1
|
Liu X, Qin G, Cui Y, Yang H, Liang Y, Jiang Y, Zhang Z, Liu X, Yuan J, Fang X. Dual-Label Single-Molecule Imaging Method for Quantifying Apparent Fluorescence Efficiency of Fluorescent Proteins. Anal Chem 2025. [PMID: 40372803 DOI: 10.1021/acs.analchem.5c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Fluorescent proteins (FPs) are indispensable tools for life science research, crucial for quantitative analyses, such as protein stoichiometry determination, signal transduction, and protein-protein interactions. In this work, we introduce a new method of dual-color single-molecule imaging to assess the apparent fluorescence efficiency of FPs (DC-FEFP). By integrating high signal-to-noise ratio (SNR) FPs or self-labeling tags, this approach enables us to precisely quantify the fluorescence efficiency of various FPs at the single-molecule level in both living and fixed cells. With DC-FEFP, we found that mNeonGreen has the highest fluorescence efficiency among three commonly used FPs in living cells, as well as the significant impact of fixation on the photophysical properties of FPs. DC-FEFP is a high-precision and versatile tool for quantifying the fluorescence efficiency of FPs. It is capable of providing accurate information to calibrate protein stoichiometry based on single-molecule imaging.
Collapse
Affiliation(s)
- Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute of Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Yutong Cui
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuxin Liang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhen Zhang
- Huairou Research Center, Institiute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuejiao Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
2
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
3
|
Wang Y, Yao F, Song L, Zhang M, Gong Z, Zhao Y, Xiong Y, He L. A supramolecular FRET signal amplification nanoprobe for high contrast and synchronous in situ imaging of cell surface receptor homodimers/heterodimers. Chem Sci 2025; 16:4732-4740. [PMID: 39968283 PMCID: PMC11831222 DOI: 10.1039/d4sc08004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025] Open
Abstract
Epidermal growth factor receptor (EGFR) homodimers and heterodimers play significant roles in a variety of tumors, but current imaging probes remain problematic due to restricted contrast and sensitivity. Thus, we have developed aptamer-mediated activated conformational transitions to target the EGFR and HER2. Furthermore, based on signal amplification techniques, especially the FRET fluorescence enhancement properties of poly-β-CD, supramolecular FRET signal amplification nanoprobes were constructed to improve imaging contrast and sensitivity. The results confirmed that the fluorescence intensity of the supramolecular FRET group probe is 1.2 to 1.3 times that of the multi-FRET group and 11.3 to 23.2 times that of the single-FRET group. The results further confirmed that the supramolecular nanoprobe could not only be activated by tumor cells and tissues to achieve high-contrast imaging of EGFR/EGFR and EGFR/HER2 dimers, but also successfully distinguish tumor cells and tissues from normal cells and tissues. The strategy provides a generalized platform for high-contrast imaging of other dimers intending to deepen the understanding of the central roles of multiple dimers in cancer development.
Collapse
Affiliation(s)
- Ya Wang
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Feng Yao
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Lulu Song
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Mengpan Zhang
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Zitong Gong
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Yunli Zhao
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| | - Leiliang He
- College of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou City 450001 China
| |
Collapse
|
4
|
Qin G, Shao X, Liu X, Xu J, Wang X, Wang W, Gao L, Liang Y, Xie L, Su D, Yang H, Zhou W, Fang X. A signaling molecule from intratumor bacteria promotes trastuzumab resistance in breast cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2421710122. [PMID: 39786928 PMCID: PMC11745319 DOI: 10.1073/pnas.2421710122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025] Open
Abstract
Emerging evidence indicates that intratumor bacteria exist as an active and specific tumor component in many tumor types beyond digestive and respiratory tumors. However, the biological impact and responsible molecules of such local bacteria-tumor direct interaction on cancer therapeutic response remain poorly understood. Trastuzumab is among the most commonly used drugs targeting the receptor tyrosine-protein kinase erbB-2 (ErbB2) in breast cancer, but its resistance is inevitable, severely limiting its clinical effectiveness. Here, we demonstrate that the quorum-sensing signaling molecule N-(3-oxo-dodecanoyl) homoserine lactone (3oc), a chemical compound released by Pseudomonas aeruginosa (P. aeruginosa), one tumor-resident bacteria with a relative high abundance in breast cancer, promotes breast cancer cell resistance to trastuzumab. Mechanically, 3oc directly leads to spontaneous dimerization of the transforming growth factor β (TGF-β) type II serine/threonine kinase receptor on the cell membrane in a ligand-independent manner. The 3oc-induced TGF-β signaling subsequently triggers ErbB2 phosphorylation and its downstream target activation, overcoming the inhibition effect of trastuzumab on ErbB2. With specific real-time qPCR, fluorescence in situ hybridization imaging, and liquid chromatography ionization tandem mass spectrometry analyses of clinical samples, we confirmed that P. aeruginosa and its signaling molecule 3oc exist in breast cancer tissues and there is a clinical correlation between P. aeruginosa colonization and trastuzumab resistance. This work expands the biological functions of intratumor bacteria in cancer treatment responsiveness and provides a unique perspective for overcoming trastuzumab resistance.
Collapse
Affiliation(s)
- Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute of Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing100084, China
| | - Xiying Shao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang, China
| | - Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiachao Xu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang, China
| | - Wenxi Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang, China
| | - Lu Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang, China
| | - Yuxin Liang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Lina Xie
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang, China
| | - Dan Su
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang, China
| | - Hongwei Yang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Wei Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
5
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. Science 2025; 387:74-81. [PMID: 39745956 DOI: 10.1126/science.adm8485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
Protein phosphorylation signaling networks have a central role in how cells sense and respond to their environment. We engineered artificial phosphorylation networks in which reversible enzymatic phosphorylation cycles were assembled from modular protein domain parts and wired together to create synthetic phosphorylation circuits in human cells. Our design scheme enabled model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, and downstream connections can regulate gene expression. We engineered cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach that allows the design of signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jason W Rocks
- Department of Physics, Boston University, Boston, MA, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Andrew J Walters
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Graduate Program in Bioengineering, Rice University, Houston, TX, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kshitij Rai
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jing Liu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
| | - James J Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
6
|
Cichos F, Xia T, Yang H, Zijlstra P. The ever-expanding optics of single-molecules and nanoparticles. J Chem Phys 2024; 161:010401. [PMID: 38949895 DOI: 10.1063/5.0221680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Affiliation(s)
- F Cichos
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - T Xia
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - H Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - P Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| |
Collapse
|
7
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
8
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Qin G, Xu J, Liang Y, Fang X. Single-Molecule Imaging Reveals Differential AT1R Stoichiometry Change in Biased Signaling. Int J Mol Sci 2023; 25:374. [PMID: 38203545 PMCID: PMC10778740 DOI: 10.3390/ijms25010374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
G protein-coupled receptors (GPCRs) represent promising therapeutic targets due to their involvement in numerous physiological processes mediated by downstream G protein- and β-arrestin-mediated signal transduction cascades. Although the precise control of GPCR signaling pathways is therapeutically valuable, the molecular details for governing biased GPCR signaling remain elusive. The Angiotensin II type 1 receptor (AT1R), a prototypical class A GPCR with profound implications for cardiovascular functions, has become a focal point for biased ligand-based clinical interventions. Herein, we used single-molecule live-cell imaging techniques to evaluate the changes in stoichiometry and dynamics of AT1R with distinct biased ligand stimulations in real time. It was revealed that AT1R existed predominantly in monomers and dimers and underwent oligomerization upon ligand stimulation. Notably, β-arrestin-biased ligands induced the formation of higher-order aggregates, resulting in a slower diffusion profile for AT1R compared to G protein-biased ligands. Furthermore, we demonstrated that the augmented aggregation of AT1R, triggered by activation from each biased ligand, was completely abrogated in β-arrestin knockout cells. These findings furnish novel insights into the intricate relationship between GPCR aggregation states and biased signaling, underscoring the pivotal role of molecular behaviors in guiding the development of selective therapeutic agents.
Collapse
Affiliation(s)
- Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachao Xu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxin Liang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
10
|
Liu X, Jiang Y, Cui Y, Yuan J, Fang X. Deep learning in single-molecule imaging and analysis: recent advances and prospects. Chem Sci 2022; 13:11964-11980. [PMID: 36349113 PMCID: PMC9600384 DOI: 10.1039/d2sc02443h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/19/2022] [Indexed: 09/19/2023] Open
Abstract
Single-molecule microscopy is advantageous in characterizing heterogeneous dynamics at the molecular level. However, there are several challenges that currently hinder the wide application of single molecule imaging in bio-chemical studies, including how to perform single-molecule measurements efficiently with minimal run-to-run variations, how to analyze weak single-molecule signals efficiently and accurately without the influence of human bias, and how to extract complete information about dynamics of interest from single-molecule data. As a new class of computer algorithms that simulate the human brain to extract data features, deep learning networks excel in task parallelism and model generalization, and are well-suited for handling nonlinear functions and extracting weak features, which provide a promising approach for single-molecule experiment automation and data processing. In this perspective, we will highlight recent advances in the application of deep learning to single-molecule studies, discuss how deep learning has been used to address the challenges in the field as well as the pitfalls of existing applications, and outline the directions for future development.
Collapse
Affiliation(s)
- Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yifei Jiang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences Hangzhou 310022 Zhejiang China
| | - Yutong Cui
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences Hangzhou 310022 Zhejiang China
| |
Collapse
|
11
|
Liu H, Chen YG. The Interplay Between TGF-β Signaling and Cell Metabolism. Front Cell Dev Biol 2022; 10:846723. [PMID: 35359452 PMCID: PMC8961331 DOI: 10.3389/fcell.2022.846723] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signaling plays a critical role in the development and tissue homeostasis in metazoans, and deregulation of TGF-β signaling leads to many pathological conditions. Mounting evidence suggests that TGF-β signaling can actively alter metabolism in diverse cell types. Furthermore, metabolic pathways, beyond simply regarded as biochemical reactions, are closely intertwined with signal transduction. Here, we discuss the role of TGF-β in glucose, lipid, amino acid, redox and polyamine metabolism with an emphasis on how TGF-β can act as a metabolic modulator and how metabolic changes can influence TGF-β signaling. We also describe how interplay between TGF-β signaling and cell metabolism regulates cellular homeostasis as well as the progression of multiple diseases, including cancer.
Collapse
|
12
|
Wang Q, Zhang Q, He H, Feng Z, Mao J, Hu X, Wei X, Bi S, Qin G, Wang X, Ge B, Yu D, Ren H, Huang F. Carbon Dot Blinking Fingerprint Uncovers Native Membrane Receptor Organizations via Deep Learning. Anal Chem 2022; 94:3914-3921. [PMID: 35188385 DOI: 10.1021/acs.analchem.1c04947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oligomeric organization of G protein-coupled receptors is proposed to regulate receptor signaling and function, yet rapid and precise identification of the oligomeric status especially for native receptors on a cell membrane remains an outstanding challenge. By using blinking carbon dots (CDs), we now develop a deep learning (DL)-based blinking fingerprint recognition method, named deep-blinking fingerprint recognition (BFR), which allows automatic classification of CD-labeled receptor organizations on a cell membrane. This DL model integrates convolutional layers, long-short-term memory, and fully connected layers to extract time-dependent blinking features of CDs and is trained to a high accuracy (∼95%) for identifying receptor organizations. Using deep blinking fingerprint recognition, we found that CXCR4 mainly exists as 87.3% monomers, 12.4% dimers, and <1% higher-order oligomers on a HeLa cell membrane. We further demonstrate that the heterogeneous organizations can be regulated by various stimuli at different degrees. The receptor-binding ligands, agonist SDF-1α and antagonist AMD3100, can induce the dimerization of CXCR4 to 33.1 and 20.3%, respectively. In addition, cytochalasin D, which inhibits actin polymerization, similarly prompts significant dimerization of CXCR4 to 30.9%. The multi-pathway organization regulation will provide an insight for understanding the oligomerization mechanism of CXCR4 as well as for elucidating their physiological functions.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Zhang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Jian Mao
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiang Hu
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoyun Wei
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Simin Bi
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guangyong Qin
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
13
|
Luo F, Qin G, Wang L, Fang X. Single-Molecule Fluorescence Imaging Reveals GABAB Receptor Aggregation State Changes. Front Chem 2022; 9:779940. [PMID: 35127643 PMCID: PMC8807474 DOI: 10.3389/fchem.2021.779940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The GABAB receptor is a typical G protein–coupled receptor, and its functional impairment is related to a variety of diseases. While the premise of GABAB receptor activation is the formation of heterodimers, the receptor also forms a tetramer on the cell membrane. Thus, it is important to study the effect of the GABAB receptor aggregation state on its activation and signaling. In this study, we have applied single-molecule photobleaching step counting and single-molecule tracking methods to investigate the formation and change of GABAB dimers and tetramers. A single-molecule stoichiometry assay of the wild-type and mutant receptors revealed the key sites on the interface of ligand-binding domains of the receptor for its dimerization. Moreover, we found that the receptor showed different aggregation behaviors at different conditions. Our results offered new evidence for a better understanding of the molecular basis for GABAB receptor aggregation and activation.
Collapse
Affiliation(s)
- Fang Luo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Research Center for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing, China
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing, China
| | - GeGe Qin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Research Center for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing, China
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing, China
| | - Lina Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Research Center for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing, China
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Fang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Research Center for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing, China
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xiaohong Fang,
| |
Collapse
|
14
|
Yan Q, Cai M, Jing Y, Li H, Xu H, Sun J, Gao J, Wang H. Quantitatively mapping the interaction of HER2 and EGFR on cell membranes with peptide probes. NANOSCALE 2021; 13:17629-17637. [PMID: 34664051 DOI: 10.1039/d1nr02684d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human epidermal growth factor receptor-2 (HER2) is a member of the epidermal growth factor receptor (HER) family that is involved in various biological processes such as cell proliferation, survival, differentiation, migration and invasion. It generally functions in the form of homo-/hetero-dimers or oligomers with other HER family members. Although its essential roles in cellular activities have been widely recognized, questions concerning the spatial distribution of HER2 on the membranes and the interactions between it and other ErbB family members remain obscure. Here, we obtained a high-quality dSTORM image of HER2 nanoscale clusters recognized by peptide probes, and found that HER2 forms clusters containing different numbers of molecules on cell membranes. Moreover, we found that HER2 and EGFR formed hetero-oligomers on non-stimulated cell membranes, whereas EGF stimulation reduced the degree of heteromerization, suggesting that HER2 and EGFR hetero-oligomers may inhibit the activation of EGFR. Collectively, our work revealed the clustered distribution of HER2 and quantified the changes of the interaction between HER2 and EGFR in the resting and active states at the single molecular level, which promotes a deeper understanding of the protein-protein interaction on cell membranes.
Collapse
Affiliation(s)
- Qiuyan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Yingying Jing
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Jiayin Sun
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230027, China
- Laboratory for Marine Biology and Biotechnology, Qing Dao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong, 266237, China
| |
Collapse
|
15
|
Zakrzewski PK. Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression-Underestimated Target of Anticancer Strategies. J Clin Med 2021; 10:3900. [PMID: 34501347 PMCID: PMC8432036 DOI: 10.3390/jcm10173900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Endometrial cancer is one of the leading gynecological cancers diagnosed among women in their menopausal and postmenopausal age. Despite the progress in molecular biology and medicine, no efficient and powerful diagnostic and prognostic marker is dedicated to endometrial carcinogenesis. The canonical TGFβ pathway is a pleiotropic signaling cascade orchestrating a variety of cellular and molecular processes, whose alterations are responsible for carcinogenesis that originates from different tissue types. This review covers the current knowledge concerning the canonical TGFβ pathway (Smad-dependent) induced by prototypical TGFβ isoforms and the involvement of pathway alterations in the development and progression of endometrial neoplastic lesions. Since Smad-dependent signalization governs opposed cellular processes, such as growth arrest, apoptosis, tumor cells growth and differentiation, as well as angiogenesis and metastasis, TGFβ cascade may act both as a tumor suppressor or tumor promoter. However, the final effect of TGFβ signaling on endometrial cancer cells depends on the cancer disease stage. The multifunctional role of the TGFβ pathway indicates the possible utilization of alterations in the TGFβ cascade as a potential target of novel anticancer strategies.
Collapse
Affiliation(s)
- Piotr K Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
16
|
In-Cell Single-Molecule Analysis of Molecular State and Reaction Kinetics Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33834432 DOI: 10.1007/978-981-33-6064-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Cellular signaling is regulated by the spatiotemporal dynamics and kinetics of molecular behavior. To investigate the mechanisms at the molecular level, fluorescence single-molecule analysis is an effective method owing to the direct observation of individual molecules in situ in cells and the results in quantitative information about the behavior. The integration of machine learning into this analysis modality enables the acquisition of behavioral features at all time points of all molecules. As a case study, we described a hidden Markov model-based approach to infer the molecular states of mobility and clustering for epidermal growth factor receptor (EGFR) along a single-molecule trajectory. We reveal a scheme of the receptor signaling through the dynamic coupling of the mobility and clustering states under the influence of a local membrane structure. As the activation process progressed, EGFR generally converged to an immobile cluster. This state exhibited high affinity with a specific cytoplasmic protein, shown by two-color single-molecule analysis, and could be a platform for downstream signaling. The method was effective for elucidating the biophysical mechanisms of signaling regulation when comprehensive analysis is possible for a huge number and multiple molecular species in the signaling pathway. Thus, a fully automated system for single-molecule analysis, in which indispensable expertise was replicated using artificial intelligence, has been developed to enable in-cell large-scale analysis. This system opens new single-molecule approaches for pharmacological applications as well as the basic sciences.
Collapse
|
17
|
Lin Y, Wu K, Jia F, Chen L, Wang Z, Zhang Y, Luo Q, Liu S, Qi L, Li N, Dong P, Gao F, Zheng W, Fang X, Zhao Y, Wang F. Single cell imaging reveals cisplatin regulating interactions between transcription (co)factors and DNA. Chem Sci 2021; 12:5419-5429. [PMID: 34163767 PMCID: PMC8179581 DOI: 10.1039/d0sc06760a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Cisplatin is an extremely successful anticancer drug, and is commonly thought to target DNA. However, the way in which cisplatin-induced DNA lesions regulate interactions between transcription factors/cofactors and genomic DNA remains unclear. Herein, we developed a dual-modal microscopy imaging strategy to investigate, in situ, the formation of ternary binding complexes of the transcription cofactor HMGB1 and transcription factor Smad3 with cisplatin crosslinked DNA in single cells. We utilized confocal microscopy imaging to map EYFP-fused HMGB1 and fluorescent dye-stained DNA in single cells, followed by the visualization of cisplatin using high spatial resolution (200-350 nm) time of flight secondary ion mass spectrometry (ToF-SIMS) imaging of the same cells. The superposition of the fluorescence and the mass spectrometry (MS) signals indicate the formation of HMGB1-Pt-DNA ternary complexes in the cells. More significantly, for the first time, similar integrated imaging revealed that the cisplatin lesions at Smad-binding elements, for example GGC(GC)/(CG) and AGAC, disrupted the interactions of Smad3 with DNA, which was evidenced by the remarkable reduction in the expression of Smad-specific luciferase reporters subjected to cisplatin treatment. This finding suggests that Smad3 and its related signalling pathway are most likely involved in the intracellular response to cisplatin induced DNA damage.
Collapse
Affiliation(s)
- Yu Lin
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 People's Republic of China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Ling Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Zhaoying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Suyan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Luyu Qi
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Nan Li
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Pu Dong
- China Telecom Corporation Limited Beijing Research Institute Beijing 100035 People's Republic of China
| | - Fei Gao
- China Telecom Corporation Limited Beijing Research Institute Beijing 100035 People's Republic of China
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Xiaohong Fang
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine Jinan 250355 People's Republic of China
| |
Collapse
|
18
|
Raktoe RS, Rietveld MH, Out-Luiting JJ, Kruithof-de Julio M, van Zuijlen PPM, van Doorn R, El Ghalbzouri A. The effect of TGFβRI inhibition on fibroblast heterogeneity in hypertrophic scar 2D in vitro models. Burns 2021; 47:1563-1575. [PMID: 33558094 DOI: 10.1016/j.burns.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
In burn patients, wound healing is often accompanied by hypertrophic scarring (HTS), resulting in both functional and aesthetic problems. HTSs are characterized by abundant presence of myofibroblasts (MFs) residing in the dermis. HTS development and MF persistence is primarily regulated by TGF-β signalling. A promising method to target the transforming growth factor receptor I (TGFβRI; also known as activin-like kinase 5 (ALK5)) is by making use of exon skipping through antisense oligonucleotides. In HTS the distinguishing border between the papillary dermis and the reticular dermis is completely abrogated, thus exhibiting a one layered dermis containing a heterogenous fibroblast population, consisting of papillary fibroblasts (PFs), reticular fibroblasts (RFs) and MFs. It has been proposed that PFs, as opposed to RFs, exhibit anti-fibrotic properties. Currently, it is still unclear which fibroblast subtype is most affected by exon skipping treatment. Therefore, the aim of this study was to investigate the effect of TGFβRI inhibition by exon skipping in PF, RF and HTS fibroblast monocultures. Morphological analyses revealed the presence of a PF-like population after exon skipping in the different fibroblast cultures. This observation was further confirmed by the expression of genes specific for PFs, demonstrated by qPCR analyses. Further investigations on mRNA and protein level revealed that indeed MFs and to a lesser extent RFs are targeted by exon skipping. Furthermore, collagen gel contraction analysis showed that ALK5 exon skipping reduced TGF-β- induced contraction together with decreased alpha-smooth muscle actin expression levels. In conclusion, we show for the first time that exon skipping primarily targets pro-fibrotic fibroblasts. This could be a promising step towards reduced HTS development of burn tissue.
Collapse
Affiliation(s)
- Rajiv S Raktoe
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands.
| | - Marion H Rietveld
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | - Jacoba J Out-Luiting
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | - Marianna Kruithof-de Julio
- Department of Urology, LUMC, Leiden, the Netherlands; Department of Urology, University of Bern, Bern, Switzerland
| | - Paul P M van Zuijlen
- Amsterdam UMC Location VUmc, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, the Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | | |
Collapse
|
19
|
Li F, Du Z, Huang X, Dong C, Ren J. Analyses of p73 Protein Oligomerization and p73-MDM2 Interaction in Single Living Cells Using In Situ Single Molecule Spectroscopy. Anal Chem 2021; 93:886-894. [PMID: 33393764 DOI: 10.1021/acs.analchem.0c03521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein oligomerization and protein-protein interaction are crucial to regulate protein functions and biological processes. p73 protein is a very important transcriptional factor and can promote apoptosis and cell cycle arrest, and its transcriptional activity is regulated by p73 oligomerization and p73-MDM2 interaction. Although extracellular studies on p73 oligomerization and p73-MDM2 interaction have been carried out, it is unclear how p73 oligomerization and p73-MDM2 interaction occur in living cells. In our study, we described an in situ method for studying p73 oligomerization and p73-MDM2 interaction in living cells by combining fluorescence cross-correlation spectroscopy with a fluorescent protein labeling technique. Lentiviral transfection was used to transfect cells with a plasmid for either p73 or MDM2, each fused to a different fluorescent protein. p73 oligomerization was evaluated using brightness per particle, and the p73-MDM2 interaction was quantified using the cross-correlation value. We constructed a series of p73 mutants in three domains (transactivation domain, DNA binding domain, and oligomerization domain) and MDM2 mutants. We systematically studied p73 oligomerization and the effects of p73 oligomerization and the p73 and MDM2 structures on the p73-MDM2 interaction in single living cells. We have found that the p73 protein can form oligomers and that the p73 structure changes in the oligomerization domain significantly influence its oligomerization. p73 oligomerization and the structure changes significantly affect the p73-MDM2 interaction. Furthermore, the effects of inhibitors on p73 oligomerization and p73-MDM2 interaction were studied.
Collapse
Affiliation(s)
- Fucai Li
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhixue Du
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
20
|
Yuan J, Zhao R, Xu J, Cheng M, Qin Z, Kou X, Fang X. Analyzing protein dynamics from fluorescence intensity traces using unsupervised deep learning network. Commun Biol 2020; 3:669. [PMID: 33184459 PMCID: PMC7665068 DOI: 10.1038/s42003-020-01389-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 10/13/2020] [Indexed: 11/09/2022] Open
Abstract
We propose an unsupervised deep learning network to analyze the dynamics of membrane proteins from the fluorescence intensity traces. This system was trained in an unsupervised manner with the raw experimental time traces and synthesized ones, so neither predefined state number nor pre-labelling were required. With the bidirectional Long Short-Term Memory (biLSTM) networks as the hidden layers, both the past and future context can be used fully to improve the prediction results and can even extract information from the noise distribution. The method was validated with the synthetic dataset and the experimental dataset of monomeric fluorophore Cy5, and then applied to extract the membrane protein interaction dynamics from experimental data successfully.
Collapse
Affiliation(s)
- Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Rong Zhao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, 100029, Beijing, China
| | - Jiachao Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Ming Cheng
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zidi Qin
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
21
|
Singh M, Vaughn C, Sasaninia K, Yeh C, Mehta D, Khieran I, Venketaraman V. Understanding the Relationship between Glutathione, TGF-β, and Vitamin D in Combating Mycobacterium tuberculosis Infections. J Clin Med 2020; 9:jcm9092757. [PMID: 32858837 PMCID: PMC7563738 DOI: 10.3390/jcm9092757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) remains a pervasive global health threat. A significant proportion of the world's population that is affected by latent tuberculosis infection (LTBI) is at risk for reactivation and subsequent transmission to close contacts. Despite sustained efforts in eradication, the rise of multidrug-resistant strains of Mycobacteriumtuberculosis (M. tb) has rendered traditional antibiotic therapy less effective at mitigating the morbidity and mortality of the disease. Management of TB is further complicated by medications with various off-target effects and poor compliance. Immunocompromised patients are the most at-risk in reactivation of a LTBI, due to impairment in effector immune responses. Our laboratory has previously reported that individuals suffering from Type 2 Diabetes Mellitus (T2DM) and HIV exhibited compromised levels of the antioxidant glutathione (GSH). Restoring the levels of GSH resulted in improved control of M. tb infection. The goal of this review is to provide insights on the diverse roles of TGF- β and vitamin D in altering the levels of GSH, granuloma formation, and clearance of M. tb infection. We propose that these pathways represent a potential avenue for future investigation and development of new TB treatment modalities.
Collapse
Affiliation(s)
- Mohkam Singh
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Charles Vaughn
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Kayvan Sasaninia
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Christopher Yeh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Devanshi Mehta
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Ibrahim Khieran
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
- Correspondence: ; Tel.: +1-909-706-3736
| |
Collapse
|
22
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
23
|
Li Y, Zhang X, Pan W, Li N, Tang B. A Nongenetic Proximity-Induced FRET Strategy Based on DNA Tetrahedron for Visualizing the Receptor Dimerization. Anal Chem 2020; 92:11921-11926. [DOI: 10.1021/acs.analchem.0c02330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
24
|
Luo F, Qin G, Xia T, Fang X. Single-Molecule Imaging of Protein Interactions and Dynamics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:337-361. [PMID: 32228033 DOI: 10.1146/annurev-anchem-091619-094308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Live-cell single-molecule fluorescence imaging has become a powerful analytical tool to investigate cellular processes that are not accessible to conventional biochemical approaches. This has greatly enriched our understanding of the behaviors of single biomolecules in their native environments and their roles in cellular events. Here, we review recent advances in fluorescence-based single-molecule bioimaging of proteins in living cells. We begin with practical considerations of the design of single-molecule fluorescence imaging experiments such as the choice of imaging modalities, fluorescent probes, and labeling methods. We then describe analytical observables from single-molecule data and the associated molecular parameters along with examples of live-cell single-molecule studies. Lastly, we discuss computational algorithms developed for single-molecule data analysis.
Collapse
Affiliation(s)
- Fang Luo
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Qin
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tie Xia
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Fang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
26
|
Raktoe RS, Rietveld MH, Out-Luiting JJ, Kruithof-de Julio M, van Zuijlen PPM, van Doorn R, Ghalbzouri AE. Exon skipping of TGFβRI affects signalling and ECM expression in hypertrophic scar-derived fibroblasts. Scars Burn Heal 2020; 6:2059513120908857. [PMID: 32528734 PMCID: PMC7263111 DOI: 10.1177/2059513120908857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In burn patients, wound healing is often accompanied by hypertrophic scar (HS) development, resulting in both functional and aesthetic problems. HSs are characterised by abundant presence of myofibroblasts that contribute to overproduction of extracellular matrix (ECM) that is regulated by the TGF-β signalling pathway. Studies have shown that inhibition of TGF-β receptors in fibrotic diseases reduces the fibrotic load. In the present study, we aim to inactivate ALK5, also known as TGF-β receptor I, in human HS fibroblasts by exon skipping using antisense oligonucleotides (AONs). METHODS HS biopsies were used to isolate and set up fibroblast monocultures. AONs targeting ALK5 were supplemented to the fibroblast cultures to induce exon skipping, while pharmacological ALK5 inhibition was induced using SB431542. AON delivery in HS fibroblasts was examined using immunofluorescence (IF), while TGF-β signalling downstream targets, such as Smad2/3, PAI-1, ACTA2, COL1A1 and COL3A1, were analysed using touchdown polymerase chain reaction (PCR), quantitative PCR (qPCR), IF or western blotting. RESULTS Our data clearly demonstrate that AONs were successfully delivered in the nuclei of HS fibroblasts and that functional exon skipping of ALK5 took place as confirmed with touchdown PCR and qPCR. In addition, exon skipping affected the expression of ECM-related genes, such as type I/III collagens, PAI-1 and CCN2. Moreover, AON treatment did not affect the migration of HS fibroblasts in a model for wound healing. CONCLUSION Exon skipping is a promising tool to modulate the TGF-β signalling pathway in HS. This would open a therapeutic window for the treatment of patients suffering from HSs.
Collapse
Affiliation(s)
- Rajiv S Raktoe
- Department of Dermatology, Leiden University Medical Center (LUMC), The Netherlands
| | - Marion H Rietveld
- Department of Dermatology, Leiden University Medical Center (LUMC), The Netherlands
| | - Jacoba J Out-Luiting
- Department of Dermatology, Leiden University Medical Center (LUMC), The Netherlands
| | | | - Paul PM van Zuijlen
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center (LUMC), The Netherlands
| | | |
Collapse
|
27
|
Zhao R, Yuan J, Li N, Sun Y, Xia T, Fang X. Analysis of the Diffusivity Change from Single-Molecule Trajectories on Living Cells. Anal Chem 2019; 91:13390-13397. [PMID: 31580655 DOI: 10.1021/acs.analchem.9b01005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the wide application of live-cell single-molecule imaging and tracking of biomolecules at work, deriving diffusion state changes of individual molecules is of particular interest as these changes reflect molecular oligomerization or interaction with other cellular components and thus correlate with functional changes. We have developed a Rayleigh mixture distribution-based hidden Markov model method to analyze time-lapse diffusivity change of single molecules, especially membrane proteins, with unknown dynamic states in living cells. With this method, the diffusion parameters, including diffusion state number, state transition probability, diffusion coefficient, and state mixture ratio, can be extracted from the single-molecule diffusion trajectories accurately via easy computation. The validity of our method has been demonstrated with not only experiments on synthetic trajectories but also single-molecule fluorescence imaging data of two typical membrane receptors. Our method offers a new analytical tool for the investigation of molecular interaction kinetics at the single-molecule level.
Collapse
Affiliation(s)
- Rong Zhao
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jinghe Yuan
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Nan Li
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yahong Sun
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,The Second High School Attached to Beijing Normal University , Beijing 100088 , P. R. China
| | - Tie Xia
- Institute for Immunology, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Xiaohong Fang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
28
|
Fast-diffusing p75 NTR monomers support apoptosis and growth cone collapse by neurotrophin ligands. Proc Natl Acad Sci U S A 2019; 116:21563-21572. [PMID: 31515449 PMCID: PMC6815156 DOI: 10.1073/pnas.1902790116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurotrophins (NTs) are homodimeric growth factors displaying fundamental roles in the nervous system. Their activity stems from binding and activation of 3 different receptor types in nervous cell membranes. The p75 NT receptor (p75NTR) was the first to be discovered in 1986; nevertheless, for the numerous structural and functional facets so far reported, its activation mechanisms have remained elusive. Here, we demonstrate that its pleiotropic functions are regulated by different redistributions of the receptors, which crucially depend on the available NT and on the involved subcellular compartment but are unrelated to its oligomerization state. Single-particle studies proved receptors to be monomers with a fast-diffusive behavior in the membrane with, at most, transient self-interactions on the millisecond time scale. The p75 neurotrophin (NT) receptor (p75NTR) plays a crucial role in balancing survival-versus-death decisions in the nervous system. Yet, despite 2 decades of structural and biochemical studies, a comprehensive, accepted model for p75NTR activation by NT ligands is still missing. Here, we present a single-molecule study of membrane p75NTR in living cells, demonstrating that the vast majority of receptors are monomers before and after NT activation. Interestingly, the stoichiometry and diffusion properties of the wild-type (wt) p75NTR are almost identical to those of a receptor mutant lacking residues previously believed to induce oligomerization. The wt p75NTR and mutated (mut) p75NTR differ in their partitioning in cholesterol-rich membrane regions upon nerve growth factor (NGF) stimulation: We argue that this is the origin of the ability of wt p75NTR , but not of mut p75NTR, to mediate immature NT (proNT)-induced apoptosis. Both p75NTR forms support proNT-induced growth cone retraction: We show that receptor surface accumulation is the driving force for cone collapse. Overall, our data unveil the multifaceted activity of the p75NTR monomer and let us provide a coherent interpretative frame of existing conflicting data in the literature.
Collapse
|
29
|
Bing T, Shen L, Wang J, Wang L, Liu X, Zhang N, Xiao X, Shangguan D. Aptameric Probe Specifically Binding Protein Heterodimer Rather Than Monomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900143. [PMID: 31179220 PMCID: PMC6548965 DOI: 10.1002/advs.201900143] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/03/2019] [Indexed: 05/19/2023]
Abstract
Dimerization of proteins occurs frequently and plays integral roles in biological processes. However, no single molecular probe is available for in situ detection of protein dimers on cells and tissues because of the difficulty of isolating complete protein dimers for probe preparation and screening, which has greatly hampered the biomedical study of protein dimers. Herein, a G-rich DNA aptamer (termed BG2) that only binds alkaline phosphatase (AP) heterodimers rather than monomers is reported. This aptamer is generated by the cell-SELEX (systematic evolution of ligands by exponential enrichment) technique and proves to fold into a duplex stabilized antiparallel G-quadruplex structure. Using BG2 as molecular probe, AP heterodimers are found to be expressed on several kinds of cancer cells. As an affinity ligand, BG2 could isolate AP heterodimers from cell lysate. BG2 is also demonstrated to be applicable for tumor imaging in mice xenografted with cells highly expressing AP heterodimers. AP isozymes are found in several tissues and blood throughout the body, but the function and tissue distribution of AP heterodimers are totally unknown; therefore, BG2 could serve as a molecular probe to uncover the mystery of AP heterodimers. The generation of aptameric probes by cell-SELEX will open up a new situation for the study of protein dimers.
Collapse
Affiliation(s)
- Tao Bing
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Luyao Shen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Junyan Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Linlin Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Nan Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiao Xiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
30
|
Zi Z. Molecular Engineering of the TGF-β Signaling Pathway. J Mol Biol 2019; 431:2644-2654. [PMID: 31121181 DOI: 10.1016/j.jmb.2019.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Transforming growth factor beta (TGF-β) is an important growth factor that plays essential roles in regulating tissue development and homeostasis. Dysfunction of TGF-β signaling is a hallmark of many human diseases. Therefore, targeting TGF-β signaling presents broad therapeutic potential. Since the discovery of the TGF-β ligand, a collection of engineered signaling proteins have been developed to probe and manipulate TGF-β signaling responses. In this review, we highlight recent progress in the engineering of TGF-β signaling for different applications and discuss how molecular engineering approaches can advance our understanding of this important pathway. In addition, we provide a future outlook on the opportunities and challenges in the engineering of the TGF-β signaling pathway from a quantitative perspective.
Collapse
Affiliation(s)
- Zhike Zi
- Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
31
|
Xu J, Qin G, Luo F, Wang L, Zhao R, Li N, Yuan J, Fang X. Automated Stoichiometry Analysis of Single-Molecule Fluorescence Imaging Traces via Deep Learning. J Am Chem Soc 2019; 141:6976-6985. [DOI: 10.1021/jacs.9b00688] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jiachao Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 532] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
33
|
Wang L, Li W, Sun J, Zhang SY, Yang S, Li J, Li J, Yang HH. Imaging of Receptor Dimers in Zebrafish and Living Cells via Aptamer Recognition and Proximity-Induced Hybridization Chain Reaction. Anal Chem 2018; 90:14433-14438. [PMID: 30444610 DOI: 10.1021/acs.analchem.8b04015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
On cell-membrane surfaces, receptor-protein dimers play fundamental roles in many signaling pathways that are crucial for normal biological processes and cancer development. Efficient and sensitive analysis of receptor dimers in the native environment is highly desirable. Herein, we present a strategy for amplified imaging of receptor dimers in zebrafish and living cells that relies on aptamer recognition and proximity-induced hybridization chain reaction. Taking advantage of specific aptamer recognition and enzyme-free signal amplification, this strategy is successfully applied to the visualization of c-Met-receptor dimers in an HGF-independent or -dependent manner. Therefore, the developed imaging strategy paves the way for further investigation of the dimerization or oligomerization states of cell-surface receptors and their corresponding activation processes in zebrafish and living cells.
Collapse
Affiliation(s)
- Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , People's Republic of China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Wei Li
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , People's Republic of China
| | - Jin Sun
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , People's Republic of China
| | - Su-Yun Zhang
- Department of Medical Oncology , Fujian Medical University Union Hospital , Fuzhou 350001 , People's Republic of China
| | - Sheng Yang
- Department of Medical Oncology , Fujian Medical University Union Hospital , Fuzhou 350001 , People's Republic of China
| | - Jingying Li
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , People's Republic of China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , People's Republic of China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , People's Republic of China
| |
Collapse
|
34
|
Cui Y, Yu M, Yao X, Xing J, Lin J, Li X. Single-Particle Tracking for the Quantification of Membrane Protein Dynamics in Living Plant Cells. MOLECULAR PLANT 2018; 11:1315-1327. [PMID: 30296600 DOI: 10.1016/j.molp.2018.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 05/25/2023]
Abstract
The plasma membrane is a sophisticated, organized, and highly heterogeneous structure that compartmentalizes cellular processes. To decipher the biological processes involving membrane proteins, it is necessary to analyze their spatiotemporal dynamics. However, it is difficult to directly assess the dynamics and interactions of biomolecules in living cells using traditional biochemical methods. Single-particle tracking (SPT) methods for imaging and tracking single particles conjugated with fluorescent probes offer an ideal approach to acquire valuable and complementary information about dynamic intracellular processes. SPT can be used to quantitatively monitor the diverse motions of individual particles in living cells. SPT also provides super-spatiotemporal resolution that allows early-stage or rapid response information to be obtained for a better understanding of molecular basis of associated signal transduction processes. More importantly, SPT can be used to detect the motion paths of individual biomolecules in vivo and in situ, thus unveiling the dynamic behavior of the biomolecules that support developmental processes in living cells. In this review, we give an overview of SPT methods, from image acquisition to the detection of single particles, as well as tracking and data analysis. We also discuss recent applications of SPT methods in the field of plant biology to reveal the complex biological functions of membrane proteins.
Collapse
Affiliation(s)
- Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Yao
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jingjing Xing
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Jinming Street, Kaifeng 475001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
35
|
Chen S, Li J, Liang H, Lin XH, Li J, Yang HH. Light-Induced Activation of c-Met Signalling by Photocontrolled DNA Assembly. Chemistry 2018; 24:15988-15992. [PMID: 30155946 DOI: 10.1002/chem.201803868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Indexed: 12/19/2022]
Abstract
Optical manipulation appears to be a powerful tool for spatiotemporally controlling a variety of cellular functions. Herein, a photocontrolled DNA assembly approach is described which enables light-induced activation of cellular signal transduction by triggering protein dimerization (c-Met signalling in this case). Three kinds of DNA probes are designed, including a pair of receptor recognition probes with adaptors and a blocker probe with a photocleavable linker (PC-linker). By implementing PC-linkers in blocker probes, the designed DNA probes response to light irradiation, which then induces the assembly of receptor recognition probes through adaptor complementing. Consequently, light-mediated DNA assembly promotes the dimerization of c-Met receptors, resulting in activation of c-Met signalling. It is demonstrated that the proposed photocontrolled DNA assembly approach is effective for regulating c-Met signalling and modulating cellular behaviours, such as cell proliferation and migration. Therefore, this simple approach may offer a promising strategy to manipulate cell signalling pathways precisely in living cells.
Collapse
Affiliation(s)
- Shan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hong Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xia-Hui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
36
|
Zhang M, Zhang Z, He K, Wu J, Li N, Zhao R, Yuan J, Xiao H, Zhang Y, Fang X. Quantitative Characterization of the Membrane Dynamics of Newly Delivered TGF-β Receptors by Single-Molecule Imaging. Anal Chem 2018; 90:4282-4287. [PMID: 29509006 DOI: 10.1021/acs.analchem.7b03448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dynamics and stoichiometry of receptors newly delivered on the plasma membrane play a vital role in cell signal transduction, yet knowledge of this process is limited because of the lack of suitable analytical methods. Here we developed a new strategy that combines single-molecule imaging (SMI) and fluorescence recovery after photobleaching (FRAP), named FRAP-SMI, to monitor and quantify individual newly delivered and inserted transmembrane receptors on plasma membranes of living cells. Transforming-growth-factor-β type II receptor (TβRII), a typical serine/threoninekinase receptor, was studied with this method. We first eliminated the fluorescence signals from the pre-existing EGFP-labeled TβRII molecules on the plasma membrane, and then we recorded the individual newly appeared TβRII-GFP by total-internal-reflection fluorescence imaging. The fluorescence-intensity distributions, photobleaching steps, and diffusion rates of the single TβRII-GFP molecules were analyzed. We reported, for the first time, that TβRII was transported to the plasma membrane mainly in the monomeric form in both resting and TGF-β1stimulated cells. This strongly supported our former discovery that TβRII could exist as a monomer on the cell membrane. We also found that ligand stimulation resulted in enhanced delivery rates and prolonged membrane-association times for the TβRII molecules. On the basis of these observations, we proposed a mechanism of TGF-β1-induced TβRII dimerization for receptor activation. Our method provides a useful tool for the real-time quantification of the spatial arrangement, mobility, and oligomerization of cell-surface proteins in living cells, thus providing a better understanding of cell signaling.
Collapse
Affiliation(s)
- Mingliang Zhang
- Institute of Vascular Medicine of Third Hospital, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100191 , P. R. China.,CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Zhen Zhang
- CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Kangmin He
- Institute of Vascular Medicine of Third Hospital, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100191 , P. R. China.,CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Jimin Wu
- Institute of Vascular Medicine of Third Hospital, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100191 , P. R. China
| | - Nan Li
- CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Rong Zhao
- CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jinghe Yuan
- CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Han Xiao
- Institute of Vascular Medicine of Third Hospital, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100191 , P. R. China
| | - Youyi Zhang
- Institute of Vascular Medicine of Third Hospital, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100191 , P. R. China
| | - Xiaohong Fang
- CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
37
|
Yan X, Xiong X, Chen YG. Feedback regulation of TGF-β signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:37-50. [PMID: 29228156 DOI: 10.1093/abbs/gmx129] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs.
Collapse
Affiliation(s)
- Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Zhao R, Li N, Xu J, Li W, Fang X. Quantitative single-molecule study of TGF-β/Smad signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:51-59. [PMID: 29190315 DOI: 10.1093/abbs/gmx121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022] Open
Abstract
TGF-β/Smad signaling pathway triggers diverse cellular responses among different cell types and environmental conditions. Quantitative analysis of protein-protein interactions involved in TGF-β/Smad signaling is demanded for understanding the molecular mechanism of this signaling pathway. Live-cell single-molecule microcopy with high spatiotemporal resolution is a new tool to monitor key molecular events in a real-time manner. In this review, we mainly presented the recent work on the quantitative characterization of TGF-β/Smad signaling proteins by single-molecule method, and showed how it enabled us to obtain new insights about this canonical signaling process.
Collapse
Affiliation(s)
- Rong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachao Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Xie F, Ling L, van Dam H, Zhou F, Zhang L. TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:121-132. [PMID: 29190313 DOI: 10.1093/abbs/gmx123] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The transforming growth factor (TGF)-β signaling events are well known to control diverse processes and numerous responses, such as cell proliferation, differentiation, apoptosis, and migration. TGF-β signaling plays context-dependent roles in cancer: in pre-malignant cells TGF-β primarily functions as a tumor suppressor, while in the later stages of cancer TGF-β signaling promotes invasion and metastasis. Recent studies have also suggested that the cross-talk between TGF-β signaling and other signaling pathways, such as Hippo, Wnt, EGFR/RAS, and PI3K/AKT pathways, may substantially contribute to our current understanding of TGF-β signaling and cancer. As a result of the wide-ranging effects of TGF-β, blockade of TGF-β and its downstream signaling components provides multiple therapeutic opportunities. Therefore, the outlook for anti-TGF-β signaling therapy for numerous diseases appears bright and will provide valuable information and thinking on the drug molecular design. In this review, we focus on recent insights into the regulation of TGF-β signaling in cancer metastasis which may contribute to the development of novel cancer-targeting therapies.
Collapse
Affiliation(s)
- Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Ling
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Long Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
40
|
QIN GG, LI WH, XU JC, KOU XL, ZHAO R, LUO F, FANG XH. Development of Integrated Atomic Force Microscopy and Fluorescence Microscopy for Single-Molecule Analysis in Living Cells. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61056-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Peng H, Wang Q, Lou T, Qin J, Jung S, Shetty V, Li F, Wang Y, Feng XH, Mitch WE, Graham BH, Hu Z. Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nat Commun 2017; 8:1493. [PMID: 29138395 PMCID: PMC5686208 DOI: 10.1038/s41467-017-01646-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
Kidney injury initiates metabolic reprogramming in tubule cells that contributes to the development of chronic kidney disease (CKD). Exercise has been associated with beneficial effects in patients with CKD. Here we show that the induction of a myokine, irisin, improves kidney energy metabolism and prevents kidney damage. In response to kidney injury, mice with muscle-specific PGC-1α overexpression (mPGC-1α) exhibit reduced kidney damage and fibrosis. Metabolomics analysis reveals increased ATP production and improved energy metabolism in injured kidneys from mPGC-1α mice. We identify irisin as a serum factor that mediates these metabolic effects during progressive kidney injury by inhibiting TGF-β type 1 receptor. Irisin depletion from serum blunts the induction of oxygen consumption rate observed in tubule cells treated with mPGC-1α serum. In mice, recombinant irisin administration attenuates kidney damage and fibrosis and improves kidney functions. We suggest that myokine-mediated muscle-kidney crosstalk can suppress metabolic reprograming and fibrogenesis during kidney disease. Progressive tubule cell damage results in defects in mitochondrial metabolism and exercise seems to be beneficial during chronic kidney disease. Here Peng et al. show that irisin, an exercise-induced myokine, improves kidney energy metabolism by inhibiting TGF-β type 1 receptors and ameliorates fibrosis.
Collapse
Affiliation(s)
- Hui Peng
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Qianqian Wang
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tanqi Lou
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Qin
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sungyun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Vivekananda Shetty
- The Metabolomics and Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Feng Li
- The Metabolomics and Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Yanlin Wang
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xin-Hua Feng
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - William E Mitch
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
42
|
Song Y, Ge B, Lao J, Wang Z, Yang B, Wang X, He H, Li J, Huang F. Regulation of the Oligomeric Status of CCR3 with Binding Ligands Revealed by Single-Molecule Fluorescence Imaging. Biochemistry 2017; 57:852-860. [PMID: 28994588 DOI: 10.1021/acs.biochem.7b00676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between the oligomeric status and functions of chemokine receptor CCR3 is still controversial. We use total internal reflection fluorescence microscopy at the single-molecule level to visualize the oligomeric status of CCR3 and its regulation of the membrane of stably transfected T-REx-293 cells. We find that the population of the dimers and oligomers of CCR3 can be modulated by the binding of ligands. Natural agonists can induce an increase in the level of dimers and oligomers at high concentrations, whereas antagonists do not have a significant influence on the oligomeric status. Moreover, monomeric CCR3 exhibits a stronger chemotactic response in the migration assay of stably transfected CCR3 cells. Together, these data support the notion that CCR3 exists as a mixture of monomers and dimers under nearly physiological conditions and the monomeric CCR3 receptor is the minimal functional unit in cellular signaling transduction. To the best of our knowledge, these results constitute the first report of the oligomeric status of CCR3 and its regulation.
Collapse
Affiliation(s)
- Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Jun Lao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Zhencai Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Bin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| |
Collapse
|
43
|
Li N, Zhao R, Sun Y, Ye Z, He K, Fang X. Single-molecule imaging and tracking of molecular dynamics in living cells. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nww055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Unlike the ensemble-averaging measurements, the single-molecule imaging and tracking (SMIT) in living cells provides the real-time quantitative information about the locations, kinetics, dynamics and interactions of individual molecules in their native environments with high spatiotemporal resolution and minimal perturbation. The past decade has witnessed a transforming development in the methods of SMIT with living cells, including fluorescent probes, labeling strategies, fluorescence microscopy, and detection and tracking algorithms. In this review, we will discuss these aspects with a particular focus on their recent advancements. We will then describe representative single-molecule studies to illustrate how the single-molecule approaches can be applied to monitor biomolecular interaction/reaction dynamics, and extract the molecular mechanistic information for different cellular systems.
Collapse
Affiliation(s)
- Nan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahong Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangmin He
- Department of Cell Biology, Harvard Medical School, and Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Single-molecule imaging reveals the stoichiometry change of epidermal growth factor receptor during transactivation by β2-adrenergic receptor. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9072-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Lao J, He H, Wang X, Wang Z, Song Y, Yang B, Ullahkhan N, Ge B, Huang F. Single-Molecule Imaging Demonstrates Ligand Regulation of the Oligomeric Status of CXCR4 in Living Cells. J Phys Chem B 2017; 121:1466-1474. [PMID: 28118546 DOI: 10.1021/acs.jpcb.6b10969] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The role of dimerization and oligomerization of G-protein-coupled receptors in their signal transduction is highly controversial. Delineating this issue can greatly facilitate rational drug design. With single-molecule imaging, we show that chemokine receptor CXCR4 exists mainly as a monomer in normal mammalian living cells and forms dimers and higher-order oligomers at a high expression level, such as in cancer cells. Chemotaxis tests demonstrate that the signal transduction activity of CXCR4 does not depend only on its expression level, indicating a close relation with the oligomeric status of CXCR4. Moreover, binding ligands can effectively upregulate or downregulate the oligomeric level of CXCR4, which suggests that binding ligands may realize their pivotal roles by regulating the oligomeric status of CXCR4 rather than by simply inducing conformational changes.
Collapse
Affiliation(s)
- Jun Lao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Zhencai Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Bin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Naseer Ullahkhan
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| |
Collapse
|
46
|
Maywald M, Meurer SK, Weiskirchen R, Rink L. Zinc supplementation augments TGF-β1-dependent regulatory T cell induction. Mol Nutr Food Res 2016; 61. [PMID: 27794192 DOI: 10.1002/mnfr.201600493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/28/2016] [Accepted: 10/09/2016] [Indexed: 12/31/2022]
Abstract
SCOPE Regulatory T cells (Treg) play a pivotal role in immune regulation. For proper immune function, also trace elements such as zinc, and anti-inflammatory cytokines, including transforming growth factor beta 1 (TGF-β1) and interleukin (IL)-10 are indispensable. Hence, in this study the influence of TGF-β1, IL-10, and zinc supplementation on Treg cells differentiation was investigated. METHODS AND RESULTS A synergistic effect of a combined zinc and TGF-β1 treatment on Foxp3 expression in peripheral blood mononuclear cells and mixed lymphocyte cultures (MLC) was found by performing Western blot analysis. Additionally, combined treatment causes elevated Smad 2/3 phosphorylation, which plays an important role in Foxp3 expression. This is due to a TGF-β1-mediated increase of intracellular-free zinc measured by zinc probes Fluozin3-AM and ZinPyr-1. Moreover, zinc as well as TGF-β1 treatment caused significantly reduced interferon (IFN)-γ secretion in MLC. CONCLUSION Combined zinc and TGF-β1 treatment provoked an increased Treg cell induction due to a triggered intracellular zinc signal, which in association with an increased Smad 2/3 activation leads to a boosted Foxp3 expression and resulting in an ameliorated allogeneic reaction in MLC. Thus, zinc can be used as a favorable additive to elevate the induction of Treg cells in adverse immune reactions.
Collapse
Affiliation(s)
- Martina Maywald
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
47
|
Ruan H, Yu J, Yuan J, Li N, Fang X. Nanoscale Distribution of Transforming Growth Factor Receptor on Post-Golgi Vesicle Revealed by Super-resolution Microscopy. Chem Asian J 2016; 11:3359-3364. [DOI: 10.1002/asia.201600436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/13/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Hefei Ruan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Jianqiang Yu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
| | - Jinghe Yuan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
| | - Nan Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructures and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; 2 ZhongGuanCun North First Street Beijing 100190 P.R. China), Fax: (+86) 10-62653083
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| |
Collapse
|
48
|
Li N, Yang Y, He K, Zhang F, Zhao L, Zhou W, Yuan J, Liang W, Fang X. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane. Sci Rep 2016; 6:33469. [PMID: 27641076 PMCID: PMC5027577 DOI: 10.1038/srep33469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023] Open
Abstract
Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.
Collapse
Affiliation(s)
- Nan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yong Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Kangmin He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Fayun Zhang
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Libo Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wei Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jinghe Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wei Liang
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
49
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Abstract
Transforming growth factor β (TGF-β) family members signal via heterotetrameric complexes of type I and type II dual specificity kinase receptors. The activation and stability of the receptors are controlled by posttranslational modifications, such as phosphorylation, ubiquitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the cell surface and in the cytoplasm. Activation of TGF-β receptors induces signaling via formation of Smad complexes that are translocated to the nucleus where they act as transcription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38 MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 3'-kinase, and Rho GTPases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|