1
|
Kumaran G, Pathak PK, Quandoh E, Devi J, Mursalimov S, Alkalai‐Tuvia S, Leong JX, Schenstnyi K, Levin E, Üstün S, Michaeli S. Autophagy restricts tomato fruit ripening via a general role in ethylene repression. THE NEW PHYTOLOGIST 2025; 246:2392-2404. [PMID: 40329635 PMCID: PMC12095972 DOI: 10.1111/nph.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/10/2025] [Indexed: 05/08/2025]
Affiliation(s)
- Girishkumar Kumaran
- Department of Postharvest SciencesInstitute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani InstituteRishon‐LeZion7505101Israel
| | - Pradeep Kumar Pathak
- Department of Postharvest SciencesInstitute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani InstituteRishon‐LeZion7505101Israel
| | - Ebenezer Quandoh
- Department of Postharvest SciencesInstitute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani InstituteRishon‐LeZion7505101Israel
- The Robert H. Smith Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovot7610001Israel
| | - Jyoti Devi
- Department of Postharvest SciencesInstitute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani InstituteRishon‐LeZion7505101Israel
| | - Sergey Mursalimov
- Department of Postharvest SciencesInstitute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani InstituteRishon‐LeZion7505101Israel
| | - Sharon Alkalai‐Tuvia
- Department of Postharvest SciencesInstitute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani InstituteRishon‐LeZion7505101Israel
| | - Jia Xuan Leong
- ZMBP – General GeneticsUniversity of TübingenAuf der Morgenstelle 3272076TüebingenGermany
| | - Kyrylo Schenstnyi
- ZMBP – General GeneticsUniversity of TübingenAuf der Morgenstelle 3272076TüebingenGermany
| | - Elena Levin
- Department of Postharvest SciencesInstitute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani InstituteRishon‐LeZion7505101Israel
| | - Suayib Üstün
- ZMBP – General GeneticsUniversity of TübingenAuf der Morgenstelle 3272076TüebingenGermany
| | - Simon Michaeli
- Department of Postharvest SciencesInstitute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani InstituteRishon‐LeZion7505101Israel
| |
Collapse
|
2
|
Chen Y, Wang X, Colantonio V, Gao Z, Pei Y, Fish T, Ye J, Courtney L, Thannhauser TW, Ye Z, Liu Y, Fei Z, Liu M, Giovannoni JJ. Ethylene response factor SlERF.D6 promotes ripening in part through transcription factors SlDEAR2 and SlTCP12. Proc Natl Acad Sci U S A 2025; 122:e2405894122. [PMID: 39928866 PMCID: PMC11848416 DOI: 10.1073/pnas.2405894122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/19/2024] [Indexed: 02/12/2025] Open
Abstract
Ripening is crucial for the development of fleshy fruits that release their seeds following consumption by frugivores and are important contributors to human health and nutritional security. Many genetic ripening regulators have been identified, especially in the model system tomato, yet more remain to be discovered and integrated into comprehensive regulatory models. Most tomato ripening genes have been studied in pericarp tissue, though recent evidence indicates that locule tissue is a site of early ripening-gene activities. Here, we identified and functionally characterized an Ethylene Response Factor (ERF) gene, SlERF.D6, by investigating tomato transcriptome data throughout plant development, emphasizing genes elevated in the locule during fruit development and ripening. SlERF.D6 loss-of-function mutants resulting from CRISPR/Cas9 gene editing delayed ripening initiation and carotenoid accumulation in both pericarp and locule tissues. Transcriptome analysis of lines altered in SlERF.D6 expression revealed multiple classes of altered genes including ripening regulators, in addition to carotenoid, cell wall, and ethylene pathway genes, suggesting comprehensive ripening control. Distinct regulatory patterns in pericarp versus locule tissues were observed, indicating tissue-specific activity of this transcription factor (TF). Analysis of SlERF.D6 interaction with target promoters revealed an APETALA 2/ETHYLENE RESPONSE FACTOR (AP2/ERF) TF (SlDEAR2) as a target of SlERF.D6. Furthermore, we show that a third TF gene, SlTCP12, is a target of SlDEAR2, presenting a tricomponent module of ripening control residing in the larger SlERF.D6 regulatory network.
Collapse
Affiliation(s)
- Yao Chen
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - Xin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Vincent Colantonio
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
| | - Zhuo Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - Yangang Pei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - Tara Fish
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
| | - Jie Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Lance Courtney
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Theodore W. Thannhauser
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei230036, People’s Republic of China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| |
Collapse
|
3
|
Zhao L, Xie W, Huang L, Long S, Wang P. Characterization of the gibberellic oxidase gene SdGA20ox1 in Sophora davidii (Franch.) skeels and interaction protein screening. FRONTIERS IN PLANT SCIENCE 2024; 15:1478854. [PMID: 39479549 PMCID: PMC11521860 DOI: 10.3389/fpls.2024.1478854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Gibberellin 20-oxidases (GA20oxs) are multifunctional enzymes involved in regulating gibberellin (GA) biosynthesis and controlling plant growth. We identified and characterized the GA20ox1 gene in a plant height mutant of Sophora davidii, referred to as SdGA20ox1. This gene was expressed in root, stem, and leaf tissues of the adult S. davidii plant height mutant, with the highest expression observed in the stem. The expression of SdGA20ox1 was regulated by various exogenous hormones. Overexpression of SdGA20ox1 in Arabidopsis resulted in significant elongation of hypocotyl and root length in seedlings, earlier flowering, smaller leaves, reduced leaf chlorophyll content, lighter leaf color, a significant increase in adult plant height, and other phenotypes. Additionally, transgenic plants exhibited a substantial increase in biologically active endogenous GAs (GA1, GA3, and GA4) content, indicating that overexpression of SdGA20ox1 accelerates plant growth and development. Using a yeast two-hybrid (Y2H) screen, we identified two SdGA20ox1-interacting proteins: the ethylene receptor EIN4 (11430582) and the rbcS (11416005) protein. These interactions suggest a potential regulatory mechanism for S. davidii growth. Our findings provide new insights into the role of SdGA20ox1 and its interacting proteins in regulating the growth and development of S. davidii.
Collapse
Affiliation(s)
- Lili Zhao
- College of Animal Science, Guizhou University, Guiyang, China
| | - Wenhui Xie
- College of Animal Science, Guizhou University, Guiyang, China
| | - Lei Huang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Sisi Long
- College of Animal Science, Guizhou University, Guiyang, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
4
|
Johnson E, Farcuh M. Aminoethoxyvinylglicine and 1-Methylcyclopropene: Effects on Preharvest Drop, Fruit Maturity, Quality, and Associated Gene Expression of 'Honeycrisp' Apples in the US Mid-Atlantic. PLANTS (BASEL, SWITZERLAND) 2024; 13:2524. [PMID: 39274007 PMCID: PMC11397464 DOI: 10.3390/plants13172524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Preharvest fruit drop is one of the main challenges in apple production as it can lead to extensive crop losses in commercially important cultivars including 'Honeycrisp'. Plant growth regulators, such as aminoethoxyvinylglicine (AVG) and 1-methylcyclopropene (1-MCP), which hinder ethylene biosynthesis and perception, respectively, can control preharvest fruit drop, but an assessment of their effects in 'Honeycrisp' fruit grown under US mid-Atlantic conditions is lacking. In this study, we evaluated the effects of AVG (130 mg a.i. L-1) and 1-MCP (150 mg a.i. L-1) on preharvest fruit drop, ethylene production, fruit physicochemical parameters, skin color, and transcript accumulation of ethylene and anthocyanin-related genes in 'Honeycrisp' apples throughout on-the-tree ripening. We showed that both AVG and 1-MCP significantly minimized preharvest fruit drop with respect to the control fruit. Additionally, AVG was the most effective in decreasing ethylene production, downregulating ethylene biosynthesis and perception-related gene expression, and delaying fruit maturity. Nevertheless, AVG negatively impacted apple red skin color and exhibited the lowest expression of anthocyanin-biosynthesis-related genes, only allowing apples to reach the minimum required 50% blush at the last ripening stage. Conversely, 1-MCP-treated fruit displayed an intermediate behavior between AVG-treated and control fruit, decreasing ethylene production rates and the associated gene expression as well as delaying fruit maturity when compared to the control fruit. Remarkably, 1-MCP treatment did not sacrifice red skin color development or anthocyanin-biosynthesis-related gene expression, thus exhibiting > 50% blush one week earlier than AVG.
Collapse
Affiliation(s)
- Emily Johnson
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Macarena Farcuh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Monthony AS, de Ronne M, Torkamaneh D. Exploring ethylene-related genes in Cannabis sativa: implications for sexual plasticity. PLANT REPRODUCTION 2024; 37:321-339. [PMID: 38218931 DOI: 10.1007/s00497-023-00492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
KEY MESSAGE Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species. Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. Cannabis sativa L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed Arabidopsis thaliana L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in C. sativa. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in C. sativa.
Collapse
Affiliation(s)
- Adrian S Monthony
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada.
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
6
|
Jia H, Xu Y, Deng Y, Xie Y, Gao Z, Lang Z, Niu Q. Key transcription factors regulate fruit ripening and metabolite accumulation in tomato. PLANT PHYSIOLOGY 2024; 195:2256-2273. [PMID: 38561990 PMCID: PMC11213253 DOI: 10.1093/plphys/kiae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Fruit ripening is a complex process involving dynamic changes to metabolites and is controlled by multiple factors, including transcription factors (TFs). Several TFs are reportedly essential regulators of tomato (Solanum lycopersicum) fruit ripening. To evaluate the effects of specific TFs on metabolite accumulation during fruit ripening, we combined CRISPR/Cas9-mediated mutagenesis with metabolome and transcriptome analyses to explore regulatory mechanisms. Specifically, we generated various genetically engineered tomato lines that differed regarding metabolite contents and fruit colors. The metabolite and transcript profiles indicated that the selected TFs have distinct functions that control fruit metabolite contents, especially carotenoids and sugars. Moreover, a mutation to ELONGATED HYPOCOTYL5 (HY5) increased tomato fruit fructose and glucose contents by approximately 20% (relative to the wild-type levels). Our in vitro assay showed that HY5 can bind directly to the G-box cis-element in the Sugars Will Eventually be Exported Transporter (SWEET12c) promoter to activate expression, thereby modulating sugar transport. Our findings provide insights into the mechanisms regulating tomato fruit ripening and metabolic networks, providing the theoretical basis for breeding horticultural crops that produce fruit with diverse flavors and colors.
Collapse
Affiliation(s)
- Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaping Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Yuanwei Deng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Yinhuan Xie
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Zhongshan Gao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| |
Collapse
|
7
|
Zhou J, Zhou S, Chen B, Sangsoy K, Luengwilai K, Albornoz K, Beckles DM. Integrative analysis of the methylome and transcriptome of tomato fruit ( Solanum lycopersicum L.) induced by postharvest handling. HORTICULTURE RESEARCH 2024; 11:uhae095. [PMID: 38840937 PMCID: PMC11151332 DOI: 10.1093/hr/uhae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Tomato fruit ripening is triggered by the demethylation of key genes, which alters their transcriptional levels thereby initiating and propagating a cascade of physiological events. What is unknown is how these processes are altered when fruit are ripened using postharvest practices to extend shelf-life, as these practices often reduce fruit quality. To address this, postharvest handling-induced changes in the fruit DNA methylome and transcriptome, and how they correlate with ripening speed, and ripening indicators such as ethylene, abscisic acid, and carotenoids, were assessed. This study comprehensively connected changes in physiological events with dynamic molecular changes. Ripening fruit that reached 'Turning' (T) after dark storage at 20°C, 12.5°C, or 5°C chilling (followed by 20°C rewarming) were compared to fresh-harvest fruit 'FHT'. Fruit stored at 12.5°C had the biggest epigenetic marks and alterations in gene expression, exceeding changes induced by postharvest chilling. Fruit physiological and chronological age were uncoupled at 12.5°C, as the time-to-ripening was the longest. Fruit ripening to Turning at 12.5°C was not climacteric; there was no respiratory or ethylene burst, rather, fruit were high in abscisic acid. Clear differentiation between postharvest-ripened and 'FHT' was evident in the methylome and transcriptome. Higher expression of photosynthetic genes and chlorophyll levels in 'FHT' fruit pointed to light as influencing the molecular changes in fruit ripening. Finally, correlative analyses of the -omics data putatively identified genes regulated by DNA methylation. Collectively, these data improve our interpretation of how tomato fruit ripening patterns are altered by postharvest practices, and long-term are expected to help improve fruit quality.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
| | - Sitian Zhou
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Department of Biostatistics, School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA
| | - Bixuan Chen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Germains Seed Technology, 8333 Swanston Lane, Gilroy, CA 95020, USA
| | - Kamonwan Sangsoy
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Kietsuda Luengwilai
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Karin Albornoz
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Department of Food, Nutrition, and Packaging Sciences, Coastal Research and Education Center, Clemson University, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
| |
Collapse
|
8
|
Liu M, Wang C, Ji H, Sun M, Liu T, Wang J, Cao H, Zhu Q. Ethylene biosynthesis and signal transduction during ripening and softening in non-climacteric fruits: an overview. FRONTIERS IN PLANT SCIENCE 2024; 15:1368692. [PMID: 38736445 PMCID: PMC11082881 DOI: 10.3389/fpls.2024.1368692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the ethylene-mediated ripening and softening of non-climacteric fruits have been widely mentioned. In this paper, recent research into the ethylene-mediated ripening and softening of non-climacteric fruits is summarized, including the involvement of ethylene biosynthesis and signal transduction. In addition, detailed studies on how ethylene interacts with other hormones to regulate the ripening and softening of non-climacteric fruits are also reviewed. These findings reveal that many regulators of ethylene biosynthesis and signal transduction are linked with the ripening and softening of non-climacteric fruits. Meanwhile, the perspectives of future research on the regulation of ethylene in non-climacteric fruit are also proposed. The overview of the progress of ethylene on the ripening and softening of non-climacteric fruit will aid in the identification and characterization of key genes associated with ethylene perception and signal transduction during non-climacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Meiying Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaoran Wang
- College of Agriculture & Forestry Technology, Weifang Vocational College, Weifang, China
| | - Hongliang Ji
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Maoxiang Sun
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Tongyu Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Jiahao Wang
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Hui Cao
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Zhang J, Li L, Zhang Z, Han L, Xu L. The Effect of Ethephon on Ethylene and Chlorophyll in Zoysia japonica Leaves. Int J Mol Sci 2024; 25:1663. [PMID: 38338942 PMCID: PMC10855035 DOI: 10.3390/ijms25031663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Zoysia japonica (Zoysia japonica Steud.) is a kind of warm-season turfgrass with many excellent characteristics. However, the shorter green period and longer dormancy caused by cold stress in late autumn and winter are the most limiting factors affecting its application. A previous transcriptome analysis revealed that ethephon regulated genes in chlorophyll metabolism in Zoysia japonica under cold stress. Further experimental data are necessary to understand the effect and underlying mechanism of ethephon in regulating the cold tolerance of Zoysia japonica. The aim of this study was to evaluate the effects of ethephon by measuring the enzyme activity, intermediates content, and gene expression related to ethylene biosynthesis, signaling, and chlorophyll metabolism. In addition, the ethylene production rate, chlorophyll content, and chlorophyll a/b ratio were analyzed. The results showed that ethephon application in a proper concentration inhibited endogenous ethylene biosynthesis, but eventually promoted the ethylene production rate due to its ethylene-releasing nature. Ethephon could promote chlorophyll content and improve plant growth in Zoysia japonica under cold-stressed conditions. In conclusion, ethephon plays a positive role in releasing ethylene and maintaining the chlorophyll content in Zoysia japonica both under non-stressed and cold-stressed conditions.
Collapse
Affiliation(s)
| | | | | | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (L.L.); (Z.Z.)
| | - Lixin Xu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (L.L.); (Z.Z.)
| |
Collapse
|
10
|
Geng Z, Dou H, Liu J, Zhao G, An Z, Liu L, Zhao N, Zhang H, Wang Y. GhFB15 is an F-box protein that modulates the response to salinity by regulating flavonoid biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111899. [PMID: 37865208 DOI: 10.1016/j.plantsci.2023.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
An exposure to extremely saline conditions can lead to significant oxidative damage in plants. Flavonoids, which are potent antioxidants, are critical for the scavenging of reactive oxygen species caused by abiotic stress. In the present study, the cotton F-box gene GhFB15 was isolated and characterized. The expression of GhFB15 was rapidly induced by salt as well as by exogenous hormones (ETH, MeJA, ABA, and GA). An analysis of subcellular localization revealed GhFB15 is mainly distributed in nuclei. Overexpression of GhFB15 adversely affected the salt tolerance of transgenic Arabidopsis plants as evidenced by decreased seed germination and seedling growth, whereas the silencing of GhFB15 improved the salt tolerance of cotton plants. Furthermore, we analyzed the gene expression profiles of VIGS-GhFB15 and TRV:00 plants. Many of the differentially expressed genes were associated with the flavonoid biosynthesis pathway. Moreover, lower flavonoid contents and higher levels of H2O2 and O2- were observed in the transgenic Arabidopsis plants. Conversely, the VIGS-GhFB15 cotton plants had relatively higher flavonoid contents, but lower H2O2 and O2- levels. These results suggest that GhFB15 negatively regulates salt tolerance, and silencing GhFB15 results in increased flavonoid accumulation and improved ROS scavenging.
Collapse
Affiliation(s)
- Zhao Geng
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Haikuan Dou
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Jianguang Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Guiyuan Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Zetong An
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Linlin Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China
| | - Ning Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, PR China
| | - Hanshuang Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China.
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
11
|
Paull RE, Ksouri N, Kantar M, Zerpa‐Catanho D, Chen NJ, Uruu G, Yue J, Guo S, Zheng Y, Wai CMJ, Ming R. Differential gene expression during floral transition in pineapple. PLANT DIRECT 2023; 7:e541. [PMID: 38028646 PMCID: PMC10644199 DOI: 10.1002/pld3.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.
Collapse
Affiliation(s)
- Robert E. Paull
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Experimental Aula Dei‐CSICZaragozaSpain
| | - Michael Kantar
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | | | - Nancy Jung Chen
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Gail Uruu
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Jingjing Yue
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | | | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
12
|
Fu M, Li F, Zhou S, Guo P, Chen Y, Xie Q, Chen G, Hu Z. Trihelix transcription factor SlGT31 regulates fruit ripening mediated by ethylene in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5709-5721. [PMID: 37527459 DOI: 10.1093/jxb/erad300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Trihelix proteins are plant-specific transcription factors that are classified as GT factors due to their binding specificity for GT elements, and they play crucial roles in development and stress responses. However, their involvement in fruit ripening and transcriptional regulatory mechanisms remains largely unclear. In this study, we cloned SlGT31, encoding a trihelix protein in tomato (Solanum lycopersicum), and determined that its relative expression was significantly induced by the application of exogenous ethylene whereas it was repressed by the ethylene-inhibitor 1-methylcyclopropene. Suppression of SlGT31 expression resulted in delayed fruit ripening, decreased accumulation of total carotenoids, and reduced ethylene content, together with inhibition of expression of genes related to ethylene and fruit ripening. Conversely, SlGT31-overexpression lines showed opposite results. Yeast one-hybrid and dual-luciferase assays indicated that SlGT31 can bind to the promoters of two key ethylene-biosynthesis genes, ACO1 and ACS4. Taken together, our results indicate that SlGT31 might act as a positive modulator during fruit ripening.
Collapse
Affiliation(s)
- Mengjie Fu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Fenfen Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Pengyu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yanan Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Pons C, Casals J, Brower M, Sacco A, Riccini A, Hendrickx P, Figás MDR, Fisher J, Grandillo S, Mazzucato A, Soler S, Zamir D, Causse M, Díez MJ, Finkers R, Prohens J, Monforte AJ, Granell A. Diversity and genetic architecture of agro-morphological traits in a core collection of European traditional tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5896-5916. [PMID: 37527560 PMCID: PMC10540738 DOI: 10.1093/jxb/erad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
European traditional tomato varieties have been selected by farmers given their consistent performance and adaptation to local growing conditions. Here we developed a multipurpose core collection, comprising 226 accessions representative of the genotypic, phenotypic, and geographical diversity present in European traditional tomatoes, to investigate the basis of their phenotypic variation, gene×environment interactions, and stability for 33 agro-morphological traits. Comparison of the traditional varieties with a modern reference panel revealed that some traditional varieties displayed excellent agronomic performance and high trait stability, as good as or better than that of their modern counterparts. We conducted genome-wide association and genome-wide environment interaction studies and detected 141 quantitative trait loci (QTLs). Out of those, 47 QTLs were associated with the phenotype mean (meanQTLs), 41 with stability (stbQTLs), and 53 QTL-by-environment interactions (QTIs). Most QTLs displayed additive gene actions, with the exception of stbQTLs, which were mostly recessive and overdominant QTLs. Both common and specific loci controlled the phenotype mean and stability variation in traditional tomato; however, a larger proportion of specific QTLs was observed, indicating that the stability gene regulatory model is the predominant one. Developmental genes tended to map close to meanQTLs, while genes involved in stress response, hormone metabolism, and signalling were found within regions affecting stability. A total of 137 marker-trait associations for phenotypic means and stability were novel, and therefore our study enhances the understanding of the genetic basis of valuable agronomic traits and opens up a new avenue for an exploitation of the allelic diversity available within European traditional tomato germplasm.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Joan Casals
- Department of Agri-Food Engineering and Biotechnology/Miquel Agustí Foundation, Universitat Politècnica de Catalunya, Campus Baix Llobregat, Esteve Terrades 8, 08860 Castelldefels, Spain
| | - Matthijs Brower
- Wageningen University & Research, Plant Breeding, POB 386, NL-6700 AJ Wageningen, The Netherlands
| | - Adriana Sacco
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Alessandro Riccini
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Patrick Hendrickx
- Wageningen University & Research, Plant Breeding, POB 386, NL-6700 AJ Wageningen, The Netherlands
| | - Maria del Rosario Figás
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Josef Fisher
- Hebrew University of Jerusalem, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Andrea Mazzucato
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Dani Zamir
- Hebrew University of Jerusalem, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Mathilde Causse
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Maria José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Richard Finkers
- Wageningen University & Research, Plant Breeding, POB 386, NL-6700 AJ Wageningen, The Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Antonio Jose Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| |
Collapse
|
14
|
Mitalo OW, Kang SW, Tran LT, Kubo Y, Ariizumi T, Ezura H. Transcriptomic analysis in tomato fruit reveals divergences in genes involved in cold stress response and fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1227349. [PMID: 37575935 PMCID: PMC10416649 DOI: 10.3389/fpls.2023.1227349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Cold storage is widely used to extend the postharvest life of most horticultural crops, including tomatoes, but this practice triggers cold stress and leads to the development of undesirable chilling injury (CI) symptoms. The underlying mechanisms of cold stress response and CI development in fruits remain unclear as they are often intermingled with fruit ripening changes. To gain insight into cold responses in fruits, we examined the effect of the potent ethylene signaling inhibitor 1-methylcyclopropene (1-MCP) on fruit ripening, CI occurrence and gene expression in mature green tomatoes during storage at 20°C and 5°C. 1-MCP treatments effectively inhibited ethylene production and peel color changes during storage at 20°C. Storage at 5°C also inhibited both ethylene production and peel color change; during rewarming at 20°C, 1-MCP treatments inhibited peel color change but failed to inhibit ethylene production. Furthermore, fruits stored at 5°C for 14 d developed CI symptoms (surface pitting and decay) during the rewarming period at 20°C regardless of 1-MCP treatment. Subsequent RNA-Seq analysis revealed that cold stress triggers a large-scale transcriptomic adjustment, as noticeably more genes were differentially expressed at 5°C (8,406) than at 20°C (4,814). More importantly, we have found some important divergences among genes involved in fruit ripening (up- or down-regulated at 20°C; inhibited by 1-MCP treatment) and those involved in cold stress (up- or down-regulated at 5°C; unaffected by 1-MCP treatment). Transcriptomic adjustments unique to cold stress response were associated with ribosome biogenesis, NcRNA metabolism, DNA methylation, chromatin formation/remodeling, and alternative splicing events. These data should foster further research into cold stress response mechanisms in fruits with the ultimate aim of improving tolerance to low temperature and reduction of CI symptoms during cold storage.
Collapse
Affiliation(s)
- Oscar W. Mitalo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Seung Won Kang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Long T. Tran
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
15
|
Sadaqat M, Umer B, Attia KA, Abdelkhalik AF, Azeem F, Javed MR, Fatima K, Zameer R, Nadeem M, Tanveer MH, Sun S, Ercisli S, Nawaz MA. Genome-wide identification and expression profiling of two-component system (TCS) genes in Brassica oleracea in response to shade stress. Front Genet 2023; 14:1142544. [PMID: 37323660 PMCID: PMC10267837 DOI: 10.3389/fgene.2023.1142544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
The Two-component system (TCS) consists of Histidine kinases (HKs), Phosphotransfers (HPs), and response regulator (RR) proteins. It has an important role in signal transduction to respond to a wide variety of abiotic stresses and hence in plant development. Brassica oleracea (cabbage) is a leafy vegetable, which is used for food and medicinal purposes. Although this system was identified in several plants, it had not been identified in Brassica oleracea yet. This genome-wide study identified 80 BoTCS genes consisting of 21 HKs, 8 HPs, 39 RRs, and 12 PRRs. This classification was done based on conserved domains and motif structure. Phylogenetic relationships of BoTCS genes with Arabidopsis thaliana, Oryza sativa, Glycine max, and Cicer arietinum showed conservation in TCS genes. Gene structure analysis revealed that each subfamily had conserved introns and exons. Both tandem and segmental duplication led to the expansion of this gene family. Almost all of the HPs and RRs were expanded through segmental duplication. Chromosomal analysis showed that BoTCS genes were dispersed across all nine chromosomes. The promoter regions of these genes were found to contain a variety of cis-regulatory elements. The 3D structure prediction of proteins also confirmed the conservation of structure within subfamilies. MicroRNAs (miRNAs) involved in the regulation of BoTCSs were also predicted and their regulatory roles were also evaluated. Moreover, BoTCSs were docked with abscisic acid to evaluate their binding. RNA-seq-based expression analysis and validation by qRT-PCR showed significant variation of expression for BoPHYs, BoERS1.1, BoERS2.1, BoERS2.2, BoRR10.2, and BoRR7.1 suggesting their importance in stress response. These genes showing unique expression can be further used in manipulating the plant's genome to make the plant more resistant the environmental stresses which will ultimately help in the increase of plant's yield. More specifically, these genes have altered expression in shade stress which clearly indicates their importance in biological functions. These findings are important for future functional characterization of TCS genes in generating stress-responsive cultivars.
Collapse
Affiliation(s)
- Muhammad Sadaqat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Basit Umer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amr F. Abdelkhalik
- Biotechnology School, Nile University, Giza, Egypt
- Rice Biotechnology Lab, Rice Research and Training Center, Field Crops Research Institute, ARC, Kafrelshikh, Egypt
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kinza Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Roshan Zameer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Majid Nadeem
- Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | | | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Yesosu Campus, Yesosu Si, Republic of Korea
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), Tomsk State University, Tomsk, Russia
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Tomsk, Russia
| |
Collapse
|
16
|
Mubarok S, Qonit MAH, Rahmat BPN, Budiarto R, Suminar E, Nuraini A. An overview of ethylene insensitive tomato mutants: Advantages and disadvantages for postharvest fruit shelf-life and future perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1079052. [PMID: 36778710 PMCID: PMC9911886 DOI: 10.3389/fpls.2023.1079052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The presence of ethylene during postharvest handling of tomatoes can be the main problem in maintaining fruit shelf-life by accelerating the ripening process and causing several quality changes in fruit. Several researchers have studied the methods for improving the postharvest life of tomato fruit by controlling ethylene response, such as by mutation. New ethylene receptor mutants have been identified, namely Sletr1-1, Sletr1-2, Nr (Never ripe), Sletr4-1, and Sletr5-1. This review identifies the favorable and undesirable effects of several ethylene receptor mutants. Also, the impact of those mutations on the metabolite alteration of tomatoes and the future perspectives of those ethylene receptor mutants. The review data is taken from the primary data of our experiment related to ethylene receptor mutants and the secondary data from numerous publications in Google Scholar and other sources pertaining to ethylene physiology. This review concluded that mutation in the SlETR1 gene was more effective than mutation in NR, SLETR4, and SLETR5 genes in generating a new ethylene mutant. Sletr1-2 mutant is a potential ethylene receptor mutant for developing new tomato cultivars with prolonged fruit-shelf life without any undesirable effect. Therefore, that has many challenges to using the Sletr1-2 mutant for future purposes in breeding programs.
Collapse
Affiliation(s)
- Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhammad Abdilah Hasan Qonit
- Master Program of Agro-Industry Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Bayu Pradana Nur Rahmat
- Master Program of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rahmat Budiarto
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Erni Suminar
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Anne Nuraini
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
17
|
Gambhir P, Singh V, Parida A, Raghuvanshi U, Kumar R, Sharma AK. Ethylene response factor ERF.D7 activates auxin response factor 2 paralogs to regulate tomato fruit ripening. PLANT PHYSIOLOGY 2022; 190:2775-2796. [PMID: 36130295 PMCID: PMC9706452 DOI: 10.1093/plphys/kiac441] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Despite the obligatory role of ethylene in climacteric fruit ripening and the identification of 77 ethylene response factors (ERFs) in the tomato (Solanum lycopersicum) genome, the role of few ERFs has been validated in the ripening process. Here, using a comprehensive morpho-physiological, molecular, and biochemical approach, we demonstrate the regulatory role of ERF D7 (SlERF.D7) in tomato fruit ripening. SlERF.D7 expression positively responded to exogenous ethylene and auxin treatments, most likely in a ripening inhibitor-independent manner. SlERF.D7 overexpression (OE) promoted ripening, and its silencing had the opposite effect. Alterations in its expression modulated ethylene production, pigment accumulation, and fruit firmness. Consistently, genes involved in ethylene biosynthesis and signaling, lycopene biosynthesis, and cell wall loosening were upregulated in the OE lines and downregulated in RNAi lines. These transgenic lines also accumulated altered levels of indole-3-acetic acid at late-breaker stages. A positive association between auxin response factor 2 (ARF2) paralog's transcripts and SlERF.D7 mRNA levels and that SlARF2A and SlARF2B are direct targets of SlERF.D7 underpinned the perturbed auxin-ethylene crosstalk for the altered ripening program observed in the transgenic fruits. Overall, this study uncovers that SlERF.D7 positively regulates SlARF2A/B abundance to amalgamate auxin and ethylene signaling pathways for controlling tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Vijendra Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Adwaita Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
18
|
Kamiyoshihara Y, Achiha Y, Ishikawa S, Mizuno S, Mori H, Tateishi A, Huber DJ, Klee HJ. Heteromeric interactions of ripening-related ethylene receptors in tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6773-6783. [PMID: 35863309 DOI: 10.1093/jxb/erac314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Ripening of climacteric fruits is initiated when the gaseous plant hormone ethylene is perceived by the cell. Ethylene binding to membrane-associated ethylene receptors (ETRs) triggers a series of biochemical events through multiple components, resulting in the induction of numerous ripening-related genes. In tomato (Solanum lycopersicum L.), there are seven members of the ETR family, which each contribute to the regulation of fruit ripening. However, the relative contribution of each individual receptor to ethylene signaling remains unknown. Here, we demonstrated the formation of heteromeric receptor complexes across the two ETR subfamilies in tomato fruit. Immunoprecipitation of subfamily II SlETR4 resulted in co-purification of subfamily I (SlETR1, SlETR2, and SlETR3), but not subfamily II members (SlETR5, SlETR6, and SlETR7). Such biased interactions were verified in yeast two-hybrid assays, and in transgenic Arabidopsis plants, in which heterologous SlETR4 interacts with subfamily I ETRs. Our analysis also revealed that the receptor complexes engage the Raf-like protein kinases SlCTR1 and SlCTR3, which are potential regulators of signaling. Here, we suggest that tomato receptor members form heteromeric complexes to fine-tune signal output to the downstream pathway, which is similar to that of the Arabidopsis system but appears to be partially diverged.
Collapse
Affiliation(s)
- Yusuke Kamiyoshihara
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Yuki Achiha
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Shin Ishikawa
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Shinji Mizuno
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Akira Tateishi
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Donald J Huber
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Harry J Klee
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Peng Z, Liu G, Li H, Wang Y, Gao H, Jemrić T, Fu D. Molecular and Genetic Events Determining the Softening of Fleshy Fruits: A Comprehensive Review. Int J Mol Sci 2022; 23:12482. [PMID: 36293335 PMCID: PMC9604029 DOI: 10.3390/ijms232012482] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit softening that occurs during fruit ripening and postharvest storage determines the fruit quality, shelf life and commercial value and makes fruits more attractive for seed dispersal. In addition, over-softening results in fruit eventual decay, render fruit susceptible to invasion by opportunistic pathogens. Many studies have been conducted to reveal how fruit softens and how to control softening. However, softening is a complex and delicate life process, including physiological, biochemical and metabolic changes, which are closely related to each other and are affected by environmental conditions such as temperature, humidity and light. In this review, the current knowledge regarding fruit softening mechanisms is summarized from cell wall metabolism (cell wall structure changes and cell-wall-degrading enzymes), plant hormones (ETH, ABA, IAA and BR et al.), transcription factors (MADS-Box, AP2/ERF, NAC, MYB and BZR) and epigenetics (DNA methylation, histone demethylation and histone acetylation) and a diagram of the regulatory relationship between these factors is provided. It will provide reference for the cultivation of anti-softening fruits.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tomislav Jemrić
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
20
|
Steelheart C, Alegre ML, Baldet P, Rothan C, Bres C, Just D, Okabe Y, Ezura H, Ganganelli IM, Gergoff Grozeff GE, Bartoli CG. High light stress induces H 2O 2 production and accelerates fruit ripening in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111348. [PMID: 35750294 DOI: 10.1016/j.plantsci.2022.111348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Increased synthesis of H2O2 is observed during the initiation of fruit ripening. However, its association with plant cell processes triggering the maturation of fruit has not yet been demonstrated. The aim of this work is to investigate whether H2O2 participates in the tomato ripening process and particularly through its association with the ethylene signaling pathway. The experiments were carried out with two ethyl methanesulfonate mutant lines of Micro-Tom tomato deficient in GDP-L-galactose phosphorylase activity and displaying lower ascorbic acid content than the corresponding parental genotype (i.e. wild type). Plants were subjected to a high irradiance (HI) treatment to stimulate H2O2 synthesis. HI treatment enhanced H2O2 production and reduced the timing of fruit ripening in both mutants and wild-type fruits. These results could be linked to an increase of the expression of H2O2-related genes and changes in the expression of ethylene-related genes. The fruit H2O2 production increased or decreased after applying the treatments that induced ethylene synthesis or blocked its action, respectively. The results presented in this work give an evidence of the association of redox and hormonal components during fruit ripening in which H2O2 participates downstream in the events regulated by ethylene.
Collapse
Affiliation(s)
- Charlotte Steelheart
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina
| | - Matías L Alegre
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina
| | - Pierre Baldet
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christophe Rothan
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Cecile Bres
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Daniel Just
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Inti M Ganganelli
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina
| | - Gustavo E Gergoff Grozeff
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina
| | - Carlos G Bartoli
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina.
| |
Collapse
|
21
|
Comparative Proteomic Analysis of Wild-type and a SlETR-3 (Nr) Mutant Reveals an Ethylene-Induced Physiological Regulatory Network in Fresh-Cut Tomatoes. Food Res Int 2022; 161:111491. [DOI: 10.1016/j.foodres.2022.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
|
22
|
Jia H, Jia H, Lu S, Zhang Z, Su Z, Sadeghnezhad E, Li T, Xiao X, Wang M, Pervaiz T, Dong T, Fang J. DNA and Histone Methylation Regulates Different Types of Fruit Ripening by Transcriptome and Proteome Analyses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3541-3556. [PMID: 35266388 DOI: 10.1021/acs.jafc.1c06391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methylation affects different aspects of genetic material stability, gene expression regulation, and histone modification. The previous reports depicted that DNA and histone methylation regulates plant growth and development. In this study, we evaluated the effects of DNA and histone methylation on 'Hongjia' strawberry and 'Lichun' tomato. We investigated the transient transformation system for arginine methyltransferase (FvPRMT1.5) overexpression and interference and assessed the phenotypic appearance and mRNA and protein expression levels. Results depicted that changes in methylation levels caused inhibition of carotenoids and anthocyanins. Furthermore, the profiling of aroma components was altered in response to 5-azacytidine. DNA hypomethylation induced the expression levels of genes involved in photosynthesis, flavonoid biosynthesis, and hormone signal transduction pathways, while the expression levels of related proteins showed a downward trend. Overall, we proposed a model that reveals the possible regulatory effects of DNA and histone methylation during fruit ripening.
Collapse
Affiliation(s)
- Haoran Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Suwen Lu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zibo Zhang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ziwen Su
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ehsan Sadeghnezhad
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Teng Li
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xin Xiao
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mengting Wang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tariq Pervaiz
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
23
|
Wang P, Ge M, Yu A, Song W, Fang J, Leng X. Effects of ethylene on berry ripening and anthocyanin accumulation of 'Fujiminori' grape in protected cultivation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1124-1136. [PMID: 34329497 DOI: 10.1002/jsfa.11449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although the grape berries are deliberated as a non-climacteric fruit, ethylene seems to be involved in grape berry ripening. However, the precise role of ethylene in regulating the ripening of non-climacteric fruits is poorly understood. RESULTS Exogenous ethephon (ETH) can stimulate the concentration of internal ethylene and accelerate the accumulation of anthocyanins in berries of 'Fujiminori', including malvidin-, delphinidin-, and petunidin-derivatives (3',4',5'-trihydroxylated anthocyanins) and cyanidin-derivatives (3',4'-dihydroxylated anthocyanins). The content of 3',4',5'-trihydroxylated anthocyanins was extremely higher than 3',4'-dihydroxylated anthocyanins, and ethylene did not affect the composition of anthocyanins in grape. Furthermore, we observed the expression of anthocyanin structural and regulatory genes as well as ethylene biosynthesis and response genes in response to ETH treatment. The anthocyanins accumulation is significantly associated with increased expression of anthocyanin structural (VvPAL, Vv4CH, VvCHS, VvCHI, VvF3H, and VvUFGT) and regulatory genes (VvMYBA1, VvMYBA2, and VvMYBA3), which persisted over the 12 days. In addition, exogenous ETH affected the endogenous ethylene biosynthesis (VvACO2 and VvACO4) and the downstream ethylene regulatory network (VvERS1, VvETR2, VvCTR1, and VvERF005). CONCLUSIONS These findings bring new insights into the physiological and molecular function of ethylene during berry development and ripening in grapes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peipei Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mengqing Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aishui Yu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Wei Song
- Fruit Industry Development and Service Center of Qixia, Yantai, China
| | - Jinggui Fang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
24
|
Effects of 1-Methylcyclopropene Treatment on Fruit Quality during Cold Storage in Apple Cultivars Grown in Korea. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of 1-methylcyclopropene (1-MCP) treatment on improving the storability of four apple cultivars (‘Hwangok’, ‘Picnic’, ‘Gamhong’, and ‘Fuji’) was investigated by analyzing the physiological and biochemical factors associated with their postharvest quality attributes. The flesh firmness, titratable acidity, and soluble solids content of the cultivars were higher in treated fruits than untreated fruits, while the opposite results were observed for ethylene production. In the treated fruits, the traits affected by 1-MCP varied depending on the cultivars used. Higher firmness and lower ethylene production were observed in the ‘Hwangok’ and ‘Picnic’ than ‘Gamhong’ and ‘Fuji’ cultivars. However, 1-MCP only affected weight loss in the ‘Gamhong’ cultivar, while the sugar content was affected in all of the cultivars except ‘Hwangok’. When analyzing cell wall hydrolase activities, 1-MCP differently affected the activities (β-galactosidase, α-galactosidase, β-glucosidase, α-mannosidase, β-xylosidase, and β-arabinosidase), with greater effects in the ‘Fuji’ and ‘Picnic’ cultivars and moderate effects in the ‘Gamhong’ and ‘Hwangok’ cultivars. In this study, the suppression of ethylene production by 1-MCP was positively associated with a transcriptional decrease in the ethylene biosynthesis genes MdACS1 and MdACO1. Overall, this study suggests that 1-MCP distinctly enhanced the storability of all apple cultivars, with a greater effect on ‘Hwangok’.
Collapse
|
25
|
Ke L, Wang Y, Schäfer M, Städler T, Zeng R, Fabian J, Pulido H, De Moraes CM, Song Y, Xu S. Transcriptomic Profiling Reveals Shared Signalling Networks Between Flower Development and Herbivory-Induced Responses in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:722810. [PMID: 34630470 PMCID: PMC8493932 DOI: 10.3389/fpls.2021.722810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 06/02/2023]
Abstract
Most flowering plants must defend themselves against herbivores for survival and attract pollinators for reproduction. Although traits involved in plant defence and pollinator attraction are often localised in leaves and flowers, respectively, they will show a diffuse evolution if they share the same molecular machinery and regulatory networks. We performed RNA-sequencing to characterise and compare transcriptomic changes involved in herbivory-induced defences and flower development, in tomato leaves and flowers, respectively. We found that both the herbivory-induced responses and flower development involved alterations in jasmonic acid signalling, suppression of primary metabolism and reprogramming of secondary metabolism. We identified 411 genes that were involved in both processes, a number significantly higher than expected by chance. Genetic manipulation of key regulators of induced defences also led to the expression changes in the same genes in both leaves and flowers. Targeted metabolomic analysis showed that among closely related tomato species, jasmonic acid and α-tomatine are correlated in flower buds and herbivory-induced leaves. These findings suggest that herbivory-induced responses and flower development share a common molecular machinery and likely have coevolved in nature.
Collapse
Affiliation(s)
- Lanlan Ke
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Yangzi Wang
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Martin Schäfer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Thomas Städler
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jörg Fabian
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Hannier Pulido
- Department of Environmental Systems Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Nascimento VL, Pereira AM, Pereira AS, Silva VF, Costa LC, Bastos CEA, Ribeiro DM, Caldana C, Sulpice R, Nunes-Nesi A, Zsögön A, Araújo WL. Physiological and metabolic bases of increased growth in the tomato ethylene-insensitive mutant Never ripe: extending ethylene signaling functions. PLANT CELL REPORTS 2021; 40:1377-1393. [PMID: 33074436 DOI: 10.1007/s00299-020-02623-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The tomato mutant Never ripe (Nr), a loss-of-function for the ethylene receptor SlETR3, shows enhanced growth, associated with increased carbon assimilation and a rewiring of the central metabolism. Compelling evidence has demonstrated the importance of ethylene during tomato fruit development, yet its role on leaf central metabolism and plant growth remains elusive. Here, we performed a detailed characterization of Never ripe (Nr) tomato, a loss-of-function mutant for the ethylene receptor SlETR3, known for its fruits which never ripe. However, besides fruits, the Nr gene is also constitutively expressed in vegetative tissues. Nr mutant showed a growth enhancement during both the vegetative and reproductive stage, without an earlier onset of leaf senescence, with Nr plants exhibiting a higher number of leaves and an increased dry weight of leaves, stems, roots, and fruits. At metabolic level, Nr also plays a significant role with the mutant showing changes in carbon assimilation, carbohydrates turnover, and an exquisite reprogramming of a large number of metabolite levels. Notably, the expression of genes related to ethylene signaling and biosynthesis are not altered in Nr. We assess our results in the context of those previously published for tomato fruits and of current models of ethylene signal transduction, and conclude that ethylene insensitivity mediated by Nr impacts the whole central metabolism at vegetative stage, leading to increased growth rates.
Collapse
Affiliation(s)
- Vitor L Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Auderlan M Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Aurelio S Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Victor F Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Lucas C Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Carla E A Bastos
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ronan Sulpice
- Plant Systems Biology Laboratory, Plant and AgriBiosciences Research Centre and Ryan Institute, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
27
|
Althiab-Almasaud R, Chen Y, Maza E, Djari A, Frasse P, Mollet JC, Mazars C, Jamet E, Chervin C. Ethylene signaling modulates tomato pollen tube growth through modifications of cell wall remodeling and calcium gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:893-908. [PMID: 34036648 DOI: 10.1111/tpj.15353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Ethylene modulates plant developmental processes including flower development. Previous studies have suggested ethylene participates in pollen tube (PT) elongation, and both ethylene production and perception seem critical at the time of fertilization. The full gene set regulated by ethylene during PT growth is unknown. To study this, we used various EThylene Receptor (ETR) tomato (Solanum lycopersicum) mutants: etr3-ko, a loss-of-function (LOF) mutant; and NR (NEVER RIPE), a gain-of-function (GOF) mutant. The etr3-ko PTs grew faster than wild-type (WT) PTs. Oppositely, NR PT elongation was slower than in WT, and PTs displayed larger diameters. ETR mutations result in feedback control of ethylene production. Furthermore, ethylene treatment of germinating pollen grains increased PT length in etr-ko mutants and WT, but not in NR. Treatment with the ethylene perception inhibitor 1-methylcyclopropene decreased PT length in etr-ko mutants and WT, but had no effect on NR. This confirmed that ethylene regulates PT growth. The comparison of PT transcriptomes in LOF and GOF mutants, etr3-ko and NR, both harboring mutations of the ETR3 gene, revealed that ethylene perception has major impacts on cell wall- and calcium-related genes as confirmed by microscopic observations showing a modified distribution of the methylesterified homogalacturonan pectic motif and of calcium load. Our results establish links between PT growth, ethylene, calcium, and cell wall metabolism, and also constitute a transcriptomic resource.
Collapse
Affiliation(s)
- Rasha Althiab-Almasaud
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Yi Chen
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Elie Maza
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Anis Djari
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Pierre Frasse
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Jean-Claude Mollet
- Laboratoire Glyco-MEV, SFR NORVEGE, Innovation Chimie Carnot, Normandie Univ, UniRouen, Rouen, France
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Christian Chervin
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| |
Collapse
|
28
|
Dias C, Ribeiro T, Rodrigues AC, Ferrante A, Vasconcelos MW, Pintado M. Improving the ripening process after 1-MCP application: Implications and strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Zhao W, Li Y, Fan S, Wen T, Wang M, Zhang L, Zhao L. The transcription factor WRKY32 affects tomato fruit colour by regulating YELLOW FRUITED-TOMATO 1, a core component of ethylene signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4269-4282. [PMID: 33773493 DOI: 10.1093/jxb/erab113] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Fruit quality in most fleshy fruit crops is fundamentally linked to ripening-associated traits, including changes in colour. In many climacteric fruits, including tomato (Solanum lycopersicum), the phytohormone ethylene plays a key role in regulating ripening. Previous map-based cloning of YELLOW FRUITED-TOMATO 1 (YFT1) revealed that it encodes the EIN2 protein, a core component in ethylene signal transduction. A YFT1 allele with a genetic lesion was found to be down-regulated in the yft1 tomato mutant that has a yellow fruit phenotype and perturbed ethylene signalling. Based on bioinformatic analysis, yeast one hybrid assays and electrophoretic mobility shift assays, we report that transcription factor WRKY32 regulates tomato fruit colour formation. WRKY32 binds to W-box and W-box-like motifs in the regulatory region of the YFT1 promoter and induces its expression. In tomato fruits of WRKY32-RNAi generated lines, ethylene signalling was reduced, leading to a suppression in ethylene emission, a delay in chromoplast development, decreased carotenoid accumulation, and a yellow fruit phenotype. These results provide new insights into the regulatory networks that govern tomato fruit colour formation via ethylene signal transduction.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaozhu Fan
- Branch Institute of Horticulture, Harbin Academy of Agricultural Science, Harbin, China
| | - Tengjian Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Hu C, Wei C, Ma Q, Dong H, Shi K, Zhou Y, Foyer CH, Yu J. Ethylene response factors 15 and 16 trigger jasmonate biosynthesis in tomato during herbivore resistance. PLANT PHYSIOLOGY 2021; 185:1182-1197. [PMID: 33793934 PMCID: PMC8133690 DOI: 10.1093/plphys/kiaa089] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/02/2020] [Indexed: 05/04/2023]
Abstract
Jasmonates (JAs) are phytohormones with crucial roles in plant defense. Plants accumulate JAs in response to wounding or herbivore attack, but how JA biosynthesis is triggered remains poorly understood. Here we show that herbivory by cotton bollworm (Helicoverpa armigera) induced both ethylene (ET) and JA production in tomato (Solanum lycopersicum) leaves. Using RNA-seq, ET mutants, and inhibitors of ET signaling, we identified ET-induced ETHYLENE RESPONSE FACTOR 15 (ERF15) and ERF16 as critical regulators of JA biosynthesis in tomato plants. Transcripts of ERF15 and ERF16 were markedly upregulated and peaked at 60 and 15 min, respectively, after simulated herbivore attack. While mutation in ERF16 resulted in the attenuated expression of JA biosynthetic genes and decreased JA accumulation 15 min after the simulated herbivory treatment, these changes were not observed in erf15 mutants until 60 min after treatment. Electrophoretic mobility shift assays and dual-luciferase assays demonstrated that both ERFs15 and 16 are transcriptional activators of LIPOXYGENASE D, ALLENE OXIDE CYCLASE, and 12-OXO-PHYTODIENOIC ACID REDUCTASE 3, key genes in JA biosynthesis. Furthermore, JA-activated MYC2 and ERF16 also function as the transcriptional activators of ERF16, contributing to dramatic increases in ERF16 expression. Taken together, our results demonstrated that ET signaling is involved in the rapid induction of the JA burst. ET-induced ERF15 and ERF16 function as powerful transcriptional activators that trigger the JA burst in response to herbivore attack.
Collapse
Affiliation(s)
- Chaoyi Hu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Chunyu Wei
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Qiaomei Ma
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Han Dong
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, PR China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou 310058, PR China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou 310058, PR China
| |
Collapse
|
31
|
Sharma K, Gupta S, Sarma S, Rai M, Sreelakshmi Y, Sharma R. Mutations in tomato 1-aminocyclopropane carboxylic acid synthase2 uncover its role in development beside fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:95-112. [PMID: 33370496 DOI: 10.1101/2020.05.12.090431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
The role of ethylene in plant development is mostly inferred from its exogenous application. The usage of mutants affecting ethylene biosynthesis proffers a better alternative to decipher its role. In tomato (Solanum lycopersicum), 1-aminocyclopropane carboxylic acid synthase2 (ACS2) is a key enzyme regulating ripening-specific ethylene biosynthesis. We characterised two contrasting acs2 mutants; acs2-1 overproduces ethylene, has higher ACS activity, and has increased protein levels, while acs2-2 is an ethylene underproducer, displays lower ACS activity, and has lower protein levels than wild type. Consistent with high/low ethylene emission, the mutants show opposite phenotypes, physiological responses, and metabolomic profiles compared with the wild type. The acs2-1 mutant shows early seed germination, faster leaf senescence, and accelerated fruit ripening. Conversely, acs2-2 has delayed seed germination, slower leaf senescence, and prolonged fruit ripening. The phytohormone profiles of mutants were mostly opposite in the leaves and fruits. The faster/slower senescence of acs2-1/acs2-2 leaves correlated with the endogenous ethylene/zeatin ratio. The genetic analysis showed that the metabolite profiles of respective mutants co-segregated with the homozygous mutant progeny. Our results uncover that besides ripening, ACS2 participates in the vegetative and reproductive development of tomato. The distinct influence of ethylene on phytohormone profiles indicates the intertwining of ethylene action with other phytohormones in regulating plant development.
Collapse
Affiliation(s)
- Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Soni Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Supriya Sarma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Meenakshi Rai
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
32
|
Zhao W, Gao L, Li Y, Wang M, Zhang L, Zhao L. Yellow-fruited phenotype is caused by 573 bp insertion at 5' UTR of YFT1 allele in yft1 mutant tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110637. [PMID: 33180715 DOI: 10.1016/j.plantsci.2020.110637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/26/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The yft1 tomato mutant has a yellow-fruited phenotype controlled by a recessive gene of YFT1 allele, which has been shown by map-based cloning to be a homolog of ETHYLENE INSENSITIVE 2 (EIN2). Genetic lesion of YFT1 allele in yft1 is attributed to a 573 bp DNA fragment (IF573) insertion at 1,200 bp downstream of the transcription start site. Transcriptomic analysis revealed that YFT1 lesion resulted in 5,053 differentially expressed genes (DEGs) in yft1 pericarp compared with the M82 wild type cultivar. These were annotated as being involved in ethylene synthesis, chromoplast development, and carotenoid synthesis. The YFT1 lesion caused a reduction in its own transcript levels in yft1 and impaired ethylene emission and signal transduction, delayed chromoplast development and decreased carotenoid accumulation. The molecular mechanism underlying the downregulated YFT1 allele in yft1 was examined at both RNA and DNA levels. The IF573 event appeared to introduce two negative regulatory sequences located at -272 to -173 bp and -172 to -73 bp in the YFT1 allele promoter, causing alterative splicing due to introduction of aberrant splicing sites, and breaking upstream open reading frames (uORF) structure in the 5'-UTR. Those results a new provided insight into molecular regulation of color formation in tomato fruit.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
33
|
Transcriptome analysis reveals the regulation of metabolic processes during the post-harvest cold storage of pear. Genomics 2020; 112:3933-3942. [PMID: 32629095 DOI: 10.1016/j.ygeno.2020.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/04/2020] [Accepted: 06/28/2020] [Indexed: 11/20/2022]
Abstract
Pear is a traditional and economically fruit tree worldwide. With the development of the pear industry, pear fruit post-harvest preservation techniques have become very important. Among them, low temperature preservation technology is most widely used, but the molecular mechanism underlying this process is still unclear. To better understand this, RNA-seq was performed on samples collected at different time points with increasing storage time. Here, 19,610 differentially expressed genes were obtained and annotated into 51 GO terms and 26 KEGG-defined significantly overrepresented pathways. 2475 transcription factors belonging to 50 different families were identified with increasing storage time. Ethylene content increased with storage time and was the highest at 105 days of fruit storage. Accordingly, integrative analysis of gene expression revealed that 14 unigenes were related to the ethylene metabolic pathway. This study provides valuable resources to investigate the genetics of the ethylene metabolic pathways and improve pear storage and preservation technology.
Collapse
|
34
|
Abstract
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene-signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response 1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene-insensitive 2 (EIN2); and transcription factors such as EIN3, EIN3-like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
35
|
Bacillomycin D effectively controls growth of Malassezia globosa by disrupting the cell membrane. Appl Microbiol Biotechnol 2020; 104:3529-3540. [PMID: 32103313 DOI: 10.1007/s00253-020-10462-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
Malassezia globosa is an opportunistic pathogen that causes various skin disorders, which disturbs people's life all the time, and conventional drugs are not completely satisfactory. Bacillomycin D (BD), an antifungal lipopeptide, could inhibit various fungi growth. However, the reports about its effect on M. globosa were not found yet. In this study, we showed that BD and BD-C16 (fatty acid chain had sixteen carbon atoms) completely inhibited growth of M. globosa at concentration of 64 μg/ml in 15 h, which was confirmed with the observation of irregular morphological change of M. globosa treated with BD. Significantly, the study on the working mechanism showed that BD induced cell death by changing cell membrane permeability and thus promoting the release of cellular contents, which may be mediated by the interaction between BD and ergosterol from membrane. Further study showed that BD reduced the overall content of cellular sterol, and interestingly, the expression of some genes involved in membrane and ergosterol synthesis were significantly upregulated, which was likely to be a feedback regulation. Besides, we found that BD had additive and synergistic effects with ketoconazole and amphotericin B, respectively, on inhibition of M. globosa, suggesting that combination use of BD with other commercial drugs could be a promising strategy to relieve skin disorders caused by M. globosa. KEY POINTS: • BD could efficiently inhibit the growth of M. globosa. • BD increases cell membrane permeability and thus promotes the release of cellular contents. • BD has additive or synergistic effect with other antifungal drugs.
Collapse
|
36
|
García A, Aguado E, Martínez C, Loska D, Beltrán S, Valenzuela JL, Garrido D, Jamilena M. The ethylene receptors CpETR1A and CpETR2B cooperate in the control of sex determination in Cucurbita pepo. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:154-167. [PMID: 31562498 PMCID: PMC6913735 DOI: 10.1093/jxb/erz417] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/10/2019] [Indexed: 05/04/2023]
Abstract
High-throughput screening of an ethyl methanesulfonate-generated mutant collection of Cucurbita pepo using the ethylene triple-response test resulted in the identification of two semi-dominant ethylene-insensitive mutants: etr1a and etr2b. Both mutations altered sex determination mechanisms, promoting conversion of female into bisexual or hermaphrodite flowers, and monoecy into andromonoecy, thereby delaying the transition to female flowering and reducing the number of pistillate flowers per plant. The mutations also altered the growth rate and maturity of petals and carpels in pistillate flowers, lengthening the time required for flowers to reach anthesis, as well as stimulating the growth rate of ovaries and the parthenocarpic development of fruits. Whole-genome sequencing allowed identification of the causal mutation of the phenotypes as two missense mutations in the coding region of CpETR1A and CpETR2B, each one corresponding to one of the duplicates of ethylene receptor genes highly homologous to Arabidopsis ETR1 and ETR2. The phenotypes of homozygous and heterozygous single- and double-mutant plants indicated that the two ethylene receptors cooperate in the control of the ethylene response. The level of ethylene insensitivity, which was determined by the strength of each mutant allele and the dose of wild-type and mutant etr1a and etr2b alleles, correlated with the degree of phenotypic changes in the mutants.
Collapse
Affiliation(s)
- Alicia García
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Encarnación Aguado
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Cecilia Martínez
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Damian Loska
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Sergi Beltrán
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Juan Luis Valenzuela
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology, University of Granada, Granada, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
- Corresponding author:
| |
Collapse
|
37
|
Li H, Wu H, Qi Q, Li H, Li Z, Chen S, Ding Q, Wang Q, Yan Z, Gai Y, Jiang X, Ding J, Gu T, Hou X, Richard M, Zhao Y, Li Y. Gibberellins Play a Role in Regulating Tomato Fruit Ripening. PLANT & CELL PHYSIOLOGY 2019; 60:1619-1629. [PMID: 31073591 DOI: 10.1093/pcp/pcz069] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/15/2019] [Indexed: 05/18/2023]
Abstract
Although exogenous applications of gibberellins (GAs) delay tomato ripening, the regulatory mechanisms of GAs in the process have never been well recognized. Here, we report that the concentration of endogenous GAs is declined before the increase of ethylene production in mature-green to breaker stage fruits. We further demonstrate that reductions in GA levels via overexpression of a GA catabolism gene SlGA2ox1 specifically in fruit tissues lead to early ripening. Consistently, we have also observed that application of a GA biosynthetic inhibitor, prohexadione-calcium, at the mature-green stage accelerates fruit ripening, while exogenous GA3 application delays the process. Furthermore, we demonstrate that ethylene biosynthetic gene expressions and ethylene production are activated prematurely in GA-deficient fruits but delayed/reduced in exogenous GA3-treated WT fruits. We also show that the GA deficiency-mediated activation of ethylene biosynthesis is due to the activation of the ripening regulator genes RIN, NOR and CNR. In conclusion, our results demonstrate that GAs play a negative role in tomato fruit ripening.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- These authors contributed equally to this work
| | - Han Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- These authors contributed equally to this work
| | - Qi Qi
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Huihui Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhifei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shen Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qiangqiang Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Quanzhi Wang
- Jiangsu Engineering and Technology Center for Modern Horticulture, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, China
| | - Zhiming Yan
- Jiangsu Engineering and Technology Center for Modern Horticulture, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, China
| | - Ying Gai
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - McAvoy Richard
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, USA
| | - Yi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
38
|
Liu H, Hao N, Jia Y, Liu X, Ni X, Wang M, Liu W. The ethylene receptor regulates Typha angustifolia leaf aerenchyma morphogenesis and cell fate. PLANTA 2019; 250:381-390. [PMID: 31062160 DOI: 10.1007/s00425-019-03177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/26/2019] [Indexed: 05/14/2023]
Abstract
Ethylene receptor is crucial for PCD and aerenchyma formation in Typha angustifolia leaves. Not only does it receive and deliver the ethylene signal, but it probably can determine the cell fate during aerenchyma morphogenesis, which is due to the receptor expression quantity. Aquatic plant oxygen delivery relies on aerenchyma, which is formed by a programmed cell death (PCD) procedure. However, cells in the outer edge of the aerenchyma (palisade cells and septum cells) remain intact, and the mechanism is unclear. Here, we offer a hypothesis: cells that have a higher content of ethylene receptors do not undergo PCD. In this study, we investigated the leaf aerenchyma of the aquatic plant Typha angustifolia. Ethephon and pyrazinamide (PZA, an inhibitor of ACC oxidase) were used to confirm that ethylene is an essential hormone for PCD of leaf aerenchyma cells in T. angustifolia. That the ethylene receptor was an indispensable factor in this PCD was confirmed by 1-MCP (an inhibitor of the ethylene receptor) treatment. Although PCD can be avoided by blocking the ethylene receptor, excessive ethylene receptors also protect cells from PCD. TaETR1, TaETR2 and TaEIN4 in the T. angustifolia leaf were detected by immunofluorescence (IF) using polyclonal antibodies. The result showed that the content of ethylene receptors in PCD-unsusceptible cells was 4-14 times higher than that one in PCD-susceptible cells, suggesting that PCD-susceptible cells undergo the PCD programme, while PCD-unsusceptible cells do not due to the content difference in the ethylene receptor in different cells. A higher level of ethylene receptor content makes the cells insensitive to ethylene, thereby avoiding cell death and degradation.
Collapse
Affiliation(s)
- Huidong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Nan Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Yuhuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xingqian Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xilu Ni
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, 750004, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Wenzhe Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China.
| |
Collapse
|
39
|
Wang A, Chen D, Ma Q, Rose JKC, Fei Z, Liu Y, Giovannoni JJ. The tomato HIGH PIGMENT1/DAMAGED DNA BINDING PROTEIN 1 gene contributes to regulation of fruit ripening. HORTICULTURE RESEARCH 2019; 6:15. [PMID: 30729005 PMCID: PMC6355878 DOI: 10.1038/s41438-018-0093-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 05/07/2023]
Abstract
Fleshy fruit ripening is governed by multiple external and internal cues and accompanied by changes in color, texture, volatiles, and nutritional quality traits. While extended shelf-life and increased phytonutrients are desired, delaying ripening via genetic or postharvest means can be accompanied by reduced nutritional value. Here we report that the high pigment 1 (hp1) mutation at the UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1) locus, previously shown to influence carotenoid and additional phytonutrient accumulation via altered light signal transduction, also results in delayed ripening and firmer texture, resulting at least in part from decreased ethylene evolution. Transcriptome analysis revealed multiple ethylene biosynthesis and signaling-associated genes downregulated in hp1. Furthermore, the hp1 mutation impedes softening of the pericarp, placenta, columella as well as the whole fruit, in addition to reduced expression of the FRUITFUL2 (FUL2) MADS-box transcription factor and xyloglucan endotransglucosylase/hydrolase 5 (XTH5). These results indicate that DDB1 influences a broader range of fruit development and ripening processes than previously thought and present an additional genetic target for increasing fruit quality and shelf-life.
Collapse
Affiliation(s)
- Anquan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009 China
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
| | - Danyang Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Qiyue Ma
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
- United States Department of Agriculture, Robert W. Holley Center, Cornell University, Ithaca, NY 14853 USA
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009 China
| | - James J. Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
- United States Department of Agriculture, Robert W. Holley Center, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
40
|
Mata CI, Fabre B, Parsons HT, Hertog MLATM, Van Raemdonck G, Baggerman G, Van de Poel B, Lilley KS, Nicolaï BM. Ethylene Receptors, CTRs and EIN2 Target Protein Identification and Quantification Through Parallel Reaction Monitoring During Tomato Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2018; 9:1626. [PMID: 30467512 PMCID: PMC6235968 DOI: 10.3389/fpls.2018.01626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
Ethylene, the plant ripening hormone of climacteric fruit, is perceived by ethylene receptors which is the first step in the complex ethylene signal transduction pathway. Much progress has been made in elucidating the mechanism of this pathway, but there is still a lot to be done in the proteomic quantification of the main proteins involved, particularly during fruit ripening. This work focuses on the mass spectrometry based identification and quantification of the ethylene receptors (ETRs) and the downstream components of the pathway, CTR-like proteins (CTRs) and ETHYLENE INSENSITIVE 2 (EIN2). We used tomato as a model fruit to study changes in protein abundance involved in the ethylene signal transduction during fruit ripening. In order to detect and quantify these low abundant proteins located in the membrane of the endoplasmic reticulum, we developed a workflow comprising sample fractionation and MS analysis using parallel reaction monitoring. This work shows the feasibility of the identification and absolute quantification of all seven ethylene receptors, three out of four CTRs and EIN2 in four ripening stages of tomato. In parallel, gene expression was analyzed through real-time qPCR. Correlation between transcriptomic and proteomic profiles during ripening was only observed for three of the studied proteins, suggesting that the other signaling proteins are likely post-transcriptionally regulated. Based on our quantification results we were able to show that the protein levels of SlETR3 and SlETR4 increased during ripening, probably to control ethylene sensitivity. The other receptors and CTRs showed either stable levels that could sustain, or decreasing levels that could promote fruit ripening.
Collapse
Affiliation(s)
- Clara I. Mata
- Postharvest Group, Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bertrand Fabre
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Harriet T. Parsons
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Maarten L. A. T. M. Hertog
- Postharvest Group, Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Geert Van Raemdonck
- Centre for Proteomics and Mass Spectrometry, University of Antwerp, Antwerp, Belgium
| | - Geert Baggerman
- Centre for Proteomics and Mass Spectrometry, University of Antwerp, Antwerp, Belgium
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Bart M. Nicolaï
- Postharvest Group, Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Chen Y, Grimplet J, David K, Castellarin SD, Terol J, Wong DCJ, Luo Z, Schaffer R, Celton JM, Talon M, Gambetta GA, Chervin C. Ethylene receptors and related proteins in climacteric and non-climacteric fruits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:63-72. [PMID: 30348329 DOI: 10.1016/j.plantsci.2018.07.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 05/10/2023]
Abstract
Fruits have been traditionally classified into two categories based on their capacity to produce and respond to ethylene during ripening. Fruits whose ripening is associated to a peak of ethylene production and a respiration burst are referred to as climacteric, while those that are not are referred to as non-climacteric. However, an increasing body of literature supports an important role for ethylene in the ripening of both climacteric and non-climacteric fruits. Genome and transcriptomic data have become available across a variety of fruits and we leverage these data to compare the structure and transcriptional regulation of the ethylene receptors and related proteins. Through the analysis of four economically important fruits, two climacteric (tomato and apple), and two non-climacteric (grape and citrus), this review compares the structure and transcriptional regulation of the ethylene receptors and related proteins in both types of fruit, establishing a basis for the annotation of ethylene-related genes. This analysis reveals two interesting differences between climacteric and non-climacteric fruit: i) a higher number of ETR genes are found in climacteric fruits, and ii) non-climacteric fruits are characterized by an earlier ETR expression peak relative to sugar accumulation.
Collapse
Affiliation(s)
- Yi Chen
- Université de Toulouse, Genomics & Biotechnology of Fruits, INRA, Toulouse INP, ENSAT, BP 32607, F-31326 Castanet-Tolosan, France.
| | - Jérôme Grimplet
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino, CSIC, Universidad de La Rioja, Gobierno de la Rioja, Logroño, Spain.
| | - Karine David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Simone Diego Castellarin
- University of British Columbia, Wine Research Centre, 2205 East Mall, Vancouver, BC, V6T1Z4, Canada.
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera CV-315, km 10,7, Moncada, Valencia, Spain.
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
| | - Zhiwei Luo
- Plant & Food Research, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Robert Schaffer
- Plant & Food Research, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Jean-Marc Celton
- Institut de Recherche en Horticulture et Semences, INRA, BP 60057, 49071 Beaucouze Cedex, France.
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera CV-315, km 10,7, Moncada, Valencia, Spain.
| | - Gregory Alan Gambetta
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, 33140 Villenave d'Ornon, France.
| | - Christian Chervin
- Université de Toulouse, Genomics & Biotechnology of Fruits, INRA, Toulouse INP, ENSAT, BP 32607, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
42
|
Mubarok S, Hoshikawa K, Okabe Y, Yano R, Tri MD, Ariizumi T, Ezura H. Evidence of the functional role of the ethylene receptor genes SlETR4 and SlETR5 in ethylene signal transduction in tomato. Mol Genet Genomics 2018; 294:301-313. [PMID: 30382349 DOI: 10.1007/s00438-018-1505-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/21/2018] [Indexed: 12/24/2022]
Abstract
Ethylene receptors are key factors for ethylene signal transduction. In tomato, six ethylene receptor genes (SlETR1-SlETR6) have been identified. Mutations in different ethylene receptor genes result in different phenotypes that are useful for elucidating the roles of each gene. In this study, we screened mutants of two ethylene receptor genes, SLETR4 and SLETR5, from a Micro-Tom mutant library generated by TILLING. We identified two ethylene receptor mutants with altered phenotypes and named them Sletr4-1 and Sletr5-1. Sletr4-1 has a mutation between the transmembrane and GAF domains, while Sletr5-1 has a mutation within the GAF domain. Sletr4-1 showed increased hypocotyl and root lengths, compared to those of wild type plants, under ethylene exposure. Moreover, the fruit shelf life of this mutant was extended, titratable acidity was increased and total soluble solids were decreased, suggesting a reduced ethylene sensitivity. In contrast, in the absence of exogenous ethylene, the hypocotyl and root lengths of Sletr5-1 were shorter than those of the wild type, and the fruit shelf life was shorter, suggesting that these mutants have increased ethylene sensitivity. Gene expression analysis showed that SlNR was up-regulated in the Sletr5-1 mutant line, in contrast to the down-regulation observed in the Sletr4-1 mutant line, while the down-regulation of SlCTR1, SlEIN2, SlEIL1, SlEIL3, and SlERF.E4 was observed in Sletr4-1 mutant allele, suggesting that these two ethylene receptors have functional roles in ethylene signalling and demonstrating, for the first time, a function of the GAF domain of ethylene receptors. These results suggest that the Sletr4-1 and Sletr5-1 mutants are useful for elucidating the complex mechanisms of ethylene signalling through the analysis of ethylene receptors in tomato.
Collapse
Affiliation(s)
- Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Padjadjaran University, Bandung, 45363, Indonesia.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Hoshikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ryoichi Yano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | | | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan. .,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
43
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
44
|
Ibort P, Molina S, Ruiz-Lozano JM, Aroca R. Molecular Insights into the Involvement of a Never Ripe Receptor in the Interaction Between Two Beneficial Soil Bacteria and Tomato Plants Under Well-Watered and Drought Conditions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:633-650. [PMID: 29384430 DOI: 10.1094/mpmi-12-17-0292-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Management of plant growth-promoting bacteria (PGPB) can be implemented to deal with sustainable intensification of agriculture. Ethylene is an essential component for plant growth and development and in response to drought. However, little is known about the effects of bacterial inoculation on ethylene transduction pathway. Thus, the present study sought to establish whether ethylene perception is critical for growth induction by two different PGPB strains under drought conditions and the analysis of bacterial effects on ethylene production and gene expression in tomatoes (Solanum lycopersicum). The ethylene-insensitive never ripe (nr) and its isogenic wild-type (wt) cv. Pearson line were inoculated with either Bacillus megaterium or Enterobacter sp. strain C7 and grown until the attainment of maturity under both well-watered and drought conditions. Ethylene perception is crucial for B. megaterium. However, it is not of prime importance for Enterobacter sp. strain C7 PGPB activity under drought conditions. Both PGPB decreased the expression of ethylene-related genes in wt plants, resulting in stress alleviation, while only B. megaterium induced their expression in nr plants. Furthermore, PGPB inoculation affected transcriptomic profile dependency on strain, genotype, and drought. Ethylene sensitivity determines plant interaction with PGPB strains. Enterobacter sp. strain C7 could modulate amino-acid metabolism, while nr mutation causes a partially functional interaction with B. megaterium, resulting in higher oxidative stress and loss of PGPB activity.
Collapse
Affiliation(s)
- Pablo Ibort
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Sonia Molina
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
45
|
Deng H, Pirrello J, Chen Y, Li N, Zhu S, Chirinos X, Bouzayen M, Liu Y, Liu M. A novel tomato F-box protein, SlEBF3, is involved in tuning ethylene signaling during plant development and climacteric fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:648-658. [PMID: 29797363 DOI: 10.1111/tpj.13976] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Ethylene is instrumental to climacteric fruit ripening and EIN3 BINDING F-BOX (EBF) proteins have been assigned a central role in mediating ethylene responses by regulating EIN3/EIL degradation in Arabidopsis. However, the role and mode of action of tomato EBFs in ethylene-dependent processes like fruit ripening remains unclear. Two novel EBF genes, SlEBF3 and SlEBF4, were identified in the tomato genome, and SlEBF3 displayed a ripening-associated expression pattern suggesting its potential involvement in controlling ethylene response during fruit ripening. SlEBF3 downregulated tomato lines failed to show obvious ripening-related phenotypes likely due to functional redundancy among SlEBF family members. By contrast, SlEBF3 overexpression lines exhibited pleiotropic ethylene-related alterations, including inhibition of fruit ripening, attenuated triple-response and delayed petal abscission. Yeast-two-hybrid system and bimolecular fluorescence complementation approaches indicated that SlEBF3 interacts with all known tomato SlEIL proteins and, consistently, total SlEIL protein levels were decreased in SlEBF3 overexpression fruits, supporting the idea that the reduced ethylene sensitivity and defects in fruit ripening are due to the SlEBF3-mediated degradation of EIL proteins. Moreover, SlEBF3 expression is regulated by EIL1 via a feedback loop, which supposes its role in tuning ethylene signaling and responses. Overall, the study reveals the role of a novel EBF tomato gene in climacteric ripening, thus providing a new target for modulating fleshy fruit ripening.
Collapse
Affiliation(s)
- Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610014, China
| | | | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610014, China
| | - Nan Li
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610014, China
| | - Sihua Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610014, China
| | | | | | - Yongsheng Liu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610014, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610014, China
| |
Collapse
|
46
|
Thongkum M, Imsabai W, Burns P, McAtee PA, Schaffer RJ, Allan AC, Ketsa S. The effect of 1-methylcyclopropene (1-MCP) on expression of ethylene receptor genes in durian pulp during ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:232-238. [PMID: 29475089 DOI: 10.1016/j.plaphy.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 05/11/2023]
Abstract
Rapid fruit ripening is a significant problem that limits the shelf life of durian, with ethylene having a major impact on the regulation of this event. Durian treated with ethephon ripened 3 d after treatment with increased pulp total soluble solids, ethylene production of the whole fruit and decreased pulp firmness compared to the control fruit. 1-MCP treatment delayed ripening by up to 9 d with inhibited accumulation of total soluble solids, color change, softening and ethylene production. Genes related to ethylene perception (DzETR1 and DzETR2) and the signaling pathway (DzCTR1, DzEIL1 and DzEIL2) in the pulp were investigated during this process, using qPCR to quantify changes in gene transcription. All candidate genes were significantly up-regulated in ripening durian pulp. Ethephon treatment increased the expression of DzETR1 and DzETR2 genes, while expression of DzCTR1, DzEIL1 and DzEIL2 were slightly affected. 1-MCP treatment significantly inhibited the expression of the DzETR2 and DzEIL1 genes. The promoters of DzETR2 genes were isolated and their activation by fruit transcription factors studied using transient expression in tobacco leaves. It was found that members of the kiwifruit and apple EIL1, EIL2 and EIL3 genes strongly activated the DzETR2 promoter. These results suggest that ethylene-induced ripening of durian is via the regulation of DzETR2 by EIL transcription factors.
Collapse
Affiliation(s)
- Monthathip Thongkum
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Wachiraya Imsabai
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen Campus, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Parichart Burns
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, PathumThani 12120, Thailand
| | - Peter A McAtee
- Plant and Food Research Institute, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Robert J Schaffer
- Plant and Food Research Institute, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Andrew C Allan
- Plant and Food Research Institute, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Saichol Ketsa
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; Academy of Science, The Royal Society, Dusit, Bangkok 10300, Thailand.
| |
Collapse
|
47
|
Kumar R, Tamboli V, Sharma R, Sreelakshmi Y. NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. Food Chem 2018; 259:234-244. [PMID: 29680049 DOI: 10.1016/j.foodchem.2018.03.135] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/05/2023]
Abstract
Several Penjar accessions of tomato grown in the Mediterranean exhibit prolonged shelf life and harbor alcobaca mutation. To uncover the metabolic basis underlying shelf life, we compared four Penjar accessions to Ailsa Craig. Three accessions bore alcobaca mutation, whereas the fourth was a novel NAC-NOR allele. Cuticle composition of Penjars varied widely during fruit ripening. All Penjars exhibited delayed ripening, prolonged on-vine and off-vine shelf life, low ethylene emission, and carotenoid levels. Metabolic profiling revealed shifts in Krebs cycle intermediates, amino acids, and γ-aminobutyric acid levels indicating the attenuation of respiration in Penjars during post-harvest storage. Penjar fruits also showed concerted downregulation of several cell-wall modifying genes and related metabolites. The high ABA and sucrose levels at the onset of senescence in Penjar fruits likely contribute to reduced water loss. Our analyses reveal that the attenuation of various metabolic processes by NAC-NOR mutation likely prolongs the shelf life of Penjar fruits.
Collapse
Affiliation(s)
- Rakesh Kumar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Vajir Tamboli
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
48
|
Zhang H, Hu Z, Lei C, Zheng C, Wang J, Shao S, Li X, Xia X, Cai X, Zhou J, Zhou Y, Yu J, Foyer CH, Shi K. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca 2+ Signaling in Tomato. THE PLANT CELL 2018; 30:652-667. [PMID: 29511053 PMCID: PMC5894845 DOI: 10.1105/tpc.17.00537] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/11/2018] [Accepted: 03/01/2018] [Indexed: 05/15/2023]
Abstract
Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato (Solanum lycopersicum) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca2+], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca2+] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Cui Lei
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chenfei Zheng
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
| | - Xin Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xinzhong Cai
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, P.R. China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, P.R. China
| |
Collapse
|
49
|
Zhang H, Hu Z, Lei C, Zheng C, Wang J, Shao S, Li X, Xia X, Cai X, Zhou J, Zhou Y, Yu J, Foyer CH, Shi K. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca 2+ Signaling in Tomato. THE PLANT CELL 2018. [PMID: 29511053 DOI: 10.1105/tpc.1700537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato (Solanum lycopersicum) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca2+], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca2+] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Cui Lei
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chenfei Zheng
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
| | - Xin Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xinzhong Cai
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, P.R. China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, P.R. China
| |
Collapse
|
50
|
Fernandez i Marti A, Saski CA, Manganaris GA, Gasic K, Crisosto CH. Genomic Sequencing of Japanese Plum ( Prunus salicina Lindl.) Mutants Provides a New Model for Rosaceae Fruit Ripening Studies. FRONTIERS IN PLANT SCIENCE 2018; 9:21. [PMID: 29515596 PMCID: PMC5825990 DOI: 10.3389/fpls.2018.00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/05/2018] [Indexed: 05/23/2023]
Abstract
It has recently been described that the Japanese plum "Santa Rosa" bud sport series contains variations in ripening pattern: climacteric, suppressed-climacteric and non-climacteric types. This provides an interesting model to study the role of ethylene and other key mechanisms governing fruit ripening, softening and senescence. The aim of the current study was to investigate such differences at the genomic level, using this series of plum bud sports, with special reference to genes involved in ethylene biosynthesis, signal transduction, and sugar metabolism. Genomic DNA, isolated from leaf samples of six Japanese plum cultivars ("Santa Rosa", "July Santa Rosa", "Late Santa Rosa", "Sweet Miriam", "Roysum", and "Casselman"), was used to construct paired-end standard Illumina libraries. Sequences were aligned to the Prunus persica genome, and genomic variations (SNPs, INDELS, and CNV's) were investigated. Results determined 12 potential candidate genes with significant copy number variation (CNV), being associated with ethylene perception and signal transduction components. Additionally, the Maximum Likelihood (ML) phylogenetic tree showed two sorbitol dehydrogenase genes grouping into a distinct clade, indicating that this natural group is well-defined and presents high sequence identity among its members. In contrast, the ethylene group, which includes ACO1, ACS1, ACS4, ACS5, CTR1, ERF1, ERF3, and ethylene-receptor genes, was widely distributed and clustered into 10 different groups. Thus, ACS, ERF, and sorbitol dehydrogenase proteins potentially share a common ancestor for different plant genomes, while the expansion rate may be related to ancestral expansion rather than species-specific events. Based on the distribution of the clades, we suggest that gene function diversification for the ripening pathway occurred prior to family extension. We herein report all the frameshift mutations in genes involved in sugar transport and ethylene biosynthesis detected as well as the gene CNV implicated in ripening differences.
Collapse
Affiliation(s)
| | - Christopher A. Saski
- Genomics and Computational Biology Laboratory, Biosystems Research Complex, Clemson, SC, United States
| | - George A. Manganaris
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Carlos H. Crisosto
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|