Institute of the McGill University Health Centre, McGill University, 3640 University Street, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
20
|
Lettau M, Pieper J, Gerneth A, Lengl-Janssen B, Voss M, Linkermann A, Schmidt H, Gelhaus C, Leippe M, Kabelitz D, Janssen O. The adapter protein Nck: role of individual SH3 and SH2 binding modules for protein interactions in T lymphocytes. Protein Sci 2010; 19:658-69. [PMID: 20082308 DOI: 10.1002/pro.334] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nck is a ubiquitously expressed, primarily cytosolic adapter protein consisting of one SH2 domain and three SH3 domains. It links receptor and nonreceptor tyrosine kinases to actin cytoskeleton reorganizing proteins. In T lymphocytes, Nck is a crucial component of signaling pathways for T cell activation and effector function. It recruits actin remodeling proteins to T cell receptor (TCR)-associated activation clusters and thereby initiates changes in cell polarity and morphology. Moreover, Nck is crucial for the TCR-induced mobilization of secretory vesicles to the cytotoxic immunological synapse. To identify the interactome of Nck in human T cells, we performed a systematic screen for interaction partners in untreated or pervanadate-treated cells. We used GST fusion proteins containing full length Nck, the combined SH3 domains or the individual SH3 and SH2 domains to precipitate putative Nck interactors from cellular lysates. Protein bands were excised from gels, processed by tryptic in-gel digestion and analyzed by mass spectrometry. Using this approach, we confirmed previously established interactions (e.g., with Slp76, CD3 epsilon, WASP, and WIPF1) and identified several novel putative Nck-binding proteins. We subsequently verified the SH2 domain binding to the actin-binding protein HIP55 and to FYB/ADAP, and the SH3-mediated binding to the nuclear proteins SFPQ/NONO. Using laser scanning microscopy, we provide new evidence for a nuclear localization of Nck in human T cells. Our data highlight the fundamental role of Nck in the TCR-to-cytoskeleton crosstalk and point to yet unknown nuclear functions of Nck also in T lymphocytes.
Collapse
Affiliation(s)
- Marcus Lettau
- Molecular Immunology, Institute for Immunology, Christian-Albrechts University, D-24105 Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Effect of metals on β-actin and total protein synthesis in cultured human intestinal epithelial cells. J Pharmacol Toxicol Methods 2010; 63:47-58. [PMID: 20452446 DOI: 10.1016/j.vascn.2010.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 02/08/2010] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
Abstract
INTRODUCTION As an important structural protein, β-actin is associated with anchoring of tight junctions (TJs) to the cell scaffold. Caco-2 cells, an immortal intestinal epithelial cell line, rely on β-actin to form intact monolayers with high transepithelial electrical resistance in cell culture inserts. METHODS We examined the effect of six metals on expression of β-actin mRNA and β-actin synthesis, on total and net production of newly synthesized proteins, on paracellular transport of TJ markers, and on cell viability in confluent monolayers. [(3)H]-glycine and [(3)H]-tyrosine were used as indicators of newly synthesized proteins in the absence or presence of increasing concentrations of arsenic, cadmium, copper, manganese, mercury and nickel. The monolayers were exposed to 24-h single exposures as well as continuous daily repeated doses of metals for 48-h and 96-h. RESULTS Results suggest that decreases in newly synthesized proteins, in which β-actin represents about 10%, correlated with 2- to 5-fold higher expression of β-actin mRNA for the higher concentrations of metals. Interestingly, IC(50)s calculated for each chemical for 24-h acute and 48- and 96-h repeated dosing experiments, using the MTT viability assay and paracellular permeability markers, decreased newly synthesized and total proteins to 10% and 40% of control, respectively. DISCUSSION Overall, the results indicate that, at equivalent concentrations, the metals affect β-actin mRNA and newly synthesized proteins before cell viability and paracellular permeability are compromised. Consequently the results help in elucidating mechanisms of metal cytotoxicity that lead to understanding the relationship between tight junction integrity, paracellular transport, and cell viability.
Collapse
|
22
|
Tcherkezian J, Brittis PA, Thomas F, Roux PP, Flanagan JG. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 2010; 141:632-44. [PMID: 20434207 DOI: 10.1016/j.cell.2010.04.008] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 12/21/2009] [Accepted: 03/22/2010] [Indexed: 11/17/2022]
Abstract
Extracellular signals regulate protein translation in many cell functions. A key advantage of control at the translational level is the opportunity to regulate protein synthesis within specific cellular subregions. However, little is known about mechanisms that may link extracellular cues to translation with spatial precision. Here, we show that a transmembrane receptor, DCC, forms a binding complex containing multiple translation components, including eukaryotic initiation factors, ribosomal large and small subunits, and monosomes. In neuronal axons and dendrites DCC colocalizes in particles with translation machinery, and newly synthesized protein. The extracellular ligand netrin promoted DCC-mediated translation and disassociation of translation components. The functional and physical association of a cell surface receptor with the translation machinery leads to a generalizable model for localization and extracellular regulation of protein synthesis, based on a transmembrane translation regulation complex.
Collapse
Affiliation(s)
- Joseph Tcherkezian
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
23
|
Zhu J, Attias O, Aoudjit L, Jiang R, Kawachi H, Takano T. p21-Activated kinases regulate actin remodeling in glomerular podocytes. Am J Physiol Renal Physiol 2010; 298:F951-61. [DOI: 10.1152/ajprenal.00536.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The tyrosine phosphorylation of nephrin is reported to regulate podocyte morphology via the Nck adaptor proteins. The Pak family of kinases are regulators of the actin cytoskeleton and are recruited to the plasma membrane via Nck. Here, we investigated the role of Pak in podocyte morphology. Pak1/2 were expressed in cultured podocytes. In mouse podocytes, Pak2 was predominantly phosphorylated, concentrated at the tips of the cellular processes, and its expression and/or phosphorylation were further increased when differentiated. Overexpression of rat nephrin in podocytes increased Pak1/2 phosphorylation, which was abolished when the Nck binding sites were mutated. Furthermore, dominant-negative Nck constructs blocked the Pak1 phosphorylation induced by antibody-mediated cross linking of nephrin. Transient transfection of constitutively kinase-active Pak1 into differentiated mouse podocytes decreased stress fibers, increased cortical F-actin, and extended the cellular processes, whereas kinase-dead mutant, kinase inhibitory construct, and Pak2 knockdown by shRNA had the opposite effect. In a rat model of puromycin aminonucleoside nephrosis, Pak1/2 phosphorylation was decreased in glomeruli, concomitantly with a decrease of nephrin tyrosine phosphorylation. These results suggest that Pak contributes to remodeling of the actin cytoskeleton in podocytes. Disturbed nephrin-Nck-Pak interaction may contribute to abnormal morphology of podocytes and proteinuria.
Collapse
Affiliation(s)
- Jianxin Zhu
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Ortal Attias
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Lamine Aoudjit
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Ruihua Jiang
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Hiroshi Kawachi
- Department of Cell Biology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| |
Collapse
|
24
|
Non-compensating roles between Nckalpha and Nckbeta in PDGF-BB signaling to promote human dermal fibroblast migration. J Invest Dermatol 2009; 129:1909-20. [PMID: 19242519 DOI: 10.1038/jid.2008.457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Platelet-derived growth factor BB (PDGF-BB) is a Food and Drug Administration (FDA)-approved growth factor, acting as a mitogen and motogen of dermal fibroblasts (DFs), for skin wound healing. The two closely related SH2/SH3 adapter proteins, Nckalpha and Nckbeta, connect PDGF-BB signaling to the actin cytoskeleton and cell motility. The mechanism has not been fully understood. In this study, we investigated, side by side, the roles of Nckalpha and Nckbeta in PDGF-BB-stimulated DF migration. We found that cells expressing the PDGFRbeta-Y751F mutant (preventing Nckalpha binding) or PDGFRbeta-Y1009F mutant (preventing Nckbeta binding), DF cells isolated from Nckalpha- or Nckbeta-knockout mice, and primary human DF cells with RNA interference (RNAi) knockdown of the endogenous Nckalpha or Nckbeta all failed to migrate in response to PDGF-BB. Overexpression of the middle SH3 domain of Nckalpha or Nckbeta alone in human DFs also blocked PDGF-BB-induced cell migration. However, neither Nckalpha nor Nckbeta was required for the activation of the PDGF receptor, p21-activated protein kinase (Pak1), AKT, extracellular signal-regulated kinase (ERK) 1/2, or p38MAP by PDGF-BB. Although PDGF-BB stimulated the membrane translocation of both Nckalpha and Nckbeta, Nckalpha appeared to mediate Cdc42 signaling for filopodium formation, whereas Nckbeta mediated Rho signaling to induce stress fibers. Thus, this study has elucidated the independent roles and mechanisms of action of Nckalpha and Nckbeta in DF migration, which is critical for wound healing.
Collapse
|
25
|
Lettau M, Pieper J, Janssen O. Nck adapter proteins: functional versatility in T cells. Cell Commun Signal 2009; 7:1. [PMID: 19187548 PMCID: PMC2661883 DOI: 10.1186/1478-811x-7-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/02/2009] [Indexed: 01/16/2023] Open
Abstract
Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3epsilon subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.
Collapse
Affiliation(s)
- Marcus Lettau
- University Hospital Schleswig-Holstein Campus Kiel, Institute of Immunology, Molecular Immunology, Arnold-Heller-Str 3, Bldg 17, D-24105 Kiel, Germany.
| | | | | |
Collapse
|
26
|
Rajesh K, Iyer A, Suragani RNVS, Ramaiah KVA. Intersubunit and interprotein interactions of alpha- and beta-subunits of human eIF2: Effect of phosphorylation. Biochem Biophys Res Commun 2008; 374:336-40. [PMID: 18639529 DOI: 10.1016/j.bbrc.2008.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
Purified recombinant human subunits of eukaryotic initiation factor 2 (eIF2) expressed in bacteria are found to interact with each other to form alphabeta, alphagamma, and betagamma complexes in a pull-down experiment. Recombinant phosphorylated human eIF2alpha that cannot interact with purified eIF2B, the GDP/GTP exchange factor of eIF2, however interacts efficiently with eIF2B along with the beta-subunit of eIF2 of the rabbit reticulocyte lysates and also with the purified recombinant beta-subunit. These findings therefore suggest that the beta-subunit of eIF2 mediates the productive and non-productive interactions between eIF2 and 2B. Recombinant alpha and beta-subunits serve as substrates for not only kinases but also for caspase 3 and interestingly phosphorylated subunits resist caspase action. Phosphorylation also modifies the beta-subunit's interaction with Nck1, a cofactor of eIF2alpha phosphatase, but not with eIF5, the GTPase activating protein. These findings suggest that subunits of mammalian eIF2 interact with each other and the beta-subunit plays a critical role both in the regulation and function of eIF2.
Collapse
Affiliation(s)
- Kamindla Rajesh
- Department of Biochemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Andhra Pradesh, India
| | | | | | | |
Collapse
|
27
|
Calabro AR, Konsoula R, Barile FA. Evaluation of in vitro cytotoxicity and paracellular permeability of intact monolayers with mouse embryonic stem cells. Toxicol In Vitro 2008; 22:1273-84. [PMID: 18468840 DOI: 10.1016/j.tiv.2008.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 12/14/2022]
Abstract
Mouse embryonic stem (mES) cells were induced to form intact monolayers in cell culture inserts, using combinations of extracellular matrix (ECM) components and growth factors (GFs). Progressive formation of intact monolayers was monitored using transepithelial electrical resistance (TEER) and passage of paracellular permeability (PP) markers. The mES cells were initially inoculated on inactivated mouse embryonic fibroblasts (MEFs) plus leukemia inhibitory factor (LIF). At 75% confluence, cells were passaged in the absence of MEF and LIF to stimulate formation of rounded multicellular aggregates (MA). After 4 days, cultures containing MA were transferred to culture inserts coated with ECM components only, and grown in the presence of selected individual GFs. An additional 10-14 days revealed confluent monolayers with TEER values of 500-700 ohms cm2 (Omega cm2). Monolayers grown on inserts coated with ECM components, such as fibronectin or collagen-IV, in the presence of epidermal growth factor or keratinocyte growth factor in the medium, yielded the highest TEER measurements when compared to cultures grown without GFs or ECM. Acute cytotoxicity (AC) studies with confluent monolayers of mES cells in 96-well plates indicated that there is a high correlation (R2=0.91) between cell viability and TEER for 24-h exposure time. Also, decrease in TEER is inversely proportional with increase in PP of markers. In comparison to standardized Registry of Cytotoxicity (RC) data and TEER measurements, MTT IC50 values for mES cells are lower. Thus, at equivalent concentrations for the same chemicals, cell viability decreases before the integrity of the monolayer is compromised. This system represents a novel approach for the manipulation of mES cells toward specific intact monolayers, as an in vitro model for biological monolayer formation, and most importantly, for applications to cytotoxicity testing.
Collapse
Affiliation(s)
- Anthony R Calabro
- St. John's University College of Pharmacy and Allied Health Professions, Department of Pharmaceutical Sciences, Toxicology Division, 8000 Utopia Parkway, Queens, NY 11439, United States
| | | | | |
Collapse
|
28
|
Boyle EC, Brown NF, Brumell JH, Finlay BB. Src homology domain 2 adaptors affect adherence of Salmonella enterica serovar Typhimurium to non-phagocytic cells. MICROBIOLOGY-SGM 2007; 153:3517-3526. [PMID: 17906149 DOI: 10.1099/mic.0.2007/008581-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of Salmonella enterica serovar Typhimurium (S. Typhimurium) to penetrate the intestinal epithelium is key to its pathogenesis. Bacterial invasion can be seen as a two-step process initially requiring adherence to the host cell surface followed by internalization into the host cell. Evidence suggests that adherence of S. Typhimurium to host cells is receptor-mediated; however, the host cell receptor(s) has/have not been identified. Internalization of S. Typhimurium absolutely requires the actin cytoskeleton yet only a few of the cytoskeletal components involved in this process have been identified. In order to identify host proteins that may play a role in S. Typhimurium invasion, the recruitment of actin-associated proteins was investigated. The contribution of recruited Src homology 2 adaptor proteins to invasion was further investigated and it was found that, while not involved in bacterial internalization itself, the adaptors Nck and ShcA influenced adherence of S. Typhimurium to non-phagocytic cells.
Collapse
Affiliation(s)
- Erin C Boyle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nat F Brown
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John H Brumell
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - B Brett Finlay
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
29
|
Cardin E, Latreille M, Khoury C, Greenwood MT, Larose L. Nck-1 selectively modulates eIF2alphaSer51 phosphorylation by a subset of eIF2alpha-kinases. FEBS J 2007; 274:5865-75. [PMID: 17944934 DOI: 10.1111/j.1742-4658.2007.06110.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51 is an early event associated with the down-regulation of protein synthesis at the level of translation and initiation of a transcriptional program. This constitutes a potent mechanism to overcome various stress conditions. In mammals, four eIF2alpha-kinases [PKR-like endoplasmic reticulum kinase (PERK), dsRNA-activated protein kinase (PKR), heme regulated inhibitor (HRI) and general control nonderepressible-2 (GCN2)], activated following specific stresses, have been shown to be involved in this process. In this article, we report that the ubiquitously expressed adaptor protein Nck, composed only of Src homology domains and classically implicated in cell signaling by activated plasma membrane receptor tyrosine kinases, modulates eIF2alpha-kinase-mediated eIF2alphaSer51 phosphorylation in a specific manner. Our results show that Nck not only prevents eIF2alpha phosphorylation upon PERK activation, as reported previously, but also reduces eIF2alpha phosphorylation in conditions leading to PKR and HRI activation. By contrast, the overexpression of Nck in mammalian cells fails to attenuate eIF2alphaSer51 phosphorylation in response to amino acid starvation, a stress well known to activate GCN2. This observation is further confirmed by showing that Nck fails to alter eIF2alphaSer51 phosphorylation in Saccharomyces cerevisiae, for which the sole eIF2alpha-kinase is Gcn2p. Our results suggest the existence of a novel mechanism that specifically modulates the phosphorylation of eIF2alpha on Ser51 under various stress conditions.
Collapse
Affiliation(s)
- Eric Cardin
- Polypeptide Laboratory, Department of Experimental Medicine, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
30
|
Emadali A, Metrakos PP, Kalantari F, Boutros T, Boismenu D, Chevet E. Proteomic analysis of tyrosine phosphorylation during human liver transplantation. Proteome Sci 2007; 5:1. [PMID: 17199894 PMCID: PMC1769479 DOI: 10.1186/1477-5956-5-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/02/2007] [Indexed: 12/31/2022] Open
Abstract
Background Ischemia-reperfusion (I/R) causes a dramatic reprogramming of cell metabolism during liver transplantation and can be linked to an alteration of the phosphorylation level of several cellular proteins. Over the past two decades, it became clear that tyrosine phosphorylation plays a pivotal role in a variety of important signalling pathways and was linked to a wide spectrum of diseases. Functional profiling of the tyrosine phosphoproteome during liver transplantation is therefore of great biological significance and is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel therapeutic strategies. Results Using liver biopsies collected during the early phases of organ procurement and transplantation, we aimed at characterizing the global patterns of tyrosine phosphorylation during hepatic I/R. A proteomic approach, based on the purification of tyrosine phosphorylated proteins followed by their identification using mass spectrometry, allowed us to identify Nck-1, a SH2/SH3 adaptor, as a potential regulator of I/R injury. Using immunoblot, cell fractionation and immunohistochemistry, we demonstrate that Nck-1 phosphorylation, expression and localization were affected in liver tissue upon I/R. In addition, mass spectrometry identification of Nck-1 binding partners during the course of the transplantation also suggested a dynamic interaction between Nck-1 and actin during I/R. Conclusion Taken together, our data suggest that Nck-1 may play a role in I/R-induced actin reorganization, which was previously reported to be detrimental for the hepatocytes of the transplanted graft. Nck-1 could therefore represent a target of choice for the design of new organ preservation strategies, which could consequently help to reduce post-reperfusion liver damages and improve transplantation outcomes.
Collapse
Affiliation(s)
- Anouk Emadali
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- CEA/Grenoble, Grenoble, France
| | - Peter P Metrakos
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Fariba Kalantari
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Tarek Boutros
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Daniel Boismenu
- Genome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Eric Chevet
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- Genome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
- Departement of Medecine, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Team AVENIR, INSERM E362, Université Bordeaux 2, Bordeaux, France
| |
Collapse
|
31
|
Gujral TS, Singh VK, Jia Z, Mulligan LM. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2B. Cancer Res 2006; 66:10741-9. [PMID: 17108110 DOI: 10.1158/0008-5472.can-06-3329] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple endocrine neoplasia 2B (MEN 2B) is an inherited syndrome of early onset endocrine tumors and developmental anomalies. The disease is caused primarily by a methionine to threonine substitution of residue 918 in the kinase domain of the RET receptor (2B-RET); however, the molecular mechanisms that lead to the disease phenotype are unclear. In this study, we show that the M918T mutation causes a 10-fold increase in ATP binding affinity and leads to a more stable receptor-ATP complex, relative to the wild-type receptor. Further, the M918T mutation alters local protein conformation, correlating with a partial loss of RET kinase autoinhibition. Finally, we show that 2B-RET can dimerize and become autophosphorylated in the absence of ligand stimulation. Our data suggest that multiple distinct but complementary molecular mechanisms underlie the MEN 2B phenotype and provide potential targets for effective therapeutics for this disease.
Collapse
Affiliation(s)
- Taranjit S Gujral
- Departments of Pathology and Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Li H, Zhu J, Aoudjit L, Latreille M, Kawachi H, Larose L, Takano T. Rat nephrin modulates cell morphology via the adaptor protein Nck. Biochem Biophys Res Commun 2006; 349:310-6. [PMID: 16934223 DOI: 10.1016/j.bbrc.2006.08.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Nephrin is a transmembrane molecule essential for morphology and function of kidney podocytes. We and others reported previously that the cytoplasmic domain of human and mouse nephrin interacts with the adaptor protein, Nck, in a tyrosine phosphorylation-dependent manner. In the current study, we characterized the interaction of rat nephrin with Nck and further addressed its impact on cell morphology. Rat nephrin expressed in Cos-1 cells co-immunoprecipitated with Nck in a manner dependent on the phosphorylation of Y1204 and Y1228. Nephrin from normal rat glomeruli was also tyrosine phosphorylated and associated with Nck. Overexpression of rat nephrin in HEK293T cells induced morphological changes resembling process formation, which became more distinct when the extracellular domain of nephrin was cross-linked by antibodies. The morphological changes were attenuated by expression of dominant negative constructs of Nck. In the rat model of podocyte injury and proteinuria, nephrin tyrosine phosphorylation and nephrin-Nck interaction were both reduced significantly. Taken together, we propose that Nck couples nephrin to the actin cytoskeleton in glomerular podocytes and contributes to the maintenance of normal morphology and function of podocytes.
Collapse
Affiliation(s)
- Hongping Li
- Department of Medicine, McGill University, Montreal, Que., Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Latreille M, Larose L. Nck in a Complex Containing the Catalytic Subunit of Protein Phosphatase 1 Regulates Eukaryotic Initiation Factor 2α Signaling and Cell Survival to Endoplasmic Reticulum Stress. J Biol Chem 2006; 281:26633-44. [PMID: 16835242 DOI: 10.1074/jbc.m513556200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stress imposed on the endoplasmic reticulum (ER) induces the phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51. This results in transient inhibition of general translation initiation while concomitantly activating a signaling pathway that promotes the expression of genes whose products improve ER function. Conversely, dephosphorylation of eIF2alphaSer51 is accomplished by protein phosphatase 1 (PP1c) complexes containing either the protein CReP or GADD34, which target PP1c to eIF2. Here, we demonstrate that the Src homology (SH) domain-containing adaptor Nck is a key component of a molecular complex that controls eIF2alpha phosphorylation and signaling in response to ER stress. We show that overexpression of Nck decreases basal and ER stress-induced eIF2alpha phosphorylation and the attendant induction of ATF4 and CHOP. In contrast, we demonstrate that the mouse embryonic fibroblasts lacking both isoforms of Nck (Nck1-/-Nck2-/-) show higher levels of eIF2alpha phosphorylation and premature induction of ATF4, CHOP, and GADD34 in response to ER stress and finally, are more resistant to cell death induced by prolonged ER stress conditions. We establish that a significant amount of Nck protein localizes at the ER and is in a complex with eIF2 subunits. Further analysis of this complex revealed that it also contains the Ser/Thr phosphatase PP1c, its regulatory subunit CReP, and dephosphorylates eIF2alpha on Ser51 in vitro. Overall, we demonstrate that Nck as a component of the CReP/PP1c holophosphatase complex contributes to maintain eIF2alpha in a hypophosphorylated state. In this manner, Nck modulates translation and eIF2alpha signaling in response to ER stress.
Collapse
Affiliation(s)
- Mathieu Latreille
- Polypeptide Hormone Laboratory, Department of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | |
Collapse
|
34
|
Lettau M, Qian J, Linkermann A, Latreille M, Larose L, Kabelitz D, Janssen O. The adaptor protein Nck interacts with Fas ligand: Guiding the death factor to the cytotoxic immunological synapse. Proc Natl Acad Sci U S A 2006; 103:5911-6. [PMID: 16595635 PMCID: PMC1458672 DOI: 10.1073/pnas.0508562103] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Fas ligand (FasL) is a key death factor of cytotoxic T lymphocytes and natural killer cells. It is stored intracellularly as a transmembrane protein of secretory lysosomes. Upon activation, these vesicles are transported to the cytotoxic immunological synapse (IS), and FasL becomes exposed to the cell surface to trigger cell death through ligation of its receptor Fas (CD95) on the target cell. We propose that the FasL-associated adaptor protein Nck is involved in the actin-dependent transport of FasL-bearing secretory lysosomes to the IS. Nck binds to the proline-rich portion of FasL and alters its subcellular distribution when coexpressed in 293T cells. In T lymphocytes, endogenous Nck partially colocalizes with lysosome-associated FasL. When T cell clones or lines are exposed to target cells, both proteins and other components of secretory lysosomes (i.e., granzyme B or cathepsin D) are transported to the cell-cell interface. The present data suggest that T cell receptor engagement provokes a rapid, tyrosine kinase- and actin-dependent transport of Nck-associated FasL-carrying lysosomes to the contact area. Our observations support the previous notion that the unique cytoplasmic tail of FasL is crucial for its directed transport to the cell surface and into the assembling cytotoxic IS.
Collapse
Affiliation(s)
- Marcus Lettau
- *Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, 24105 Kiel, Germany; and
| | - Jing Qian
- *Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, 24105 Kiel, Germany; and
| | - Andreas Linkermann
- *Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, 24105 Kiel, Germany; and
| | - Mathieu Latreille
- Polypeptide Laboratory, McGill University, Montreal, QC, Canada H3A 2B2
| | - Louise Larose
- Polypeptide Laboratory, McGill University, Montreal, QC, Canada H3A 2B2
| | - Dieter Kabelitz
- *Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, 24105 Kiel, Germany; and
| | - Ottmar Janssen
- *Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, 24105 Kiel, Germany; and
- To whom correspondence should be addressed at: Institute for Immunology, University Hospital Schleswig–Holstein Campus Kiel, Michaelisstrasse 5, 24105 Kiel, Germany. E-mail:
| |
Collapse
|
35
|
Llorens F, Duarri A, Sarró E, Roher N, Plana M, Itarte E. The N-terminal domain of the human eIF2beta subunit and the CK2 phosphorylation sites are required for its function. Biochem J 2006; 394:227-36. [PMID: 16225457 PMCID: PMC1386020 DOI: 10.1042/bj20050605] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CK2 (protein kinase CK2) is known to phosphorylate eIF2 (eukaryotic translation initiation factor 2) in vitro; however, its implication in this process in living cells has remained to be confirmed. The combined use of chemical inhibitors (emodin and apigenin) of CK2 together with transfection experiments with the wild-type of the K68A kinase-dead mutant form of CK2alpha evidenced the direct involvement of this protein kinase in eIF2beta phosphorylation in cultured HeLa cells. Transfection of HeLa cells with human wild-type eIF2beta or its phosphorylation site mutants showed Ser2 as the main site for constitutive eIF2beta phosphorylation, whereas phosphorylation at Ser67 seems more restricted. In vitro phosphorylation of eIF2beta also pointed to Ser2 as a preferred site for CK2 phosphorylation. Overexpression of the eIF2beta S2/67A mutant slowed down the rate of protein synthesis stimulated by serum, although less markedly than the overexpression of the Delta2-138 N-terminal-truncated form of eIF2beta (eIF2beta-CT). Mutation at Ser2 and Ser67 did not affect eIF2beta integrating into the eIF2 trimer or being able to complex with eIF5 and CK2alpha. The eIF2beta-CT form was also incorporated into the eIF2 trimer but did not bind to eIF5. Overexpression of eIF2beta slightly decreased HeLa cell viability, an effect that was more evident when overexpressing the eIF2beta S2/67A mutant. Cell death was particularly marked when overexpressing the eIF2beta-CT form, being detectable at doses where eIF2beta and eIF2beta S2/67A were ineffective. These results suggest that Ser2 and Ser67 contribute to the important role of the N-terminal region of eIF2beta for its function in mammals.
Collapse
Affiliation(s)
- Franc Llorens
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Ciències, Universitat Autònoma de Barcelona, Edifici Cs, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
36
|
Verma R, Kovari I, Soofi A, Nihalani D, Patrie K, Holzman LB. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J Clin Invest 2006; 116:1346-59. [PMID: 16543952 PMCID: PMC1401486 DOI: 10.1172/jci27414] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 02/07/2006] [Indexed: 12/21/2022] Open
Abstract
A properly established and maintained podocyte intercellular junction, or slit diaphragm, is a necessary component of the selective permeability barrier of the kidney glomerulus. The observation that mutation or deletion of the slit diaphragm transmembrane protein nephrin results in failure of podocyte foot process morphogenesis and concomitant proteinuria first suggested the hypothesis that nephrin serves as a component of a signaling complex that directly integrates podocyte junctional integrity with cytoskeletal dynamics. The observations made herein provide the first direct evidence to our knowledge for a phosphorylation-mediated signaling mechanism by which this integrative function is derived. Our data support the model that during podocyte intercellular junction formation, engagement of the nephrin ectodomain induces transient Fyn catalytic activity that results in nephrin phosphorylation on specific nephrin cytoplasmic domain tyrosine residues. We found that this nephrin phosphorylation event resulted in recruitment of the SH2-SH3 domain-containing adapter protein Nck and assembly of actin filaments in an Nck-dependent fashion. Considered in the context of the role of nephrin family proteins in other organisms and the integral relationship of actin dynamics and junction formation, these observations establish a function for nephrin in regulating actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Rakesh Verma
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Iulia Kovari
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Abdul Soofi
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Deepak Nihalani
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Kevin Patrie
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Lawrence B. Holzman
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Su Q, Wang S, Baltzis D, Qu LK, Wong AHT, Koromilas AE. Tyrosine phosphorylation acts as a molecular switch to full-scale activation of the eIF2alpha RNA-dependent protein kinase. Proc Natl Acad Sci U S A 2005; 103:63-8. [PMID: 16373505 PMCID: PMC1324992 DOI: 10.1073/pnas.0508207103] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphorylation of the alpha-subunit of translation eukaryotic initiation factor-2 (eIF2) leads to the inhibition of protein synthesis in response to diverse conditions of stress. Serine/threonine RNA-dependent protein kinase (PKR) is an eIF2alpha kinase family member induced by type I IFN and activated in response to dsRNA or virus infection. Herein, we demonstrate that human PKR is a dual specificity kinase phosphorylated at Y101, Y162 and Y293 in vitro and in vivo. Site-specific tyrosine phosphorylation is essential for efficient dsRNA-binding, dimerization, kinase activation and eIF2alpha phosphorylation of PKR. Biologically, tyrosine phosphorylation of PKR mediates the antiviral and antiproliferative properties of the kinase through its ability to control translation. Our data demonstrate an important role of tyrosine phosphorylation in biochemical and biological processes caused or mediated by the activation of the eIF2alpha kinase PKR.
Collapse
Affiliation(s)
- Qiaozhu Su
- Lady Davis Institute for Medical Research, McGiIl University, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
38
|
Suragani RNVS, Kamindla R, Ehtesham NZ, Ramaiah KVA. Interaction of recombinant human eIF2 subunits with eIF2B and eIF2alpha kinases. Biochem Biophys Res Commun 2005; 338:1766-72. [PMID: 16288713 DOI: 10.1016/j.bbrc.2005.10.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
The heterotrimeric eukaryotic initiation factor 2 (eIF2) plays a critical role in the mechanics and regulation of protein synthesis. Unlike yeast and archaeal eIF2, the purified baculovirus-expressed recombinant human eIF2 subunits used in these studies reveal that the alpha- and beta-subunits interact with each other. Consistent with this observation, the beta-subunit specifically interacts with the purified eIF2B in ELISA studies and this interaction is enhanced when wt eIF2alpha in the recombinant trimeric complex is phosphorylated or replaced by a mutant phosphomimetic eIF2alpha (S51D). These findings together with other observations raise the possibility that the beta-subunit plays a key role in the regulation and function of mammalian eIF2 complex. PERK, an eIF2alpha kinase, is found to interact with wt and mutants of eIF2alpha in which the serine 51 or 48 residue is replaced by alanine or aspartic acid thereby suggesting that the phosphorylation site in the substrate is not important for interaction. Fluorescence spectroscopic and fluorescence resonance energy transfer analyses reveal that the energy transfer occurs from PERK to eIF2alpha. The dissociation constant of alpha-subunit-PERK complex (Kd alpha-subunit) is 0.74 microM and the interaction is stoichiometric.
Collapse
|
39
|
Suragani RNVS, Ghosh S, Ehtesham NZ, Ramaiah KVA. Expression and purification of the subunits of human translational initiation factor 2 (eIF2): phosphorylation of eIF2 alpha and beta. Protein Expr Purif 2005; 47:225-33. [PMID: 16289913 DOI: 10.1016/j.pep.2005.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 10/01/2005] [Accepted: 10/03/2005] [Indexed: 11/22/2022]
Abstract
Eukaryotic initiation factor 2 (eIF2) is a GDP-binding protein with three subunits: alpha, beta, and gamma. It delivers initiator tRNA (Met-tRNAi) to 40S ribosomes in a GTP-dependent manner. The factor regulates the translation of messenger RNAs through the phosphorylation of serine 51 residue in the small or alpha-subunit of eIF2 (eIF2alpha) and modulation of its interaction with a rate-limiting heteropentameric protein eIF2B. To understand the structural, functional, and regulatory roles of each of these subunits in the various activities of phosphorylated and unphosphorylated eIF2, such, as its ability to interact with GTP, Met-tRNAi, 40S ribosomes and with various proteins, we have for the first time over expressed all the three subunits of human eIF2 independently, and, also together in Sf9 cells using pFast Bac HT vector of baculovirus expression system. The expression of all subunits increased with increase in infection time up to 72 h. We have also over expressed three mutant forms of eIF2alpha viz, S51A, S51D, and S48A in which the serine at 51 or 48 position is replaced by an alanine or aspartic acid with 6x histidine tag at the N-terminus. Further, any of the two subunits or all the three subunits of eIF2 were coexpressed by multiple infection of cells with recombinant viruses. Purified alpha (wt and mutants) and beta subunits were found suitable to serve as substrates for different kinases. The recombinant subunits of eIF2alpha and beta-subunits were also phosphorylated in cultured insect cells. Phosphorylation of eIF2alpha in vitro was not significantly different in the presence and absence of the other subunits.
Collapse
|
40
|
Abstract
In the endoplasmic reticulum (ER), secretory and transmembrane proteins fold into their native conformation and undergo posttranslational modifications important for their activity and structure. When protein folding in the ER is inhibited, signal transduction pathways, which increase the biosynthetic capacity and decrease the biosynthetic burden of the ER to maintain the homeostasis of this organelle, are activated. These pathways are called the unfolded protein response (UPR). In this review, we briefly summarize principles of protein folding and molecular chaperone function important for a mechanistic understanding of UPR-signaling events. We then discuss mechanisms of signal transduction employed by the UPR in mammals and our current understanding of the remodeling of cellular processes by the UPR. Finally, we summarize data that demonstrate that UPR signaling feeds into decision making in other processes previously thought to be unrelated to ER function, e.g., eukaryotic starvation responses and differentiation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.
| | | |
Collapse
|
41
|
Zhou HR, Jia Q, Pestka JJ. Ribotoxic Stress Response to the Trichothecene Deoxynivalenol in the Macrophage Involves the Src Family Kinase Hck. Toxicol Sci 2005; 85:916-26. [PMID: 15772366 DOI: 10.1093/toxsci/kfi146] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trichothecene mycotoxins and other translational inhibitors activate mitogen-activated protein kinase (MAPKs) by a mechanism called the "ribotoxic stress response," which drives both cytokine gene expression and apoptosis in macrophages. The purpose of this study was to identify upstream kinases involved in the ribotoxic stress response using the trichothecene deoxynivalenol (DON) and the RAW 264.7 macrophage as models. DON (100 to 1000 ng/ml) dose-dependently induced phosphorylation of c-Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAPKs. MAPK phosphorylation in response to DON exposure occurred as early as 5 min, was maximal from 15 to 30 min, and lasted up to 8 h. Preincubation with inhibitors of protein kinase C, protein kinase A, or phospholipase C had no effect on DON-induced MAPK phosphorylation. In contrast, the Src family tyrosine kinase inhibitors, PP1 (4-amino-5-[4-methylphenyl)]-7-[t-butyl]pyrazolo[3,4-d]-pyrimidine) and, PP2 (4-amino-5-[4-chlorophenyl]-7-[t-butyl]pyrazolo[3,4-d]-pyrimidine) concentration-dependently impaired phosphorylation of all three MAPK families. PP1 suppressed DON-induced phosphorylation of the MAPK substrates c-jun, ATF-2, and p90(Rsk). MAPK phosphorylation by two other translational inhibitors, anisomycin and emetine, were similarly Src-dependent. PP1 reduced DON-induced increases in nuclear levels and binding activities of several transcription factors (NF-kappaB, AP-1, and C/EBP), which corresponded to decreases in TNF-alpha production, caspase-3 activation, and apoptosis. Tyrosine phosphorylation of hematopoeitic cell kinase (Hck), a Src found in macrophages, was detectable within 1 to 5 min after DON addition, and this was suppressed by PP1. Knockdown of Hck expression with siRNAs confirmed involvement of this Src in DON-induced TNF-alpha production and caspase activation. Taken together, activation of Hck and possibly other Src family tyrosine kinases are likely to be critical signals that precede both MAPK activation and induction of resultant downstream sequelae by DON and other ribotoxic stressors.
Collapse
Affiliation(s)
- Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | | | |
Collapse
|
42
|
Nguyên DT, Kebache S, Fazel A, Wong HN, Jenna S, Emadali A, Lee EH, Bergeron JJM, Kaufman RJ, Larose L, Chevet E. Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress. Mol Biol Cell 2004; 15:4248-60. [PMID: 15201339 PMCID: PMC515356 DOI: 10.1091/mbc.e03-11-0851] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 05/21/2004] [Accepted: 06/07/2004] [Indexed: 11/11/2022] Open
Abstract
In response to stress, the endoplasmic reticulum (ER) signaling machinery triggers the inhibition of protein synthesis and up-regulation of genes whose products are involved in protein folding, cell cycle exit, and/or apoptosis. We demonstrate that the misfolding agents azetidine-2-carboxylic acid (Azc) and tunicamycin initiate signaling from the ER, resulting in the activation of Jun-N-terminal kinase, p44(MAPK)/extracellular signal-regulated kinase-1 (ERK-1), and p38(MAPK) through IRE1alpha-dependent mechanisms. To characterize the ER proximal signaling events involved, immuno-isolated ER membranes from rat fibroblasts treated with ER stress inducers were used to reconstitute the activation of the stress-activated protein kinase/mitogen-activate protein kinase (MAPK) pathways in vitro. This allowed us to demonstrate a role for the SH2/SH3 domain containing adaptor Nck in ERK-1 activation after Azc treatment. We also show both in vitro and in vivo that under basal conditions ER-associated Nck represses ERK-1 activation and that upon ER stress this pool of Nck dissociates from the ER membrane to allow ERK-1 activation. Moreover, under the same conditions, Nck-null cells elicit a stronger ERK-1 activation in response to Azc stress, thus, correlating with an enhanced survival phenotype. These data delineate a novel mechanism for the regulation of ER stress signaling to the MAPK pathway and demonstrate a critical role for Nck in ER stress and cell survival.
Collapse
Affiliation(s)
- Duc Thang Nguyên
- Department of Surgery, McGill University, Montreal, Quebec, H3A 1A1 Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kebache S, Cardin E, Nguyên DT, Chevet E, Larose L. Nck-1 Antagonizes the Endoplasmic Reticulum Stress-induced Inhibition of Translation. J Biol Chem 2004; 279:9662-71. [PMID: 14676213 DOI: 10.1074/jbc.m310535200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cells have developed specific mechanisms to overcome environmental stress. Here we show that the Src homology 2/3 (SH2/SH3) domain-containing protein Nck-1 prevents the unfolded protein response normally induced by pharmacological endoplasmic reticulum (ER) stress agents. Overexpression of Nck-1 enhances protein translation, whereas it abrogates eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation and inhibition of translation in response to tunicamycin or thapsigargin treatment. Nck-1 overexpression also attenuates induction of the ER chaperone, the immunoglobulin heavy chain-binding protein (BiP), and impairs cell survival in response to thapsigargin. We provided evidence that in these conditions, the effects of Nck on the unfolded protein response (UPR) involve its second SH3 domain and a calyculin A-sensitive phosphatase activity. In addition, we demonstrated that protein translation is reduced in mouse embryonic fibroblasts lacking both Nck isoforms and is enhanced in similar cells expressing high levels of Nck-1. In these various mouse embryonic fibroblasts, we also provided evidence that Nck modulates the activation of the ER resident eIF2alpha kinase PERK and consequently the phosphorylation of eIF2alpha on Ser-51 in response to stress. Our study establishes that Nck is required for optimal protein translation and demonstrates that, in addition to its adaptor function in mediating signaling from the plasma membrane, Nck also mediates signaling from the ER membrane compartment.
Collapse
Affiliation(s)
- Sem Kebache
- Polypeptide Laboratory, Division of Endocrinology, Department of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | |
Collapse
|
44
|
Llorens F, Roher N, Miró FA, Sarno S, Ruiz FX, Meggio F, Plana M, Pinna LA, Itarte E. Eukaryotic translation-initiation factor eIF2beta binds to protein kinase CK2: effects on CK2alpha activity. Biochem J 2003; 375:623-31. [PMID: 12901717 PMCID: PMC1223719 DOI: 10.1042/bj20030915] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 08/05/2003] [Indexed: 11/17/2022]
Abstract
eIF2 (eukaryotic translation-initiation factor 2) is a substrate and an interacting partner for CK2 (protein kinase CK2). Co-immuno-precipitation of CK2 with eIF2beta has now been observed in HeLa cells, overexpressing haemagglutinin-tagged human recombinant eIF2beta. A direct association between His6-tagged human recombinant forms of eIF2beta subunit and both the catalytic (CK2alpha) and the regulatory (CK2beta) subunits of CK2 has also been shown by using different techniques. Surface plasmon resonance analysis indicated a high affinity in the interaction between eIF2beta and CK2alpha, whereas the affinity for the association with CK2beta is much lower. Free CK2alpha is unable to phosphorylate eIF2beta, whereas up to 1.2 mol of phosphate/mol of eIF2beta was incorporated by the reconstituted CK2 holoenzyme. The N-terminal third part of eIF2beta is dispensable for binding to either CK2alpha or CK2beta, although it contains the phosphorylation sites for CK2. The remaining central/C-terminal part of eIF2beta is not phosphorylated by CK2, but is sufficient for binding to both CK2 subunits. The presence of eIF2beta inhibited CK2alpha activity on calmodulin and beta-casein, but it had a minor effect on that of the reconstituted CK2 holoenzyme. The truncated forms corresponding to the N-terminal or central/C-terminal regions of eIF2beta were much less inhibitory than the intact subunit. The results demonstrate that the ability to associate with CK2 subunits and to serve as a CK2 substrate are confined to different regions in eIF2beta and that it may act as an inhibitor on CK2alpha.
Collapse
Affiliation(s)
- Franc Llorens
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Ciències, Universitat Autònoma de Barcelona, Edifici Cs, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Since the ligand for the death factor CD95 (CD95L) was identified almost a decade ago, it has been established that this molecule (CD95L, FasL, Apo-1L, CD178, TNFSF6, APT1LG1) has multiple immunoregulatory and pathophysiologically relevant functions. CD95L does not only act as a death factor when externalized with secretory lysosomes on cytotoxic T and NK cells or when expressed on CD4(+) T cells in the course of activation-induced cell death, it is also a key molecule for the establishment of immune privilege or tumor cell survival and may serve as a costimulatory molecule during T cell activation. Moreover, alterations of expression or shedding of different forms of CD95L are associated with many diseases including various malignancies, HIV infection, autoimmune disorders (systemic lupus erythematodes, rheumatoid arthritis), acute myocardial infarction, traumatic injury and many others. In most cases, however, the physiological link between altered CD95L expression and pathophysiology is unknown. Given the potency of the molecule to regulate death and survival of many different cell types, the control of CD95L production, transport, storage, shedding and release is of tremendous biological and clinical interest. This commentary aims at briefly summarizing the current knowledge, hypotheses and controversies about CD95L as a multifunctional ligand and receptor. It touches upon the complex networks of intracellular dynamics of protein transport and trafficking and the potential bidirectional signal transduction capacity of CD95L with a focus on molecular interactions that have been worked out over the past years.
Collapse
Affiliation(s)
- Andreas Linkermann
- Institute for Immunology, Medical Center Schleswig-Holstein, Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | |
Collapse
|
46
|
Li X, Meriane M, Triki I, Shekarabi M, Kennedy TE, Larose L, Lamarche-Vane N. The adaptor protein Nck-1 couples the netrin-1 receptor DCC (deleted in colorectal cancer) to the activation of the small GTPase Rac1 through an atypical mechanism. J Biol Chem 2002; 277:37788-97. [PMID: 12149262 DOI: 10.1074/jbc.m205428200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Netrins are a family of secreted proteins that guide the migration of cells and axonal growth cones during development. DCC (deleted in colorectal cancer) is a receptor for netrin-1 implicated in mediating these responses. Here, we show that DCC interacts constitutively with the SH3/SH2 adaptor Nck in commissural neurons. This interaction is direct and requires the SH3 but not SH2 domains of Nck-1. Moreover, both DCC and Nck-1 associate with the actin cytoskeleton, and this association is mediated by DCC. A dominant negative Nck-1 inhibits the ability of DCC to induce neurite outgrowth in N1E-115 cells and to activate Rac1 in fibroblasts in response to netrin-1. These studies provide evidence for an important role of mammalian Nck-1 in a novel signaling pathway from an extracellular guidance cue to changes in the actin-based cytoskeleton responsible for axonal guidance.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Lemon WJ, Bernert H, Sun H, Wang Y, You M. Identification of candidate lung cancer susceptibility genes in mouse using oligonucleotide arrays. J Med Genet 2002; 39:644-55. [PMID: 12205107 PMCID: PMC1735228 DOI: 10.1136/jmg.39.9.644] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We applied microarray gene expression profiling to lungs from mouse strains having variable susceptibility to lung tumour development as a means to identify, within known quantitative trait loci (QTLs), candidate genes responsible for susceptibility or resistance to lung cancer. At least eight chromosomal regions of mice have been mapped and verified to be linked with lung tumour susceptibility or resistance. In this study, high density oligonucleotide arrays were used to measure the relative expression levels of >36 000 genes and ESTs in lung tissues of A/J, BALB/cJ, SM/J, C3H/HeJ, and C57BL/6J mice. A number of differentially expressed genes were found in each of the lung cancer susceptibility QTLs. Bioinformatic analysis of the differentially expressed genes located within QTLs produced 28 susceptibility candidates and 22 resistance candidates. These candidates may be extremely helpful in the ultimate identification of the precise genes responsible for lung tumour susceptibility or resistance in mice and, through follow up, humans. Complete data sets are available at http://thinker.med.ohio-state.edu.
Collapse
Affiliation(s)
- W J Lemon
- Division of Human Cancer Genetics, The Ohio State University Comprehensive Cancer Center, 420 West 12th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|