1
|
He Y, Junker RR, Xiao J, Lasky JR, Cao M, Asefa M, Swenson NG, Xu G, Yang J, Sedio BE. Genetic and environmental drivers of intraspecific variation in foliar metabolites in a tropical tree community. THE NEW PHYTOLOGIST 2025; 246:2551-2564. [PMID: 40247823 DOI: 10.1111/nph.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/26/2025] [Indexed: 04/19/2025]
Abstract
Plant interactions with abiotic and biotic environments are mediated by diverse metabolites, which are crucial for stress response and defense. These metabolites can not only support diversity by shaping species niche differences but also display heritable and plastic intraspecific variation, which few studies have quantified in terms of their relative contributions. To address this shortcoming, we used untargeted metabolomics to annotate and quantify foliar metabolites and restriction-site associated DNA (RAD) sequencing to assess genetic distances among 300 individuals of 10 locally abundant species from a diverse tropical community in Southwest China. We quantified the relative contributions of relatedness and the abiotic and biotic environment to intraspecific metabolite variation, considering different biosynthetic pathways. Intraspecific variation contributed most to community-level metabolite diversity, followed by species-level variation. Biotic factors had the largest effect on total and secondary metabolites, while abiotic factors strongly influenced primary metabolites, particularly carbohydrates. The relative importance of these factors varied widely across different biosynthetic pathways and different species. Our findings highlight that intraspecific variation is an essential component of community-level metabolite diversity. Furthermore, species rely on distinct classes of metabolites to adapt to environmental pressures, with genetic, abiotic, and biotic factors playing pathway-specific roles in driving intraspecific variation.
Collapse
Affiliation(s)
- Yunyun He
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy Sciences, Beijing, 100049, China
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Jianhua Xiao
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, JiaYing University, Mei Zhou, Guangdong, 514015, China
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Min Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Mengesha Asefa
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Guorui Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Jie Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- National Forest Ecosystem Research Station at Xishuangbanna, Mengla, Yunnan, 666303, China
| | - Brain E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, 0843, Republic of Panama
| |
Collapse
|
2
|
Henderson D, Tello JS, Cayola L, Fuentes AF, Alvestegui B, Muchhala N, Sedio BE, Myers JA. Testing the role of biotic interactions in shaping elevational diversity gradients: An ecological metabolomics approach. Ecology 2025; 106:e70069. [PMID: 40207495 DOI: 10.1002/ecy.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/23/2024] [Accepted: 02/18/2025] [Indexed: 04/11/2025]
Abstract
Seminal hypotheses in ecology and evolution postulate that stronger and more specialized biotic interactions contribute to higher species diversity at lower elevations and latitudes. Plant-chemical defenses mediate biotic interactions between plants and their natural enemies and provide a highly dimensional trait space in which chemically mediated niches may facilitate plant species coexistence. However, the role of chemically mediated biotic interactions in shaping plant communities remains largely untested across large-scale ecological gradients. Here, we used ecological metabolomics to quantify the chemical dissimilarity of foliar metabolomes among 473 tree species in 16 tropical tree communities along an elevational gradient in the Bolivian Andes. We predicted that tree species diversity would be higher in communities and climates where co-occurring tree species are more chemically dissimilar and exhibit faster evolution of secondary metabolites (lower chemical phylogenetic signal). Further, we predicted that these relationships should be especially pronounced for secondary metabolites known to include antiherbivore and antimicrobial defenses relative to primary metabolites. Using structural equation models, we quantified the direct effects of rarefied median chemical dissimilarity and chemical phylogenetic signal on tree species diversity, as well as the indirect effects of climate. We found that chemical dissimilarity among tree species with respect to all metabolites and secondary metabolites had positive direct effects on tree species diversity, and that climate (higher temperature and precipitation, and lower temperature seasonality) had positive indirect effects on species diversity by increasing chemical dissimilarity. In contrast, chemical dissimilarity of primary metabolites was unrelated to species diversity and climate. Chemical phylogenetic signal of all metabolite classes had negative direct effects on tree species diversity, indicating faster evolution of metabolites in more diverse communities. Climate had a direct effect on species diversity but did not indirectly affect diversity through chemical phylogenetic signal. Our results support the hypothesis that chemically mediated biotic interactions shape elevational diversity gradients by imposing stronger selection for chemical divergence in more diverse communities and maintaining higher chemical dissimilarity among species in warmer, wetter, and more stable climates. Our study also illustrates the promise of ecological metabolomics in the study of biogeography, community ecology, and complex species interactions in high-diversity ecosystems.
Collapse
Affiliation(s)
- David Henderson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - J Sebastián Tello
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
| | - Leslie Cayola
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
- Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Alfredo F Fuentes
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
- Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Belen Alvestegui
- Department of Biology, University of Missouri St. Louis, St. Louis, Missouri, USA
| | - Nathan Muchhala
- Department of Biology, University of Missouri St. Louis, St. Louis, Missouri, USA
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
- Smithsonian Tropical Research Institute, Panama, Panama
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Schneider GF, Beckman NG. Different tools for different trades: contrasts in specialized metabolite chemodiversity and phylogenetic dispersion in fruit, leaves, and roots of the neotropical shrubs Psychotria and Palicourea (Rubiaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40120124 DOI: 10.1111/plb.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
Plants produce an astonishingly diverse array of specialized metabolites. A crucial step in understanding the origin of such chemodiversity is describing how chemodiversity manifests across the spatial and ontogenetic scales relevant to plant-biotic interactions. Focusing on 21 sympatric species of Psychotria and Palicourea sensu lato (Rubiaceae), we describe patterns of specialized metabolite diversity across spatial and ontogenetic scales using a combination of field collections, untargeted metabolomics, and ecoinformatics. We compare α, β, and γ diversity of specialized metabolites in expanding leaves, unripe pulp, immature seed, ripe pulp, mature seed, and fine roots. Within species, fruit tissues from across ontogenetic stages had ≥α diversity than leaves, and ≤β diversity than leaves. Pooled across species, fruit tissues and ontogenetic stages had the highest γ diversity of all organs, and fruit tissues and ontogenetic stages combined had a higher incidence of organ-specific mass spectral features than leaves. Roots had ≤α diversity than leaves and the lowest β and γ diversity of all organs. Phylogenetic correlations of chemical distance varied by plant organ and chemical class. Our results describe patterns of specialized metabolite diversity across organs and species and provide support for organ-specific contributions to plant chemodiversity. This study contributes to the growing understanding within plant evolutionary ecology of the biological scales of specialized metabolite diversification. Future studies combining our data on specialized metabolite diversity with biotic interaction data and experiments can test existing hypotheses on the roles of ecological interactions in the evolution of chemodiversity.
Collapse
Affiliation(s)
- G F Schneider
- Department of Biology, Utah State University, Logan, Utah, USA
| | - N G Beckman
- Department of Biology and Ecology Center, Utah State University, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
4
|
Xu S, Gaquerel E. Evolution of plant specialized metabolites: beyond ecological drivers. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00044-5. [PMID: 40113551 DOI: 10.1016/j.tplants.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Plants produce a highly diverse array of specialized metabolites. Traditionally, the evolution of these metabolites has been studied primarily through the lens of plants' ecological interactions with herbivores, pathogens, and pollinators, as many of them exhibit defense and/or attraction functions. However, increasing evidence suggests that many specialized metabolites, along with their precursors, also act as cellular signals that regulate cell growth and differentiation. We propose that these intrinsic functions are at least equally important factors in shaping the evolution of plant chemical defenses. We further discuss how future research that combines modern single-cell techniques and evolutionary genomics will provide novel insights into the evolutionary process of specialized metabolism diversification.
Collapse
Affiliation(s)
- Shuqing Xu
- Institute of Organismic and Molecular Evolution (iomE), University of Mainz, 55128 Mainz, Germany.
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
5
|
Cai L, Cardoso D, Tressel LG, Lee C, Shrestha B, Choi IS, de Lima HC, de Queiroz LP, Ruhlman TA, Jansen RK, Wojciechowski MF. Well-resolved phylogeny supports repeated evolution of keel flowers as a synergistic contributor to papilionoid legume diversification. THE NEW PHYTOLOGIST 2025. [PMID: 40099506 DOI: 10.1111/nph.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/15/2025] [Indexed: 03/20/2025]
Abstract
The butterfly-shaped keel flower is a highly successful floral form in angiosperms. These flowers steer the mechanical interaction with bees and thus are hypothesized to accelerate pollinator-driven diversification. The exceptionally labile evolution of keel flowers in Papilionoideae (Fabaceae) provides a suitable system to test this hypothesis. Using 1456 low-copy nuclear loci, we confidently resolve the early divergence history of Papilionoideae. Constrained by this backbone phylogeny, we generated a time tree for 3326 Fabales to evaluate the tempo and mode of diversification within a state-dependent evolutionary framework. The first keel flowers emerged c. 59.0 million years ago in Papilionoideae, predating the earliest fossil by 3-4 million years. The Miocene diversification of Papilionoideae coincided with the rapid evolution of keel flowers. At least six independent origins and 32 losses of keel flowers were identified in Papilionoideae, Cercidoideae, and Polygalaceae. However, the state-dependent diversification model was not favored. Lack of radiation associated with keel flowers suggests that diversification within Papilionoideae was not solely driven by pollinator-mediated selection, but instead an outcome of the synergistic effects of multiple innovations, including nitrogen fixation and chemical defense, as well as dispersal into subtropical and temperate regions.
Collapse
Affiliation(s)
- Liming Cai
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
| | - Lydia G Tressel
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Bikash Shrestha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, 34054, Korea
| | - Haroldo C de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
| | - Luciano P de Queiroz
- Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, 44036-900, Brazil
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
6
|
Guevara-Andino JE, Dávalos LM, Zapata F, Endara MJ, Cotoras DD, Chaves J, Claramunt S, López-Delgado J, Mendoza-Henao AM, Salazar-Valenzuela D, Rivas-Torres G, Yeager J. Neotropics as a Cradle for Adaptive Radiations. Cold Spring Harb Perspect Biol 2025; 17:a041452. [PMID: 38692837 PMCID: PMC11875094 DOI: 10.1101/cshperspect.a041452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Neotropical ecosystems are renowned for numerous examples of adaptive radiation in both plants and animals resulting in high levels of biodiversity and endemism. However, we still lack a comprehensive review of the abiotic and biotic factors that contribute to these adaptive radiations. To fill this gap, we delve into the geological history of the region, including the role of tectonic events such as the Andean uplift, the formation of the Isthmus of Panama, and the emergence of the Guiana and Brazilian Shields. We also explore the role of ecological opportunities created by the emergence of new habitats, as well as the role of key innovations, such as novel feeding strategies or reproductive mechanisms. We discuss different examples of adaptive radiation, including classic ones like Darwin's finches and Anolis lizards, and more recent ones like bromeliads and lupines. Finally, we propose new examples of adaptive radiations mediated by ecological interactions in their geological context. By doing so, we provide insights into the complex interplay of factors that contributed to the remarkable diversity of life in the Neotropics and highlight the importance of this region in understanding the origins of biodiversity.
Collapse
Affiliation(s)
- Juan E Guevara-Andino
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York 11794, USA
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90024, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90024, USA
| | - María José Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt am Main, Germany
- Department of Entomology, California Academy of Sciences, San Francisco, California 94118, USA
| | - Jaime Chaves
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S 1A1, Ontario, Canada
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Angela M Mendoza-Henao
- Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva 12-65 Piso 7, Colombia
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del Medio Ambiente, Universidad Indoamérica, Quito 170301, Ecuador
| | - Gonzalo Rivas-Torres
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Justin Yeager
- Grupo de Investigación en Biodiversidad, Ambiente y Salud-BIOMAS-Universidad de las Américas, Quito 170124, Ecuador
| |
Collapse
|
7
|
González-Carrera S, Fernández-Fuentes A, Escudero A, García-Estévez I, Martínez-Ortega M, Mediavilla S. Leaf traits and insect herbivory levels in two Mediterranean oaks and their hybrids through contrasting environmental gradients. TREE PHYSIOLOGY 2025; 45:tpae170. [PMID: 39729020 DOI: 10.1093/treephys/tpae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Insect herbivory has attracted enormous attention from researchers due to its effects on plant fitness. However, there remain questions such as what are the most important leaf traits that determine consumption levels, whether there are latitudinal gradients in herbivore pressure, or whether there are differences in susceptibility between hybrids and their parental species. In this work, we address all these issues in two species of Mediterranean Quercus (Quercus faginea subsp. faginea Lam. and Quercus pyrenaica Wild.) and their hybrids. Over 2 years, we analyzed leaf emergence and 11 leaf traits (biomechanical, chemical and morphological), as well as the levels of herbivory by insects in leaves of the three genetic groups in different locations distributed along a climatic gradient. The hybrids showed intermediate values between both species in leaf emergence, chemical traits and structural reinforcement. By contrast, they were more similar to Q. faginea in leaf size and shape. Despite their intermediate leaf traits, hybrids always showed lower losses by consumption than both parental species, which suggests that they possess inherent higher resistance to herbivores, which cannot be explained by their dissimilarities in leaf traits. Within each genetic group, differences in leaf size were the most important determinant of differences in herbivory losses, which increased with leaf size. In turn, leaf size increased significantly with the increase in mean annual temperatures across the climatic gradient, in parallel with herbivory losses. In conclusion, contrary to our expectations, hybrids maintained lower levels of herbivory than their parent species. Given the potential negative effect of leaf herbivory on carbon fixation, this advantage of the hybrids would imply a threat to the persistence of both pure species. More research is needed to elucidate possible alternative mechanisms that allow for maintaining species integrity in the absence of reproductive barriers.
Collapse
Affiliation(s)
- Santiago González-Carrera
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Alejandro Fernández-Fuentes
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Alfonso Escudero
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Ignacio García-Estévez
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Pharmacy, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Montserrat Martínez-Ortega
- Department of Botany and Plant Physiology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
- Herbarium and Plant DNA Biobank, University of Salamanca, c/ Espejo, 2, Salamanca 37007, Spain
| | - Sonia Mediavilla
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| |
Collapse
|
8
|
Holmes KD, Fine PVA, Mesones I, Alvarez-Manjarrez J, Venturini AM, Peay KG, Salazar D. Evolutionary Trajectories of Shoots vs. Roots: Plant Volatile Metabolomes Are Richer but Less Structurally Diverse Belowground in the Tropical Tree Genus Protium. PLANTS (BASEL, SWITZERLAND) 2025; 14:225. [PMID: 39861579 PMCID: PMC11769111 DOI: 10.3390/plants14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025]
Abstract
The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves. Here, we examine the GCMS detectable phytochemistry (for simplicity, hereafter referred to as specialized volatile metabolites) of the tropical tree genus Protium, testing the hypothesis that phenotypic divergence will be weaker belowground compared to aboveground due to more limited dispersal by enemies. We found that, after controlling for differences in chemical richness, roots expressed less structurally diverse compounds than leaves, despite having higher numbers of specialized volatile metabolites, and that species' phylogenetic distance was only positively correlated with compound structural distance in roots, not leaves. Taken together, our results suggest that root specialized volatile metabolites exhibit significantly less phenotypic divergence than leaf specialized metabolites and may be under relaxed selection pressure from enemies belowground.
Collapse
Affiliation(s)
- Katherine D. Holmes
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA;
- Biology Department, Florida International University, Miami, FL 33199, USA
| | - Paul V. A. Fine
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA; (P.V.A.F.)
| | - Italo Mesones
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA; (P.V.A.F.)
| | | | - Andressa M. Venturini
- Department of Biology, Stanford University, Stanford, CA 94305, USA; (A.M.V.); (K.G.P.)
- Department of Environmental Science, American University, Washington, DC 20016, USA
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, CA 94305, USA; (A.M.V.); (K.G.P.)
| | - Diego Salazar
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA;
- Biology Department, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
9
|
Nicholls JA, Ringelberg JJ, Dexter KG, Loiseau O, Stone GN, Coley PD, Hughes CE, Kursar TA, Koenen EJM, Garcia F, Lemes MR, Neves DRM, Endara MJ, de Lima HC, Kidner CA, Pennington RT. Continuous colonization of the Atlantic coastal rain forests of South America from Amazônia. Proc Biol Sci 2025; 292:20241559. [PMID: 39837505 PMCID: PMC11750371 DOI: 10.1098/rspb.2024.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
The two main extensions of rain forest in South America are the Amazon (Amazônia) and the Atlantic rain forest (Mata Atlântica), which are separated by a wide 'dry diagonal' of seasonal vegetation. We used the species-rich tree genus Inga to test if Amazônia-Mata Atlântica dispersals have been clustered during specific time periods corresponding to past, humid climates. We performed hybrid capture DNA sequencing of 810 nuclear loci for 453 accessions representing 164 species that included 62% of Mata Atlântica species and estimated a dated phylogeny for all accessions using maximum likelihood, and a species-level tree using coalescent methods. There have been 16-20 dispersal events to the Mata Atlântica from Amazônia with only one or two dispersals in the reverse direction. These events have occurred over the evolutionary history of Inga, with no evidence for temporal clustering, and model comparisons of alternative biogeographic histories and null simulations showing the timing of dispersal events matches a random expectation. Time-specific biogeographic corridors are not required to explain dispersal between Amazônia and the Mata Atlântica for rain forest trees such as Inga, which are likely to have used a dendritic net of gallery forests to cross the dry diagonal.
Collapse
Affiliation(s)
- James A. Nicholls
- Institute of Evolutionary Biology, University of Edinburgh, EdinburghEH9 3FL, UK
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- Australian National Insect Collection, CSIRO, CanberraACT 2601, Australia
| | - Jens J. Ringelberg
- School of Geosciences, University of Edinburgh, EdinburghEH9 3FF, UK
- Department of Systematic and Evolutionary Botany, University of Zurich, ZurichCH-8008, Switzerland
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- School of Geosciences, University of Edinburgh, EdinburghEH9 3FF, UK
- Department of Life Sciences and Systems Biology, University of Turin, Torino10124, Italy
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, EdinburghEH9 3FF, UK
| | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Phyllis D. Coley
- Department of Biology, University of Utah, Salt Lake City,UT 84112-0840, USA
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, ZurichCH-8008, Switzerland
| | - Thomas A. Kursar
- Department of Biology, University of Utah, Salt Lake City,UT 84112-0840, USA
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, ZurichCH-8008, Switzerland
| | - Flávia Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG36570-900, Brazil
| | - Maristerra R. Lemes
- Laboratório de Genética e Biologia Reprodutiva de Plantas,Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazonia, Manaus, AM69067-375, Brazil
| | - Danilo R. M. Neves
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte31270-901, Brazil
| | - María José Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos- EETROP, Universidad de las Américas, Quito170513, Ecuador
| | | | - Catherine A. Kidner
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- Institute of Molecular Plant Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - R. Toby Pennington
- Royal Botanic Garden Edinburgh, EdinburghEH3 5LR, UK
- Department of Geography, University of Exeter, ExeterEX4 4QE, UK
| |
Collapse
|
10
|
Bai Z, Fang J, Yu C, Zhang S, Liu F, Han F, Zhou G, Ma J, Kong X. Divergent Response of Two Bark Beetle-Fungal Symbiotic Systems to Host Monoterpenes Reflects Niche Partitioning Strategies. J Chem Ecol 2024; 50:994-1005. [PMID: 39167252 DOI: 10.1007/s10886-024-01535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
The successful establishment of bark beetle-fungus symbionts on plants is required to overcome host defenses. However, little is known about how different bark beetle-fungus symbionts adapt to different niches on the same host plant. Here, we investigated the niche partitioning mechanism of two co-occurring bark beetle-fungus symbiotic systems, Ips nitidus-Ophiostoma bicolor and Dendroctonus micans-Endoconidiophora laricicola, on Qinghai spruce (Picea crassifolia) tree. The lower niche of the spruce trunk inhabited by D. micans showed a higher content of monoterpenes than the upper niche of the trunk inhabited by I. nitidus. Dendroctonus micans showed greater tolerance and higher metabolic efficiency toward monoterpenes than I. nitidus. However, both beetle species showed a similar metabolic profile toward α-pinene, albeit with different levels of metabolites. Additionally, O. bicolor, transmitted by I. nitidus, showed a significantly higher tolerance to monoterpenes and pathogenicity to spruce trees than E. laricicola, transmitted by D. micans. In particular, monoterpenoid metabolites were observed to attenuate the inhibitory effect of high-dose α-pinene on E. laricicola, thus increasing its fitness in a high-dose monoterpene microhabitat. These results show that these two bark beetle-fungus symbionts have adapted to different niches, leading to fitness differences in niche distribution that are at least partly related to the different distribution of monoterpene concentration in the spruce trunk. This research provides a novel perspective for understanding the coevolution between bark beetle-fungus symbionts and their host plants.
Collapse
Affiliation(s)
- Zezhen Bai
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiaxing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Chunmei Yu
- Forest Diseases and Pest Control and Quarantine General Station of Qinghai Province, Xining, 810007, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fuzhong Han
- Maixiu Forest Farm of Huangnan Prefecture of Qinghai Province, Huangnan, 811399, China
| | - Guorong Zhou
- Maixiu Forest Farm of Huangnan Prefecture of Qinghai Province, Huangnan, 811399, China
| | - Jianhua Ma
- Maixiu Forest Farm of Huangnan Prefecture of Qinghai Province, Huangnan, 811399, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
11
|
Schley RJ, Pennington RT, Twyford AD, Dexter KG, Kidner C, Michael TP, Royal Botanic Garden Edinburgh Genome Acquisition Lab, Plant Genome Sizing collective, Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective. The genome sequence of Inga leiocalycina Benth. Wellcome Open Res 2024; 9:606. [PMID: 39494196 PMCID: PMC11531642 DOI: 10.12688/wellcomeopenres.23131.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
We present a genome assembly from an individual of Inga leiocalycina (Streptophyta; Magnoliopsida; Fabales; Fabaceae). The genome sequence has a total length of 948.00 megabases. Most of the assembly is scaffolded into 13 chromosomal pseudomolecules. The assembled mitochondrial genome sequences have lengths of 1,019.42 and 98.74 kilobases, and the plastid genome assembly is 175.51 kb long. Gene annotation of the nuclear genome assembly on Ensembl identified 33,457 protein-coding genes.
Collapse
Affiliation(s)
| | - R. Toby Pennington
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
| | - Alex D. Twyford
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - Todd P. Michael
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Royal Botanic Garden Edinburgh Genome Acquisition Lab
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Plant Genome Sizing collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | | | - Wellcome Sanger Institute Scientific Operations: Sequencing Operations
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Wellcome Sanger Institute Tree of Life Core Informatics team
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| | - Tree of Life Core Informatics collective
- University of Exeter, Exeter, England, UK
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
- The University of Edinburgh, Edinburgh, Scotland, UK
- University of Turin, Turin, Italy
- Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, San Diego, California, USA
- San Diego Botanical Garden, San Diego, California, USA
| |
Collapse
|
12
|
Mezzomo P, Leong JV, Vodrážka P, Moos M, Jorge LR, Volfová T, Michálek J, de L Ferreira P, Kozel P, Sedio BE, Volf M. Variation in induced responses in volatile and non-volatile metabolites among six willow species: Do willow species share responses to herbivory? PHYTOCHEMISTRY 2024; 226:114222. [PMID: 39047854 DOI: 10.1016/j.phytochem.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Chemical variation is a critical aspect affecting performance among co-occurring plants. High chemical variation in metabolites with direct effects on insect herbivores supports chemical niche partitioning, and it can reduce the number of herbivores shared by co-occurring plant species. In contrast, low intraspecific variation in metabolites with indirect effects, such as induced volatile organic compounds (VOCs), may improve the attraction of specialist predators or parasitoids as they show high specificity to insect herbivores. We explored whether induced chemical variation following herbivory by various insect herbivores differs between VOCs vs. secondary non-volatile metabolites (non-VOCs) and salicinoids with direct effects on herbivores in six closely related willow species. Willow species identity explained most variation in VOCs (18.4%), secondary non-VOCs (41.1%) and salicinoids (60.7%). The variation explained by the independent effect of the herbivore treatment was higher in VOCs (2.8%) compared to secondary non-VOCs (0.5%) and salicinoids (0.5%). At the level of individual VOCs, willow species formed groups, as some responded similarly to the same herbivores. Most non-VOCs and salicinoids were upregulated by sap-suckers compared to other herbivore treatments and control across the willow species. In contrast, induced responses in non-VOCs and salicinoids to other herbivores largely differed between the willows. Our results suggest that induced responses broadly differ between various types of chemical defences, with VOCs and non-VOCs showing different levels of specificity and similarity across plant species. This may further contribute to flexible plant responses to herbivory and affect how closely related plants share or partition their chemical niches.
Collapse
Affiliation(s)
- Priscila Mezzomo
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Jing V Leong
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Petr Vodrážka
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Martin Moos
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Leonardo R Jorge
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Tereza Volfová
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Jan Michálek
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; Algatech Centre, Institute of Microbiology, Trebon, Czech Republic
| | - Paola de L Ferreira
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; Aarhus University, Department of Biology, Aarhus, Denmark
| | - Petr Kozel
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, United States; Smithsonian Tropical Research Institute, Balboa, the Republic of Panama
| | - Martin Volf
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| |
Collapse
|
13
|
Sun L, He Y, Cao M, Wang X, Zhou X, Yang J, Swenson NG. Tree phytochemical diversity and herbivory are higher in the tropics. Nat Ecol Evol 2024; 8:1426-1436. [PMID: 38937611 DOI: 10.1038/s41559-024-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
A long-standing but poorly tested hypothesis in plant ecology and evolution is that biotic interactions play a more important role in producing and maintaining species diversity in the tropics than in the temperate zone. A core prediction of this hypothesis is that tropical plants deploy a higher diversity of phytochemicals within and across communities because they experience more herbivore pressure than temperate plants. However, simultaneous comparisons of phytochemical diversity and herbivore pressure in plant communities from the tropical to the temperate zone are lacking. Here we provide clear support for this prediction by examining phytochemical diversity and herbivory in 60 tree communities ranging from species-rich tropical rainforests to species-poor subalpine forests. Using a community metabolomics approach, we show that phytochemical diversity is higher within and among tropical tree communities than within and among subtropical and subalpine communities, and that herbivore pressure and specialization are highest in the tropics. Furthermore, we show that the phytochemical similarity of trees has little phylogenetic signal, indicating rapid divergence between closely related species. In sum, we provide several lines of evidence from entire tree communities showing that biotic interactions probably play an increasingly important role in generating and maintaining tree diversity in the lower latitudes.
Collapse
Affiliation(s)
- Lu Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Xiang Zhou
- School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
14
|
Harenčár JG, Salazar‐Amoretti D, García‐Robledo C, Kay KM. Growth-defense trade-offs promote habitat isolation between recently-diverged species. Ecol Evol 2024; 14:e11609. [PMID: 38952661 PMCID: PMC11214971 DOI: 10.1002/ece3.11609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Trade-offs are crucial for species divergence and reproductive isolation. Trade-offs between investment in growth versus defense against herbivores are implicated in tropical forest diversity. Empirically exploring the role of growth-defense trade-offs in closely related species' reproductive isolation can clarify the eco-evolutionary dynamics through which growth-defense trade-offs contribute to diversity. Costus villosissimus and C. allenii are recently diverged, interfertile, and partially sympatric neotropical understory plant species primarily isolated by divergent habitat adaptation. This divergent adaptation involves differences in growth rate, which may constrain investment in defense. Here, we investigate growth-defense trade-offs and how they relate to the divergent habitat adaptation that isolates these species. We characterize leaf toughness and chemistry, evaluate the feeding preferences of primary beetle herbivores in controlled trials and field-based experiments, and investigate natural herbivory patterns. We find clear trade-offs between growth and defense: slower-growing C. allenii has tougher leaves and higher defensive chemical concentrations than faster-growing C. villosissimus. Costus villosissimus has rapid growth-based drought avoidance, enabling growth in drier habitats with few specialist herbivores. Therefore, growth-defense trade-offs mediate synergistic biotic and abiotic selection, causing the divergent habitat adaptation that prevents most interspecific mating between C. villosissimus and C. allenii. Our findings advance understanding of ecological speciation by highlighting the interplay of biotic and abiotic selection that dictates the outcome of trade-offs.
Collapse
Affiliation(s)
- Julia G. Harenčár
- Ecology and Evolutionary Biology DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | | | - Carlos García‐Robledo
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Kathleen M. Kay
- Ecology and Evolutionary Biology DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
15
|
Zhang Y, Worthy SJ, Xu S, He Y, Wang X, Song X, Cao M, Yang J. Phytochemical diversity and their adaptations to abiotic and biotic pressures in fine roots across a climatic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172051. [PMID: 38565347 DOI: 10.1016/j.scitotenv.2024.172051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Phytochemicals and their ecological significance are long ignored in trait-based ecology. Moreover, the adaptations of phytochemicals produced by fine roots to abiotic and biotic pressures are less understood. Here, we explored the fine roots metabolomes of 315 tree species and their rhizosphere microbiome in southwestern China spanning tropical, subtropical, and subalpine forest ecosystems, to explore phytochemical diversity and endemism patterns of various metabolic pathways and phytochemical-microorganism interactions. We found that subalpine species showed higher phytochemical diversity but lower interspecific variation than tropical species, which favors coping with high abiotic pressures. Tropical species harbored higher interspecific phytochemical variation and phytochemical endemism, which favors greater species coexistence and adaptation to complex biotic pressures. Moreover, there was evidence of widespread chemical niche partitioning of closely related species in all regions, and phytochemicals showed a weak phylogenetic signal, but were regulated by abiotic and biotic pressures. Our findings support the Latitudinal Biotic Interaction Hypothesis, i.e., the intensity of phytochemical-microorganism interactions decreases from tropical to subalpine regions, which promotes greater microbial community turnover and phytochemical niche partitioning of host plants in the tropics than in higher latitude forests. Our study reveals the convergent phytochemical diversity patterns of various pathways and their interactions with microorganism, thus promoting species coexistence.
Collapse
Affiliation(s)
- Yazhou Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, USA.
| | - Shijia Xu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China; School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming 650504, Yunnan, China.
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| |
Collapse
|
16
|
Rubio VE, Swenson NG. On functional groups and forest dynamics. Trends Ecol Evol 2024; 39:23-30. [PMID: 37673714 DOI: 10.1016/j.tree.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Functional trait variation measured on continuous scales has helped ecologists to unravel important ecological processes. However, forest ecologists have recently moved back toward using functional groups. There are pragmatic and biological rationales for focusing on functional groups. Both of these approaches have inherent limitations including binning clearly continuous distributions, poor trait-group matching, and narrow conceptual frameworks for why groups exist and how they evolved. We believe the pragmatic use of functional groups due to data deficiencies will eventually erode. Conversely, we argue that existing conceptual frameworks for why a limited number of tree functional groups may exist is a useful, but flawed, starting point for modeling forests that can be improved through the consideration of unmeasured axes of functional variation.
Collapse
Affiliation(s)
- Vanessa E Rubio
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
17
|
Robinson ML, Hahn PG, Inouye BD, Underwood N, Whitehead SR, Abbott KC, Bruna EM, Cacho NI, Dyer LA, Abdala-Roberts L, Allen WJ, Andrade JF, Angulo DF, Anjos D, Anstett DN, Bagchi R, Bagchi S, Barbosa M, Barrett S, Baskett CA, Ben-Simchon E, Bloodworth KJ, Bronstein JL, Buckley YM, Burghardt KT, Bustos-Segura C, Calixto ES, Carvalho RL, Castagneyrol B, Chiuffo MC, Cinoğlu D, Cinto Mejía E, Cock MC, Cogni R, Cope OL, Cornelissen T, Cortez DR, Crowder DW, Dallstream C, Dáttilo W, Davis JK, Dimarco RD, Dole HE, Egbon IN, Eisenring M, Ejomah A, Elderd BD, Endara MJ, Eubanks MD, Everingham SE, Farah KN, Farias RP, Fernandes AP, Fernandes GW, Ferrante M, Finn A, Florjancic GA, Forister ML, Fox QN, Frago E, França FM, Getman-Pickering AS, Getman-Pickering Z, Gianoli E, Gooden B, Gossner MM, Greig KA, Gripenberg S, Groenteman R, Grof-Tisza P, Haack N, Hahn L, Haq SM, Helms AM, Hennecke J, Hermann SL, Holeski LM, Holm S, Hutchinson MC, Jackson EE, Kagiya S, Kalske A, Kalwajtys M, Karban R, Kariyat R, Keasar T, Kersch-Becker MF, Kharouba HM, Kim TN, Kimuyu DM, Kluse J, Koerner SE, Komatsu KJ, Krishnan S, Laihonen M, Lamelas-López L, LaScaleia MC, Lecomte N, Lehn CR, Li X, et alRobinson ML, Hahn PG, Inouye BD, Underwood N, Whitehead SR, Abbott KC, Bruna EM, Cacho NI, Dyer LA, Abdala-Roberts L, Allen WJ, Andrade JF, Angulo DF, Anjos D, Anstett DN, Bagchi R, Bagchi S, Barbosa M, Barrett S, Baskett CA, Ben-Simchon E, Bloodworth KJ, Bronstein JL, Buckley YM, Burghardt KT, Bustos-Segura C, Calixto ES, Carvalho RL, Castagneyrol B, Chiuffo MC, Cinoğlu D, Cinto Mejía E, Cock MC, Cogni R, Cope OL, Cornelissen T, Cortez DR, Crowder DW, Dallstream C, Dáttilo W, Davis JK, Dimarco RD, Dole HE, Egbon IN, Eisenring M, Ejomah A, Elderd BD, Endara MJ, Eubanks MD, Everingham SE, Farah KN, Farias RP, Fernandes AP, Fernandes GW, Ferrante M, Finn A, Florjancic GA, Forister ML, Fox QN, Frago E, França FM, Getman-Pickering AS, Getman-Pickering Z, Gianoli E, Gooden B, Gossner MM, Greig KA, Gripenberg S, Groenteman R, Grof-Tisza P, Haack N, Hahn L, Haq SM, Helms AM, Hennecke J, Hermann SL, Holeski LM, Holm S, Hutchinson MC, Jackson EE, Kagiya S, Kalske A, Kalwajtys M, Karban R, Kariyat R, Keasar T, Kersch-Becker MF, Kharouba HM, Kim TN, Kimuyu DM, Kluse J, Koerner SE, Komatsu KJ, Krishnan S, Laihonen M, Lamelas-López L, LaScaleia MC, Lecomte N, Lehn CR, Li X, Lindroth RL, LoPresti EF, Losada M, Louthan AM, Luizzi VJ, Lynch SC, Lynn JS, Lyon NJ, Maia LF, Maia RA, Mannall TL, Martin BS, Massad TJ, McCall AC, McGurrin K, Merwin AC, Mijango-Ramos Z, Mills CH, Moles AT, Moore CM, Moreira X, Morrison CR, Moshobane MC, Muola A, Nakadai R, Nakajima K, Novais S, Ogbebor CO, Ohsaki H, Pan VS, Pardikes NA, Pareja M, Parthasarathy N, Pawar RR, Paynter Q, Pearse IS, Penczykowski RM, Pepi AA, Pereira CC, Phartyal SS, Piper FI, Poveda K, Pringle EG, Puy J, Quijano T, Quintero C, Rasmann S, Rosche C, Rosenheim LY, Rosenheim JA, Runyon JB, Sadeh A, Sakata Y, Salcido DM, Salgado-Luarte C, Santos BA, Sapir Y, Sasal Y, Sato Y, Sawant M, Schroeder H, Schumann I, Segoli M, Segre H, Shelef O, Shinohara N, Singh RP, Smith DS, Sobral M, Stotz GC, Tack AJM, Tayal M, Tooker JF, Torrico-Bazoberry D, Tougeron K, Trowbridge AM, Utsumi S, Uyi O, Vaca-Uribe JL, Valtonen A, van Dijk LJA, Vandvik V, Villellas J, Waller LP, Weber MG, Yamawo A, Yim S, Zarnetske PL, Zehr LN, Zhong Z, Wetzel WC. Plant size, latitude, and phylogeny explain within-population variability in herbivory. Science 2023; 382:679-683. [PMID: 37943897 DOI: 10.1126/science.adh8830] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth.
Collapse
Affiliation(s)
- M L Robinson
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Biology, Utah State University, Logan, UT, USA
| | - P G Hahn
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - B D Inouye
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - N Underwood
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - S R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - K C Abbott
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - E M Bruna
- Center for Latin American Studies, University of Florida, Gainesville, FL, USA
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - N I Cacho
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - L A Dyer
- Biology Department, University of Nevada, Reno, Reno, NV, USA
| | - L Abdala-Roberts
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - W J Allen
- Bio-Protection Research Centre, University of Canterbury, Christchurch, New Zealand
| | - J F Andrade
- Departamento de Sistemática e Ecologia Universidade Federal da Paraíba, João Pessoa, Brazil
| | - D F Angulo
- Centro de Investigación Científica de Yucatán, Departamento de Recursos Naturales, Mérida, Yucatán, México
| | - D Anjos
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - D N Anstett
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - R Bagchi
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - S Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - M Barbosa
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - S Barrett
- Department of Biodiversity Conservation & Attractions Western Australia, Albany, Western Australia, Australia
| | - C A Baskett
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - E Ben-Simchon
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, Rishon Le Tzion, Israel
- Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - K J Bloodworth
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - J L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Y M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
| | - K T Burghardt
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - C Bustos-Segura
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - E S Calixto
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - R L Carvalho
- Institute of Advanced Studies, University of São Paulo, São Paulo, Brazil
| | | | - M C Chiuffo
- Grupo de Ecología de Invasiones, INIBIOMA, Universidad Nacional del Comahue, CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - D Cinoğlu
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - E Cinto Mejía
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - M C Cock
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa, Santa Rosa, La Pampa, Argentina
| | - R Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | - O L Cope
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Biology, Whitworth University, Spokane, WA, USA
| | - T Cornelissen
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - D R Cortez
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA
| | - D W Crowder
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - C Dallstream
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - W Dáttilo
- Red de Ecoetología, Instituto de Ecología AC, Xalapa, Veracruz, Mexico
| | - J K Davis
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - R D Dimarco
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
- Grupo de Ecología de Poblaciones de Insectos, IFAB, San Carlos de Bariloche, Río Negro, Argentina
| | - H E Dole
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - I N Egbon
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - M Eisenring
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - A Ejomah
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - B D Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - M-J Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETROP, Universidad de las Américas, Quito, Ecuador
| | - M D Eubanks
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - S E Everingham
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Evolution & Ecology Research Centre, University of New South Wales Sydney, Sydney, Australia
| | - K N Farah
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - R P Farias
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - A P Fernandes
- Department of Botany, Ganpat Parsekar College of Education Harmal, Pernem, Goa, India
| | - G W Fernandes
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Knowledge Center for Biodiversity, Brazil
| | - M Ferrante
- Faculty of Agricultural Sciences and Environment, University of the Azores, Ponta Delgada, Portugal
- Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - A Finn
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
| | - G A Florjancic
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M L Forister
- Biology Department, University of Nevada, Reno, Reno, NV, USA
| | - Q N Fox
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - E Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, Montpellier, France
| | - F M França
- School of Biological Sciences, University of Bristol, Bristol, UK
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Pará, Belém, Pará, Brasil
| | | | - Z Getman-Pickering
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - E Gianoli
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - B Gooden
- CSIRO Black Mountain Laboratories, CSIRO Health and Biosecurity, Canberra, Australia
| | - M M Gossner
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - K A Greig
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - S Gripenberg
- School of Biological Sciences, University of Reading, Reading, UK
| | - R Groenteman
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - P Grof-Tisza
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - N Haack
- Independent Institute for Environmental Issues, Halle, Germany
| | - L Hahn
- Molecular Evolution and Systematics of Animals, University of Leipzig, Leipzig, Germany
| | - S M Haq
- Wildlife Crime Control Division, Wildlife Trust of India, Noida, Uttar Pradesh, India
| | - A M Helms
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - J Hennecke
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - S L Hermann
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - L M Holeski
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - S Holm
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - M C Hutchinson
- Department of Life and Environmental Sciences, University of California, Merced, Merced, CA, USA
| | - E E Jackson
- School of Biological Sciences, University of Reading, Reading, UK
| | - S Kagiya
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - A Kalske
- Department of Biology, University of Turku, Turku, Finland
| | - M Kalwajtys
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - R Karban
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - R Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - T Keasar
- Department of Biology and the Environment, University of Haifa - Oranim, Oranim, Tivon, Israel
| | - M F Kersch-Becker
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - H M Kharouba
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - T N Kim
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - D M Kimuyu
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - J Kluse
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - S E Koerner
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - K J Komatsu
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - S Krishnan
- Center for Sustainable Future, Amrita University and EIACP RP, Amrita Viswa Vidyapeetham, Coimbatore, India
| | - M Laihonen
- Biodiversity Unit, University of Turku, Turku, Finland
| | - L Lamelas-López
- Faculty of Agricultural Sciences and Environment, University of the Azores, Ponta Delgada, Portugal
| | - M C LaScaleia
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - N Lecomte
- Canada Research Chair in Polar and Boreal Ecology, Department of Biology and Centre d'Études Nordiques, Université de Moncton, Moncton, Canada
| | - C R Lehn
- Biological Sciences Course, Instituto Federal Farroupilha, Panambi, RS, Brazil
| | - X Li
- College of Resources and Environmental sciences, Jilin Agricultural University, Changchun, China
| | - R L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - E F LoPresti
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - M Losada
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - A M Louthan
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - V J Luizzi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - S C Lynch
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - J S Lynn
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - N J Lyon
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - L F Maia
- Bio-Protection Research Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - R A Maia
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - T L Mannall
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - B S Martin
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - T J Massad
- Department of Scientific Services, Gorongosa National Park, Sofala, Mozambique
| | - A C McCall
- Biology Department, Denison University, Granville, OH, USA
| | - K McGurrin
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - A C Merwin
- Department of Biology and Geology, Baldwin Wallace University, Berea, OH, USA
| | - Z Mijango-Ramos
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - C H Mills
- Evolution & Ecology Research Centre, University of New South Wales Sydney, Sydney, Australia
| | - A T Moles
- Evolution & Ecology Research Centre, University of New South Wales Sydney, Sydney, Australia
| | - C M Moore
- Department of Biology, Colby College, Waterville, ME, USA
| | - X Moreira
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Galicia, Spain
| | - C R Morrison
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - M C Moshobane
- South African National Biodiversity Institute, Pretoria National Botanical Garden, Brummeria, Silverton, South Africa
- Centre for Functional Biodiversity, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - A Muola
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Tromsø, Norway
| | - R Nakadai
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - K Nakajima
- Insitute of Science and Engineering, Chuo University, Tokyo, Japan
- Institute of Cave Research, Shimohei-guun, Iwate Prefecture, Japan
| | - S Novais
- Red de Interacciones Multitróficas, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
| | - C O Ogbebor
- Nigerian Institute for Oil Palm Research, Benin City, Edo State, Nigeria
| | - H Ohsaki
- Department of Biological Sciences, Hirosaki University, Hirosaki, Aomori, Japan
| | - V S Pan
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - N A Pardikes
- Department of Biology, Utah State University, Logan, UT, USA
| | - M Pareja
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, Brazil
| | - N Parthasarathy
- Department of Ecology and Evironmental Sciences, Pondicherry University, Puducherry, India
| | | | - Q Paynter
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
| | - I S Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - R M Penczykowski
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - A A Pepi
- Department of Biology, Tufts University, Medford, MA, USA
| | - C C Pereira
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - S S Phartyal
- School of Ecology & Environment Studies, Nalanda University, Rajgir, India
| | - F I Piper
- Millennium Nucleus of Patagonian Limit of Life and Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Institute of Ecology and Biodiversity, Ñuñoa, Santiago
| | - K Poveda
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - E G Pringle
- Biology Department, University of Nevada, Reno, Reno, NV, USA
| | - J Puy
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - T Quijano
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - C Quintero
- INIBIOMA, CONICET - Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina
| | - S Rasmann
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - C Rosche
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - L Y Rosenheim
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - J A Rosenheim
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - J B Runyon
- Rocky Mountain Research Station, USDA Forest Service, Bozeman, MT, USA
| | - A Sadeh
- Department of Natural Resources, Newe Ya'ar Research Center, Volcani Institute, Ramat Yishay, Israel
| | - Y Sakata
- Department of Biological Environment, Akita Prefectural University, Shimoshinjyo-Nakano, Akita, Japan
| | - D M Salcido
- Biology Department, University of Nevada, Reno, Reno, NV, USA
| | - C Salgado-Luarte
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | - B A Santos
- Departamento de Sistemática e Ecologia Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Y Sapir
- The Botanic Garden, School of Plant Sciences and Food Security, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Y Sasal
- INIBIOMA, CONICET - Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina
| | - Y Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - M Sawant
- Department of Ecology, University of Pune, Maharashtra, India
| | - H Schroeder
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - I Schumann
- Department of Human Genetics, University of Leipzig, Leipzig, Germany
| | - M Segoli
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - H Segre
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, Rishon Le Tzion, Israel
- Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Natural Resources, Newe Ya'ar Research Center, Volcani Institute, Ramat Yishay, Israel
| | - O Shelef
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, Rishon Le Tzion, Israel
| | - N Shinohara
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - R P Singh
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - D S Smith
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA
| | - M Sobral
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - G C Stotz
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - A J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - M Tayal
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - J F Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - D Torrico-Bazoberry
- Laboratorio de Comportamiento Animal y Humano, Centro de Investigación en Complejidad Social, Universidad del Desarrollo, Las Condes, Chile
| | - K Tougeron
- Écologie et Dynamique des Systèmes Anthropisés, Université de Picardie Jules Verne, UMR 7058 CNRS, Amiens, France
- Ecology of Interactions and Global Change, Institut de Recherche en Biosciences, Université de Mons, Mons, Belgium
| | - A M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA
| | - S Utsumi
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - O Uyi
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
- Department of Entomology, University of Georgia, Tifton, GA, USA
| | - J L Vaca-Uribe
- Programa de ingeniría agroecológica, Corporación Universitaria Minuto de Dios, Bogotá, Colombia
| | - A Valtonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - L J A van Dijk
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - V Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - J Villellas
- Department of Life Sciences, University of Alcalá, Madrid, Spain
| | - L P Waller
- Bioprotection Aotearoa, Lincoln University, Lincoln, New Zealand
| | - M G Weber
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - A Yamawo
- Department of Biological Sciences, Hirosaki University, Hirosaki, Aomori, Japan
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - S Yim
- Biology Department, University of Nevada, Reno, Reno, NV, USA
| | - P L Zarnetske
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - L N Zehr
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Z Zhong
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin Province, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - W C Wetzel
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| |
Collapse
|
18
|
Wang X, He Y, Sedio BE, Jin L, Ge X, Glomglieng S, Cao M, Yang J, Swenson NG, Yang J. Phytochemical diversity impacts herbivory in a tropical rainforest tree community. Ecol Lett 2023; 26:1898-1910. [PMID: 37776563 DOI: 10.1111/ele.14308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023]
Abstract
Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant-herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.
Collapse
Affiliation(s)
- Xuezhao Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Ecology and Environment, Southwest Forestry University, Kunming, China
| | - Yunyun He
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Texas, Austin, USA
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Lu Jin
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuejun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Suphanee Glomglieng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Cao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianhong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Indiana, Notre Dame, USA
| | - Jie Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
19
|
Klotz M, Schaller J, Engelbrecht BMJ. Silicon-based anti-herbivore defense in tropical tree seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1250868. [PMID: 37900768 PMCID: PMC10602810 DOI: 10.3389/fpls.2023.1250868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Silicon-based defenses deter insect herbivores in many cultivated and wild grass species. Furthermore, in some of these species, silicon (Si) uptake and defense can be induced by herbivory. Tropical trees also take up Si and leaf Si concentrations vary greatly across and within species. As herbivory is a major driver of seedling mortality and niche differentiation of tropical tree species, understanding anti-herbivore defenses is pivotal. Yet, whether silicon is a constitutive and inducible herbivory defense in tropical forest tree species remains unknown. We grew seedlings of eight tropical tree species in a full factorial experiment, including two levels of plant-available soil Si concentrations (-Si/+Si) and a simulated herbivory treatment (-H/+H). The simulated herbivory treatment was a combination of clipping and application of methyl jasmonate. We then carried out multiple-choice feeding trials, separately for each tree species, in which leaves of each treatment combination were offered to a generalist caterpillar (Spodoptera frugiperda). Leaf damage was assessed. Three species showed a significant decrease in leaf damage under high compared to low Si conditions (by up to 72%), consistent with our expectation of Si-based defenses acting in tropical tree species. In one species, leaf damage was increased by increasing soil Si and in four species, no effect of soil Si on leaf damage was observed. Opposite to our expectation of Si uptake and defense being inducible by herbivory damage, simulated herbivory increased leaf damage in two species. Furthermore, simulated herbivory reduced Si concentrations in one species. Our results showed that tropical tree seedlings can be better defended when growing in Si-rich compared to Si-poor soils, and that the effects of Si on plant defense vary strongly across species. Furthermore, Si-based defenses may not be inducible in tropical tree species. Overall, constitutive Si-based defense should be considered part of the vast array of anti-herbivore defenses of tropical tree species. Our finding that Si-based defenses are highly species-specific combined with the fact that herbivory is a major driver of mortality in tropical tree seedling, suggests that variation in soil Si concentrations may have pervasive consequences for regeneration and performance across tropical tree species.
Collapse
Affiliation(s)
- Marius Klotz
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Deptartment of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Bettina M. J. Engelbrecht
- Deptartment of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Smithsonian Tropical Research Institute (STRI), Balboa, Panama
| |
Collapse
|
20
|
Volf M, Leong JV, de Lima Ferreira P, Volfová T, Kozel P, Matos-Maraví P, Hörandl E, Wagner ND, Luntamo N, Salminen JP, Segar ST, Sedio BE. Contrasting levels of β-diversity and underlying phylogenetic trends indicate different paths to chemical diversity in highland and lowland willow species. Ecol Lett 2023; 26:1559-1571. [PMID: 37345539 DOI: 10.1111/ele.14273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Diverse specialised metabolites contributed to the success of vascular plants in colonising most terrestrial habitats. Understanding how distinct aspects of chemical diversity arise through heterogeneous environmental pressures can help us understand the effects of abiotic and biotic stress on plant evolution and community assembly. We examined highland and lowland willow species within a phylogenetic framework to test for trends in their chemical α-diversity (richness) and β-diversity (variation among species sympatric in elevation). We show that differences in chemistry among willows growing at different elevations occur mainly through shifts in chemical β-diversity and due to convergence or divergence among species sharing their elevation level. We also detect contrasting phylogenetic trends in concentration and α-diversity of metabolites in highland and lowland willow species. The resulting elevational patterns contribute to the chemical diversity of willows and suggest that variable selective pressure across ecological gradients may, more generally, underpin complex changes in plant chemistry.
Collapse
Affiliation(s)
- Martin Volf
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jing Vir Leong
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Paola de Lima Ferreira
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tereza Volfová
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Petr Kozel
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Pável Matos-Maraví
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Natascha D Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Niko Luntamo
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, UK
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
- Smithsonian Tropical Research Institute, Ancón, Panama
| |
Collapse
|
21
|
Luna D, Mohanbabu N, Johnson J, Althoff DM. Host use by 2 sibling species of bogus yucca moths in relation to plant hardness and saponin content. ENVIRONMENTAL ENTOMOLOGY 2023; 52:659-666. [PMID: 37338184 DOI: 10.1093/ee/nvad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Plant defenses allow plants to deter or kill their insect herbivores and are considered to be a major driver of host use for herbivorous insects in both ecological and evolutionary time. Many closely related species of insect herbivores differ in their ability to respond to plant defenses and in some cases are specialized to specific plant species. Here we tested whether both mechanical and chemical plant defenses are a major factor in determining the host range of 2 sibling species of Prodoxid bogus yucca moths, Prodoxus decipiens (Riley) and Prodoxus quinquepunctellus (Chambers) that feed within the inflorescence stalk of Yucca species. These 2 moth species have separate suites of host plant species, yet narrowly overlap geographically and share 1 Yucca species, Y. glauca. We surveyed the lignin and cellulose content, the force required to the puncture the stalk tissue, and saponin concentration across 5 Yucca species used as hosts. Lignin, cellulose concentrations, and stalk hardness differed among Yucca species but did not correlate with host use patterns by the moths. Saponin concentrations in the stalk tissue were relatively low for yuccas (<1%) and did not differ among species. The results suggest that these moth species should be able to use each other's hosts for egg deposition. Additional factors such as larval development or competition among larvae for feeding space may serve to keep moth species from expanding onto plants used by its sibling species.
Collapse
Affiliation(s)
- Diego Luna
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Neha Mohanbabu
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Josiah Johnson
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
- Savannah River Ecology Laboratory, University of Georgia, Aikens, SC, USA
| | - David M Althoff
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
22
|
Carvajal Acosta AN, Formenti L, Godschalx A, Katsanis A, Schapheer C, Mooney K, Villagra C, Rasmann S. Ecological convergence in phytochemistry and flower-insect visitor interactions along an Andean elevation gradient. Ecol Evol 2023; 13:e10418. [PMID: 37600487 PMCID: PMC10432872 DOI: 10.1002/ece3.10418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
The diversity of specialized molecules produced by plants radiating along ecological gradients is thought to arise from plants' adaptations to local conditions. Therefore, closely related species growing in similar habitats should phylogenetically converge, or diverge, in response to similar climates, or similar interacting animal communities. We here asked whether closely related species in the genus Haplopappus (Asteraceae) growing within the same elevation bands in the Andes, converged to produce similar floral odors. To do so, we combine untargeted analysis of floral volatile organic compounds with insect olfactory bioassay in congeneric Haplopappus (Asteraceae) species growing within the same elevation bands along the Andean elevational gradient. We then asked whether the outcome of biotic interactions (i.e., pollination vs. seed predation) would also converge across species within the same elevation. We found that flower odors grouped according to their elevational band and that the main floral visitor preferred floral heads from low-elevation band species. Furthermore, the cost-benefit ratio of predated versus fertilized seeds was consistent within elevation bands, but increased with elevation, from 6:1 at low to 8:1 at high elevations. In the light of our findings, we propose that climate and insect community changes along elevation molded a common floral odor blend, best adapted for the local conditions. Moreover, we suggest that at low elevation where floral resources are abundant, the per capita cost of attracting seed predators is diluted, while at high elevation, sparse plants incur a higher herbivory cost per capita. Together, our results suggest that phytochemical convergence may be an important factor driving plant-insect interactions and their ecological outcomes along ecological gradients.
Collapse
Affiliation(s)
- Alma Nalleli Carvajal Acosta
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Ludovico Formenti
- Institut für Ökologie und EvolutionUniversität BernBernSwitzerland
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | | | - Angelos Katsanis
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Constanza Schapheer
- Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile
| | - Kailen Mooney
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Cristian Villagra
- Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile
| | - Sergio Rasmann
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
23
|
Vasconcelos T. A trait-based approach to determining principles of plant biogeography. AMERICAN JOURNAL OF BOTANY 2023; 110:e16127. [PMID: 36648370 DOI: 10.1002/ajb2.16127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lineage-specific traits determine how plants interact with their surrounding environment. Unrelated species may evolve similar phenotypic characteristics to tolerate, persist in, and invade environments with certain characteristics, resulting in some traits becoming relatively more common in certain types of habitats. Analyses of these general patterns of geographical trait distribution have led to the proposal of general principles to explain how plants diversify in space over time. Trait-environment correlation analyses quantify to what extent unrelated lineages have similar evolutionary responses to a given type of habitat. In this synthesis, I give a short historical overview on trait-environment correlation analyses, from some key observations from classic naturalists to modern approaches using trait evolution models, large phylogenies, and massive data sets of traits and distributions. I discuss some limitations of modern approaches, including the need for more realistic models, the lack of data from tropical areas, and the necessary focus on trait scoring that goes beyond macromorphology. Overcoming these limitations will allow the field to explore new questions related to trait lability and niche evolution and to better identify generalities and exceptions in how plants diversify in space over time.
Collapse
Affiliation(s)
- Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
24
|
González C. Evolution of the concept of ecological integrity and its study through networks. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
25
|
Edwards CB, Ellner SP, Agrawal AA. Plant defense synergies and antagonisms affect performance of specialist herbivores of common milkweed. Ecology 2023; 104:e3915. [PMID: 36336890 DOI: 10.1002/ecy.3915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
As a general rule, plants defend against herbivores with multiple traits. The defense synergy hypothesis posits that some traits are more effective when co-expressed with others compared to their independent efficacy. However, this hypothesis has rarely been tested outside of phytochemical mixtures, and seldom under field conditions. We tested for synergies between multiple defense traits of common milkweed (Asclepias syriaca) by assaying the performance of two specialist chewing herbivores on plants in natural populations. We employed regression and a novel application of random forests to identify synergies and antagonisms between defense traits. We found the first direct empirical evidence for two previously hypothesized defense synergies in milkweed (latex by secondary metabolites, latex by trichomes) and identified numerous other potential synergies and antagonisms. Our strongest evidence for a defense synergy was between leaf mass per area and low nitrogen content; given that these "leaf economic" traits typically covary in milkweed, a defense synergy could reinforce their co-expression. We report that each of the plant defense traits showed context-dependent effects on herbivores, and increased trait expression could well be beneficial to herbivores for some ranges of observed expression. The novel methods and findings presented here complement more mechanistic approaches to the study of plant defense diversity and provide some of the best evidence to date that multiple classes of plant defense synergize in their impact on insects. Plant defense synergies against highly specialized herbivores, as shown here, are consistent with ongoing reciprocal evolution between these antagonists.
Collapse
Affiliation(s)
- Collin B Edwards
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
26
|
Shih PY, Sugio A, Simon JC. Molecular Mechanisms Underlying Host Plant Specificity in Aphids. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:431-450. [PMID: 36228134 DOI: 10.1146/annurev-ento-120220-020526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aphids are serious pests of agricultural and ornamental plants and important model systems for hemipteran-plant interactions. The long evolutionary history of aphids with their host plants has resulted in a variety of systems that provide insight into the different adaptation strategies of aphids to plants and vice versa. In the past, various plant-aphid interactions have been documented, but lack of functional tools has limited molecular studies on the mechanisms of plant-aphid interactions. Recent technological advances have begun to reveal plant-aphid interactions at the molecular level and to increase our knowledge of the mechanisms of aphid adaptation or specialization to different host plants. In this article, we compile and analyze available information on plant-aphid interactions, discuss the limitations of current knowledge, and argue for new research directions. We advocate for more work that takes advantage of natural systems and recently established molecular techniques to obtain a comprehensive view of plant-aphid interaction mechanisms.
Collapse
Affiliation(s)
- Po-Yuan Shih
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Akiko Sugio
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Jean-Christophe Simon
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| |
Collapse
|
27
|
Forrister DL, Endara MJ, Soule AJ, Younkin GC, Mills AG, Lokvam J, Dexter KG, Pennington RT, Kidner CA, Nicholls JA, Loiseau O, Kursar TA, Coley PD. Diversity and divergence: evolution of secondary metabolism in the tropical tree genus Inga. THE NEW PHYTOLOGIST 2023; 237:631-642. [PMID: 36263711 DOI: 10.1111/nph.18554] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Plants are widely recognized as chemical factories, with each species producing dozens to hundreds of unique secondary metabolites. These compounds shape the interactions between plants and their natural enemies. We explore the evolutionary patterns and processes by which plants generate chemical diversity, from evolving novel compounds to unique chemical profiles. We characterized the chemical profile of one-third of the species of tropical rainforest trees in the genus Inga (c. 100, Fabaceae) using ultraperformance liquid chromatography-mass spectrometry-based metabolomics and applied phylogenetic comparative methods to understand the mode of chemical evolution. We show: each Inga species contain structurally unrelated compounds and high levels of phytochemical diversity; closely related species have divergent chemical profiles, with individual compounds, compound classes, and chemical profiles showing little-to-no phylogenetic signal; at the evolutionary time scale, a species' chemical profile shows a signature of divergent adaptation. At the ecological time scale, sympatric species were the most divergent, implying it is also advantageous to maintain a unique chemical profile from community members; finally, we integrate these patterns with a model for how chemical diversity evolves. Taken together, these results show that phytochemical diversity and divergence are fundamental to the ecology and evolution of plants.
Collapse
Affiliation(s)
- Dale L Forrister
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - María-José Endara
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS - Universidad de las Américas, 170513, Quito, Ecuador
| | - Abrianna J Soule
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Gordon C Younkin
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony G Mills
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - John Lokvam
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Kyle G Dexter
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | - R Toby Pennington
- Department of Geography, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK
| | - Catherine A Kidner
- School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JW, UK
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
| | - James A Nicholls
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian National Insect Collection (ANIC), Building 101, Clunies Ross Street, Black Mountain, ACT, 2601, Australia
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | - Thomas A Kursar
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Phyllis D Coley
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| |
Collapse
|
28
|
Domingos SS, Alves Silva E. Effect of ants on herbivory levels of Inga laurina: the interplay between space and time in an urban area. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467423000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Abstract
Extrafloral nectary plants not only occur in natural areas but also in urban parks. These areas are prone to edge effects, and plants face different microenvironmental conditions. We investigated the spatial variation of ant–plant interactions in an urban park, and we examined if plants with ants would show lower herbivory levels and if it depended on habitat type (interior or edges). Seedlings of Inga laurina were set in 200-m long transects (which covered both the west and east edges, and the interior) in an urban park and then experimentally assigned to be either ant-present or ant-excluded plants. Leaf herbivory was investigated throughout the wet season and was influenced by the interaction effect between ants and habitat type. Ants decreased the herbivory on the west edge, but on the east edge results were the opposite. The east edge had higher temperature and sunlight exposure in comparison to the other sites and was assumed to disrupt the stability of ant–plant interactions. In the interior of the fragment, herbivory depended on ant presence/absence and on the location of plants along the transect. Our study highlights how the outcomes of ant–plant interactions are spatially conditioned and affected by different types of habitats.
Collapse
|
29
|
Barker W, Comita LS, Wright SJ, Phillips OL, Sedio BE, Batterman SA. Widespread herbivory cost in tropical nitrogen-fixing tree species. Nature 2022; 612:483-487. [PMID: 36477532 DOI: 10.1038/s41586-022-05502-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Recent observations suggest that the large carbon sink in mature and recovering forests may be strongly limited by nitrogen1-3. Nitrogen-fixing trees (fixers) in symbiosis with bacteria provide the main natural source of new nitrogen to tropical forests3,4. However, abundances of fixers are tightly constrained5-7, highlighting the fundamental unanswered question of what limits new nitrogen entering tropical ecosystems. Here we examine whether herbivory by animals is responsible for limiting symbiotic nitrogen fixation in tropical forests. We evaluate whether nitrogen-fixing trees experience more herbivory than other trees, whether herbivory carries a substantial carbon cost, and whether high herbivory is a result of herbivores targeting the nitrogen-rich leaves of fixers8,9. We analysed 1,626 leaves from 350 seedlings of 43 tropical tree species in Panama and found that: (1) although herbivory reduces the growth and survival of all seedlings, nitrogen-fixing trees undergo 26% more herbivory than non-fixers; (2) fixers have 34% higher carbon opportunity costs owing to herbivory than non-fixers, exceeding the metabolic cost of fixing nitrogen; and (3) the high herbivory of fixers is not driven by high leaf nitrogen. Our findings reveal that herbivory may be sufficient to limit tropical symbiotic nitrogen fixation and could constrain its role in alleviating nitrogen limitation on the tropical carbon sink.
Collapse
Affiliation(s)
- Will Barker
- Ecology and Global Change, School of Geography, University of Leeds, Leeds, UK
| | - Liza S Comita
- Yale School of the Environment, Yale, New Haven, CT, USA
- Smithsonian Tropical Research Institute, Balboa, Ancόn, Panamá, Panama
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, Ancόn, Panamá, Panama
| | - Oliver L Phillips
- Ecology and Global Change, School of Geography, University of Leeds, Leeds, UK
| | - Brian E Sedio
- Smithsonian Tropical Research Institute, Balboa, Ancόn, Panamá, Panama
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Sarah A Batterman
- Ecology and Global Change, School of Geography, University of Leeds, Leeds, UK.
- Smithsonian Tropical Research Institute, Balboa, Ancόn, Panamá, Panama.
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA.
| |
Collapse
|
30
|
Terletskaya NV, Korbozova NK, Grazhdannikov AE, Seitimova GA, Meduntseva ND, Kudrina NO. Accumulation of Secondary Metabolites of Rhodiola semenovii Boriss. In Situ in the Dynamics of Growth and Development. Metabolites 2022; 12:metabo12070622. [PMID: 35888746 PMCID: PMC9323023 DOI: 10.3390/metabo12070622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Rhodiola semenovii Boriss. (Regel and Herder) might be a promising replacement for the well-known but endangered Rhodiola rosea L. In this research, the metabolic profile of R. semenovii, including drug-active and stress-resistant components, was studied in the context of source–sink interactions in situ in the dynamics of growth and development. Gas chromatography with mass spectrometric detection and liquid chromatography methods were used. The data obtained allow for assumptions to be made about which secondary metabolites determine the level of stress resistance in R. semenovii at different stages of ontogeny in situ. For the first time, an expansion in the content of salidroside in the above-ground organs, with its maximum value during the period of seed maturation, and a significant decrease in its content in the root were revealed in the dynamics of vegetation. These results allow us to recommend collecting the ground component of R. semenovii for pharmaceutical purposes throughout the seed development stage without damaging the root system.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology and Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050040 Almaty, Kazakhstan; (N.K.K.); (G.A.S.); (N.D.M.)
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, 050040 Almaty, Kazakhstan
- Correspondence: (N.V.T.); (N.O.K.); Tel.: +7-(777)-299-3335 (N.V.T.); +7-(705)-181-1440 (N.O.K.)
| | - Nazym K. Korbozova
- Faculty of Biology and Biotechnology and Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050040 Almaty, Kazakhstan; (N.K.K.); (G.A.S.); (N.D.M.)
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, 050040 Almaty, Kazakhstan
| | - Alexander E. Grazhdannikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Gulnaz A. Seitimova
- Faculty of Biology and Biotechnology and Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050040 Almaty, Kazakhstan; (N.K.K.); (G.A.S.); (N.D.M.)
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, 050040 Almaty, Kazakhstan
| | - Nataliya D. Meduntseva
- Faculty of Biology and Biotechnology and Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050040 Almaty, Kazakhstan; (N.K.K.); (G.A.S.); (N.D.M.)
| | - Nataliya O. Kudrina
- Faculty of Biology and Biotechnology and Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050040 Almaty, Kazakhstan; (N.K.K.); (G.A.S.); (N.D.M.)
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, 050040 Almaty, Kazakhstan
- Correspondence: (N.V.T.); (N.O.K.); Tel.: +7-(777)-299-3335 (N.V.T.); +7-(705)-181-1440 (N.O.K.)
| |
Collapse
|
31
|
Massad TJ, Richards LA, Philbin C, Fumiko Yamaguchi L, Kato MJ, Jeffrey CS, Oliveira C, Ochsenrider K, M de Moraes M, Tepe EJ, Cebrian Torrejon G, Sandivo M, Dyer LA. The chemical ecology of tropical forest diversity: Environmental variation, chemical similarity, herbivory, and richness. Ecology 2022; 103:e3762. [PMID: 35593436 DOI: 10.1002/ecy.3762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 11/11/2022]
Abstract
Species richness in tropical forests is correlated with other dimensions of diversity, including the diversity of plant-herbivore interactions and the phytochemical diversity that influences those interactions. Understanding the complexity of plant chemistry and the importance of phytochemical diversity for plant-insect interactions and overall forest richness has been enhanced significantly by the application of metabolomics to natural systems. The present work used proton nuclear magnetic resonance spectroscopy (1 H-NMR) profiling of crude leaf extracts to study phytochemical similarity and diversity among Piper plants growing naturally in the Atlantic Rainforest of Brazil. Spectral profile similarity and chemical diversity were quantified to examine the relationship between metrics of phytochemical diversity, specialist and generalist herbivory, and understory plant richness. Herbivory increased with understory species richness, while generalist herbivory increased and specialist herbivory decreased with the diversity of Piper leaf material available. Specialist herbivory increased when conspecific host plants were more spectroscopically dissimilar. Spectral similarity was lower among individuals of common species, and they were also more spectrally diverse, indicating phytochemical diversity is beneficial to plants. Canopy openness and soil nutrients also influenced chemistry and herbivory. The complex relationships uncovered in this study add information to our growing understanding of the importance of phytochemical diversity for plant-insect interactions and tropical plant species richness.
Collapse
Affiliation(s)
- Tara Joy Massad
- Department of Scientific Services, Gorongosa National Park, Sofala, Mozambique.,Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Lora A Richards
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA.,Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA
| | - Casey Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA.,Department of Chemistry, University of Nevada, Reno, NV, USA
| | | | - Massuo J Kato
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Christopher S Jeffrey
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA.,Department of Chemistry, University of Nevada, Reno, NV, USA
| | - Celso Oliveira
- Department of Chemistry, University of Nevada, Reno, NV, USA
| | | | - Marcílio M de Moraes
- Departamento de Química, Universidade Federal Rural de Pernambuco, Pernambuco, Pernambuco, Brasil
| | - Eric J Tepe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Lee A Dyer
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA.,Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA
| |
Collapse
|
32
|
Choi IS, Cardoso D, de Queiroz LP, de Lima HC, Lee C, Ruhlman TA, Jansen RK, Wojciechowski MF. Highly Resolved Papilionoid Legume Phylogeny Based on Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 13:823190. [PMID: 35283880 PMCID: PMC8905342 DOI: 10.3389/fpls.2022.823190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 05/31/2023]
Abstract
Comprising 501 genera and around 14,000 species, Papilionoideae is not only the largest subfamily of Fabaceae (Leguminosae; legumes), but also one of the most extraordinarily diverse clades among angiosperms. Papilionoids are a major source of food and forage, are ecologically successful in all major biomes, and display dramatic variation in both floral architecture and plastid genome (plastome) structure. Plastid DNA-based phylogenetic analyses have greatly improved our understanding of relationships among the major groups of Papilionoideae, yet the backbone of the subfamily phylogeny remains unresolved. In this study, we sequenced and assembled 39 new plastomes that are covering key genera representing the morphological diversity in the subfamily. From 244 total taxa, we produced eight datasets for maximum likelihood (ML) analyses based on entire plastomes and/or concatenated sequences of 77 protein-coding sequences (CDS) and two datasets for multispecies coalescent (MSC) analyses based on individual gene trees. We additionally produced a combined nucleotide dataset comprising CDS plus matK gene sequences only, in which most papilionoid genera were sampled. A ML tree based on the entire plastome maximally supported all of the deep and most recent divergences of papilionoids (223 out of 236 nodes). The Swartzieae, ADA (Angylocalyceae, Dipterygeae, and Amburaneae), Cladrastis, Andira, and Exostyleae clades formed a grade to the remainder of the Papilionoideae, concordant with nine ML and two MSC trees. Phylogenetic relationships among the remaining five papilionoid lineages (Vataireoid, Dermatophyllum, Genistoid s.l., Dalbergioid s.l., and Baphieae + Non-Protein Amino Acid Accumulating or NPAAA clade) remained uncertain, because of insufficient support and/or conflicting relationships among trees. Our study fully resolved most of the deep nodes of Papilionoideae, however, some relationships require further exploration. More genome-scale data and rigorous analyses are needed to disentangle phylogenetic relationships among the five remaining lineages.
Collapse
Affiliation(s)
- In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Domingos Cardoso
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Luciano P. de Queiroz
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Haroldo C. de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
- Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | |
Collapse
|
33
|
Gibson K, Olofsson J, Mooers AØ, Monroe MJ. Pulse grazing by reindeer ( Rangifer tarandus) can increase the phylogenetic diversity of vascular plant communities in the Fennoscandian tundra. Ecol Evol 2021; 11:14598-14614. [PMID: 34765128 PMCID: PMC8571604 DOI: 10.1002/ece3.8131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Herbivore grazing is an important determinant of plant community assemblages. Thus, it is essential to understand its impact to direct conservation efforts in regions where herbivores are managed. While the impacts of reindeer (Rangifer tarandus) grazing on plant biodiversity and community composition in the Fennoscandian tundra are well studied, the impact of reindeer grazing on phylogenetic community structure is not. We used data from a multiyear quasi-experimental study in northern Fennoscandia to analyze the effect of reindeer grazing on plant community diversity including its phylogenetic structure. Our study design used a permanent fence constructed in the 1960s and temporary fences constructed along the permanent fence to expose plant communities to three different grazing regimes: light (almost never grazed), pulse (grazed every other year), and press (chronic grazing for over 40 years). Similar to previous studies on low productivity ecosystems in this region, the species richness and evenness of plant communities with pulse and press grazing did not differ from communities with light grazing. Also consistent with previous studies in this region, we observed a transition from shrub-dominated communities with light grazing to graminoid-dominated communities with pulse and press grazing. Interestingly, communities with pulse, but not press, grazing were more phylogenetically dispersed than communities with light grazing. If grazing pulses can increase the phylogenetic diversity of plant communities, our result suggests changes in reindeer management allowing for pulses of grazing to increase phylogenetic diversity of plant communities.
Collapse
Affiliation(s)
- Kate Gibson
- Department of BiologySimon Fraser UniversityBurnabyBCCanada
| | - Johan Olofsson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | - Arne Ø. Mooers
- Department of BiologySimon Fraser UniversityBurnabyBCCanada
| | - Melanie J. Monroe
- Department of BiologySimon Fraser UniversityBurnabyBCCanada
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| |
Collapse
|
34
|
Hidden Diversity in an Antarctic Algal Forest: Metabolomic Profiling Linked to Patterns of Genetic Diversification in the Antarctic Red Alga Plocamium sp. Mar Drugs 2021; 19:md19110607. [PMID: 34822478 PMCID: PMC8622728 DOI: 10.3390/md19110607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
The common Antarctic red alga Plocamium sp. is rich in halogenated monoterpenes with known anticancer and antimicrobial properties and extracts of Plocamium sp. have strong ecological activity in deterring feeding by sympatric herbivores. Plocamium sp. collected near Anvers Island, Antarctica showed a high degree of secondary metabolite diversity between separate individuals. GC/MS results revealed 15 different combinations of metabolites (chemogroups) across individuals, which were apparent at 50% or greater Bray–Curtis similarity and also clearly distinguishable by eye when comparing chromatographic profiles of the secondary metabolomes. Sequencing of the mitochondrial cox1 gene revealed six distinct haplotypes, of which the most common two had been previously reported (now referred to as Haplotypes 1 and 2). With the exception of one individual, three of the chemogroups were only produced by individuals in Haplotype 1. All the other 12 chemogroups were produced by individuals in Haplotype 2, with five of these chemogroups also present in one of the four new, less common haplotypes that only differed from Haplotype 2 by one base pair. The functional relevance of this metabolomic and genetic diversity is unknown, but they could have important ecological and evolutionary ramifications, thus potentially providing a foundation for differential selection.
Collapse
|
35
|
Verdú M, Gómez JM, Valiente-Banuet A, Schöb C. Facilitation and plant phenotypic evolution. TRENDS IN PLANT SCIENCE 2021; 26:913-923. [PMID: 34112618 DOI: 10.1016/j.tplants.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
While antagonistic interactions between plants have been a major topic of eco-evolutionary research, little evidence exists on the evolution of positive plant interactions (i.e., plant facilitation). Here, we first summarize the existing empirical evidence on the role of facilitation as a selection pressure on plants. Then, we develop a theoretical eco-evolutionary framework based on fitness-trait functions and interaction effectiveness that provides predictions for how facilitation-related traits may evolve. As evolution may act at levels beyond the individual (such as groups or species), we discuss the subject of the units of evolutionary selection through facilitation. Finally, we use the proposed formal evolutionary framework for facilitation to identify areas of future research based on the knowledge gaps detected.
Collapse
Affiliation(s)
- M Verdú
- Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Ctra Moncada-Náquera km4.5, 46113 Moncada, (Valencia), Spain.
| | - J M Gómez
- Dpto de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Carretera de Sacramento s/n, La Cañada de San Urbano, 0-4120 Almería, Spain
| | - A Valiente-Banuet
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, A.P. 70-275, C.P. 04510, México D.F., México; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México
| | - C Schöb
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
36
|
Uckele KA, Jahner JP, Tepe EJ, Richards LA, Dyer LA, Ochsenrider KM, Philbin CS, Kato MJ, Yamaguchi LF, Forister ML, Smilanich AM, Dodson CD, Jeffrey CS, Parchman TL. Phytochemistry reflects different evolutionary history in traditional classes versus specialized structural motifs. Sci Rep 2021; 11:17247. [PMID: 34446754 PMCID: PMC8390663 DOI: 10.1038/s41598-021-96431-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Foundational hypotheses addressing plant-insect codiversification and plant defense theory typically assume a macroevolutionary pattern whereby closely related plants have similar chemical profiles. However, numerous studies have documented variation in the degree of phytochemical trait lability, raising the possibility that phytochemical evolution is more nuanced than initially assumed. We utilize proton nuclear magnetic resonance (1H NMR) data, chemical classification, and double digest restriction-site associated DNA sequencing (ddRADseq) to resolve evolutionary relationships and characterize the evolution of secondary chemistry in the Neotropical plant clade Radula (Piper; Piperaceae). Sequencing data substantially improved phylogenetic resolution relative to past studies, and spectroscopic characterization revealed the presence of 35 metabolite classes. Metabolite classes displayed phylogenetic signal, whereas the crude 1H NMR spectra featured little evidence of phylogenetic signal in multivariate tests of chemical resonances. Evolutionary correlations were detected in two pairs of compound classes (flavonoids with chalcones; p-alkenyl phenols with kavalactones), where the gain or loss of a class was dependent on the other's state. Overall, the evolution of secondary chemistry in Radula is characterized by strong phylogenetic signal of traditional compound classes and weak phylogenetic signal of specialized chemical motifs, consistent with both classic evolutionary hypotheses and recent examinations of phytochemical evolution in young lineages.
Collapse
Affiliation(s)
- Kathryn A Uckele
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Joshua P Jahner
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA.
- Department of Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Eric J Tepe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Lora A Richards
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Lee A Dyer
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
- Sección Invertebrados, Museo Ecuatoriano de Ciencias Naturales, Quito, Ecuador
| | | | - Casey S Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Massuo J Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Lydia F Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Matthew L Forister
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Angela M Smilanich
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Craig D Dodson
- Department of Chemistry, University of Nevada, Reno, NV, 89557, USA
| | - Christopher S Jeffrey
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
- Department of Chemistry, University of Nevada, Reno, NV, 89557, USA
| | - Thomas L Parchman
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
37
|
Schmitt S, Tysklind N, Hérault B, Heuertz M. Topography drives microgeographic adaptations of closely related species in two tropical tree species complexes. Mol Ecol 2021; 30:5080-5093. [PMID: 34387001 DOI: 10.1111/mec.16116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022]
Abstract
Closely related tree species that grow in sympatry are abundant in rainforests. However, little is known of the eco-evolutionary processes that govern their niches and local coexistence. We assessed genetic species delimitation in closely related sympatric species belonging to two Neotropical tree species complexes and investigated their genomic adaptation to a fine-scale topographic gradient with associated edaphic and hydrologic features. Combining LiDAR-derived topography, tree inventories, and single nucleotide polymorphisms (SNPs) from gene capture experiments, we explored genome-wide population genetic structure, covariation of environmental variables, and genotype-environment association to assess microgeographic adaptations to topography within the species complexes Symphonia (Clusiaceae), and Eschweilera (Lecythidaceae) with three species per complex and 385 and 257 individuals genotyped, respectively. Within species complexes, closely related tree species had different realized optima for topographic niches defined through the topographic wetness index or the relative elevation, and species displayed genetic signatures of adaptations to these niches. Symphonia species were genetically differentiated along water and nutrient distribution particularly in genes responding to water deprivation, whereas Eschweilera species were genetically differentiated according to soil chemistry. Our results suggest that varied topography represents a powerful driver of processes modulating tropical forest biodiversity with differential adaptations that stabilize local coexistence of closely related tree species.
Collapse
Affiliation(s)
- Sylvain Schmitt
- CNRS, UMR EcoFoG (Agroparistech, Cirad, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, 97310, Kourou, French Guiana, France.,Univ. Bordeaux, INRAE, BIOGECO, 69 route d'Arcachon, 33610, Cestas, France
| | - Niklas Tysklind
- INRAE, UMR EcoFoG (Agroparistech, CNRS, Cirad, Université des Antilles, Université de la Guyane), Campus Agronomique, 97310, Kourou, French Guiana, France
| | - Bruno Hérault
- CIRAD, UR Forêts et Sociétés, Yamoussoukro Côte d'Ivoire, France.,Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France.,Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro Côte d'Ivoire, France
| | - Myriam Heuertz
- Univ. Bordeaux, INRAE, BIOGECO, 69 route d'Arcachon, 33610, Cestas, France
| |
Collapse
|
38
|
Safdari P, Höckerstedt L, Brosche M, Salojärvi J, Laine AL. Genotype-Specific Expression and NLR Repertoire Contribute to Phenotypic Resistance Diversity in Plantago lanceolata. FRONTIERS IN PLANT SCIENCE 2021; 12:675760. [PMID: 34322142 PMCID: PMC8311189 DOI: 10.3389/fpls.2021.675760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
High levels of phenotypic variation in resistance appears to be nearly ubiquitous across natural host populations. Molecular processes contributing to this variation in nature are still poorly known, although theory predicts resistance to evolve at specific loci driven by pathogen-imposed selection. Nucleotide-binding leucine-rich repeat (NLR) genes play an important role in pathogen recognition, downstream defense responses and defense signaling. Identifying the natural variation in NLRs has the potential to increase our understanding of how NLR diversity is generated and maintained, and how to manage disease resistance. Here, we sequenced the transcriptomes of five different Plantago lanceolata genotypes when inoculated by the same strain of obligate fungal pathogen Podosphaera plantaginis. A de novo transcriptome assembly of RNA-sequencing data yielded 24,332 gene models with N50 value of 1,329 base pairs and gene space completeness of 66.5%. The gene expression data showed highly varying responses where each plant genotype demonstrated a unique expression profile in response to the pathogen, regardless of the resistance phenotype. Analysis on the conserved NB-ARC domain demonstrated a diverse NLR repertoire in P. lanceolata consistent with the high phenotypic resistance diversity in this species. We find evidence of selection generating diversity at some of the NLR loci. Jointly, our results demonstrate that phenotypic resistance diversity results from a crosstalk between different defense mechanisms. In conclusion, characterizing the architecture of resistance in natural host populations may shed unprecedented light on the potential of evolution to generate variation.
Collapse
Affiliation(s)
- Pezhman Safdari
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Layla Höckerstedt
- Climate System Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Mikael Brosche
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Kulikowski AJ, Zahawi RA, Holl KD. Effects of insect herbivory on seedling mortality in restored and remnant tropical forest. Restor Ecol 2021. [DOI: 10.1111/rec.13467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Andy J. Kulikowski
- Department of Environmental Studies University of California Santa Cruz 1156 High Street Santa Cruz CA 95064 U.S.A
| | - Rakan A. Zahawi
- Department of Environmental Studies University of California Santa Cruz 1156 High Street Santa Cruz CA 95064 U.S.A
- Lyon Arboretum University of Hawai'i at Mānoa 3860 Mānoa Road Honolulu Hawaii 96822 U.S.A
| | - Karen D. Holl
- Department of Environmental Studies University of California Santa Cruz 1156 High Street Santa Cruz CA 95064 U.S.A
| |
Collapse
|
40
|
Ribeiro C, Xu J, Teper D, Lee D, Wang N. The transcriptome landscapes of citrus leaf in different developmental stages. PLANT MOLECULAR BIOLOGY 2021; 106:349-366. [PMID: 33871796 DOI: 10.1007/s11103-021-01154-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The temporal expression profiles of citrus leaves explain the sink-source transition of immature leaves to mature leaves and provide knowledge regarding the differential responses of mature and immature leaves to biotic stress such as citrus canker and Asian citrus psyllid (Diaphorina citri). Citrus is an important fruit crop worldwide. Different developmental stages of citrus leaves are associated with distinct features, such as differences in susceptibilities to pathogens and insects, as well as photosynthetic capacity. Here, we investigated the mechanisms underlying these distinctions by comparing the gene expression profiles of mature and immature citrus leaves. Immature (stages V3 and V4), transition (stage V5), and mature (stage V6) Citrus sinensis leaves were chosen for RNA-seq analyses. Carbohydrate biosynthesis, photosynthesis, starch biosynthesis, and disaccharide metabolic processes were enriched among the upregulated differentially expressed genes (DEGs) in the V5 and V6 stages compared with that in the V3 and V4 stages. Glucose level was found to be higher in V5 and V6 than in V3 and V4. Among the four stages, the largest number of DEGs between contiguous stages were identified between V5 and V4, consistent with a change from sink to source, as well as with the sucrose and starch quantification data. The differential expression profiles related to cell wall synthesis, secondary metabolites such as flavonoids and terpenoids, amino acid biosynthesis, and immunity between immature and mature leaves may contribute to their different responses to Asian citrus psyllid infestation. The expression data suggested that both the constitutive and induced gene expression of immunity-related genes plays important roles in the greater resistance of mature leaves against Xanthomonas citri compared with immature leaves. The gene expression profiles in the different stages can help identify stage-specific promoters for the manipulation of the expression of citrus traits according to the stage. The temporal expression profiles explain the sink-source transition of immature leaves to mature leaves and provide knowledge regarding the differential responses to biotic stress.
Collapse
Affiliation(s)
- Camila Ribeiro
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Jin Xu
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Doron Teper
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Donghwan Lee
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Nian Wang
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
41
|
Spear ER, Broders KD. Host-generalist fungal pathogens of seedlings may maintain forest diversity via host-specific impacts and differential susceptibility among tree species. THE NEW PHYTOLOGIST 2021; 231:460-474. [PMID: 33794003 DOI: 10.1111/nph.17379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Host-specialized pathogens are credited with the maintenance of tropical forest diversity under the Janzen-Connell hypothesis. Yet, in diverse forests, selection may favor pathogens with broad host ranges, given their passive dispersal and the relative rarity of tree species. We surveyed the host associations of potential pathogens isolated from symptomatic seedlings in forests in Panama and used inoculations to assess the pathogenicity and host ranges of 27 fungal isolates, and differences among tree species in susceptibility. Thirty-one of the 33 nonsingleton operational taxonomic units (OTUs) isolated from seedlings are multi-host. All 31 multi-host OTUs exhibit low to moderate specialization, and we observed phylogenetically overdispersed host use for 19 OTUs. The pathogenicity of 10 isolates was experimentally confirmed; nine caused disease in seedlings in multiple families. However, the outcome of infection differs among tree species susceptible to a given multi-host pathogen. Furthermore, some tree species were seemingly resistant to all fungi tested, while others were susceptible to multiple fungi. Tree species adapted to environments with lower disease pressure were most likely to exhibit disease. Our results suggest that generalist pathogens contribute to the maintenance of local and regional forest diversity via host-specific impacts and the exclusion of disease-sensitive trees from disease-prone habitats.
Collapse
Affiliation(s)
- Erin R Spear
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Kirk D Broders
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| |
Collapse
|
42
|
Li D, Gaquerel E. Next-Generation Mass Spectrometry Metabolomics Revives the Functional Analysis of Plant Metabolic Diversity. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:867-891. [PMID: 33781077 DOI: 10.1146/annurev-arplant-071720-114836] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The remarkable diversity of specialized metabolites produced by plants has inspired several decades of research and nucleated a long list of theories to guide empirical ecological studies. However, analytical constraints and the lack of untargeted processing workflows have long precluded comprehensive metabolite profiling and, consequently, the collection of the critical currencies to test theory predictions for the ecological functions of plant metabolic diversity. Developments in mass spectrometry (MS) metabolomics have revolutionized the large-scale inventory and annotation of chemicals from biospecimens. Hence, the next generation of MS metabolomics propelled by new bioinformatics developments provides a long-awaited framework to revisit metabolism-centered ecological questions, much like the advances in next-generation sequencing of the last two decades impacted all research horizons in genomics. Here, we review advances in plant (computational) metabolomics to foster hypothesis formulation from complex metabolome data. Additionally, we reflect on how next-generation metabolomics could reinvigorate the testing of long-standing theories on plant metabolic diversity.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 67084 Strasbourg, France;
| |
Collapse
|
43
|
Whitehead SR, Schneider GF, Dybzinski R, Nelson AS, Gelambi M, Jos E, Beckman NG. Fruits, frugivores, and the evolution of phytochemical diversity. OIKOS 2021. [DOI: 10.1111/oik.08332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Susan R. Whitehead
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | | | - Ray Dybzinski
- School of Environmental Sustainability, Loyola Univ. Chicago IL USA
| | - Annika S. Nelson
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | - Mariana Gelambi
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | - Elsa Jos
- Dept of Biology and Ecology Center, Utah State Univ. Logan UT USA
| | | |
Collapse
|
44
|
Gaia AM, Yamaguchi LF, Guerrero-Perilla C, Kato MJ. Ontogenetic Changes in the Chemical Profiles of Piper Species. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061085. [PMID: 34071315 PMCID: PMC8227164 DOI: 10.3390/plants10061085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The chemical composition of seedlings and adult plants of several Piper species were analyzed by 1H NMR spectroscopy combined with principal component analysis (PCA) and HPLC-DAD, HPLC-HRESIMS and GC-MS data. The chromatographic profile of crude extracts from leaves of Piper species showed remarkable differences between seedlings and adult plants. Adult leaves of P. regnellii accumulate dihydrobenzofuran neolignans, P. solmsianum contain tetrahydrofuran lignans, and prenylated benzoic acids are found in adult leaves of P. hemmendorffii and P. caldense. Seedlings produced an entirely different collection of compounds. Piper gaudichaudianum and P. solmsianum seedlings contain the phenylpropanoid dillapiole. Piper regnellii and P. hemmendorffii produce another phenylpropanoid, apiol, while isoasarone is found in P. caldense. Piper richadiaefolium and P. permucronatum contain dibenzylbutyrolactones lignans or flavonoids in adult leaves. Seedlings of P. richardiaefolium produce multiple amides, while P. permucronatum seedlings contain a new long chain ester. Piper tuberculatum, P. reticulatum and P. amalago produce amides, and their chemistry changes less during ontogeny. The chemical variation we documented opens questions about changes in herbivore pressure across ontogeny.
Collapse
|
45
|
Sedio BE, Spasojevic MJ, Myers JA, Wright SJ, Person MD, Chandrasekaran H, Dwenger JH, Prechi ML, López CA, Allen DN, Anderson-Teixeira KJ, Baltzer JL, Bourg NA, Castillo BT, Day NJ, Dewald-Wang E, Dick CW, James TY, Kueneman JG, LaManna J, Lutz JA, McGregor IR, McMahon SM, Parker GG, Parker JD, Vandermeer JH. Chemical Similarity of Co-occurring Trees Decreases With Precipitation and Temperature in North American Forests. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.679638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plant diversity varies immensely over large-scale gradients in temperature, precipitation, and seasonality at global and regional scales. This relationship may be driven in part by climatic variation in the relative importance of abiotic and biotic interactions to the diversity and composition of plant communities. In particular, biotic interactions may become stronger and more host specific with increasing precipitation and temperature, resulting in greater plant species richness in wetter and warmer environments. This hypothesis predicts that the many defensive compounds found in plants’ metabolomes should increase in richness and decrease in interspecific similarity with precipitation, temperature, and plant diversity. To test this prediction, we compared patterns of chemical and morphological trait diversity of 140 woody plant species among seven temperate forests in North America representing 16.2°C variation in mean annual temperature (MAT), 2,115 mm variation in mean annual precipitation (MAP), and from 10 to 68 co-occurring species. We used untargeted metabolomics methods based on data generated with liquid chromatography-tandem mass spectrometry to identify, classify, and compare 13,480 unique foliar metabolites and to quantify the metabolomic similarity of species in each community with respect to the whole metabolome and each of five broad classes of metabolites. In addition, we compiled morphological trait data from existing databases and field surveys for three commonly measured traits (specific leaf area [SLA], wood density, and seed mass) for comparison with foliar metabolomes. We found that chemical defense strategies and growth and allocation strategies reflected by these traits largely represented orthogonal axes of variation. In addition, functional dispersion of SLA increased with MAP, whereas functional richness of wood density and seed mass increased with MAT. In contrast, chemical similarity of co-occurring species decreased with both MAT and MAP, and metabolite richness increased with MAT. Variation in metabolite richness among communities was positively correlated with species richness, but variation in mean chemical similarity was not. Our results are consistent with the hypothesis that plant metabolomes play a more important role in community assembly in wetter and warmer climates, even at temperate latitudes, and suggest that metabolomic traits can provide unique insight to studies of trait-based community assembly.
Collapse
|
46
|
Sherry TW. Sensitivity of Tropical Insectivorous Birds to the Anthropocene: A Review of Multiple Mechanisms and Conservation Implications. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.662873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epigraph: “The house is burning. We do not need a thermometer. We need a fire hose.” (P. 102, Janzen and Hallwachs, 2019). Insectivorous birds are declining widely, and for diverse reasons. Tropical insectivorous birds, more than 60% of all tropical birds, are particularly sensitive to human disturbances including habitat loss and fragmentation, intensive agriculture and pesticide use, and climate change; and the mechanisms are incompletely understood. This review addresses multiple, complementary and sometimes synergistic explanations for tropical insectivore declines, by categorizing explanations into ultimate vs. proximate, and direct versus indirect. Ultimate explanations are diverse human Anthropocene activities and the evolutionary history of these birds. This evolutionary history, synthesized by the Biotic Challenge Hypothesis (BCH), explains tropical insectivorous birds' vulnerabilities to many proximate threats as a function of both these birds' evolutionary feeding specialization and poor dispersal capacity. These traits were favored evolutionarily by both the diversity of insectivorous clades competing intensely for prey and co-evolution with arthropods over long evolutionary time periods. More proximate, ecological threats include bottom-up forces like declining insect populations, top-down forces like meso-predator increases, plus the Anthropocene activities underlying these factors, especially habitat loss and fragmentation, agricultural intensification, and climate change. All these conditions peak in the lowland, mainland Neotropics, where insectivorous bird declines have been repeatedly documented, but also occur in other tropical locales and continents. This multiplicity of interacting evolutionary and ecological factors informs conservation implications and recommendations for tropical insectivorous birds: (1) Why they are so sensitive to global change phenomena is no longer enigmatic, (2) distinguishing ultimate versus proximate stressors matters, (3) evolutionary life-histories predispose these birds to be particularly sensitive to the Anthropocene, (4) tropical regions and continents vary with respect to these birds' ecological sensitivity, (5) biodiversity concepts need stronger incorporation of species' evolutionary histories, (6) protecting these birds will require more, larger reserves for multiple reasons, and (7) these birds have greater value than generally recognized.
Collapse
|
47
|
Abstract
To cope with environmental challenges, plants produce a wide diversity of phytochemicals, which are also the source of numerous medicines. Despite decades of research in chemical ecology, we still lack an understanding of the organization of plant chemical diversity across species and ecosystems. To address this challenge, we hypothesized that molecular diversity is not only related to species diversity, but also constrained by trophic, climatic, and topographical factors. We screened the metabolome of 416 vascular plant species encompassing the entire alpine elevation range and four alpine bioclimatic regions in order to characterize their phytochemical diversity. We show that by coupling phylogenetic information, topographic, edaphic, and climatic variables, we predict phytochemical diversity, and its inherent composition, of plant communities throughout landscape. Spatial mapping of phytochemical diversity further revealed that plant assemblages found in low to midelevation habitats, with more alkaline soils, possessed greater phytochemical diversity, whereas alpine habitats possessed higher phytochemical endemism. Altogether, we present a general tool that can be used for predicting hotspots of phytochemical diversity in the landscape, independently of plant species taxonomic identity. Such an approach offers promising perspectives in both drug discovery programs and conservation efforts worldwide.
Collapse
|
48
|
Gluck-Thaler E, Haridas S, Binder M, Grigoriev IV, Crous PW, Spatafora JW, Bushley K, Slot JC. The Architecture of Metabolism Maximizes Biosynthetic Diversity in the Largest Class of Fungi. Mol Biol Evol 2021; 37:2838-2856. [PMID: 32421770 PMCID: PMC7530617 DOI: 10.1093/molbev/msaa122] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ecological diversity in fungi is largely defined by metabolic traits, including the ability to produce secondary or “specialized” metabolites (SMs) that mediate interactions with other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation in BGC composition reflects the diversity of their SM products. Recent studies have documented surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is known about how this population-level variation is inherited across macroevolutionary timescales. Here, we applied a novel linkage-based algorithm to reveal previously unexplored dimensions of diversity in BGC composition, distribution, and repertoire across 101 species of Dothideomycetes, which are considered the most phylogenetically diverse class of fungi and known to produce many SMs. We predicted both complementary and overlapping sets of clustered genes compared with existing methods and identified novel gene pairs that associate with known secondary metabolite genes. We found that variation among sets of BGCs in individual genomes is due to nonoverlapping BGC combinations and that several BGCs have biased ecological distributions, consistent with niche-specific selection. We observed that total BGC diversity scales linearly with increasing repertoire size, suggesting that secondary metabolites have little structural redundancy in individual fungi. We project that there is substantial unsampled BGC diversity across specific families of Dothideomycetes, which will provide a roadmap for future sampling efforts. Our approach and findings lend new insight into how BGC diversity is generated and maintained across an entire fungal taxonomic class.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Plant Pathology, The Ohio State University, Columbus, OH.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA
| | | | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH
| |
Collapse
|
49
|
Leme Pablos J, Kristina Silva A, Seraphim N, de Moraes Magaldi L, Pereira de Souza A, Victor Lucci Freitas A, Lucas Silva-Brandão K. North-south and climate-landscape-associated pattern of population structure for the Atlantic Forest White Morpho butterflies. Mol Phylogenet Evol 2021; 161:107157. [PMID: 33753193 DOI: 10.1016/j.ympev.2021.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Atlantic Forest White Morpho butterflies, currently classified as Morpho epistrophus and M. iphitus, are endemic to the Atlantic Forest, where they are widely distributed throughout heterogeneous environmental conditions. Studies with endemic butterflies allow to elucidate questions on both patterns of diversity distribution and current and past processes acting on insect groups in this biodiversity hotspot. In the present study, we characterized one mtDNA marker (COI sequences) and developed 11 polymorphic loci of microsatellite for 22 sampling locations distributed throughout the entire Atlantic Forest domain. We investigated both the taxonomic limits of taxa classified as White Morpho and the structure and distribution of the genetic diversity throughout their populations. Genetic markers and distribution data failed to identify species diversification, population structure, or isolation among subpopulations attributed to different taxa proposed for the White Morpho, suggesting that the current distinction between two species is unreasonable. The Bayesian coalescent tree based on COI sequences also failed to recover monophyletic clades for the putative species, and pointed instead to a north-south oriented pattern of genetic structure, with the northern clade coalescing later than the southern clade. Northern samples also showed more intragroup structure than southern samples based on mtDNA data. Clustering tests based on microsatellites indicated the existence of three genetic clusters, with turnover between the states of Paraná and São Paulo. The north-south pattern found for the White Morpho populations is showed for the first time to a endemic AF insect and coincides with the two different bioclimatic domains previously described for vertebrates and plants. Population structure observed for these butterflies is related to climate- and landscape-associated variables, mainly precipitation and elevation.
Collapse
Affiliation(s)
- Julia Leme Pablos
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Ana Kristina Silva
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Noemy Seraphim
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Campinas, Rua Heitor Lacerda Guedes, 1000, 13059-581 Campinas, SP, Brazil
| | - Luiza de Moraes Magaldi
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Anete Pereira de Souza
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Av. Candido Rondom, 400, 13083-875 Campinas, SP, Brazil
| | - André Victor Lucci Freitas
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Karina Lucas Silva-Brandão
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Av. Candido Rondom, 400, 13083-875 Campinas, SP, Brazil; Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, 09210-580 Santo André, SP, Brazil.
| |
Collapse
|
50
|
Dick CW. A genomic perspective on amazon tree diversity. Mol Ecol 2021; 30:1108-1109. [PMID: 33547830 DOI: 10.1111/mec.15831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher W Dick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| |
Collapse
|