1
|
Li J, Deng W, Zhou T, Zhang X, Hu L, Fan S, Zou H. Anemarchalconyn, a natural alkyne ketone compound, inhibits HCC cell growth by suppressing Polθ and inducing synthetic lethality in Homologous recombination deficiency cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156679. [PMID: 40215812 DOI: 10.1016/j.phymed.2025.156679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/28/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly aggressive liver cancer with limited treatment options. Dysfunction of DNA damage response (DDR) genes, including Polθ and BRCA1, is implicated in HCC development and progression, offering novel therapeutic targets. OBJECTIVE This study aimed to investigate the anticancer effects of anemarchalconyn (SL-001) on HCC and elucidate its underlying mechanisms. METHODS We leveraged The Cancer Genome Atlas (TCGA) data analysis to explore the potential of POLQ/BRCA1 as therapeutic targets in liver cancer, as well as their association with the prognostic clinicopathological features of hepatocellular carcinoma (LIHC). We have isolated SL-001 and then developed an innovative and efficient synthesis strategy for SL-001, a natural alkyne ketone compound isolated from Selaginella tamariscina, and assessed the anti-tumor effects of SL-001 through in vitro and in vivo studies. RESULTS TCGA analysis revealed significant upregulation of POLQ and BRCA1 in HCC tumors compared to normal tissues. Additionally, POLQ and BRCA1 expression demonstrated high accuracy in distinguishing tumor tissues and correlating with reduced overall survival. SL-001 exhibited robust anti-proliferative effects on hepatocellular carcinoma (HCC) cells, surpassing the efficacy of the current standard treatment, sorafenib. The anti-HCC effect of SL-001 was associated with downregulation of POLQ, a key protein involved in alternative DNA repair pathways. Importantly, SL-001 demonstrated enhanced inhibitory effects on Homologous recombination deficiency (HRD) HCC cells, suggesting a synthetic lethal interaction between SL-001 and HRD. CONCLUSION SL-001 represents a promising therapeutic candidate for HCC, particularly for patients with HRD tumors. Its mechanism involves inhibiting POLQ and disrupting DNA repair pathways, leading to increased DNA damage and cell death in HRD cells. This study provides a foundation for further investigation of SL-001 as a targeted therapy for HCC.
Collapse
Affiliation(s)
- Junnan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Wenwen Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Tianjie Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Xinyang Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Shasha Fan
- Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China.
| | - Hui Zou
- Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China; Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Nesic K, Parker P, Swisher EM, Krais JJ. DNA repair and the contribution to chemotherapy resistance. Genome Med 2025; 17:62. [PMID: 40420317 PMCID: PMC12107761 DOI: 10.1186/s13073-025-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
The DNA damage response comprises a set of imperfect pathways that maintain cell survival following exposure to DNA damaging agents. Cancers frequently exhibit DNA repair pathway alterations that contribute to their intrinsic genome instability. This, in part, facilitates a therapeutic window for many chemotherapeutic agents whose mechanisms of action often converge at the generation of a double-strand DNA break. The development of therapy resistance occurs through countless molecular mechanisms that promote tolerance to DNA damage, often by preventing break formation or increasing repair capacity. This review broadly discusses the DNA damaging mechanisms of action for different classes of chemotherapeutics, how avoidance and repair of double-strand breaks can promote resistance, and strategic directions for counteracting therapy resistance.
Collapse
Affiliation(s)
- Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Phoebe Parker
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - John J Krais
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
3
|
Thomas C, Green S, Kimball L, Schmidtke IR, Rothwell L, Griffin M, Par I, Schobel S, Palacio Y, Towle-Weicksel JB, Weicksel SE. Zebrafish Polymerase Theta and human Polymerase Theta: Orthologues with homologous function. PLoS One 2025; 20:e0321886. [PMID: 40299938 PMCID: PMC12040184 DOI: 10.1371/journal.pone.0321886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/12/2025] [Indexed: 05/01/2025] Open
Abstract
DNA Polymerase Theta (Pol θ) is a conserved an A-family polymerase that plays an essential role in repairing double strand breaks, through micro-homology end joining, and bypassing DNA lesions, through translesion synthesis, to protect genome integrity. Despite its essential role in DNA repair, Pol θ is inherently error-prone. Recently, key loop regions were identified to play an important role in key functions of Pol θ. Here we present a comparative structure-function study of the polymerase domain of zebrafish and human Pol θ. We show that these two proteins share a large amount of sequence and structural homology. Using a classical biochemical approach we observe that zebrafish Pol θ displays behavior characteristic of human Pol θ, including DNA template extension in the presence of different divalent metals, microhomology-mediated end joining, and translesion synthesis. These results will support future studies looking to gain insight into Pol θ function on the basis of evolutionarily conserved features.
Collapse
Affiliation(s)
- Corey Thomas
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Sydney Green
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Lily Kimball
- Department of Biology and Biological Sciences, Bryant University, Smithfield, Rhode Island, United States of America
| | - Isaiah R. Schmidtke
- Department of Biology and Biological Sciences, Bryant University, Smithfield, Rhode Island, United States of America
| | - Lauren Rothwell
- Department of Biology and Biological Sciences, Bryant University, Smithfield, Rhode Island, United States of America
| | - Makayla Griffin
- Department of Biology and Biological Sciences, Bryant University, Smithfield, Rhode Island, United States of America
| | - Ivy Par
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Sophia Schobel
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Yayleene Palacio
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Jamie B. Towle-Weicksel
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Steven E. Weicksel
- Department of Biology and Biological Sciences, Bryant University, Smithfield, Rhode Island, United States of America
| |
Collapse
|
4
|
Blanch JR, Woodward N, Krishnamurthy M, McVey M. A non-tethering role for the Drosophila Pol θ linker domain in promoting damage resolution. Nucleic Acids Res 2025; 53:gkaf304. [PMID: 40275613 PMCID: PMC12021795 DOI: 10.1093/nar/gkaf304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
DNA polymerase theta (Pol θ) is an error-prone translesion polymerase that becomes crucial for DNA double-strand break repair when cells are deficient in homologous recombination or non-homologous end joining. In some organisms, Pol θ also promotes tolerance of DNA interstrand crosslinks. Due to its importance in DNA damage tolerance, Pol θ is an emerging target for treatment of cancer and disease. Prior work has characterized the functions of the Pol θ helicase-like and polymerase domains, but the roles of the linker domain are largely unknown. Here, we show that the Drosophila melanogaster Pol θ linker domain promotes proper egg development and is required for repair of DNA double-strand breaks and interstrand crosslink tolerance. While a linker domain with scrambled amino acid residues is sufficient for DNA repair, replacement of the linker with part of the Homo sapiens Pol θ linker or a disordered region from the FUS RNA-binding protein does not restore function. These results demonstrate that the linker domain is not simply a random tether between the catalytic domains and suggest that intrinsic amino acid residue properties, rather than protein interaction motifs, are more critical for Pol θ linker functions in DNA repair.
Collapse
Affiliation(s)
- Justin R Blanch
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | - Nicholas Woodward
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | | | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
5
|
Halim CE, Deng S, Crasta KC, Yap CT. Interplay Between the Cytoskeleton and DNA Damage Response in Cancer Progression. Cancers (Basel) 2025; 17:1378. [PMID: 40282554 PMCID: PMC12025774 DOI: 10.3390/cancers17081378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
DNA damage has emerged as a critical factor in fuelling the development and progression of cancer. DNA damage response (DDR) pathways lie at the crux of cell fate decisions following DNA damage induction, which can either trigger the repair of detrimental DNA lesions to protect cancer cells or induce the cell death machinery to eliminate damaged cells. Cytoskeletal dynamics have a critical role to play and influence the proper function of DDR pathways. Microfilaments, intermediate filaments, microtubules, and their associated proteins are well involved in the DDR. For instance, they are not only implicated in the recruitment of specific DDR molecules to the sites of DNA damage but also in the regulation of the mobility of the damaged DNA to repair sites in the periphery of the nucleus. The exquisite roles that these cytoskeletal proteins play in different DDR pathways, such as non-homologous end joining (NHEJ), homologous recombination (HR), base excision repair (BER), and nucleotide excision repair (NER), in cancer cells are extensively discussed in this review. Many cancer treatments are reliant upon inducing DNA damage in cancer cells to eliminate them; thus, it is important to shed light on factors that could affect their efficacy. Although the cytoskeleton is intricately involved in the DDR process, this has often been overlooked in cancer research and has not been exploited in developing DDR-targeting cancer therapy. Understanding the interplay between the cytoskeleton and the DDR in cancer will then provide insights into improving the development of cancer therapies that can leverage the synergistic action of DDR inhibitors and cytoskeleton-targeting agents.
Collapse
Affiliation(s)
- Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Karen Carmelina Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
6
|
Ito F, Li Z, Minakhin L, Khant HA, Pomerantz RT, Chen XS. Structural basis for Polθ-helicase DNA binding and microhomology-mediated end-joining. Nat Commun 2025; 16:3725. [PMID: 40253368 PMCID: PMC12009414 DOI: 10.1038/s41467-025-58441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/24/2025] [Indexed: 04/21/2025] Open
Abstract
DNA double-strand breaks (DSBs) present a critical threat to genomic integrity, often precipitating genomic instability and oncogenesis. Repair of DSBs predominantly occurs through homologous recombination (HR) and non-homologous end joining (NHEJ). In HR-deficient cells, DNA polymerase theta (Polθ) becomes critical for DSB repair via microhomology-mediated end joining (MMEJ), also termed theta-mediated end joining (TMEJ). Thus, Polθ is synthetically lethal with BRCA1/2 and other HR factors, underscoring its potential as a therapeutic target in HR-deficient cancers. However, the molecular mechanisms governing Polθ-mediated MMEJ remain poorly understood. Here we present a series of cryo-electron microscopy structures of the Polθ helicase domain (Polθ-hel) in complex with DNA containing different 3'-ssDNA overhangs. The structures reveal the sequential conformations adopted by Polθ-hel during the critical phases of DNA binding, microhomology searching, and microhomology annealing. The stepwise conformational changes within the Polθ-hel subdomains and its functional dimeric state are pivotal for aligning the 3'-ssDNA overhangs, facilitating the microhomology search and subsequent annealing necessary for DSB repair via MMEJ. Our findings illustrate the essential molecular switches within Polθ-hel that orchestrate the MMEJ process in DSB repair, laying the groundwork for the development of targeted therapies against the Polθ-hel.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ziyuan Li
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Leonid Minakhin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Htet A Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
7
|
Stojchevski R, Sutanto EA, Sutanto R, Hadzi-Petrushev N, Mladenov M, Singh SR, Sinha JK, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Bhaskar R, Avtanski D. Translational Advances in Oncogene and Tumor-Suppressor Gene Research. Cancers (Basel) 2025; 17:1008. [PMID: 40149342 PMCID: PMC11940485 DOI: 10.3390/cancers17061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Cancer, characterized by the uncontrolled proliferation of cells, is one of the leading causes of death globally, with approximately one in five people developing the disease in their lifetime. While many driver genes were identified decades ago, and most cancers can be classified based on morphology and progression, there is still a significant gap in knowledge about genetic aberrations and nuclear DNA damage. The study of two critical groups of genes-tumor suppressors, which inhibit proliferation and promote apoptosis, and oncogenes, which regulate proliferation and survival-can help to understand the genomic causes behind tumorigenesis, leading to more personalized approaches to diagnosis and treatment. Aberration of tumor suppressors, which undergo two-hit and loss-of-function mutations, and oncogenes, activated forms of proto-oncogenes that experience one-hit and gain-of-function mutations, are responsible for the dysregulation of key signaling pathways that regulate cell division, such as p53, Rb, Ras/Raf/ERK/MAPK, PI3K/AKT, and Wnt/β-catenin. Modern breakthroughs in genomics research, like next-generation sequencing, have provided efficient strategies for mapping unique genomic changes that contribute to tumor heterogeneity. Novel therapeutic approaches have enabled personalized medicine, helping address genetic variability in tumor suppressors and oncogenes. This comprehensive review examines the molecular mechanisms behind tumor-suppressor genes and oncogenes, the key signaling pathways they regulate, epigenetic modifications, tumor heterogeneity, and the drug resistance mechanisms that drive carcinogenesis. Moreover, the review explores the clinical application of sequencing techniques, multiomics, diagnostic procedures, pharmacogenomics, and personalized treatment and prevention options, discussing future directions for emerging technologies.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Edward Agus Sutanto
- CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA;
| | - Rinni Sutanto
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY 11545, USA;
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.)
| | - Sajal Raj Singh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | - Jitendra Kumar Sinha
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, Maharashtra, India;
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, Haryana, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
8
|
Espín R, Medina-Jover F, Sigüenza-Andrade J, Farran-Matas S, Mateo F, Figueras A, Sanz R, Vicent G, Shabbir A, Ruiz-Auladell L, Racionero-Andrés E, García I, Baiges A, Franco-Luzón L, Martínez-Tebar A, Pardo-Cea M, Martínez-Iniesta M, Wang X, Cuyàs E, Menendez J, Lopez-Cerda M, Muñoz P, Richaud I, Raya A, Fabregat I, Villanueva A, Serrat X, Cerón J, Alemany M, Guix I, Herencia-Ropero A, Serra V, Krishnan R, Mekhail K, Hakem R, Bruna J, Barcellos-Hoff M, Viñals F, Aytes Á, Pujana M. Harnessing transcriptional regulation of alternative end-joining to predict cancer treatment. NAR Cancer 2025; 7:zcaf007. [PMID: 40061566 PMCID: PMC11886861 DOI: 10.1093/narcan/zcaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Alternative end-joining (alt-EJ) is an error-prone DNA repair pathway that cancer cells deficient in homologous recombination rely on, making them vulnerable to synthetic lethality via inhibition of poly(ADP-ribose) polymerase (PARP). Targeting alt-EJ effector DNA polymerase theta (POLθ), which synergizes with PARP inhibitors and can overcome resistance, is of significant preclinical and clinical interest. However, the transcriptional regulation of alt-EJ and its interactions with processes driving cancer progression remain poorly understood. Here, we show that alt-EJ is suppressed by hypoxia while positively associated with MYC (myelocytomatosis oncogene) transcriptional activity. Hypoxia reduces PARP1 and POLQ expression, decreases MYC binding at their promoters, and lowers PARylation and alt-EJ-mediated DNA repair in cancer cells. Tumors with HIF1A mutations overexpress the alt-EJ gene signature. Inhibition of hypoxia-inducible factor 1α or HIF1A expression depletion, combined with PARP or POLθ inhibition, synergistically reduces the colony-forming capacity of cancer cells. Deep learning reveals the anticorrelation between alt-EJ and hypoxia across regions in tumor images, and the predictions for these and MYC activity achieve area under the curve values between 0.70 and 0.86. These findings further highlight the critical role of hypoxia in modulating DNA repair and present a strategy for predicting and improving outcomes centered on targeting alt-EJ.
Collapse
Affiliation(s)
- Roderic Espín
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Ferran Medina-Jover
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Department of Physiological Sciences, University of Barcelona, L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Javier Sigüenza-Andrade
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Sònia Farran-Matas
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Agnes Figueras
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Rosario T Sanz
- Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona 08028, Spain
| | - Guillermo Pablo Vicent
- Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona 08028, Spain
| | - Arzoo Shabbir
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Lara Ruiz-Auladell
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | | | - Irene García
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Alexandra Baiges
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Lídia Franco-Luzón
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Adrián Martínez-Tebar
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Miguel Angel Pardo-Cea
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - María Martínez-Iniesta
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Xieng Chen Wang
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Elisabet Cuyàs
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| | - Javier A Menendez
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| | - Marta Lopez-Cerda
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Purificacion Muñoz
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Ivonne Richaud
- Regenerative Medicine Program and Program for Clinical Translation of Regenerative Medicine in Catalonia—P-CMR[C], Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Network Centre in Bioengineering, Nanomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Angel Raya
- Regenerative Medicine Program and Program for Clinical Translation of Regenerative Medicine in Catalonia—P-CMR[C], Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Network Centre in Bioengineering, Nanomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Isabel Fabregat
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Networking Centre in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alberto Villanueva
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Xènia Serrat
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Julián Cerón
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Montserrat Alemany
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Neuro-Oncology Unit, University Hospital of Bellvitge, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Inés Guix
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Centre, University of California San Francisco, San Francisco, CA 94115, United States
| | - Andrea Herencia-Ropero
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona 08193, Spain
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jordi Bruna
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Neuro-Oncology Unit, University Hospital of Bellvitge, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Centre, University of California San Francisco, San Francisco, CA 94115, United States
| | - Francesc Viñals
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Department of Physiological Sciences, University of Barcelona, L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Álvaro Aytes
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| |
Collapse
|
9
|
Carrara M, Gaillard AL, Brion A, Duvernois-Berthet E, Giovannangeli C, Concordet JP, Pézeron G. Dynamic interplay of cNHEJ and MMEJ pathways of DNA double-strand break repair during embryonic development in zebrafish. Sci Rep 2025; 15:4886. [PMID: 39929954 PMCID: PMC11811205 DOI: 10.1038/s41598-025-88564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Double strand breaks (DSBs) are the most deleterious DNA lesions as they frequently result in mutations when repaired by canonical non homologous end-joining (cNHEJ) and microhomology-mediated end-joining (MMEJ). Here, we investigated the relative importance of cNHEJ and MMEJ pathways during zebrafish embryonic development. We have analyzed the expression of cNHEJ and MMEJ related genes and found that it was dynamic during development and often become increased in specific tissues. We showed that inactivation of nuclear DNA ligase 3 (nLig3) or DNA polymerase theta (Polθ), two key MMEJ factors, did not affect zebrafish development but sensitized embryos to ionizing radiations and that deficiency of Polθ, but not nLig3, profoundly alters the mutation spectrum induced during repair of Cas9-mediated DSBs. By contrast, inactivation of DNA ligase 4, required for cNHEJ, did not seem to sensitize embryos to ionizing radiations nor to affect repair of Cas9-mediated DSBs but resulted in important larval growth defects. Our study underscores the dynamic and context-dependent roles of cNHEJ and MMEJ pathways during zebrafish development, highlighting their differential requirements across developmental stages and in response to genotoxic stress.
Collapse
Affiliation(s)
- Mathieu Carrara
- Physiologie Moléculaire et Adaptation (PhyMA, UMR7221), Muséum national d'Histoire naturelle, CNRS, Paris, France
- Structure and Instability of Genomes Laboratory (StrING UMR7196 - U1154), Muséum national d'Histoire naturelle, CNRS, INSERM, Paris, France
| | - Anne-Laure Gaillard
- Physiologie Moléculaire et Adaptation (PhyMA, UMR7221), Muséum national d'Histoire naturelle, CNRS, Paris, France
| | - Alice Brion
- Structure and Instability of Genomes Laboratory (StrING UMR7196 - U1154), Muséum national d'Histoire naturelle, CNRS, INSERM, Paris, France
| | - Evelyne Duvernois-Berthet
- Physiologie Moléculaire et Adaptation (PhyMA, UMR7221), Muséum national d'Histoire naturelle, CNRS, Paris, France
| | - Carine Giovannangeli
- Structure and Instability of Genomes Laboratory (StrING UMR7196 - U1154), Muséum national d'Histoire naturelle, CNRS, INSERM, Paris, France
| | - Jean-Paul Concordet
- Structure and Instability of Genomes Laboratory (StrING UMR7196 - U1154), Muséum national d'Histoire naturelle, CNRS, INSERM, Paris, France.
| | - Guillaume Pézeron
- Physiologie Moléculaire et Adaptation (PhyMA, UMR7221), Muséum national d'Histoire naturelle, CNRS, Paris, France.
| |
Collapse
|
10
|
Wu J, Wang C, Tang W, Gao J, Guo X. Integrated Analysis of Polymerase Family Gene Mutations in Acute Myeloid Leukemia: Clinical Features, Prognosis, and Bioinformatics Insights. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1975. [PMID: 39768855 PMCID: PMC11676477 DOI: 10.3390/medicina60121975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: The long-term prognosis of acute myeloid leukemia (AML) is challenging due to limited understanding of the molecular markers involved in its development. This study investigates the role of DNA polymerases in AML to offer new insights for diagnosis and treatment. Materials and Methods: A retrospective study on pediatric AML patients with POL gene family mutations from 2021 to 2024 was conducted. Patients were categorized based on risk stratification criteria, and the DAH regimen was used for induction chemotherapy. Bioinformatics analysis integrated data from various databases to identify key genes and develop survival analysis plots and AUC curves. Results: The study included 59 pediatric AML patients, revealing no significant differences in demographic or clinical characteristics between those with and without POL family gene mutations. However, patients with POL gene mutations showed higher complete remission rates after initial DAH chemotherapy (91.67% vs. 59.57%, p = 0.03607), indicating a potential treatment benefit. High expression of four POL genes (POLD1, POLE, POLG, and POLQ) in bone marrow and immune cells suggests their crucial role in hematopoiesis and immune response. Survival analysis across different datasets indicated that AML patients with overexpressed POL family genes had significantly worse outcomes, proposing these genes as potential prognostic biomarkers for AML. Conclusions: This study on pediatric AML demonstrates that POL gene family mutations are associated with higher remission rates post-chemotherapy, indicating their potential as prognostic markers. Bioinformatics analysis emphasizes the significance of these mutations in AML, highlighting their impact on disease prognosis.
Collapse
Affiliation(s)
- Jianrong Wu
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University, Chengdu 610017, China (C.W.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610017, China
| | - Chaoban Wang
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University, Chengdu 610017, China (C.W.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610017, China
| | - Wenhao Tang
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University, Chengdu 610017, China (C.W.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610017, China
| | - Ju Gao
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University, Chengdu 610017, China (C.W.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610017, China
| | - Xia Guo
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University, Chengdu 610017, China (C.W.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610017, China
| |
Collapse
|
11
|
Brooke G, Wendel S, Banerjee A, Wallace N. Opportunities to advance cervical cancer prevention and care. Tumour Virus Res 2024; 18:200292. [PMID: 39490532 PMCID: PMC11566706 DOI: 10.1016/j.tvr.2024.200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Cervical cancer (CaCx) is a major public health issue, with over 600,000 women diagnosed annually. CaCx kills someone every 90 s, mostly in low- and middle-income countries. There are effective yet imperfect mechanisms to prevent CaCx. Since human papillomavirus (HPV) infections cause most CaCx, they can be prevented by vaccination. Screening methodologies can identify premalignant lesions and allow interventions before a CaCx develops. However, these tools are less feasible in resource-poor environments. Additionally, current screening modalities cannot triage lesions based on their relative risk of progression, which results in overtreatment. CaCx care relies heavily on genotoxic agents that cause severe side effects. This review discusses ways that recent technological advancements could be leveraged to improve CaCx care and prevention.
Collapse
Affiliation(s)
- Grant Brooke
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sebastian Wendel
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Abhineet Banerjee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas Wallace
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
12
|
Yao Q, Gao S, Sun Q, Liuhua Wang, Ren J, Wang D. POLQ knockdown inhibits proliferation, migration, and invasion by inducing cell cycle arrest in colorectal cancer. Discov Oncol 2024; 15:633. [PMID: 39520627 PMCID: PMC11550297 DOI: 10.1007/s12672-024-01496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Polymerase θ (POLQ) is an error-prone translesion synthesis polymerase that participates in the repair of DNA double-strand breaks. Previous studies have reported that the level of POLQ expression is distinctly upregulated in colorectal cancer (CRC), but little attention has been given to its function and regulation of CRC progression. This study aimed to explore the specific function of POLQ in CRC. METHODS Quantitative real-time PCR and western blotting analysis were used to assess the transcription and translation levels of POLQ. Then, POLQ was stably silenced using small interfering RNA in SW480 and HCT116 cells. Afterwards, the function of POLQ in CRC cells was proven via Cell Counting Kit‑8, scratch wound healing, colony formation, and Boyden chamber assays. Furthermore, we investigated the effects of POLQ on the cell cycle signaling pathway that obtained from biological pathway enrichment analysis and further verified by activating the signaling pathway. RESULTS The results showed that POLQ was highly expressed in CRC tissues and cells and was associated with poor clinical outcomes of patients. Knockdown of POLQ significantly reduced the proliferation, migration and invasion of CRC cells. Additionally, POLQ knockdown markedly decreased the expression levels of MMP2 and MMP9, and blocked cell cycle progression by inhibiting the expression of G1/M and S/M phases proteins. CONCLUSIONS POLQ knockdown restrained the progression of CRC by blocking the cell cycle signaling pathway.
Collapse
Affiliation(s)
- Qing Yao
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China
| | - Shuyang Gao
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China
| | - Qiannan Sun
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China
- Medical Research Center of Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Liuhua Wang
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China
| | - Jun Ren
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China
| | - Daorong Wang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China.
- Yangzhou, Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic, Yangzhou, 225001, China.
| |
Collapse
|
13
|
Lin X, Soni A, Hessenow R, Sun Y, Mladenov E, Guberina M, Stuschke M, Iliakis G. Talazoparib enhances resection at DSBs and renders HR-proficient cancer cells susceptible to Polθ inhibition. Radiother Oncol 2024; 200:110475. [PMID: 39147034 DOI: 10.1016/j.radonc.2024.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND PURPOSE The PARP inhibitor (PARPi), Talazoparib (BMN673), effectively and specifically radiosensitizes cancer cells. Radiosensitization is mediated by a shift in the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) toward PARP1-independent, alternative end-joining (alt-EJ). DNA polymerase theta (Polθ) is a key component of this PARP1-independent alt-EJ pathway and we show here that its inhibition can further radiosensitize talazoparib-treated cells. The purpose of the present work is to explore mechanisms and dynamics underpinning enhanced talazoparib radiosensitization by Polθ inhibitors in HR-proficient cancer cells. METHODS AND MATERIALS Radiosensitization to PARPis, talazoparib, olaparib, rucaparib and veliparib was assessed by clonogenic survival. Polθ-proficient and -deficient cells were treated with PARPis and/or with the Polθ inhibitors ART558 or novobiocin. The role of DNA end-resection was studied by down-regulating CtIP and MRE11 expression using siRNAs. DSB repair was assessed by scoring γH2AX foci. The formation of chromosomal abnormalities was assessed as evidence of alt-EJ function using G2-specific cytogenetic analysis. RESULTS Talazoparib exerted pronounced radiosensitization that varied among the tested cancer cell lines; however, radiosensitization was undetectable in normal cells. Other commonly used PARPis, olaparib, veliparib, or rucaparib were ineffective radiosensitizers under our experimental conditions. Although genetic ablation or pharmacological inhibition of Polθ only mildly radiosensitized cancer cells, talazoparib-treated cells were markedly further radiosensitized. Mechanistically, talazoparib shunted DSBs to Polθ-dependent alt-EJ by enhancing DNA end-resection in a CtIP- and MRE11-dependent manner - an effect detectable at low, but not high IR doses. Chromosomal translocation analysis in talazoparib-treated cells exposed to Polθ inhibitors suggested that PARP1- and Polθ-dependent alt-EJ pathways may complement, but also back up each other. CONCLUSION We propose that talazoparib promotes low-dose, CtIP/MRE11-dependent resection and increases the reliance of irradiated HR-proficient cancer cells, on Polθ-mediated alt-EJ. The combination of Polθ inhibitors with talazoparib suppresses this option and causes further radiosensitization. The results suggest that Polθ inhibition may be exploited to maximize talazoparib radiosensitization of HR-proficient tumors in the clinic.
Collapse
Affiliation(s)
- Xixi Lin
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| | - Razan Hessenow
- West German Proton Therapy Center Essen (WPE), University of Duisburg-Essen, 45147, Essen, Germany
| | - Yanjie Sun
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; West German Proton Therapy Center Essen (WPE), University of Duisburg-Essen, 45147, Essen, Germany
| | - Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Maja Guberina
- Department of Radiation Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147, Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Department of Radiation Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147, Essen, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
14
|
Bazan Russo TD, Mujacic C, Di Giovanni E, Vitale MC, Ferrante Bannera C, Randazzo U, Contino S, Bono M, Gristina V, Galvano A, Perez A, Badalamenti G, Russo A, Bazan V, Incorvaia L. Polθ: emerging synthetic lethal partner in homologous recombination-deficient tumors. Cancer Gene Ther 2024; 31:1619-1631. [PMID: 39122831 PMCID: PMC11567890 DOI: 10.1038/s41417-024-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The most remarkable finding in synthetic lethality (SL) is the hypersensitivity to PARP inhibitors (PARPis) of the tumors harboring defects in genes involved in homologous repair (HR) such as BRCA1/2. Despite initial responsiveness to PARPi, the penetrance of the synthetic lethal interactions between BRCA1/2 genes and PARPi is incomplete. Thus, a significant proportion of HR-defective tumors experience intrinsic or acquired resistance, representing a key challenge of clinical research. An expanded concept of SL is opening new ways and includes novel forms of genetic interactions, investigating not only traditional SL of pairs genes but also SL between biological pathways that regulate the same essential survival cell function. In this context, recent research showed that HR and theta-mediated end-joining (TMEJ) pathways exhibit SL. DNA polymerase theta (Polθ) is encoded by the POLQ gene and is a key component of the TMEJ, an essential backup pathway, intrinsically mutagenic, to repair resected double-strand breaks (DSBs) when the non-homologous end joining (NHEJ) and HR are impaired. Polθ is broadly expressed in normal tissues, overexpressed in several cancers, and typically associated with poor outcomes and shorter relapse-free survival. Notably, HR-deficient tumor cells present the characteristic mutational signatures of the error-prone TMEJ pathway. According to this observation, the loss of HR proteins, such as BRCA1 or BRCA2, contributes to increasing the TMEJ-specific genomic profile, suggesting synthetic lethal interactions between loss of the POLQ and HR genes, and resulting in the emerging interest for Polθ as a potential therapeutic target in BRCA1/2-associated tumors.This review summarizes the converging roles of the POLQ and HR genes in DNA DSB repair, the early-stage clinical trials using Polθ inhibitor to treat HR-defective tumors and to overcome BRCA-reversion mutations responsible for therapeutic resistance, and the novel pleiotropic effects of Polθ, paving the way for the development of unexplored synthetic lethality strategies.
Collapse
Affiliation(s)
- Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Ugo Randazzo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
15
|
Frye CC, Tennant L, Yeager A, Azimzadeh P, Bhardwaj P, Xu Y, Liu J, Othoum G, Maher CA, Chernock R, Goedegebuure SP, Gillanders W, Olson JA, Brown TC. Overexpression of human DNA polymerase theta is a biomarker of aggressive and DNA repair-deficient papillary thyroid cancers. Surgery 2024; 176:1380-1387. [PMID: 38897886 DOI: 10.1016/j.surg.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND DNA polymerase theta (POLQ) is an enzyme that repairs double-strand DNA breaks. POLQ is overexpressed in several cancer types, and increased expression is associated with a poor prognosis. Ablating POLQ function in vitro increases drug sensitivity to agents that cause double-strand DNA breaks, including chemotherapies and ionizing radiation. POLQ's role in thyroid cancer remains poorly understood. METHODS Expression of POLQ and other genes of interest were analyzed in 513 papillary thyroid cancers (505 primary tumors and 8 metastatic lesions) and 59 normal thyroid samples available in the Cancer Genome Atlas. The Cancer Genome Atlas RNA and DNA sequencing data were queried with the Xena platform. The Recombination Proficiency Score was calculated to assess DNA repair efficiency. Other signaling events associated with thyroid tumorigenesis and clinical outcomes were analyzed. Univariate and multivariate analyses were performed. Treatment with the POLQ inhibitors ART558 and Novobiocin tested the effect of POLQ inhibition on in vitro thyroid cancer growth. RESULTS POLQ expression was increased in papillary thyroid cancers compared to normal thyroid tissue (P < .05). POLQ expression levels were inversely correlated with Recombination Proficiency Score levels (P < .05). POLQ expression was highest in tall cell papillary thyroid cancers and in metastases. Higher POLQ expression was also associated with dedifferentiation, BRAF signaling, and shorter progression-free intervals (P < .05). Treatment with POLQ inhibitors decreased in vitro thyroid cancer growth (P < .05). CONCLUSION These findings suggest that increased POLQ expression could serve as a valuable clinical marker and a potential therapeutic target in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- C Corbin Frye
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO.
| | - Lena Tennant
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Ashley Yeager
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Pedram Azimzadeh
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Priya Bhardwaj
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Yifei Xu
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Jingxia Liu
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Ghofran Othoum
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Christopher A Maher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Rebecca Chernock
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO
| | - S Peter Goedegebuure
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - William Gillanders
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - John A Olson
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Taylor C Brown
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
16
|
Thomas C, Green S, Kimball L, Schmidtke IR, Griffin M, Rothwell L, Par I, Schobel S, Palacio Y, Towle-Weicksel JB, Weicksel SE. Zebrafish Polymerase Theta and human Polymerase Theta: orthologues with homologous function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615541. [PMID: 39386538 PMCID: PMC11463350 DOI: 10.1101/2024.09.27.615541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
DNA Polymerase Theta (Pol θ) is a conserved an A-family polymerase that plays an essential role in repairing double strand breaks, through micro-homology end joining, and bypassing DNA lesions, through translesion synthesis, to protect genome integrity. Despite its essential role in DNA repair, Pol θ is inherently error-prone. Recently, key loop regions were identified to play an important role in key functions of Pol θ. Here we present a comparative structure-function study of the polymerase domain of zebrafish and human Pol θ. We show that these two proteins share a large amount of sequence and structural homology. However, we identify differences in the amino acid composition within the key loop areas shown to drive characteristic Pol θ functions. Despite these differences zebrafish Pol θ still displays characteristics identify in human Pol θ, including DNA template extension in the presence of different divalent metals, microhomology-mediated end joining, and translesion synthesis. These results will support future studies looking to gain insight into Pol θ function on the basis of evolutionarily conserved features.
Collapse
Affiliation(s)
- Corey Thomas
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Sydney Green
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Lily Kimball
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Isaiah R Schmidtke
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Makayla Griffin
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Lauren Rothwell
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Ivy Par
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Sophia Schobel
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Yayleene Palacio
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | | | - Steven E Weicksel
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| |
Collapse
|
17
|
del Puerto-Nevado L, Fernández-Aceñero MJ, Cebrián A, Fatych Y, Díez-Valladares LI, Pérez-Aguirre E, de la Serna S, García-Botella A, Martínez-Useros J, García-Foncillas J, Mateos-Gómez PA. POLQ immunostaining behaves as a prognostic factor for pancreatic carcinoma. Front Oncol 2024; 14:1433179. [PMID: 39435280 PMCID: PMC11491332 DOI: 10.3389/fonc.2024.1433179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND DNA polymerase theta (POLQ) is a translesion synthesis polymerase essential for the repair of double strand breaks by the error-prone TMEJ (Theta Mediated End Joining) pathway. Although POLQ participates in maintaining genome stability, several studies have shown that its overexpression correlates with cancer progression and poor prognosis. Due to the fact that its role as a biomarker in pancreatic cancer remains unexplored, we aimed to study the usefulness of POLQ H-score as a prognostic factor in a pancreatic cancer patient cohort. METHODS We evaluated POLQ gene expression using a web-based tool to deliver gene expression profiling and interactive analyses based on TCGA and GTEx (GEPIA) and we examined the POLQ immunostaining in 152 biliopancreatic cancer surgical specimens using tissue microarrays. Association with survival was evaluated by Kaplan Meier curves and uni-multivariate Cox regression. RESULTS GEPIA analysis showed statistical differences according to POLQ mRNA levels in Disease Free Survival (DFS) (log rank 0.023, HR 2.8, p=0.029) and Overall Survival (OS) (log rank 0.011, HR 3.1, p=0.016). For immunohistochemistry (IHC) evaluation, POLQ H-score was calculated, and showed statistical differences for OS in Kaplan Meier curves (log rank 0.001) and uni-multivariate analysis (HR 2.27; 95% CI 1.24-4.15, p=0.008). CONCLUSIONS Our results indicate that POLQ is an independent prognostic factor in pancreatic cancer when analyzed by immunostaining, which is in agreement with the results shown by the POLQ gene expression analysis (GEPIA).
Collapse
Affiliation(s)
- Laura del Puerto-Nevado
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Arancha Cebrián
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Yuliia Fatych
- Biochemistry and Molecular Biology Unit, Systems Biology Department, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | | | - Elia Pérez-Aguirre
- Hepatobiliary Unit, Surgery Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Sofía de la Serna
- Hepatobiliary Unit, Surgery Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Alejandra García-Botella
- Biochemistry and Molecular Biology Unit, Systems Biology Department, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
- Hepatobiliary Unit, Surgery Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Martínez-Useros
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jesús García-Foncillas
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pedro A. Mateos-Gómez
- Biochemistry and Molecular Biology Unit, Systems Biology Department, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| |
Collapse
|
18
|
Sfeir A, Tijsterman M, McVey M. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection. Annu Rev Cell Dev Biol 2024; 40:195-218. [PMID: 38857538 DOI: 10.1146/annurev-cellbio-111822-014426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
Collapse
Affiliation(s)
- Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center; Institute of Biology Leiden, Leiden University, Leiden, The Netherlands;
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, USA;
| |
Collapse
|
19
|
Yang K, Zhu L, Liu C, Zhou D, Zhu Z, Xu N, Li W. Current status and prospect of the DNA double-strand break repair pathway in colorectal cancer development and treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167438. [PMID: 39059591 DOI: 10.1016/j.bbadis.2024.167438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Double-strand break (DSB) is the most severe type of DNA damage. However, few reviews have thoroughly examined the involvement of DSB in CRC. Latest researches demonstrated that DSB repair plays an important role in CRC. For example, DSB-related genes such as BRCA1, Ku-70 and DNA polymerase theta (POLQ) are associated with the occurrence of CRC, and POLQ even showed to affect the prognosis and resistance for radiotherapy in CRC. This review comprehensively summarizes the DSB role in CRC, explores the mechanisms and discusses the association with CRC treatment. Four pathways for DSB have been demonstrated. 1. Nonhomologous end joining (NHEJ) is the major pathway. Its core genes including Ku70 and Ku80 bind to broken ends and recruit repair factors to form a complex that mediates the connection of DNA breaks. 2. Homologous recombination (HR) is another important pathway. Its key genes including BRCA1 and BRCA2 are involved in finding, pairing, and joining broken ends, and ensure the restoration of breaks in a normal double-stranded DNA structure. 3. Single-strand annealing (SSA) pathway, and 4. POLθ-mediated end-joining (alt-EJ) is a backup pathway. This paper elucidates roles of the DSB repair pathways in CRC, which could contribute to the development of potential new treatment approaches and provide new opportunities for CRC treatment and more individualized treatment options based on therapeutic strategies targeting these DNA repair pathways.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Kunming Medical University, Kunming 650500, China
| | - Lihua Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Kunming Medical University, Kunming 650500, China
| | - Chang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Dayang Zhou
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhu Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ning Xu
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Kunming Medical University, Kunming 650500, China.
| | - Wenliang Li
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
20
|
Schreuder A, Wendel TJ, Dorresteijn CGV, Noordermeer SM. (Single-stranded DNA) gaps in understanding BRCAness. Trends Genet 2024; 40:757-771. [PMID: 38789375 DOI: 10.1016/j.tig.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
The tumour-suppressive roles of BRCA1 and 2 have been attributed to three seemingly distinct functions - homologous recombination, replication fork protection, and single-stranded (ss)DNA gap suppression - and their relative importance is under debate. In this review, we examine the origin and resolution of ssDNA gaps and discuss the recent advances in understanding the role of BRCA1/2 in gap suppression. There are ample data showing that gap accumulation in BRCA1/2-deficient cells is linked to genomic instability and chemosensitivity. However, it remains unclear whether there is a causative role and the function of BRCA1/2 in gap suppression cannot unambiguously be dissected from their other functions. We therefore conclude that the three functions of BRCA1 and 2 are closely intertwined and not mutually exclusive.
Collapse
Affiliation(s)
- Anne Schreuder
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Tiemen J Wendel
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Carlo G V Dorresteijn
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Blanch JR, Krishnamurthy M, McVey M. A non-tethering role for the Drosophila Pol θ linker domain in promoting damage resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609911. [PMID: 39253446 PMCID: PMC11383001 DOI: 10.1101/2024.08.27.609911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA polymerase theta ( Pol θ ) is an error-prone translesion polymerase that becomes crucial for DNA double-strand break repair when cells are deficient in homologous recombination or non-homologous end joining. In some organisms, Pol θ also promotes tolerance of DNA interstrand crosslinks. Due to its importance in DNA damage tolerance, Pol θ is an emerging target for treatment of cancer and disease. Prior work has characterized the functions of the Pol θ helicase-like and polymerase domains, but the roles of the linker domain are largely unknown. Here, we show that the Drosophila melanogaster Pol θ linker domain promotes egg development and is required for tolerance of DNA double-strand breaks and interstrand crosslinks. While a linker domain with scrambled amino acid residues is sufficient for DNA repair, replacement of the linker with part of the Homo sapiens Pol θ linker or a disordered region from the FUS RNA-binding protein does not restore function. These results demonstrate that the linker domain is not simply a random tether between the helicase-like and polymerase domains. Furthermore, they suggest that intrinsic amino acid residue properties, rather than protein interaction motifs, are more critical for Pol θ linker functions in DNA repair.
Collapse
Affiliation(s)
- Justin R Blanch
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
| | - Manan Krishnamurthy
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
- Icahn School of Medicine at Mount Sinai, New York City, New York, 10029, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
| |
Collapse
|
22
|
Barszczewska-Pietraszek G, Czarny P, Drzewiecka M, Błaszczyk M, Radek M, Synowiec E, Wigner-Jeziorska P, Sitarek P, Szemraj J, Skorski T, Śliwiński T. Polθ Inhibitor (ART558) Demonstrates a Synthetic Lethal Effect with PARP and RAD52 Inhibitors in Glioblastoma Cells. Int J Mol Sci 2024; 25:9134. [PMID: 39273083 PMCID: PMC11395082 DOI: 10.3390/ijms25179134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
DNA repair proteins became the popular targets in research on cancer treatment. In our studies we hypothesized that inhibition of DNA polymerase theta (Polθ) and its combination with Poly (ADP-ribose) polymerase 1 (PARP1) or RAD52 inhibition and the alkylating drug temozolomide (TMZ) has an anticancer effect on glioblastoma cells (GBM21), whereas it has a low impact on normal human astrocytes (NHA). The effect of the compounds was assessed by analysis of cell viability, apoptosis, proliferation, DNA damage and cell cycle distribution, as well as gene expression. The main results show that Polθ inhibition causes a significant decrease in glioblastoma cell viability. It induces apoptosis, which is accompanied by a reduction in cell proliferation and DNA damage. Moreover, the effect was stronger when dual inhibition of Polθ with PARP1 or RAD52 was applied, and it is further enhanced by addition of TMZ. The impact on normal cells is much lower, especially when considering cell viability and DNA damage. In conclusion, we would like to highlight that Polθ inhibition used in combination with PARP1 or RAD52 inhibition has great potential to kill glioblastoma cells, and shows a synthetic lethal effect, while sparing normal astrocytes.
Collapse
Affiliation(s)
- Gabriela Barszczewska-Pietraszek
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Małgorzata Drzewiecka
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Maciej Błaszczyk
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, University Hospital WAM-CSW, 90-549 Lodz, Poland
| | - Maciej Radek
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, University Hospital WAM-CSW, 90-549 Lodz, Poland
| | - Ewelina Synowiec
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Paulina Wigner-Jeziorska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, 92-151 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tomasz Śliwiński
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| |
Collapse
|
23
|
Ito F, Li Z, Minakhin L, Chandramouly G, Tyagi M, Betsch R, Krais JJ, Taberi B, Vekariya U, Calbert M, Skorski T, Johnson N, Chen XS, Pomerantz RT. Structural basis for a Polθ helicase small-molecule inhibitor revealed by cryo-EM. Nat Commun 2024; 15:7003. [PMID: 39143110 PMCID: PMC11324745 DOI: 10.1038/s41467-024-51351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
DNA polymerase theta (Polθ) is a DNA helicase-polymerase protein that facilitates DNA repair and is synthetic lethal with homology-directed repair (HDR) factors. Thus, Polθ is a promising precision oncology drug-target in HDR-deficient cancers. Here, we characterize the binding and mechanism of action of a Polθ helicase (Polθ-hel) small-molecule inhibitor (AB25583) using cryo-EM. AB25583 exhibits 6 nM IC50 against Polθ-hel, selectively kills BRCA1/2-deficient cells, and acts synergistically with olaparib in cancer cells harboring pathogenic BRCA1/2 mutations. Cryo-EM uncovers predominantly dimeric Polθ-hel:AB25583 complex structures at 3.0-3.2 Å. The structures reveal a binding-pocket deep inside the helicase central-channel, which underscores the high specificity and potency of AB25583. The cryo-EM structures in conjunction with biochemical data indicate that AB25583 inhibits the ATPase activity of Polθ-hel helicase via an allosteric mechanism. These detailed structural data and insights about AB25583 inhibition pave the way for accelerating drug development targeting Polθ-hel in HDR-deficient cancers.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, CA, 90089, USA
| | - Ziyuan Li
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, CA, 90089, USA
| | - Leonid Minakhin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Robert Betsch
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - John J Krais
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Bernadette Taberi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Marissa Calbert
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, CA, 90089, USA.
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
24
|
Clark A, Villarreal MR, Huang SB, Jayamohan S, Rivas P, Hussain SS, Ybarra M, Osmulski P, Gaczynska ME, Shim EY, Smith T, Gupta YK, Yang X, Delma CR, Natarajan M, Lai Z, Wang LJ, Michalek JE, Higginson DS, Ikeno Y, Ha CS, Chen Y, Ghosh R, Kumar AP. Targeting S6K/NFκB/SQSTM1/Polθ signaling to suppress radiation resistance in prostate cancer. Cancer Lett 2024; 597:217063. [PMID: 38925361 DOI: 10.1016/j.canlet.2024.217063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In this study we have identified POLθ-S6K-p62 as a novel druggable regulator of radiation response in prostate cancer. Despite significant advances in delivery, radiotherapy continues to negatively affect treatment outcomes and quality of life due to resistance and late toxic effects to the surrounding normal tissues such as bladder and rectum. It is essential to develop new and effective strategies to achieve better control of tumor. We found that ribosomal protein S6K (RPS6KB1) is elevated in human prostate tumors, and contributes to resistance to radiation. As a downstream effector of mTOR signaling, S6K is known to be involved in growth regulation. However, the impact of S6K signaling on radiation response has not been fully explored. Here we show that loss of S6K led to formation of smaller tumors with less metastatic ability in mice. Mechanistically we found that S6K depletion reduced NFκB and SQSTM1 (p62) reporter activity and DNA polymerase θ (POLθ) that is involved in alternate end-joining repair. We further show that the natural compound berberine interacts with S6K in a in a hitherto unreported novel mode and that pharmacological inhibition of S6K with berberine reduces Polθ and downregulates p62 transcriptional activity via NFκB. Loss of S6K or pre-treatment with berberine improved response to radiation in prostate cancer cells and prevented radiation-mediated resurgence of PSA in animals implanted with prostate cancer cells. Notably, silencing POLQ in S6K overexpressing cells enhanced response to radiation suggesting S6K sensitizes prostate cancer cells to radiation via POLQ. Additionally, inhibition of autophagy with CQ potentiated growth inhibition induced by berberine plus radiation. These observations suggest that pharmacological inhibition of S6K with berberine not only downregulates NFκB/p62 signaling to disrupt autophagic flux but also decreases Polθ. Therefore, combination treatment with radiation and berberine inhibits autophagy and alternate end-joining DNA repair, two processes associated with radioresistance leading to increased radiation sensitivity.
Collapse
Affiliation(s)
- Alison Clark
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Michelle R Villarreal
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Shih-Bo Huang
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Sridharan Jayamohan
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Paul Rivas
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Suleman S Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meagan Ybarra
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Pawel Osmulski
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Maria E Gaczynska
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Eun Yong Shim
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Tyler Smith
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Yogesh K Gupta
- Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Department of Biochemistry and Structural Biology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Xiaoyu Yang
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Caroline R Delma
- Departments of Pathology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Mohan Natarajan
- Departments of Pathology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Zhao Lai
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Li-Ju Wang
- Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Joel E Michalek
- Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Epidemiology and Biostatistics, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuji Ikeno
- Departments of Pathology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Barshop Institute for Longevity and Aging Studies, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Audie L. Murphy VA Hospital (STVHCS), Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Chul Soo Ha
- Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Department of Radiation Oncology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Yidong Chen
- Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Rita Ghosh
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Urology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Pharmacology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA.
| | - Addanki P Kumar
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Urology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Pharmacology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Audie L. Murphy VA Hospital (STVHCS), Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA.
| |
Collapse
|
25
|
Previtali V, Bagnolini G, Ciamarone A, Ferrandi G, Rinaldi F, Myers SH, Roberti M, Cavalli A. New Horizons of Synthetic Lethality in Cancer: Current Development and Future Perspectives. J Med Chem 2024; 67:11488-11521. [PMID: 38955347 DOI: 10.1021/acs.jmedchem.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In recent years, synthetic lethality has been recognized as a solid paradigm for anticancer therapies. The discovery of a growing number of synthetic lethal targets has led to a significant expansion in the use of synthetic lethality, far beyond poly(ADP-ribose) polymerase inhibitors used to treat BRCA1/2-defective tumors. In particular, molecular targets within DNA damage response have provided a source of inhibitors that have rapidly reached clinical trials. This Perspective focuses on the most recent progress in synthetic lethal targets and their inhibitors, within and beyond the DNA damage response, describing their design and associated therapeutic strategies. We will conclude by discussing the current challenges and new opportunities for this promising field of research, to stimulate discussion in the medicinal chemistry community, allowing the investigation of synthetic lethality to reach its full potential.
Collapse
Affiliation(s)
- Viola Previtali
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Ciamarone
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Giovanni Ferrandi
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Francesco Rinaldi
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Samuel Harry Myers
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
26
|
Kunihisa T, Inubushi S, Tanino H, Hoffman RM. Induction of the DNA-Repair Gene POLQ only in BRCA1-mutant Breast-Cancer Cells by Methionine Restriction. Cancer Genomics Proteomics 2024; 21:399-404. [PMID: 38944428 PMCID: PMC11215430 DOI: 10.21873/cgp.20458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND/AIM BRCA1/2 mutations in breast cancer cells impair homologous recombination and promote alternative end joining (Alt-EJ) for DNA-damage repair. DNA polymerase theta, encoded by POLQ, plays a crucial role in Alt-EJ, making it a potential therapeutic target, particularly in BRCA1/2-mutant cancers. Methionine restriction is a promising approach to target cancer cells due to their addiction to this amino acid. The present study investigated the expression of POLQ in BRCA1/2 wild-type and BRCA1-mutant breast cancer cells under methionine restriction. MATERIALS AND METHODS POLQ mRNA expression was measured using qRT-PCR in BRCA1/2 wild-type (MDA-MB-231) and BRCA1- mutant (HCC1937 and MDA-MB-436) breast-cancer cells under normal, or serum-restricted, or serum- and methionine-restricted conditions. RESULTS Compared to BRCA1/2 wild-type cells, BRCA1-mutant cells displayed significantly higher basal POLQ expression in normal medium. Methionine restriction further increased POLQ expression in the BRCA1-mutant cells but decreased it in the BRCA1/2 wild-type cells. CONCLUSION The present findings suggest that methionine restriction showed differential effects on POLQ expression, potentially impacting Alt-EJ activity, in BRCA1/2 wild-type and BRCA1-mutant breast-cancer cells. Further investigation is needed to explore the potential of combining methionine restriction with DNA-repair inhibitors, such as PARP inhibitors, to overcome drug resistance in BRCA1/2 mutant cancers.
Collapse
Affiliation(s)
- Tomonari Kunihisa
- Division of Breast and Endocrine Surgery, Graduate School of Medicine, Kobe University, Hyogo, Japan
| | - Sachiko Inubushi
- Division of Breast and Endocrine Surgery, Graduate School of Medicine, Kobe University, Hyogo, Japan
| | - Hirokazu Tanino
- Department of Thoracic and Cardiovascular Surgery, Wakayama Medical University, Wakayama, Japan
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, U.S.A.;
- Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| |
Collapse
|
27
|
Zhao Z, Niu J, Wang J, Zhang R, Liang H, Ma Y, Ferrena A, Wang W, Yang R, Geller DS, Guo W, Ren T, Hoang BH, Tang X, Yan T. Novel candidate metastasis-associated genes for synovial sarcoma. J Cell Mol Med 2024; 28:e18541. [PMID: 39046429 PMCID: PMC11267982 DOI: 10.1111/jcmm.18541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Synovial sarcoma (SS) is an aggressive soft tissue sarcoma with poor prognosis due to late recurrence and metastasis. Metastasis is an important prognostic factor of SS. This study aimed to identify the core genes and mechanisms associated with SS metastasis. Microarray data for GSE40021 and GSE40018 were obtained from the Gene Expression Omnibus database. 186 differentially expressed genes (DEGs) were identified. The biological functions and signalling pathways closely associated with SS metastasis included extracellular matrix (ECM) organization and ECM-receptor interaction. Gene set enrichment analysis showed that the terms cell cycle, DNA replication, homologous recombination and mismatch repair were significantly enriched in the metastasis group. Weighted gene co-expression network analysis identified the most relevant module and 133 hub genes, and 31 crossover genes were identified by combining DEGs. Subsequently, four characteristic genes, EXO1, NCAPG, POLQ and UHRF1, were identified as potential biomarkers associated with SS metastasis using the least absolute shrinkage and selection operator algorithm and validation dataset verification analysis. Immunohistochemistry results from our cohort of 49 patients revealed visible differences in the expression of characteristic genes between the non-metastatic and metastatic groups. Survival analysis indicated that high expression of characteristic genes predicted poor prognosis. Our data revealed that primary SS samples from patients who developed metastasis showed activated homologous recombination and mismatch repair compared to samples from patients without metastasis. Furthermore, EXO1, NCAPG, POLQ and UHRF1 were identified as potential candidate metastasis-associated genes. This study provides further research insights and helps explore the mechanisms of SS metastasis.
Collapse
Affiliation(s)
- Zhiqing Zhao
- Department of OrthopedicsPeking University First HospitalBeijingChina
| | - Jianfang Niu
- Department of OrthopedicsPeking University First HospitalBeijingChina
| | - Jichuan Wang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
- Beijing Key Laboratory of Musculoskeletal TumorBeijingChina
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Haijie Liang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
- Beijing Key Laboratory of Musculoskeletal TumorBeijingChina
| | - Yingteng Ma
- Department of PathologyPeking University People's HospitalBeijingChina
| | - Alexander Ferrena
- Department of Orthopedic Surgery, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Genetics, Institute for Clinical and Translational ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Wei Wang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
- Beijing Key Laboratory of Musculoskeletal TumorBeijingChina
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - David S. Geller
- Department of Orthopedic Surgery, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Wei Guo
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
- Beijing Key Laboratory of Musculoskeletal TumorBeijingChina
| | - Tingting Ren
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
- Beijing Key Laboratory of Musculoskeletal TumorBeijingChina
| | - Bang H. Hoang
- Department of Orthopedic Surgery, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Xiaodong Tang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
- Beijing Key Laboratory of Musculoskeletal TumorBeijingChina
| | - Taiqiang Yan
- Department of OrthopedicsPeking University First HospitalBeijingChina
| |
Collapse
|
28
|
Ito F, Li Z, Minakhin L, Khant HA, Pomerantz RT, Chen XS. Structural Basis for Polθ-Helicase DNA Binding and Microhomology-Mediated End-Joining. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597860. [PMID: 38895274 PMCID: PMC11185775 DOI: 10.1101/2024.06.07.597860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
DNA double-strand breaks (DSBs) present a critical threat to genomic integrity, often precipitating genomic instability and oncogenesis. Repair of DSBs predominantly occurs through homologous recombination (HR) and non-homologous end joining (NHEJ). In HR-deficient cells, DNA polymerase theta (Polθ) becomes critical for DSB repair via microhomology-mediated end joining (MMEJ), also termed theta-mediated end joining (TMEJ). Thus, Polθ is synthetically lethal with BRCA1/2 and other HR factors, underscoring its potential as a therapeutic target in HR-deficient cancers. However, the molecular mechanisms governing Polθ-mediated MMEJ remain poorly understood. Here we present a series of cryo-electron microscopy structures of the Polθ helicase domain (Polθ-hel) in complex with DNA containing 3'-overhang. The structures reveal the sequential conformations adopted by Polθ-hel during the critical phases of DNA binding, microhomology searching, and microhomology annealing. The stepwise conformational changes within the Polθ-hel subdomains and its functional dimeric state are pivotal for aligning the 3'-overhangs, facilitating the microhomology search and subsequent annealing necessary for DSB repair via MMEJ. Our findings illustrate the essential molecular switches within Polθ-hel that orchestrate the MMEJ process in DSB repair, laying the groundwork for the development of targeted therapies against the Polθ-hel.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, 90089, USA
- Department of Microbiology, Immunology and Molecular Genetics
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Ziyuan Li
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| | - Leonid Minakhin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Htet A. Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
29
|
Thomas C, Avalos-Irving L, Victorino J, Green S, Andrews M, Rodrigues N, Ebirim S, Mudd A, Towle-Weicksel JB. Melanoma-Derived DNA Polymerase Theta Variants Exhibit Altered DNA Polymerase Activity. Biochemistry 2024; 63:1107-1117. [PMID: 38671548 PMCID: PMC11080051 DOI: 10.1021/acs.biochem.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
DNA polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through an alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error-prone yet critical for cell survival. We have identified several POLQ gene variants from human melanoma tumors that experience altered DNA polymerase activity, including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Variants are 30-fold less efficient at incorporating a nucleotide during repair and up to 70-fold less accurate at selecting the correct nucleotide opposite a templating base. This suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. Moreover, the variants were identified in established tumors, suggesting that cancer cells may use mutated polymerases to promote metastasis and drug resistance.
Collapse
Affiliation(s)
- Corey Thomas
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Lisbeth Avalos-Irving
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Jorge Victorino
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Sydney Green
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Morgan Andrews
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Naisha Rodrigues
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Sarah Ebirim
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Ayden Mudd
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Jamie B. Towle-Weicksel
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| |
Collapse
|
30
|
Yuan B, Bi C, Tian Y, Wang J, Jin Y, Alsayegh K, Tehseen M, Yi G, Zhou X, Shao Y, Romero FV, Fischle W, Izpisua Belmonte JC, Hamdan S, Huang Y, Li M. Modulation of the microhomology-mediated end joining pathway suppresses large deletions and enhances homology-directed repair following CRISPR-Cas9-induced DNA breaks. BMC Biol 2024; 22:101. [PMID: 38685010 PMCID: PMC11059712 DOI: 10.1186/s12915-024-01896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND CRISPR-Cas9 genome editing often induces unintended, large genomic rearrangements, posing potential safety risks. However, there are no methods for mitigating these risks. RESULTS Using long-read individual-molecule sequencing (IDMseq), we found the microhomology-mediated end joining (MMEJ) DNA repair pathway plays a predominant role in Cas9-induced large deletions (LDs). We targeted MMEJ-associated genes genetically and/or pharmacologically and analyzed Cas9-induced LDs at multiple gene loci using flow cytometry and long-read sequencing. Reducing POLQ levels or activity significantly decreases LDs, while depleting or overexpressing RPA increases or reduces LD frequency, respectively. Interestingly, small-molecule inhibition of POLQ and delivery of recombinant RPA proteins also dramatically promote homology-directed repair (HDR) at multiple disease-relevant gene loci in human pluripotent stem cells and hematopoietic progenitor cells. CONCLUSIONS Our findings reveal the contrasting roles of RPA and POLQ in Cas9-induced LD and HDR, suggesting new strategies for safer and more precise genome editing.
Collapse
Affiliation(s)
- Baolei Yuan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongwei Bi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yeteng Tian
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jincheng Wang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry, College of Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yiqing Jin
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Khaled Alsayegh
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Present address: King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Jeddah, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Gang Yi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xuan Zhou
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Fernanda Vargas Romero
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wolfgang Fischle
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Juan Carlos Izpisua Belmonte
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Altos Labs, Inc, San Diego, CA, 92121, USA
| | - Samir Hamdan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry, College of Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, China
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
31
|
Fijen C, Drogalis Beckham L, Terino D, Li Y, Ramsden DA, Wood RD, Doublié S, Rothenberg E. Sequential requirements for distinct Polθ domains during theta-mediated end joining. Mol Cell 2024; 84:1460-1474.e6. [PMID: 38640894 PMCID: PMC11031631 DOI: 10.1016/j.molcel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/21/2024]
Abstract
DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Lea Drogalis Beckham
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Dante Terino
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuzhen Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
32
|
Liu G, Jin K, Liu Z, Su X, Xu Z, Li B, Xu J, Chang Y, Wang Y, Zhu Y, Xu L, Xu J, Wang Z, Liu H, Zhang W. POLQ identifies a better response subset to immunotherapy in muscle-invasive bladder cancer with high PD-L1. Cancer Med 2024; 13:e6962. [PMID: 38457207 PMCID: PMC10922026 DOI: 10.1002/cam4.6962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Though programmed cell death-ligand 1 (PD-L1) has been used in predicting the efficacy of immune checkpoint blockade (ICB), it is insufficient as a single biomarker. As a key effector of an intrinsically mutagenic microhomology-mediated end joining (MMEJ) pathway, DNA polymerase theta (POLQ) was overexpressed in various malignancies, whose expression might have an influence on genomic stability, therefore altering the sensitivity to chemotherapy and immunotherapy. METHODS A total of 1304 patients with muscle-invasive bladder cancer (MIBC) from six independent cohorts were included in this study. The Zhongshan Hospital (ZSHS) cohort (n = 134), The Cancer Genome Atlas (TCGA) cohort (n = 391), and the Neo-cohort (n = 148) were included for the investigation of chemotherapeutic response. The IMvigor210 cohort (n = 234) and the UNC-108 cohort (n = 89) were used for the assessment of immunotherapeutic response. In addition, the relationship between POLQ and the immune microenvironment was assessed, and GSE32894 (n = 308) was used only for the evaluation of the immune microenvironment. RESULTS We identified POLQhigh PD-L1high patients could benefit more from immunotherapy and platinum-based chemotherapy. Further analysis revealed that high POLQ expression was linked to chromosome instability and higher tumor mutational burden (TMB), which might elicit the production of neoantigens. Further, high POLQ expression was associated with an active tumor immune microenvironment with abundant infiltration of immune effector cells and molecules. CONCLUSIONS The study demonstrated that high POLQ expression was correlated with chromosome instability and antitumor immune microenvironment in MIBC, and the combination of POLQ and PD-L1 could be used as a superior companion biomarker for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ge Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Kaifeng Jin
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhaopei Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Ziyue Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Bingyu Li
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yuan Chang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yu Zhu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Le Xu
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Zewei Wang
- Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Hailong Liu
- Department of Urology, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
33
|
He Y, Chen Y, Li Z, Wu C. The m 6A demethylase FTO targets POLQ to promote ccRCC cell proliferation and genome stability maintenance. J Cancer Res Clin Oncol 2024; 150:30. [PMID: 38270643 PMCID: PMC10810938 DOI: 10.1007/s00432-023-05541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND AIM As the first identified m6A demethylase, FTO has been implicated in the progression of various cancers. However, the specific mechanism of FTO in clear cell renal cell carcinoma (ccRCC) remains incompletely understood. In this study, we aimed to explore the potential molecular mechanisms influencing the progression of ccRCC. METHODS We initially assessed the expression of FTO in tumor and adjacent tissues using TCGA database, RT-qPCR, and Western blot. We then conducted CCK-8, cell cycle analysis, and colony formation assay to investigate the impact of FTO on ccRCC cell proliferation. MeRIP-seq and RNA-seq were employed to identify potential downstream targets of FTO in ccRCC, and these findings were further validated through dual-luciferase reporter assays and MeRIP-qPCR. Then, DNA damage and cell death were assessed separately through gammaH2AX immunofluorescence detection and the LIVE/DEAD Fixable Dead Cell Stain assay, respectively. Subsequently, we identified downstream pathways influenced by FTO's regulation of POLQ through TCGA database analysis and GSEA enrichment analysis. Validation was carried out through Western blot. RESULTS FTO is highly expressed in ccRCC tissues and cell lines. Furthermore, ROC curve demonstrates that FTO contributes to the diagnosis of ccRCC. FTO modulates m6A modification, consequently influencing the expression of POLQ, thus facilitating cell proliferation and maintaining genome stability in ccRCC. CONCLUSION FTO could potentially serve as a diagnostic marker for ccRCC. FTO promotes the progression of ccRCC by regulating m6A modification, making the inhibition of FTO a potential novel therapeutic strategy in ccRCC.
Collapse
Affiliation(s)
- Yichen He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Zhengsheng Li
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
34
|
Bugbee T, Gathoni M, Payne C, Blubaugh M, Matlock K, Wixson T, Lu A, Stancic S, Chung PA, Palinski R, Wallace N. Inhibition of p300 increases cytotoxicity of cisplatin in pancreatic cancer cells. Gene 2023; 888:147762. [PMID: 37666373 PMCID: PMC10563798 DOI: 10.1016/j.gene.2023.147762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Pancreatic cancer is a notoriously deadly disease with a five-year survival rate around 10 percent. Since early detection of these tumors is difficult, pancreatic cancers are often diagnosed at advanced stages. At this point, genotoxic chemotherapeutics can be used to manage tumor growth. However, side effects of these drugs are severe, limiting the amount of treatment that can be given and resulting in sub-optimal dosing. Thus, there is an urgent need to identify chemo-sensitizing agents that can lower the effective dose of genotoxic agents and as a result reduce the side effects. Here, we use transformed and non-transformed pancreatic cell lines to evaluate DNA repair inhibitors as chemo-sensitizing agents. We used a novel next generation sequencing approach to demonstrate that pancreatic cancer cells have a reduced ability to faithfully repair DNA damage. We then determine the extent that two DNA repair inhibitors (CCS1477, a small molecule inhibitor of p300, and ART558, a small molecule inhibitor of polymerase theta) can exploit this repair deficiency to make pancreatic cancer cells more sensitive to cisplatin, a commonly used genotoxic chemotherapeutic. Immunofluorescence microscopy and cell viability assays show that CCS1477 delayed repair and significantly sensitized pancreatic cancer cells to cisplatin. The increased toxicity was not seen in a non-transformed pancreatic cell line. We also found that while ART558 sensitizes pancreatic cancer cells to cisplatin, it also sensitized non-transformed pancreatic cancer cells.
Collapse
Affiliation(s)
- Taylor Bugbee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mary Gathoni
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Carlie Payne
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Morgan Blubaugh
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Kaydn Matlock
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Taylor Wixson
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Andrea Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Steven Stancic
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Peter A Chung
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Rachel Palinski
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
35
|
Ronson GE, Starowicz K, Anthony EJ, Piberger AL, Clarke LC, Garvin AJ, Beggs AD, Whalley CM, Edmonds MJ, Beesley JFJ, Morris JR. Mechanisms of synthetic lethality between BRCA1/2 and 53BP1 deficiencies and DNA polymerase theta targeting. Nat Commun 2023; 14:7834. [PMID: 38030626 PMCID: PMC10687250 DOI: 10.1038/s41467-023-43677-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
A synthetic lethal relationship exists between disruption of polymerase theta (Polθ), and loss of either 53BP1 or homologous recombination (HR) proteins, including BRCA1; however, the mechanistic basis of these observations are unclear. Here we reveal two distinct mechanisms of Polθ synthetic lethality, identifying dual influences of 1) whether Polθ is lost or inhibited, and 2) the underlying susceptible genotype. Firstly, we find that the sensitivity of BRCA1/2- and 53BP1-deficient cells to Polθ loss, and 53BP1-deficient cells to Polθ inhibition (ART558) requires RAD52, and appropriate reduction of RAD52 can ameliorate these phenotypes. We show that in the absence of Polθ, RAD52 accumulations suppress ssDNA gap-filling in G2/M and encourage MRE11 nuclease accumulation. In contrast, the survival of BRCA1-deficient cells treated with Polθ inhibitor are not restored by RAD52 suppression, and ssDNA gap-filling is prevented by the chemically inhibited polymerase itself. These data define an additional role for Polθ, reveal the mechanism underlying synthetic lethality between 53BP1, BRCA1/2 and Polθ loss, and indicate genotype-dependent Polθ inhibitor mechanisms.
Collapse
Affiliation(s)
- George E Ronson
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katarzyna Starowicz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Adthera Bio, Lyndon House, 62 Hagley Road, Birmingham, B16 8PE, UK
| | - Elizabeth J Anthony
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Liza Piberger
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lucy C Clarke
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Mindelsohn Way, Birmingham, B15 2TG, UK
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University of Leeds, Leeds, UK
| | - Andrew D Beggs
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Genomics Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Celina M Whalley
- Genomics Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matthew J Edmonds
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Certara Insight, Danebrook Court, Oxford Office Village, Kidlington, Oxfordshire, OX5 1LQ, UK
| | - James F J Beesley
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
36
|
Thomas C, Avalos-Irving L, Victorino J, Green S, Andrews M, Rodrigues N, Ebirim S, Mudd A, Towle-Weicksel JB. Melanoma-derived DNA polymerase theta variants exhibit altered DNA polymerase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566933. [PMID: 38014040 PMCID: PMC10680777 DOI: 10.1101/2023.11.14.566933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
DNA Polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through the alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error prone, yet critical for cell survival. We have identified several mutations in the POLQ gene from human melanoma tumors. Through biochemical analysis, we have demonstrated that all three cancer-associated variants experienced altered DNA polymerase activity including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Moreover, the variants are 30 fold less efficient at incorporating a nucleotide during repair and up to 70 fold less accurate at selecting the correct nucleotide opposite a templating base. Taken together, this suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. While this may be beneficial to normal cell survival, the variants were identified in established tumors suggesting that cancer cells may use this promiscuous polymerase to its advantage to promote metastasis and drug resistance.
Collapse
|
37
|
Mladenov E, Mladenova V, Stuschke M, Iliakis G. New Facets of DNA Double Strand Break Repair: Radiation Dose as Key Determinant of HR versus c-NHEJ Engagement. Int J Mol Sci 2023; 24:14956. [PMID: 37834403 PMCID: PMC10573367 DOI: 10.3390/ijms241914956] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Radiation therapy is an essential component of present-day cancer management, utilizing ionizing radiation (IR) of different modalities to mitigate cancer progression. IR functions by generating ionizations in cells that induce a plethora of DNA lesions. The most detrimental among them are the DNA double strand breaks (DSBs). In the course of evolution, cells of higher eukaryotes have evolved four major DSB repair pathways: classical non-homologous end joining (c-NHEJ), homologous recombination (HR), alternative end-joining (alt-EJ), and single strand annealing (SSA). These mechanistically distinct repair pathways have different cell cycle- and homology-dependencies but, surprisingly, they operate with widely different fidelity and kinetics and therefore contribute unequally to cell survival and genome maintenance. It is therefore reasonable to anticipate tight regulation and coordination in the engagement of these DSB repair pathway to achieve the maximum possible genomic stability. Here, we provide a state-of-the-art review of the accumulated knowledge on the molecular mechanisms underpinning these repair pathways, with emphasis on c-NHEJ and HR. We discuss factors and processes that have recently come to the fore. We outline mechanisms steering DSB repair pathway choice throughout the cell cycle, and highlight the critical role of DNA end resection in this process. Most importantly, however, we point out the strong preference for HR at low DSB loads, and thus low IR doses, for cells irradiated in the G2-phase of the cell cycle. We further explore the molecular underpinnings of transitions from high fidelity to low fidelity error-prone repair pathways and analyze the coordination and consequences of this transition on cell viability and genomic stability. Finally, we elaborate on how these advances may help in the development of improved cancer treatment protocols in radiation therapy.
Collapse
Affiliation(s)
- Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
38
|
Ayala-Zambrano C, Yuste M, Frias S, Garcia-de-Teresa B, Mendoza L, Azpeitia E, Rodríguez A, Torres L. A Boolean network model of the double-strand break repair pathway choice. J Theor Biol 2023; 573:111608. [PMID: 37595867 DOI: 10.1016/j.jtbi.2023.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Double strand break (DSB) repair is critical to maintaining the integrity of the genome. DSB repair deficiency underlies multiple pathologies, including cancer, chromosome instability syndromes, and, potentially, neurodevelopmental defects. DSB repair is mainly handled by two pathways: highly accurate homologous recombination (HR), which requires a sister chromatid for template-based repair, limited to S/G2 phases of the cell cycle, and canonical non-homologous end joining (c-NHEJ), available throughout the cell cycle in which minimum homology is sufficient for highly efficient yet error-prone repair. Some circumstances, such as cancer, require alternative highly mutagenic DSB repair pathways like microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA), which are triggered to attend to DNA damage. These non-canonical repair alternatives are emerging as prominent drivers of resistance in drug-based tumor therapies. Multiple DSB repair options require tight inter-pathway regulation to prevent unscheduled activities. In addition to this complexity, epigenetic modifications of the histones surrounding the DSB region are emerging as critical regulators of the DSB repair pathway choice. Modeling approaches to understanding DSBs repair pathway choice are advantageous to perform simulations and generate predictions on previously uncharacterized aspects of DSBs response. In this work, we present a Boolean network model of the DSB repair pathway choice that incorporates the knowledge, into a dynamic system, of the inter-pathways regulation involved in DSB repair, i.e., HR, c-NHEJ, SSA, and MMEJ. Our model recapitulates the well-characterized HR activity observed in wild-type cells in response to DSBs. It also recovers clinically relevant behaviors of BRCA1/FANCS mutants, and their corresponding drug resistance mechanisms ascribed to DNA repair gain-of-function pathogenic variants. Since epigenetic modifiers are dynamic and possible druggable targets, we incorporated them into our model to better characterize their involvement in DSB repair. Our model predicted that loss of the TIP60 complex and its corresponding histone acetylation activity leads to activation of SSA in response to DSBs. Our experimental validation showed that TIP60 effectively prevents activation of RAD52, a key SSA executor, and confirms the suitable use of Boolean network modeling for understanding DNA DSB repair.
Collapse
Affiliation(s)
- Cecilia Ayala-Zambrano
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mariana Yuste
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico
| | | | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico
| | - Eugenio Azpeitia
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico; Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Leda Torres
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| |
Collapse
|
39
|
Gu L, Hickey RJ, Malkas LH. Therapeutic Targeting of DNA Replication Stress in Cancer. Genes (Basel) 2023; 14:1346. [PMID: 37510250 PMCID: PMC10378776 DOI: 10.3390/genes14071346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/30/2023] Open
Abstract
This article reviews the currently used therapeutic strategies to target DNA replication stress for cancer treatment in the clinic, highlighting their effectiveness and limitations due to toxicity and drug resistance. Cancer cells experience enhanced spontaneous DNA damage due to compromised DNA replication machinery, elevated levels of reactive oxygen species, loss of tumor suppressor genes, and/or constitutive activation of oncogenes. Consequently, these cells are addicted to DNA damage response signaling pathways and repair machinery to maintain genome stability and support survival and proliferation. Chemotherapeutic drugs exploit this genetic instability by inducing additional DNA damage to overwhelm the repair system in cancer cells. However, the clinical use of DNA-damaging agents is limited by their toxicity and drug resistance often arises. To address these issues, the article discusses a potential strategy to target the cancer-associated isoform of proliferating cell nuclear antigen (caPCNA), which plays a central role in the DNA replication and damage response network. Small molecule and peptide agents that specifically target caPCNA can selectively target cancer cells without significant toxicity to normal cells or experimental animals.
Collapse
Affiliation(s)
- Long Gu
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert J Hickey
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Linda H Malkas
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
40
|
Oh G, Wang A, Wang L, Li J, Werba G, Weissinger D, Zhao E, Dhara S, Hernandez RE, Ackermann A, Porcella S, Kalfakakou D, Dolgalev I, Kawaler E, Golan T, Welling TH, Sfeir A, Simeone DM. POLQ inhibition elicits an immune response in homologous recombination-deficient pancreatic adenocarcinoma via cGAS/STING signaling. J Clin Invest 2023; 133:e165934. [PMID: 36976649 PMCID: PMC10232002 DOI: 10.1172/jci165934] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that harbors mutations in homologous recombination-repair (HR-repair) proteins in 20%-25% of cases. Defects in HR impart a specific vulnerability to poly ADP ribose polymerase inhibitors and platinum-containing chemotherapy in tumor cells. However, not all patients who receive these therapies respond, and many who initially respond ultimately develop resistance. Inactivation of the HR pathway is associated with the overexpression of polymerase theta (Polθ, or POLQ). This key enzyme regulates the microhomology-mediated end-joining (MMEJ) pathway of double-strand break (DSB) repair. Using human and murine HR-deficient PDAC models, we found that POLQ knockdown is synthetically lethal in combination with mutations in HR genes such as BRCA1 and BRCA2 and the DNA damage repair gene ATM. Further, POLQ knockdown enhances cytosolic micronuclei formation and activates signaling of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), leading to enhanced infiltration of activated CD8+ T cells in BRCA2-deficient PDAC tumors in vivo. Overall, POLQ, a key mediator in the MMEJ pathway, is critical for DSB repair in BRCA2-deficient PDAC. Its inhibition represents a synthetic lethal approach to blocking tumor growth while concurrently activating the cGAS-STING signaling pathway to enhance tumor immune infiltration, highlighting what we believe to be a new role for POLQ in the tumor immune environment.
Collapse
Affiliation(s)
| | | | - Lidong Wang
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jiufeng Li
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Gregor Werba
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Daniel Weissinger
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Ende Zhao
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Surajit Dhara
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | - Amanda Ackermann
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Sarina Porcella
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Igor Dolgalev
- Department of Pathology, NYU Langone Health, New York, New York, USA
| | - Emily Kawaler
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | | | - Agnel Sfeir
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Diane M. Simeone
- Department of Surgery and
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Pathology, NYU Langone Health, New York, New York, USA
| |
Collapse
|
41
|
Pismataro MC, Astolfi A, Barreca ML, Pacetti M, Schenone S, Bandiera T, Carbone A, Massari S. Small Molecules Targeting DNA Polymerase Theta (POLθ) as Promising Synthetic Lethal Agents for Precision Cancer Therapy. J Med Chem 2023; 66:6498-6522. [PMID: 37134182 DOI: 10.1021/acs.jmedchem.2c02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Synthetic lethality (SL) is an innovative strategy in targeted anticancer therapy that exploits tumor genetic vulnerabilities. This topic has come to the forefront in recent years, as witnessed by the increased number of publications since 2007. The first proof of concept for the effectiveness of SL was provided by the approval of poly(ADP-ribose)polymerase inhibitors, which exploit a SL interaction in BRCA-deficient cells, although their use is limited by resistance. Searching for additional SL interactions involving BRCA mutations, the DNA polymerase theta (POLθ) emerged as an exciting target. This review summarizes, for the first time, the POLθ polymerase and helicase inhibitors reported to date. Compounds are described focusing on chemical structure and biological activity. With the aim to enable further drug discovery efforts in interrogating POLθ as a target, we propose a plausible pharmacophore model for POLθ-pol inhibitors and provide a structural analysis of the known POLθ ligand binding sites.
Collapse
Affiliation(s)
- Maria Chiara Pismataro
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Martina Pacetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
42
|
Wang SSY, Jie YE, Cheng SW, Ling GL, Ming HVY. PARP Inhibitors in Breast and Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15082357. [PMID: 37190285 DOI: 10.3390/cancers15082357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are one of the most successful examples of clinical translation of targeted therapies in medical oncology, and this has been demonstrated by their effective management of BRCA1/BRCA2 mutant cancers, most notably in breast and ovarian cancers. PARP inhibitors target DNA repair pathways that BRCA1/2-mutant tumours are dependent upon. Inhibition of the key components of these pathways leads to DNA damage triggering subsequent critical levels of genomic instability, mitotic catastrophe and cell death. This ultimately results in a synthetic lethal relationship between BRCA1/2 and PARP, which underpins the effectiveness of PARP inhibitors. Despite the early and dramatic response seen with PARP inhibitors, patients receiving them often develop treatment resistance. To date, data from both clinical and preclinical studies have highlighted multiple resistance mechanisms to PARP inhibitors, and only by understanding these mechanisms are we able to overcome the challenges. The focus of this review is to summarise the underlying mechanisms underpinning treatment resistance to PARP inhibitors and to aid both clinicians and scientists to develop better clinically applicable assays to better select patients who would derive the greatest benefit as well as develop new novel/combination treatment strategies to overcome these mechanisms of resistance. With a better understanding of PARP inhibitor resistance mechanisms, we would not only be able to identify a subset of patients who are unlikely to benefit from therapy but also to sequence our treatment paradigm to avoid and overcome these resistance mechanisms.
Collapse
Affiliation(s)
- Samuel S Y Wang
- Medical Oncology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Yeo Ee Jie
- Medical Oncology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Sim Wey Cheng
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Goh Liuh Ling
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | | |
Collapse
|
43
|
Rodriguez-Berriguete G, Ranzani M, Prevo R, Puliyadi R, Machado N, Bolland HR, Millar V, Ebner D, Boursier M, Cerutti A, Cicconi A, Galbiati A, Grande D, Grinkevich V, Majithiya JB, Piscitello D, Rajendra E, Stockley ML, Boulton SJ, Hammond EM, Heald RA, Smith GC, Robinson HM, Higgins GS. Small-Molecule Polθ Inhibitors Provide Safe and Effective Tumor Radiosensitization in Preclinical Models. Clin Cancer Res 2023; 29:1631-1642. [PMID: 36689546 PMCID: PMC10102842 DOI: 10.1158/1078-0432.ccr-22-2977] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/19/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
| | - Marco Ranzani
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Remko Prevo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Rathi Puliyadi
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicole Machado
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Hannah R. Bolland
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Val Millar
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marie Boursier
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Aurora Cerutti
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Diego Grande
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Vera Grinkevich
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Eeson Rajendra
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Simon J. Boulton
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Ester M. Hammond
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Robert A. Heald
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Geoff S. Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Multifaceted Nature of DNA Polymerase θ. Int J Mol Sci 2023; 24:ijms24043619. [PMID: 36835031 PMCID: PMC9962433 DOI: 10.3390/ijms24043619] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
DNA polymerase θ belongs to the A family of DNA polymerases and plays a key role in DNA repair and damage tolerance, including double-strand break repair and DNA translesion synthesis. Pol θ is often overexpressed in cancer cells and promotes their resistance to chemotherapeutic agents. In this review, we discuss unique biochemical properties and structural features of Pol θ, its multiple roles in protection of genome stability and the potential of Pol θ as a target for cancer treatment.
Collapse
|
45
|
Patterson-Fortin J, D'Andrea AD. Targeting Polymerase Theta (POLθ) for Cancer Therapy. Cancer Treat Res 2023; 186:285-298. [PMID: 37978141 DOI: 10.1007/978-3-031-30065-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polymerase theta (POLθ) is the critical multi-domain enzyme in microhomology-mediated end-joining DNA double-stranded break repair. POLθ is expressed at low levels in normal tissue but is often overexpressed in cancers, especially in DNA repair deficient cancers, such as homologous-recombination cancers, rendering them exquisitely sensitive to POLθ inhibition secondary to synthetic lethality. Development of POLθ inhibitors is an active area of investigation with inhibitors of the N-terminal helicase domain or the C-terminal polymerase domain currently in clinical trial. Here, we review POLθ-mediated microhomology-mediated end-joining, the development of POLθ inhibitors, and the potential clinical uses of POLθ inhibitors.
Collapse
Affiliation(s)
- Jeffrey Patterson-Fortin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Center for DNA Damage and Repair, Susan F. Smith Center for Women's Cancers (SFSCWC), The Fuller-American Cancer Society, Dana-Farber Cancer Institute, HIM 243, 450 Brookline Ave., Boston, MA, 02215, USA.
| |
Collapse
|
46
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
47
|
Barszczewska-Pietraszek G, Drzewiecka M, Czarny P, Skorski T, Śliwiński T. Polθ Inhibition: An Anticancer Therapy for HR-Deficient Tumours. Int J Mol Sci 2022; 24:ijms24010319. [PMID: 36613762 PMCID: PMC9820168 DOI: 10.3390/ijms24010319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
DNA polymerase theta (Polθ)-mediated end joining (TMEJ) is, along with homologous recombination (HR) and non-homologous end-joining (NHEJ), one of the most important mechanisms repairing potentially lethal DNA double-strand breaks (DSBs). Polθ is becoming a new target in cancer research because it demonstrates numerous synthetically lethal interactions with other DNA repair mechanisms, e.g., those involving PARP1, BRCA1/2, DNA-PK, ATR. Inhibition of Polθ could be achieved with different methods, such as RNA interference (RNAi), CRISPR/Cas9 technology, or using small molecule inhibitors. In the context of this topic, RNAi and CRISPR/Cas9 are still more often applied in the research itself rather than clinical usage, different than small molecule inhibitors. Several Polθ inhibitors have been already generated, and two of them, novobiocin (NVB) and ART812 derivative, are being tested in clinical trials against HR-deficient tumors. In this review, we describe the significance of Polθ and the Polθ-mediated TMEJ pathway. In addition, we summarize the current state of knowledge about Polθ inhibitors and emphasize the promising role of Polθ as a therapeutic target.
Collapse
Affiliation(s)
| | - Małgorzata Drzewiecka
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-42-635-44-86
| |
Collapse
|
48
|
Belan O, Sebald M, Adamowicz M, Anand R, Vancevska A, Neves J, Grinkevich V, Hewitt G, Segura-Bayona S, Bellelli R, Robinson HMR, Higgins GS, Smith GCM, West SC, Rueda DS, Boulton SJ. POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells. Mol Cell 2022; 82:4664-4680.e9. [PMID: 36455556 DOI: 10.1016/j.molcel.2022.11.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marie Sebald
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marek Adamowicz
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksandra Vancevska
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Joana Neves
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Vera Grinkevich
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sandra Segura-Bayona
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Helen M R Robinson
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Geoff S Higgins
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Graeme C M Smith
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK.
| |
Collapse
|
49
|
Abstract
DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.
Collapse
Affiliation(s)
- Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA;
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
50
|
Schrempf A, Bernardo S, Arasa Verge EA, Ramirez Otero MA, Wilson J, Kirchhofer D, Timelthaler G, Ambros AM, Kaya A, Wieder M, Ecker GF, Winter GE, Costanzo V, Loizou JI. POLθ processes ssDNA gaps and promotes replication fork progression in BRCA1-deficient cells. Cell Rep 2022; 41:111716. [PMID: 36400033 DOI: 10.1016/j.celrep.2022.111716] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Polymerase theta (POLθ) is an error-prone DNA polymerase whose loss is synthetically lethal in cancer cells bearing breast cancer susceptibility proteins 1 and 2 (BRCA1/2) mutations. To investigate the basis of this genetic interaction, we utilized a small-molecule inhibitor targeting the POLθ polymerase domain. We found that POLθ processes single-stranded DNA (ssDNA) gaps that emerge in the absence of BRCA1, thus promoting unperturbed replication fork progression and survival of BRCA1 mutant cells. A genome-scale CRISPR-Cas9 knockout screen uncovered suppressors of the functional interaction between POLθ and BRCA1, including NBN, a component of the MRN complex, and cell-cycle regulators such as CDK6. While the MRN complex nucleolytically processes ssDNA gaps, CDK6 promotes cell-cycle progression, thereby exacerbating replication stress, a feature of BRCA1-deficient cells that lack POLθ activity. Thus, ssDNA gap formation, modulated by cell-cycle regulators and MRN complex activity, underlies the synthetic lethality between POLθ and BRCA1, an important insight for clinical trials with POLθ inhibitors.
Collapse
Affiliation(s)
- Anna Schrempf
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sara Bernardo
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Emili A Arasa Verge
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Miguel A Ramirez Otero
- DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Jordan Wilson
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerald Timelthaler
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna M Ambros
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Atilla Kaya
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Marcus Wieder
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Georg E Winter
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Joanna I Loizou
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|