1
|
Cheng B, Peng SI, Jia YY, Tong E, Atwood SX, Sun BK. Comprehensive secretome profiling and CRISPR screen identifies SFRP1 as a key inhibitor of epidermal progenitor proliferation. Cell Death Dis 2025; 16:360. [PMID: 40319033 PMCID: PMC12049499 DOI: 10.1038/s41419-025-07691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Secreted proteins are crucial for the structure and functions of the human epidermis, but the full repertoire of the keratinocyte secretome has not been experimentally defined. In this study, we performed mass spectrometry on conditioned media from primary human keratinocytes, identifying 406 proteins with diverse roles in adhesion, migration, proliferation, proteolysis, signal transduction, and innate immunity. To leverage this new dataset, we developed a novel colony formation assay-based CRISPR screen to investigate the functions of uncharacterized secreted proteins on epidermal stem cells. The screen identified six candidate proteins that promoted proliferation of epidermal progenitors and two proteins that inhibited it. Secreted frizzled-related protein-1 (SFRP1) was the most potent inhibitor. We discovered that SFRP1 restrained clonogenic keratinocyte proliferation by inhibiting Wnt signaling as well as blocking ectopic expression of leukemia inhibitory factor (LIF). Collectively, our study expands our knowledge of the keratinocyte secretome, establishes a novel CRISPR screen to assess the function of non-cell autonomous factors, and highlights SFRP1's role in regulating epidermal balance.
Collapse
Affiliation(s)
- Binbin Cheng
- Department of Dermatology, University of California Irvine, Irvine, CA, USA
| | | | - Yunlong Y Jia
- Department of Dermatology, University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Elton Tong
- Department of Dermatology, University of California Irvine, Irvine, CA, USA
| | - Scott X Atwood
- Department of Dermatology, University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Bryan K Sun
- Department of Dermatology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
3
|
Schultz PG. Synthesis at the Interface of Chemistry and Biology. Acc Chem Res 2024; 57:2631-2642. [PMID: 39198974 PMCID: PMC11443489 DOI: 10.1021/acs.accounts.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
Chemical synthesis as a tool to control the structure and properties of matter is at the heart of chemistry─from the synthesis of fine chemicals and polymers to drugs and solid-state materials. But as the field evolves to tackle larger and larger molecules and molecular complexes, the traditional tools of synthetic chemistry become limiting. In contrast, Mother Nature has developed very different strategies to create the macromolecules and molecular systems that make up the living cell. Our focus has been to ask whether we can use the synthetic strategies and machinery of Mother Nature, together with modern chemical tools, to create new macromolecules, and even whole organisms with properties not existing in nature. One such example involves reprogramming the complex, multicomponent machinery of ribosomal protein synthesis to add new building blocks to the genetic code, overcoming a billion-year constraint on the chemical nature of proteins. This methodology exploits the concept of bioorthogonality to add unique codons, tRNAs and aminoacyl-tRNA synthetases to cells to encode amino acids with physical, chemical and biological properties not found in nature. As a result, we can make precise changes to the structures of proteins, much like those made by chemists to small molecules and beyond those possible by biological approaches alone. This technology has made it possible to probe protein structure and function in vitro and in vivo in ways heretofore not possible, and to make therapeutic proteins with enhanced pharmacology. A second example involves exploiting the molecular diversity of the humoral immune system together with synthetic transition state analogues to make catalytic antibodies, and then expanding this diversity-based strategy (new to chemists at the time) to drug discovery and materials science. This work ushered in a new nature-inspired synthetic strategy in which large libraries of natural or synthetic molecules are designed and then rationally selected or screened for new function, increasing the efficiency by which we can explore chemical space for new physical, chemical and biological properties. A final example is the use of large chemical libraries, robotics and high throughput phenotypic cellular screens to identify small synthetic molecules that can be used to probe and manipulate the complex biology of the cell, exemplified by druglike molecules that control cell fate. This approach provides new insights into complex biology that complements genomic approaches and can lead to new drugs that act by novel mechanisms of action, for example to selectively regenerate tissues. These and other advances have been made possible by using our knowledge of molecular structure and reactivity hand in hand with our understanding of and ability to manipulate the complex machinery of living cells, opening a new frontier in synthesis. This Account overviews the work in my lab and with our collaborators, from our early days to the present, that revolves around this central theme.
Collapse
Affiliation(s)
- Peter G. Schultz
- Department of Chemistry,
L.S. Sam Skaggs Presidential Chair, Scripps
Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Chan ASL, Zhu H, Narita M, Cassidy LD, Young ARJ, Bermejo-Rodriguez C, Janowska AT, Chen HC, Gough S, Oshimori N, Zender L, Aitken SJ, Hoare M, Narita M. Titration of RAS alters senescent state and influences tumour initiation. Nature 2024; 633:678-685. [PMID: 39112713 PMCID: PMC11410659 DOI: 10.1038/s41586-024-07797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2024] [Indexed: 08/17/2024]
Abstract
Oncogenic RAS-induced senescence (OIS) is an autonomous tumour suppressor mechanism associated with premalignancy1,2. Achieving this phenotype typically requires a high level of oncogenic stress, yet the phenotype provoked by lower oncogenic dosage remains unclear. Here we develop oncogenic RAS dose-escalation models in vitro and in vivo, revealing a RAS dose-driven non-linear continuum of downstream phenotypes. In a hepatocyte OIS model in vivo, ectopic expression of NRAS(G12V) does not induce tumours, in part owing to OIS-driven immune clearance3. Single-cell RNA sequencing analyses reveal distinct hepatocyte clusters with typical OIS or progenitor-like features, corresponding to high and intermediate levels of NRAS(G12V), respectively. When titred down, NRAS(G12V)-expressing hepatocytes become immune resistant and develop tumours. Time-series monitoring at single-cell resolution identifies two distinct tumour types: early-onset aggressive undifferentiated and late-onset differentiated hepatocellular carcinoma. The molecular signature of each mouse tumour type is associated with different progenitor features and enriched in distinct human hepatocellular carcinoma subclasses. Our results define the oncogenic dosage-driven OIS spectrum, reconciling the senescence and tumour initiation phenotypes in early tumorigenesis.
Collapse
Affiliation(s)
- Adelyne S L Chan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Haoran Zhu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Masako Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Liam D Cassidy
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Andrew R J Young
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Aleksandra T Janowska
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Hung-Chang Chen
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Sarah Gough
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Naoki Oshimori
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Lars Zender
- Department of Medical Oncology and Pneumology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- iFIT Cluster of Excellence EXC 2180 Image Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery and Development (TüCAD2), Tübingen, Germany
| | - Sarah J Aitken
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthew Hoare
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
5
|
Benucci B, Spinello Z, Calvaresi V, Viviani V, Perrotta A, Faleri A, Utrio Lanfaloni S, Pansegrau W, d’Alterio L, Bartolini E, Pinzuti I, Sampieri K, Giordano A, Rappuoli R, Pizza M, Masignani V, Norais N, Maione D, Merola M. Neisserial adhesin A (NadA) binds human Siglec-5 and Siglec-14 with high affinity and promotes bacterial adhesion/invasion. mBio 2024; 15:e0110724. [PMID: 39041817 PMCID: PMC11323535 DOI: 10.1128/mbio.01107-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024] Open
Abstract
Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against Neisseria meningitidis serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors. We screened a protein microarray encompassing 2,846 human and 297 mouse surface/secreted recombinant proteins using recombinant NadA as probe. Efficient NadA binding was revealed on the paired sialic acid-binding immunoglobulin-type lectins receptors 5 and 14 (Siglec-5 and Siglec-14), but not on Siglec-9 therein used as control. The interaction was confirmed by biochemical tools with the determination of the KD value in the order of nanomolar and the identification of the NadA binding site by hydrogen-deuterium exchange coupled to mass spectrometry. The N-terminal domain of the Siglec-5 that recognizes the sialic acid was identified as the NadA binding domain. Intriguingly, exogenously added recombinant soluble Siglecs, including Siglec-9, were found to decorate N. meningitidis surface in a NadA-dependent manner. However, Siglec-5 and Siglec-14 transiently expressed in CHO-K1 cells endorsed NadA binding and increased N. meningitidis adhesion/invasion while Siglec-9 did not. Taken together, Siglec-5 and Siglec-14 satisfy all features of NadA receptors suggesting a possible role of NadA in the acute meningococcal infection.IMPORTANCEBacteria have developed several strategies for cell colonization and immune evasion. Knowledge of the host and pathogen factors involved in these mechanisms is crucial to build efficacious countermoves. Neisserial adhesin A (NadA) is a meningococcal surface protein included in the anti-meningococcus B vaccine 4CMenB, which mediates adhesion to and invasion of epithelial cells. Although NadA has been shown to bind to other cell types, like myeloid and endothelial cells, it still remains orphan of a defined host receptor. We have identified two strong NadA interactors, Siglec-5 and Siglec-14, which are mainly expressed on myeloid cells. This showcases that NadA is an additional and key player among the Neisseria meningitidis factors targeting immune cells. We thus provide novel insights on the strategies exploited by N. meningitidis during the infection process, which can progress to a severe illness and death.
Collapse
MESH Headings
- Humans
- Adhesins, Bacterial/metabolism
- Adhesins, Bacterial/genetics
- Bacterial Adhesion
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins/metabolism
- Lectins/genetics
- Lectins/immunology
- Animals
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Host-Pathogen Interactions
- Protein Binding
- Mice
- CHO Cells
- Cricetulus
- Neisseria meningitidis/genetics
- Neisseria meningitidis/metabolism
- Neisseria meningitidis/immunology
- Recombinant Proteins/metabolism
- Recombinant Proteins/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/genetics
- Epithelial Cells/microbiology
- Epithelial Cells/metabolism
- Epithelial Cells/immunology
- Meningococcal Infections/microbiology
- Meningococcal Infections/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
Collapse
Affiliation(s)
| | | | - Valeria Calvaresi
- GSK, Siena, Italy
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marcello Merola
- GSK, Siena, Italy
- Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
6
|
Wang X, Tazearslan C, Kim S, Guo Q, Contreras D, Yang J, Hudgins AD, Suh Y. In vitro heterochronic parabiosis identifies pigment epithelium-derived factor as a systemic mediator of rejuvenation by young blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592258. [PMID: 38746475 PMCID: PMC11092633 DOI: 10.1101/2024.05.02.592258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Several decades of heterochronic parabiosis (HCPB) studies have demonstrated the restorative impact of young blood, and deleterious influence of aged blood, on physiological function and homeostasis across tissues, although few of the factors responsible for these observations have been identified. Here we develop an in vitro HCPB system to identify these circulating factors, using replicative lifespan (RLS) of primary human fibroblasts as an endpoint of cellular health. We find that RLS is inversely correlated with serum donor age and sensitive to the presence or absence of specific serum components. Through in vitro HCPB, we identify the secreted protein pigment epithelium-derived factor (PEDF) as a circulating factor that extends RLS of primary human fibroblasts and declines with age in mammals. Systemic administration of PEDF to aged mice reverses age-related functional decline and pathology across several tissues, improving cognitive function and reducing hepatic fibrosis and renal lipid accumulation. Together, our data supports PEDF as a systemic mediator of the effect of young blood on organismal health and homeostasis and establishes our in vitro HCPB system as a valuable screening platform for the identification of candidate circulating factors involved in aging and rejuvenation.
Collapse
Affiliation(s)
- Xizhe Wang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- These authors contributed equally
| | - Cagdas Tazearslan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- These authors contributed equally
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Qinghua Guo
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Daniela Contreras
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Jiping Yang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Adam D. Hudgins
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| |
Collapse
|
7
|
Bartholow T, Burroughs PW, Elledge SK, Byrnes JR, Kirkemo LL, Garda V, Leung KK, Wells JA. Photoproximity Labeling from Single Catalyst Sites Allows Calibration and Increased Resolution for Carbene Labeling of Protein Partners In Vitro and on Cells. ACS CENTRAL SCIENCE 2024; 10:199-208. [PMID: 38292613 PMCID: PMC10823516 DOI: 10.1021/acscentsci.3c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024]
Abstract
The cell surface proteome (surfaceome) plays a pivotal role in virtually all extracellular biology, and yet we are only beginning to understand the protein complexes formed in this crowded environment. Recently, a high-resolution approach (μMap) was described that utilizes multiple iridium-photocatalysts attached to a secondary antibody, directed to a primary antibody of a protein of interest, to identify proximal neighbors by light-activated conversion of a biotin-diazirine to a highly reactive carbene followed by LC/MS (Geri, J. B.; Oakley, J. V.; Reyes-Robles, T.; Wang, T.; McCarver, S. J.; White, C. H.; Rodriguez-Rivera, F. P.; Parker, D. L.; Hett, E. C.; Fadeyi, O. O.; Oslund, R. C.; MacMillan, D. W. C. Science2020, 367, 1091-1097). Here we calibrated the spatial resolution for carbene labeling using site-specific conjugation of a single photocatalyst to a primary antibody drug, trastuzumab (Traz), in complex with its structurally well-characterized oncogene target, HER2. We observed relatively uniform carbene labeling across all amino acids, and a maximum distance of ∼110 Å from the fixed photocatalyst. When targeting HER2 overexpression cells, we identified 20 highly enriched HER2 neighbors, compared to a nonspecific membrane tethered catalyst. These studies identify new HER2 interactors and calibrate the radius of carbene photoprobe labeling for the surfaceome.
Collapse
Affiliation(s)
- Thomas
G. Bartholow
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Paul W.W. Burroughs
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Susanna K. Elledge
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James R. Byrnes
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Lisa L. Kirkemo
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Virginia Garda
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kevin K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
8
|
Bartholow TG, Burroughs P, Elledge SK, Byrnes JR, Kirkemo LL, Garda V, Leung KK, Wells JA. Site-specific proximity labeling at single residue resolution for identification of protein partners in vitro and on cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550738. [PMID: 37546992 PMCID: PMC10402114 DOI: 10.1101/2023.07.27.550738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The cell surface proteome, or surfaceome, is encoded by more than 4000 genes, but we are only beginning to understand the complexes they form. Rapid proximity labeling around specific membrane targets allows for capturing weak and transient interactions expected in the crowded and dynamic environment of the surfaceome. Recently, a high-resolution approach called μMap has been described (Geri, J. B., Oakley, J. V., Reyes-Robles, T., Wang, T., McCarver, S. J., White, C. H., Rodriguez-Rivera, F. P., Parker, D. L., Hett, E. C., Fadeyi, O. O., Oslund, R. C., and MacMillan, D. W. C. (2020) Science 367 , 1091-1097) in which an iridium (Ir)-based photocatalyst is attached to a specific antibody to target labeling of neighbors utilizing light-activated generation of carbenes from diazirine compounds via Dexter Energy Transfer (DET). Here we studied and optimized the spatial resolution for the method using an oncoprotein complex between the antibody drug, trastuzumab (Traz), and its target HER2. A set of eight single site-specific Ir-catalytic centers were engineered into Traz to study intra- and inter-molecular labeling in vitro and on cells by mass spectrometry. From this structurally well-characterized complex we observed a maximum distance of ∼110 Å for labeling. Labeling occurred almost uniformly over the full range of amino acids, unlike the residue specific labeling of other techniques. To examine on cell labeling that is specific to HER2 as opposed to simply being on the membrane, we compared the labeling patterns for the eight Traz-catalyst species to random labeling of membrane proteins using a metabolically integrated fatty acid catalyst. Our results identified 20 high confidence HER2 neighbors, many novel, that were more than 6-fold enriched compared to the non-specific membrane tethered catalyst. These studies define distance labeling parameters from single-site catalysts placed directly on the membrane target of interest, and more accurately compare to non-specific labeling to identify membrane complexes with higher confidence.
Collapse
|
9
|
Panariello F, Gagliano O, Luni C, Grimaldi A, Angiolillo S, Qin W, Manfredi A, Annunziata P, Slovin S, Vaccaro L, Riccardo S, Bouche V, Dionisi M, Salvi M, Martewicz S, Hu M, Cui M, Stuart H, Laterza C, Baruzzo G, Schiebinger G, Di Camillo B, Cacchiarelli D, Elvassore N. Cellular population dynamics shape the route to human pluripotency. Nat Commun 2023; 14:2829. [PMID: 37198156 DOI: 10.1038/s41467-023-37270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 05/19/2023] Open
Abstract
Human cellular reprogramming to induced pluripotency is still an inefficient process, which has hindered studying the role of critical intermediate stages. Here we take advantage of high efficiency reprogramming in microfluidics and temporal multi-omics to identify and resolve distinct sub-populations and their interactions. We perform secretome analysis and single-cell transcriptomics to show functional extrinsic pathways of protein communication between reprogramming sub-populations and the re-shaping of a permissive extracellular environment. We pinpoint the HGF/MET/STAT3 axis as a potent enhancer of reprogramming, which acts via HGF accumulation within the confined system of microfluidics, and in conventional dishes needs to be supplied exogenously to enhance efficiency. Our data suggest that human cellular reprogramming is a transcription factor-driven process that it is deeply dependent on extracellular context and cell population determinants.
Collapse
Affiliation(s)
- Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| | - Antonio Grimaldi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Silvia Angiolillo
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Wei Qin
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA (Next Generation Diagnostic srl), Pozzuoli, Italy
| | - Patrizia Annunziata
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA (Next Generation Diagnostic srl), Pozzuoli, Italy
| | - Shaked Slovin
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Lorenzo Vaccaro
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Sara Riccardo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA (Next Generation Diagnostic srl), Pozzuoli, Italy
| | - Valentina Bouche
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Manuela Dionisi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Marcello Salvi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Manli Hu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Meihua Cui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Hannah Stuart
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
- CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy.
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples "Federico II", Naples, Italy.
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK.
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.
| |
Collapse
|
10
|
SERPINF1 Mediates Tumor Progression and Stemness in Glioma. Genes (Basel) 2023; 14:genes14030580. [PMID: 36980858 PMCID: PMC10047918 DOI: 10.3390/genes14030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Serpin family F member 1 (SERPINF1) reportedly plays multiple roles in various tumors; however, its clinical significance and molecular functions in glioma have been largely understudied. In the present study, we analyzed the prognostic value of SERPINF1 in three independent glioma datasets. Next, we explored the molecular functions and transcriptional regulation of SERPINF1 at the single-cell level. Moreover, in vitro experiments were conducted to evaluate the roles of SERPINF1 in the proliferation, invasion, migration, and stemness of glioma cells. Our results showed that a higher expression of SERPINF1 correlated with a poor overall survival rate in glioma patients (hazard ratio: 4.061 in TCGA, 2.017 in CGGA, and 1.675 in GSE16011, p < 0.001). Besides, SERPINF1 knockdown could suppress the proliferation, invasion, and migration of glioma cells in vitro. In addition, SERPINF1 expression was significantly upregulated in glioma stem cells (GSCs) compared to parental glioma cells. Knocking down SERPINF1 impaired the sphere formation of GSC-A172 and GSC-LN18. Bioinformatics analysis revealed that Notch signaling activation was closely associated with high SERPINF1 expression at the single-cell level. Furthermore, STAT1, CREM, and NR2F2 may participate in the transcriptional regulation of SERPINF1 in glioma. Overall, our results suggest that SERPINF1 may be a candidate prognostic predictor and potential therapeutic target for glioma.
Collapse
|
11
|
Chen S, Zhang J, Li Q, Xiao L, Feng X, Niu Q, Zhao L, Ma W, Ye H. A Novel Secreted Protein-Related Gene Signature Predicts Overall Survival and Is Associated With Tumor Immunity in Patients With Lung Adenocarcinoma. Front Oncol 2022; 12:870328. [PMID: 35719915 PMCID: PMC9204015 DOI: 10.3389/fonc.2022.870328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022] Open
Abstract
Secreted proteins are important proteins in the human proteome, accounting for approximately one-tenth of the proteome. However, the prognostic value of secreted protein-related genes has not been comprehensively explored in lung adenocarcinoma (LUAD). In this study, we screened 379 differentially expressed secretory protein genes (DESPRGs) by analyzing the expression profile in patients with LUAD from The Cancer Genome Atlas database. Following univariate Cox regression and least absolute shrinkage and selection operator method regression analysis, 9 prognostic SPRGs were selected to develop secreted protein-related risk score (SPRrisk), including CLEC3B, C1QTNF6, TCN1, F2, FETUB, IGFBP1, ANGPTL4, IFNE, and CCL20. The prediction accuracy of the prognostic models was determined by Kaplan–Meier survival curve analysis and receiver operating characteristic curve analysis. Moreover, a nomogram with improved accuracy for predicting overall survival was established based on independent prognostic factors (SPRrisk and clinical stage). The DESPRGs were validated by quantitative real-time PCR and enzyme-linked immunosorbent assay by using our clinical samples and datasets. Our results demonstrated that SPRrisk can accurately predict the prognosis of patients with LUAD. Patients with a higher risk had lower immune, stromal, and ESTIMATE scores and higher tumor purity. A higher SPRrisk was also negatively associated with the abundance of CD8+ T cells and M1 macrophages. In addition, several genes of the human leukocyte antigen family and immune checkpoints were expressed in low levels in the high-SPRrisk group. Our results provided some insights into assessing individual prognosis and choosing personalized treatment modalities.
Collapse
Affiliation(s)
- Shuaijun Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqin Zhao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanli Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| |
Collapse
|
12
|
Ding M, Malhotra R, Ottosson T, Lundqvist M, Mebrahtu A, Brengdahl J, Gehrmann U, Bäck E, Ross-Thriepland D, Isaksson I, Magnusson B, Sachsenmeier KF, Tegel H, Hober S, Uhlén M, Mayr LM, Davies R, Rockberg J, Schiavone LH. Secretome screening reveals immunomodulating functions of IFNα-7, PAP and GDF-7 on regulatory T-cells. Sci Rep 2021; 11:16767. [PMID: 34408239 PMCID: PMC8373891 DOI: 10.1038/s41598-021-96184-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing effector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as differentiation, proliferation and suppressive function. Identification of secreted proteins that affect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput flow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF-7, IL-10, PAP and IFNα-7 were identified as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic-dead version of the protein did not induce an increase in FOXP3 expression. Ten interferon proteins were identified as negative regulators that reduced the expression of both CTLA4 and FOXP3, without affecting cell viability. A transcriptomics analysis supported the differential effect on Tregs of IFNα-7 versus other IFNα proteins, indicating differences in JAK/STAT signaling. A conformational model experiment confirmed a tenfold reduction in IFNAR-mediated ISG transcription for IFNα-7 compared to IFNα-10. This further strengthened the theory of a shift in downstream messaging upon external stimulation. As a summary, we have identified four positive regulators of FOXP3 and/or CTLA4 expression. Further exploration of these Treg modulators and their method of action has the potential to aid the discovery of novel therapies for both autoimmune and infectious diseases as well as for cancer.
Collapse
Affiliation(s)
- Mei Ding
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rajneesh Malhotra
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tomas Ottosson
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Lundqvist
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Aman Mebrahtu
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Johan Brengdahl
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Bäck
- grid.418151.80000 0001 1519 6403Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Douglas Ross-Thriepland
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ida Isaksson
- grid.418151.80000 0001 1519 6403Sample Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Björn Magnusson
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Hanna Tegel
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lorenz M. Mayr
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rick Davies
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Johan Rockberg
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lovisa Holmberg Schiavone
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
13
|
Vandana JJ, Lacko LA, Chen S. Phenotypic technologies in stem cell biology. Cell Chem Biol 2021; 28:257-270. [PMID: 33651977 DOI: 10.1016/j.chembiol.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
The high-throughput phenotypic screen (HTPS) has become an emerging technology to discover synthetic small molecules that regulate stem cell fates. Here, we review the application of HTPS to identify small molecules controlling stem cell renewal, reprogramming, differentiation, and lineage conversion. Moreover, we discuss the use of HTPS to discover small molecules/polymers mimicking the stem cell extracellular niche. Furthermore, HTPSs have been applied on whole-animal models to identify small molecules regulating stem cell renewal or differentiation in vivo. Finally, we discuss the examples of the utilization of HTPS in stem cell-based disease modeling, as well as in the discovery of novel drug candidates for cancer, diabetes, and infectious diseases. Overall, HTPSs have provided many powerful tools for the stem cell field, which not only facilitate the generation of functional cells/tissues for replacement therapy, disease modeling, and drug screening, but also help dissect molecular mechanisms regulating physiological and pathological processes.
Collapse
Affiliation(s)
- J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lauretta A Lacko
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
14
|
Chen W, Mou KY, Solomon P, Aggarwal R, Leung KK, Wells JA. Large remodeling of the Myc-induced cell surface proteome in B cells and prostate cells creates new opportunities for immunotherapy. Proc Natl Acad Sci U S A 2021; 118:e2018861118. [PMID: 33483421 PMCID: PMC7848737 DOI: 10.1073/pnas.2018861118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MYC is a powerful transcription factor overexpressed in many human cancers including B cell and prostate cancers. Antibody therapeutics are exciting opportunities to attack cancers but require knowledge of surface proteins that change due to oncogene expression. To identify how MYC overexpression remodels the cell surface proteome in a cell autologous fashion and in different cell types, we investigated the impact of MYC overexpression on 800 surface proteins in three isogenic model cell lines either of B cell or prostate cell origin engineered to have high or low MYC levels. We found that MYC overexpression resulted in dramatic remodeling (both up- and down-regulation) of the cell surfaceome in a cell type-dependent fashion. We found systematic and large increases in distinct sets of >80 transporters including nucleoside transporters and nutrient transporters making cells more sensitive to toxic nucleoside analogs like cytarabine, commonly used for treating hematological cancers. Paradoxically, MYC overexpression also increased expression of surface proteins driving cell turnover such as TNFRSF10B, also known as death receptor 5, and immune cell attacking signals such as the natural killer cell activating ligand NCR3LG1, also known as B7-H6. We generated recombinant antibodies to these two targets and verified their up-regulation in MYC overexpression cell lines and showed they were sensitive to bispecific T cell engagers (BiTEs). Our studies demonstrate how MYC overexpression leads to dramatic bidirectional remodeling of the surfaceome in a cell type-dependent but functionally convergent fashion and identify surface targets or combinations thereof as possible candidates for cytotoxic metabolite or immunotherapy.
Collapse
Affiliation(s)
- Wentao Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA 91320
| | - Kurt Yun Mou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529
| | - Paige Solomon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, CA 94158
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158;
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|
15
|
Michielin F, Giobbe GG, Luni C, Hu Q, Maroni I, Orford MR, Manfredi A, Di Filippo L, David AL, Cacchiarelli D, De Coppi P, Eaton S, Elvassore N. The Microfluidic Environment Reveals a Hidden Role of Self-Organizing Extracellular Matrix in Hepatic Commitment and Organoid Formation of hiPSCs. Cell Rep 2020; 33:108453. [PMID: 33264615 PMCID: PMC8237389 DOI: 10.1016/j.celrep.2020.108453] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/26/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The specification of the hepatic identity during human liver development is strictly controlled by extrinsic signals, yet it is still not clear how cells respond to these exogenous signals by activating secretory cascades, which are extremely relevant, especially in 3D self-organizing systems. Here, we investigate how the proteins secreted by human pluripotent stem cells (hPSCs) in response to developmental exogenous signals affect the progression from endoderm to the hepatic lineage, including their competence to generate nascent hepatic organoids. By using microfluidic confined environment and stable isotope labeling with amino acids in cell culture-coupled mass spectrometry (SILAC-MS) quantitative proteomic analysis, we find high abundancy of extracellular matrix (ECM)-associated proteins. Hepatic progenitor cells either derived in microfluidics or exposed to exogenous ECM stimuli show a significantly higher potential of forming hepatic organoids that can be rapidly expanded for several passages and further differentiated into functional hepatocytes. These results prove an additional control over the efficiency of hepatic organoid formation and differentiation for downstream applications.
Collapse
Affiliation(s)
- Federica Michielin
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK
| | - Giovanni G Giobbe
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 201210 Shanghai, China
| | - Qianjiang Hu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 201210 Shanghai, China
| | - Ida Maroni
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Michael R Orford
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, 80078 Pozzuoli, Italy
| | | | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, WC1E 6AU London, UK
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, 80078 Pozzuoli, Italy; Department of Translational Medicine, University of Naples "Federico II," 80131 Naples, Italy
| | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK; Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital, WC1N 3JH London, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK
| | - Nicola Elvassore
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 201210 Shanghai, China; Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), 35129 Padova, Italy.
| |
Collapse
|
16
|
High-Throughput Expression Screening in Mammalian Suspension Cells. Methods Mol Biol 2020. [PMID: 33125647 DOI: 10.1007/978-1-0716-0892-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteins naturally expressed in eukaryotic organisms often require host chaperones, binding partners, and posttranslational modifications for correct folding. Ideally the heterologous expression system chosen should be as similar to the natural host as possible. For example, mammalian proteins should be expressed in mammalian expression systems. However, this does not guarantee a protein will be expressed in a sufficient high yield for structural or biochemical studies or antibody generation. Often a screening process is undertaken in which many parameters including truncations, point mutations, investigation of orthologs, fusion to peptide or protein tags at the N- or C-terminus, the coexpression of binding partners, and even culture conditions are varied to identify the optimal expression conditions. This requires multiparallel expression screening in mammalian cells similar to that already described for E. coli expression. Here we describe in detail a multiparallel method to express proteins in mammalian suspension cells by transient transfection in 24-well or 96-well blocks.
Collapse
|
17
|
Tegel H, Dannemeyer M, Kanje S, Sivertsson Å, Berling A, Svensson AS, Hober A, Enstedt H, Volk AL, Lundqvist M, Moradi M, Afshari D, Ekblad S, Xu L, Westin M, Bidad F, Schiavone LH, Davies R, Mayr LM, Knight S, Göpel SO, Voldborg BG, Edfors F, Forsström B, von Feilitzen K, Zwahlen M, Rockberg J, Takanen JO, Uhlén M, Hober S. High throughput generation of a resource of the human secretome in mammalian cells. N Biotechnol 2020; 58:45-54. [DOI: 10.1016/j.nbt.2020.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
|
18
|
Ding M, Tegel H, Sivertsson Å, Hober S, Snijder A, Ormö M, Strömstedt PE, Davies R, Holmberg Schiavone L. Secretome-Based Screening in Target Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:535-551. [PMID: 32425085 PMCID: PMC7309359 DOI: 10.1177/2472555220917113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Secreted proteins and their cognate plasma membrane receptors regulate human physiology by transducing signals from the extracellular environment into cells resulting in different cellular phenotypes. Systematic use of secretome proteins in assays enables discovery of novel biology and signaling pathways. Several secretome-based phenotypic screening platforms have been described in the literature and shown to facilitate target identification in drug discovery. In this review, we summarize the current status of secretome-based screening. This includes annotation, production, quality control, and sample management of secretome libraries, as well as how secretome libraries have been applied to discover novel target biology using different disease-relevant cell-based assays. A workflow for secretome-based screening is shared based on the AstraZeneca experience. The secretome library offers several advantages compared with other libraries used for target discovery: (1) screening using a secretome library directly identifies the active protein and, in many cases, its cognate receptor, enabling a rapid understanding of the disease pathway and subsequent formation of target hypotheses for drug discovery; (2) the secretome library covers significant areas of biological signaling space, although the size of this library is small; (3) secretome proteins can be added directly to cells without additional manipulation. These factors make the secretome library ideal for testing in physiologically relevant cell types, and therefore it represents an attractive approach to phenotypic target discovery.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Tegel
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Åsa Sivertsson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Arjan Snijder
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mats Ormö
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Per-Erik Strömstedt
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rick Davies
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
19
|
Leung KK, Wilson GM, Kirkemo LL, Riley NM, Coon JJ, Wells JA. Broad and thematic remodeling of the surfaceome and glycoproteome on isogenic cells transformed with driving proliferative oncogenes. Proc Natl Acad Sci U S A 2020; 117:7764-7775. [PMID: 32205440 PMCID: PMC7148585 DOI: 10.1073/pnas.1917947117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here we apply quantitative proteomics of N-linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK, and AKT. We find that each oncogene has somewhat different surfaceomes, but the functions of these proteins are harmonized by common biological themes including up-regulation of nutrient transporters, down-regulation of adhesion molecules and tumor suppressing phosphatases, and alteration in immune modulators. Addition of a potent MEK inhibitor that blocks MAPK signaling brings each oncogene-induced surfaceome back to a common state reflecting the strong dependence of the oncogene on the MAPK pathway to propagate signaling. Cell surface protein capture is mediated by covalent tagging of surface glycans, yet current methods do not afford sequencing of intact glycopeptides. Thus, we complement the surfaceome data with whole cell glycoproteomics enabled by a recently developed technique called activated ion electron transfer dissociation (AI-ETD). We found massive oncogene-induced changes to the glycoproteome and differential increases in complex hybrid glycans, especially for KRAS and HER2 oncogenes. Overall, these studies provide a broad systems-level view of how specific driver oncogenes remodel the surfaceome and the glycoproteome in a cell autologous fashion, and suggest possible surface targets, and combinations thereof, for drug and biomarker discovery.
Collapse
Affiliation(s)
- Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143;
| |
Collapse
|
20
|
Brook N, Brook E, Dharmarajan A, Chan A, Dass CR. Pigment epithelium-derived factor regulation of neuronal and stem cell fate. Exp Cell Res 2020; 389:111891. [DOI: 10.1016/j.yexcr.2020.111891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/25/2023]
|
21
|
Tanhaeian A, Azghandi M, Mousavi Z, Javadmanesh A. Expression of Thanatin in HEK293 Cells and Investigation of its Antibacterial Effects on Some Human Pathogens. Protein Pept Lett 2020; 27:41-47. [PMID: 31438823 PMCID: PMC6978649 DOI: 10.2174/0929866526666190822162140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Thanatin is the smallest member of Beta-hairpin class of cationic peptide derived from insects with vast activities against various pathogens. OBJECTIVE In this study, the antimicrobial activity of this peptide against some species of human bacterial pathogens as well as its toxicity on NIH cells were evaluated. METHODS Thanatin DNA sequence was cloned into pcDNA3.1+ vector and transformed into a DH5α bacterial strain. Then the recombinant plasmids were transfected into HEK-293 cells by calcium phosphate co-precipitation. After applying antibiotic treatment, the supernatant medium containing thanatin was collected. The peptide quantity was estimated by SDS-PAGE and GelQuant software. The antimicrobial activity of this peptide was performed with Minimum Inhibitory Concentration (MIC) method. In addition, its toxicity on NIH cells were evaluated by MTT assay. RESULTS The peptide quantity was estimated approximately 164.21 µmolL-1. The antibacterial activity of thanatin was estimated between 0.99 and 31.58 µmolL-1 using MIC method. The result of cytotoxicity test on NIH cell line showed that the peptide toxicity up to the concentration of 394.10 µmolL-1 and for 48 hours, was not statistically significant from negative control cells (P>0.05). The antimicrobial assay demonstrated that thanatin had an antibacterial effect on some tested microorganisms. The results obtained in this study also showed that thanatin had no toxicity on mammalian cell lines including HEK293 and NIH. CONCLUSION Antimicrobial peptides such as thanatin are considered to be appropriate alternatives to conventional antibiotics in treating various human pathological diseases bacteria.
Collapse
Affiliation(s)
- Abbas Tanhaeian
- Department of Plant Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjan Azghandi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Mousavi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
22
|
Dong Y, Zhang Y, Kang W, Wang G, Chen H, Higashimori A, Nakatsu G, Go M, Tong JHM, Zheng S, To KF, Sung JJY, Yang X, Ng SSM, Yu J. VSTM2A suppresses colorectal cancer and antagonizes Wnt signaling receptor LRP6. Theranostics 2019; 9:6517-6531. [PMID: 31588233 PMCID: PMC6771244 DOI: 10.7150/thno.34989] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Hyperactivation of Wnt/β-catenin signaling pathway is a critical step in colorectal tumorigenesis. In this study, we identified that V-set and transmembrane domain containing 2A (VSTM2A) was a top-downregulated secreted protein that negatively regulated Wnt singling pathways in colorectal cancer (CRC). We investigated the functional mechanisms and clinical implication of VSTM2A in CRC. Methods: Function of VSTM2A was investigated in vitro and in vivo. VSTM2A binding partner was identified by mass spectrometry, immunoprecipitation and Western blot. The clinical impact of VSTM2A was assessed in 355 CRC patients and TCGA cohort. Results: VSTM2A protein was prominently silenced in CRC tumor tissues and cell lines mediated by its promoter hypermethylation. VSTM2A DNA promoter hypermethylation and VSTM2A protein downregulation was associated with poor survival of CRC patients. Ectopic expression of VSTM2A inhibited colon cancer cell lines and organoid growth, induced CRC cells apoptosis, inhibited cell migration and invasion, and suppressed growth of xenograft tumors in nude mice. VSTM2A was released from CRC cells through a canonical secretion pathway. Secreted VSTM2A significantly suppressed Wnt signaling pathway in colon cancer cells. Wnt signaling co-receptor LDL receptor related protein 6 (LRP6) was identified as a cell membrane binding partner of VSTM2A. Using deletion/mutation and immunoprecipitation, we demonstrated that VSTM2A bound to LRP6 E1-4 domain with its IgV domain. VSTM2A suppressed LRP6 phosphorylation in a time and dose dependent manner, and induced LRP6 endocytosis and lysosome-mediated degradation, which collectively contributing to the inactivation of Wnt signaling. Conclusions: VSTM2A is a novel antagonist of canonical Wnt signaling by directly binding to LRP6 and induces LRP6 endocytosis and degradation. VSTM2A is a potential prognostic biomarker for the outcome of CRC patients.
Collapse
|
23
|
Yang SC, Liu JJ, Wang CK, Lin YT, Tsai SY, Chen WJ, Huang WK, Tu PWA, Lin YC, Chang CF, Cheng CL, Lin H, Lai CY, Lin CY, Lee YH, Chiu YC, Hsu CC, Hsu SC, Hsiao M, Schuyler SC, Lu FL, Lu J. Down-regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2. FASEB J 2019; 33:10577-10592. [PMID: 31242772 DOI: 10.1096/fj.201800220rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We reveal by high-throughput screening that activating transcription factor 1 (ATF1) is a novel pluripotent regulator in human embryonic stem cells (hESCs). The knockdown of ATF1 expression significantly up-regulated neuroectoderm (NE) genes but not mesoderm, endoderm, and trophectoderm genes. Of note, down-regulation or knockout of ATF1 with short hairpin RNA (shRNA), small interfering RNA (siRNA), or clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) was sufficient to up-regulate sex-determining region Y-box (SOX)2 and paired box 6 (PAX6) expression under the undifferentiated or differentiated conditions, whereas overexpression of ATF1 suppressed NE differentiation. Endogenous ATF1 was spontaneously down-regulated after d 1-3 of neural induction. By double-knockdown experiments, up-regulation of SOX2 was critical for the increase of PAX6 and SOX1 expression in shRNA targeting Atf1 hESCs. Using the luciferase reporter assay, we identified ATF1 as a negative transcriptional regulator of Sox2 gene expression. A novel function of ATF1 was discovered, and these findings contribute to a broader understanding of the very first steps in regulating NE differentiation in hESCs.-Yang, S.-C., Liu, J.-J., Wang, C.-K., Lin, Y.-T., Tsai, S.-Y., Chen, W.-J., Huang, W.-K., Tu, P.-W. A., Lin, Y.-C., Chang, C.-F., Cheng, C.-L., Lin, H., Lai, C.-Y., Lin, C.-Y., Lee, Y.-H., Chiu, Y.-C., Hsu, C.-C., Hsu, S.-C., Hsiao, M., Schuyler, S. C., Lu, F. L., Lu, J. Down-regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2.
Collapse
Affiliation(s)
- Shang-Chih Yang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jan-Jan Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Kai Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Tsen Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Ju Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Kai Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Wen A Tu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | | | - Chih-Lun Cheng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Ying Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Yu Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Chun Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, Zhunan, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Frank Leigh Lu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean Lu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan.,RNAi Core, National Core Facility, Academia Sinica, Taipei, Taiwan.,Department of Life Science, Tzu Chi University, Hualien, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
24
|
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10:1523. [PMID: 30944313 PMCID: PMC6447622 DOI: 10.1038/s41467-019-09234-6] [Citation(s) in RCA: 8441] [Impact Index Per Article: 1406.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
A critical component in the interpretation of systems-level studies is the inference of enriched biological pathways and protein complexes contained within OMICs datasets. Successful analysis requires the integration of a broad set of current biological databases and the application of a robust analytical pipeline to produce readily interpretable results. Metascape is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists. In terms of design features, Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledgebases within one integrated portal. Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments. Metascape provides a significantly simplified user experience through a one-click Express Analysis interface to generate interpretable outputs. Taken together, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era. With the increasing obtainability of multi-OMICs data comes the need for easy to use data analysis tools. Here, the authors introduce Metascape, a biologist-oriented portal that provides a gene list annotation, enrichment and interactome resource and enables integrated analysis of multi-OMICs datasets.
Collapse
Affiliation(s)
- Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA.
| | - Bin Zhou
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Lars Pache
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Max Chang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alireza Hadj Khodabakhshi
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Olga Tanaseichuk
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
25
|
Ho TC, Tsai SH, Yeh SI, Chen SL, Tung KY, Chien HY, Lu YC, Huang CH, Tsao YP. PEDF-derived peptide promotes tendon regeneration through its mitogenic effect on tendon stem/progenitor cells. Stem Cell Res Ther 2019; 10:2. [PMID: 30606221 PMCID: PMC6318926 DOI: 10.1186/s13287-018-1110-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023] Open
Abstract
Background Tendon stem/progenitor cells (TSPC) exhibit a low proliferative response to heal tendon injury, leading to limited regeneration outcomes. Exogenous growth factors that activate TSPC proliferation have emerged as a promising approach for treatment. Here, we evaluated the pigment epithelial-derived factor (PEDF)-derived short peptide (PSP; 29-mer) for treating acute tendon injury and to determine the timing and anatomical features of CD146- and necleostemin-positive TSPC in the tendon healing process. Methods Tendon cells were isolated from rabbit Achilles tendons, stimulated by the 29-mer and analyzed for colony-forming capacity. The expression of the TSPC markers CD146, Oct4, and nestin, induced by the 29-mer, was examined by immunostaining and western blotting. Tendo-Achilles injury was induced in rats by full-thickness insertion of an 18-G needle and immediately treated topically with an alginate gel, loaded with 29-mer. The distribution of TSPC in the injured tendon and their proliferation were monitored using immunohistochemistry with antibodies to CD146 and nucleostemin and by BrdU labeling. Results TSPC markers were enriched among the primary tendon cells when stimulated by the 29-mer. The 29-mer also induced the clonogenicity of CD146+ TSPC, implying TSPC stemness was retained during TSPC expansion in culture. Correspondingly, the expanded TSPC differentiated readily into tenocyte-like cells after removal of the 29-mer from culture. 29-mer/alginate gel treatment caused extensive expansion of CD146+ TSPC in their niche on postoperative day 2, followed by infiltration of CD146+/BrdU− TSPC into the injured tendon on day 7. The nucleostemin+ TSPC were located predominantly in the healing region of the injured tendon in the later phase (day 7) and exhibited proliferative capacity. By 3 weeks, 29-mer-treated tendons showed more organized collagen fiber regeneration and higher tensile strength than control tendons. In culture, the mitogenic effect of the 29-mer was found to be mediated by the phosphorylation of ERK2 and STAT3 in nucleostemin+ TSPC. Conclusions The anatomical analysis of TSPC populations in the wound healing process supports the hypothesis that substantial expansion of resident TSPC by exogenous growth factor is beneficial for tendon healing. The study suggests that synthetic 29-mer peptide may be an innovative therapy for acute tendon rupture.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Shawn H Tsai
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.,Department of Optometry, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Shu-I Yeh
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Show-Li Chen
- Department of Microbiology, School of Medicine, National Taiwan University, No. 1 Jen Ai road, section 1, Taipei, 100, Taiwan
| | - Kwang-Yi Tung
- Department of Plastic Surgery, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei, 10449, Taiwan
| | - Hsin-Yu Chien
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Yung-Chang Lu
- Departments of Biomechanics Laboratory, and Orthopaedic Surgery, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Chang-Hung Huang
- Departments of Biomechanics Laboratory, and Orthopaedic Surgery, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan. .,Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.
| |
Collapse
|
26
|
Rue SM, Anderson PW, Gaylord MR, Miller JJ, Glaser SM, Lesley SA. A High-Throughput System for Transient and Stable Protein Production in Mammalian Cells. Methods Mol Biol 2019; 2025:93-142. [PMID: 31267450 DOI: 10.1007/978-1-4939-9624-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Recombinant protein expression and purification is an essential component of biomedical research and drug discovery. Advances in automation and laboratory robotics have enabled the development of highly parallel and rapid processes for cell culture and protein expression, purification, and analysis. Human embryonic kidney (HEK) cells and Chinese hamster ovary (CHO) cells have emerged as the standard host cell workhorses for producing recombinant secreted mammalian proteins by using both transient and stable production strategies. In this chapter we describe a fully automated custom platform, Protein Expression and Purification Platform (PEPP), used for transient protein production from HEK cells and stable protein production from CHO cells. Central to PEPP operation is a suite of custom robotic and instrumentation platforms designed and built at GNF, custom cell culture ware, and custom scheduling software referred to as Runtime. The PEPP platform enables cost-effective, facile, consistent production of proteins at quantities and quality useful for early stage drug discovery tasks such as screening, bioassays, protein engineering, and analytics.
Collapse
Affiliation(s)
- Sarah M Rue
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA.
| | - Paul W Anderson
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA.,Lilly Biotechnology Center, San Diego, CA, USA
| | - Michelle R Gaylord
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Jessica J Miller
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Scott M Glaser
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Scott A Lesley
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA.,Merck Research Laboratories, South San Francisco, CA, USA
| |
Collapse
|
27
|
Secretome Screening Reveals Fibroblast Growth Factors as Novel Inhibitors of Viral Replication. J Virol 2018; 92:JVI.00260-18. [PMID: 29899088 DOI: 10.1128/jvi.00260-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
Cellular antiviral programs can efficiently inhibit viral infection. These programs are often initiated through signaling cascades induced by secreted proteins, such as type I interferons, interleukin-6 (IL-6), or tumor necrosis factor alpha (TNF-α). In the present study, we generated an arrayed library of 756 human secreted proteins to perform a secretome screen focused on the discovery of novel modulators of viral entry and/or replication. The individual secreted proteins were tested for the capacity to inhibit infection by two replication-competent recombinant vesicular stomatitis viruses (VSVs) with distinct glycoproteins utilizing different entry pathways. Fibroblast growth factor 16 (FGF16) was identified and confirmed as the most prominent novel inhibitor of both VSVs and therefore of viral replication, not entry. Importantly, an antiviral interferon signature was completely absent in FGF16-treated cells. Nevertheless, the antiviral effect of FGF16 is broad, as it was evident on multiple cell types and also on infection by coxsackievirus. In addition, other members of the FGF family also inhibited viral infection. Thus, our unbiased secretome screen revealed a novel protein family capable of inducing a cellular antiviral state. This previously unappreciated role of the FGF family may have implications for the development of new antivirals and the efficacy of oncolytic virus therapy.IMPORTANCE Viruses infect human cells in order to replicate, while human cells aim to resist infection. Several cellular antiviral programs have therefore evolved to resist infection. Knowledge of these programs is essential for the design of antiviral therapeutics in the future. The induction of antiviral programs is often initiated by secreted proteins, such as interferons. We hypothesized that other secreted proteins may also promote resistance to viral infection. Thus, we tested 756 human secreted proteins for the capacity to inhibit two pseudotypes of vesicular stomatitis virus (VSV). In this secretome screen on viral infection, we identified fibroblast growth factor 16 (FGF16) as a novel antiviral against multiple VSV pseudotypes as well as coxsackievirus. Subsequent testing of other FGF family members revealed that FGF signaling generally inhibits viral infection. This finding may lead to the development of new antivirals and may also be applicable for enhancing oncolytic virus therapy.
Collapse
|
28
|
Liu L, Nielsen FM, Emmersen J, Bath C, Østergaard Hjortdal J, Riis S, Fink T, Pennisi CP, Zachar V. Pigmentation Is Associated with Stemness Hierarchy of Progenitor Cells Within Cultured Limbal Epithelial Cells. Stem Cells 2018; 36:1411-1420. [PMID: 29781179 DOI: 10.1002/stem.2857] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
Ex vivo cultured human limbal epithelial stem/progenitor cells (hLESCs) are the main source for regenerative therapy of limbal stem cell deficiency (LSCD), which is worldwide one of the major causes of corneal blindness. Despite many stemness-associated markers have been identified within the limbal niche, the phenotype of the earliest hLESCs has not been hitherto identified. We sought to confirm or refute the use of tumor protein p63 (p63) and ATP binding cassette subfamily B member 5 (ABCB5) as surrogate markers for hLESCs early within the limbal differentiation hierarchy. Based on a robust fluorescence-activated cell sorting and subsequent RNA isolation protocol, a comprehensive transcriptomic profile was obtained from four subpopulations of cultured hLESCs. The subpopulations were defined by co-expression of two putative stem/progenitor markers, the p63 and ABCB5, and the corneal differentiation marker cytokeratin 3. A comparative transcriptomic analysis yielded novel data that indicated association between pigmentation and differentiation, with the p63 positive populations being the most pigmented and immature of the progenitors. In contrast, ABCB5, either alone or in co-expression patterns, identified more committed progenitor cells with less pigmentation. In conclusion, p63 is superior to ABCB5 as a marker for stemness. Stem Cells 2018;36:1411-1420.
Collapse
Affiliation(s)
- Lei Liu
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Department of Pediatric Surgery, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Frederik Mølgaard Nielsen
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jeppe Emmersen
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Chris Bath
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Simone Riis
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Trine Fink
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
29
|
Sampath SC, Sampath SC, Ho ATV, Corbel SY, Millstone JD, Lamb J, Walker J, Kinzel B, Schmedt C, Blau HM. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M. Nat Commun 2018; 9:1531. [PMID: 29670077 PMCID: PMC5906564 DOI: 10.1038/s41467-018-03876-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/16/2018] [Indexed: 12/22/2022] Open
Abstract
The balance between stem cell quiescence and proliferation in skeletal muscle is tightly controlled, but perturbed in a variety of disease states. Despite progress in identifying activators of stem cell proliferation, the niche factor(s) responsible for quiescence induction remain unclear. Here we report an in vivo imaging-based screen which identifies Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, as a potent inducer of muscle stem cell (MuSC, satellite cell) quiescence. OSM is produced by muscle fibers, induces reversible MuSC cell cycle exit, and maintains stem cell regenerative capacity as judged by serial transplantation. Conditional OSM receptor deletion in satellite cells leads to stem cell depletion and impaired regeneration following injury. These results identify Oncostatin M as a secreted niche factor responsible for quiescence induction, and for the first time establish a direct connection between induction of quiescence, stemness, and transplantation potential in solid organ stem cells. The factors that mediate quiescence of muscle stem cells are unknown. The authors show that Oncostatin M is produced by skeletal muscle, suppresses stem cell proliferation, and that its deletion in muscle results in stem cell depletion and impaired muscle regeneration following injury in mice.
Collapse
Affiliation(s)
- Srinath C Sampath
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Genomics Institute of the Novartis Research Foundation, San Diego, CA, 92121, USA. .,Division of Musculoskeletal Imaging, Department of Radiology, University of California San Diego School of Medicine, San Diego, CA, 92103, USA.
| | - Srihari C Sampath
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Genomics Institute of the Novartis Research Foundation, San Diego, CA, 92121, USA.,Division of Musculoskeletal Imaging, Department of Radiology, University of California San Diego School of Medicine, San Diego, CA, 92103, USA
| | - Andrew T V Ho
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Stéphane Y Corbel
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Genomics Institute of the Novartis Research Foundation, San Diego, CA, 92121, USA
| | - Joshua D Millstone
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, 92121, USA
| | - John Lamb
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, 92121, USA
| | - John Walker
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, 92121, USA
| | - Bernd Kinzel
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Christian Schmedt
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, 92121, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
30
|
Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P, Bohl B, Bando JK, Kim AH, Walker J, Andahazy M, Bugatti M, Melocchi L, Vermi W, Fremont DH, Cox S, Cella M, Schmedt C, Colonna M. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell 2017; 172:534-548.e19. [PMID: 29275861 DOI: 10.1016/j.cell.2017.11.037] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023]
Abstract
Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion.
Collapse
Affiliation(s)
- Alexander D Barrow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melissa A Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vladimir Trifonov
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Piyush Goyal
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Benjamin Bohl
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jennifer K Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Walker
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Mary Andahazy
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Mattia Bugatti
- Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - Laura Melocchi
- Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sarah Cox
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christian Schmedt
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Ding DC, Wen YT, Tsai RK. Pigment epithelium-derived factor from ARPE19 promotes proliferation and inhibits apoptosis of human umbilical mesenchymal stem cells in serum-free medium. Exp Mol Med 2017; 49:e411. [PMID: 29244789 PMCID: PMC5750476 DOI: 10.1038/emm.2017.219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Clinical expansion of mesenchymal stem cells (MSCs) is hampered by the lack of knowledge regarding how to prevent MSC apoptosis and promote their proliferation in serum-free medium. Our in vitro studies demonstrated that human umbilical cord MSCs (HUCMSCs) underwent apoptosis in the serum-free medium. When HUCMSCs were co-cultured with retinal pigment epithelial cells (ARPE19), however, HUCMSCs exhibited normal growth and morphology in serum-free medium. Their colony formation was promoted by the conditioned medium (CM) of ARPE19 cells on Matrigel. Proteomics analysis showed that pigment epithelium-derived factor (PEDF) was one of the most abundant extracellular proteins in the ARPE19 CM, whereas enzyme-linked immunosorbent assay confirmed that large amounts of PEDF was secreted from ARPE19 cells. Adding anti-PEDF-blocking antibodies to the co-culture of HUCMSCs with ARPE19 cells increased apoptosis of HUCMSCs. Conversely, treatment with PEDF significantly reduced apoptosis and increased proliferation of HUCMSCs in serum-free medium. PEDF was further demonstrated to exert this anti-apoptotic effect by inhibiting P53 expression to suppress caspase activation. In vivo studies demonstrated that co-injection of HUCMSCs with ARPE19 cells in immunocompromised NOD-SCID mice also increased survival and decreased apoptosis of HUCMSCs. PEDF also showed no negative effect on the mesoderm differentiation capability of HUCMSCs. In conclusion, this study is the first to demonstrate that PEDF promotes HUCMSC proliferation and protects them from apoptosis by reducing p53 expression in the serum-free medium. This study provides crucial information for clinical-scale expansion of HUCMSCs.
Collapse
Affiliation(s)
- Dah-Ching Ding
- Department of Obstetrics and Gynecology, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Rong-Kung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Institute of Eye Research, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
32
|
Construction of a versatile expression library for all human single-pass transmembrane proteins for receptor pairings by high throughput screening. J Biotechnol 2017; 260:18-30. [PMID: 28867483 DOI: 10.1016/j.jbiotec.2017.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/28/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Interactions between protein ligands and receptors play crucial roles in cell-cell signalling. Most of the human cell surface receptors have been identified in the post-Human Genome Project era but many of their corresponding ligands remain unknown. To facilitate the pairing of orphan receptors, 2762 sequences encoding all human single-pass transmembrane proteins were selected for inclusion into a mammalian-cell expression library. This expression library, consisting of all the individual extracellular domains (ECDs), was constructed as a Fab fusion for each protein. In this format, individual ECD can be produced as a soluble protein or displayed on cell surface, depending on the applied heavy-chain Fab configuration. The unique design of the Fab fusion concept used in the library led to not only superior success rate of protein production, but also versatile applications in various high-throughput screening paradigms including protein-protein binding assays as well as cell binding assays, which were not possible for any other existing expression libraries. The protein library was screened against human coagulation factor VIIa (FVIIa), an approved therapeutic for the treatment of hemophilia, for binding partners by AlphaScreen and ForteBio assays. Two previously known physiological ligands of FVIIa, tissue factor (TF) and endothelial protein C receptor (EPCR) were identified by both assays. The cell surface displayed library was screened against V-domain Ig suppressor of T-cell activation (VISTA), an important immune-checkpoint regulator. Immunoglobulin superfamily member 11 (IgSF11), a potential target for cancer immunotherapy, was identified as a new and previously undescribed binding partner for VISTA. The specificity of the binding was confirmed and validated by both fluorescence-activated cell sorting (FACS) and surface plasmon resonance (SPR) assays in different experimental setups.
Collapse
|
33
|
The stem cell regulator PEDF is dispensable for maintenance and function of hematopoietic stem cells. Sci Rep 2017; 7:10134. [PMID: 28860613 PMCID: PMC5579195 DOI: 10.1038/s41598-017-09452-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/25/2017] [Indexed: 01/31/2023] Open
Abstract
Pigment epithelium derived factor (PEDF), a ubiquitously expressed 50 kDa secreted glycoprotein, was recently discovered to regulate self-renewal of neural stem cells and have a supportive effect on human embryonic stem cell growth. Here, we analyzed expression of PEDF in the murine hematopoietic stem cell (HSC) compartments and found that PEDF is highly expressed in primary long-term HSCs. Therefore, we characterized the hematopoietic system in a knockout mouse model for PEDF and using this model we surprisingly found that PEDF is dispensable for HSC regulation. PEDF knockout mice exhibit normal hematopoiesis in steady state conditions and the absence of PEDF lead to normal regeneration capacity in a serial competitive transplantation setting. Additionally, PEDF-deficient cells exhibit unaltered lineage distribution upon serial transplantations. When human cord blood stem and progenitor cells were cultured in media supplemented with recombinant PEDF they did not show changes in growth potential. Taken together, we report that PEDF is not a critical regulatory factor for HSC function during regeneration in vivo or growth of human stem/progenitor cells in vitro.
Collapse
|
34
|
Liu T, Jia P, Ma H, Reed SA, Luo X, Larman HB, Schultz PG. Construction and Screening of a Lentiviral Secretome Library. Cell Chem Biol 2017; 24:767-771.e3. [PMID: 28602759 DOI: 10.1016/j.chembiol.2017.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/11/2017] [Accepted: 05/15/2017] [Indexed: 12/22/2022]
Abstract
Over 2,000 human proteins are predicted to be secreted, but the biological function of the many of these proteins is still unknown. Moreover, a number of these proteins may act as new therapeutic agents or be targets for the development of therapeutic antibodies. To further explore the extracellular proteome, we have developed a secretome-enriched open reading frame (ORF) library that can be readily screened for autocrine activity in cell-based phenotypic or reporter assays. Next-generation sequencing (NGS) and database analysis predict that the library contains approximately 900 ORFs encoding known secreted proteins (accounting for 77.8% of the library), as well as genes encoding potentially unknown secreted proteins. In a proof-of-principle study, human TF-1 cells were screened for proliferative factors, and the known cytokine GMCSF was identified as a dominant hit. This library offers a relatively low-cost and straightforward approach for functional autocrine screens of secreted proteins.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Panpan Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Huailei Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Sean A Reed
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaozhou Luo
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - H Benjamin Larman
- Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter G Schultz
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Hoare M, Ito Y, Kang TW, Weekes MP, Matheson NJ, Patten DA, Shetty S, Parry AJ, Menon S, Salama R, Antrobus R, Tomimatsu K, Howat W, Lehner PJ, Zender L, Narita M. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol 2016; 18:979-92. [PMID: 27525720 PMCID: PMC5008465 DOI: 10.1038/ncb3397] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/12/2016] [Indexed: 12/15/2022]
Abstract
Senescence, a persistent form of cell-cycle arrest, is often associated with a diverse secretome, which provides complex functionality for senescent cells within the tissue microenvironment. We show that oncogene-induced senescence is accompanied by a dynamic fluctuation of NOTCH1 activity, which drives a TGF-β-rich secretome, while suppressing the senescence-associated pro-inflammatory secretome through inhibition of C/EBPβ. NOTCH1 and NOTCH1-driven TGF-β contribute to 'lateral induction of senescence' through a juxtacrine NOTCH-JAG1 pathway. In addition, NOTCH1 inhibition during senescence facilitates upregulation of pro-inflammatory cytokines, promoting lymphocyte recruitment and senescence surveillance in vivo. As enforced activation of NOTCH1 signalling confers a near mutually exclusive secretory profile compared with typical senescence, our data collectively indicate that the dynamic alteration of NOTCH1 activity during senescence dictates a functional balance between these two distinct secretomes: one representing TGF-β and the other pro-inflammatory cytokines, highlighting that NOTCH1 is a temporospatial controller of secretome composition.
Collapse
Affiliation(s)
- Matthew Hoare
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Yoko Ito
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Tae-Won Kang
- Division of Translational Gastrointestinal Oncology, Dept. of Internal Medicine I, University Hospital Tuebingen, Otfried-Mueller-Strasse 12, 72076 Tuebingen, Germany & Translational Gastrointestinal Oncology Group within the German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael P. Weekes
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
- University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| | - Nicholas J. Matheson
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
- University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| | - Daniel A. Patten
- National Institute of Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Centre for Liver Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Shishir Shetty
- National Institute of Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), Centre for Liver Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Aled J. Parry
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Suraj Menon
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Rafik Salama
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Robin Antrobus
- University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| | - Kosuke Tomimatsu
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - William Howat
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Paul J. Lehner
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
- University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| | - Lars Zender
- Division of Translational Gastrointestinal Oncology, Dept. of Internal Medicine I, University Hospital Tuebingen, Otfried-Mueller-Strasse 12, 72076 Tuebingen, Germany & Translational Gastrointestinal Oncology Group within the German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Masashi Narita
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
36
|
Belinsky GS, Ward L, Chung C. Pigment epithelium-derived factor (PEDF) normalizes matrix defects in iPSCs derived from Osteogenesis imperfecta Type VI. Rare Dis 2016; 4:e1212150. [PMID: 27579219 PMCID: PMC4986704 DOI: 10.1080/21675511.2016.1212150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/14/2016] [Accepted: 07/06/2016] [Indexed: 01/28/2023] Open
Abstract
Osteogenesis imperfecta (OI) Type VI is characterized by a defect in bone mineralization, which results in multiple fractures early in life. Null mutations in the PEDF gene, Serpinf1, are the cause of OI VI. Whether PEDF restoration in a murine model of OI Type VI could improve bone mass and function was previously unknown. In Belinsky et al, we provided evidence that PEDF delivery enhanced bone mass and improved parameters of bone function in vivo. Further, we demonstrated that PEDF temporally inhibits Wnt signaling to enhance osteoblast differentiation. Here, we demonstrate that generation of induced pluripotent stem cells (iPSCs) from a PEDF null patient provides additional evidence for PEDF's role in regulating extracellular matrix proteins secreted from osteoblasts. PEDF null iPSCs have marked abnormalities in secreted matrix proteins, capturing a key feature of human OI Type VI, which were normalized by exogenous PEDF. Lastly, we place our recent findings within the broader context of PEDF biology and the developmental signaling pathways that are implicated in its actions.
Collapse
Affiliation(s)
- Glenn S Belinsky
- Department of Medicine, Yale University School of Medicine , New Haven, CT, USA
| | - Leanne Ward
- Children's Hospital of Eastern Ontario , Ottawa, Canada
| | - Chuhan Chung
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA; VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
37
|
Activin A programs the differentiation of human TFH cells. Nat Immunol 2016; 17:976-84. [PMID: 27376469 PMCID: PMC4955732 DOI: 10.1038/ni.3494] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Abstract
Follicular helper T (TFH) cells are CD4+ T cells specialized in helping B cells and are associated both with protective antibody responses and autoimmune diseases. The promise of targeting TFH cells therapeutically has been limited by fragmentary understanding of extrinsic signals regulating human TFH cell differentiation. A screen of a human protein library identified activin A as new regulator of TFH cell differentiation. Activin A orchestrated expression of multiple TFH-associated genes, independently or in concert with additional signals. TFH programming by activin A was antagonized by the cytokine IL-2. Activin A’s capacity to drive TFH cell differentiation in vitro was conserved for non-human primates but not mice. Finally, activin A-induced TFH programming was dependent on SMAD2 and SMAD3 signaling and blocked by pharmacological inhibitors.
Collapse
|
38
|
Hélie G, Parat M, Massé F, Gerdts CJ, Loisel TP, Matte A. Application of the Protein Maker as a platform purification system for therapeutic antibody research and development. Comput Struct Biotechnol J 2016; 14:238-44. [PMID: 27418955 PMCID: PMC4932438 DOI: 10.1016/j.csbj.2016.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 11/09/2022] Open
Abstract
Within the research and development environment, higher throughput, parallelized protein purification is required for numerous activities, from small scale purification of monoclonal antibodies (mAbs) and antibody fragments for in vitro and in vivo assays to process development and optimization for manufacturing. Here, we describe specific applications and associated workflows of the Protein Maker liquid handling system utilized in both of these contexts. To meet the requirements for various in vitro assays, for the identification and validation of new therapeutic targets, small quantities of large numbers of purified antibodies or antibody fragments are often required. Reducing host cell proteins (HCP) levels following capture with Protein A by evaluating various wash buffers is an example of how parallelized protein purification can be leveraged to improve a process development outcome. Stability testing under various conditions of in-process intermediates, as an example, the mAb product from a clarified harvest, requires parallelized protein purification to generate concurrent samples for downstream assays. We have found that the Protein Maker can be successfully utilized for small-to-mid scale platform purification or for process development applications to generate the necessary purified protein samples. The ability to purify and buffer exchange up to 24 samples in parallel offers a significant reduction in time and cost per sample compared to serial purification using a traditional FPLC system. By combining the Protein Maker purification system with a TECAN Freedom EVO liquid handler for automated buffer exchange we have created a new, integrated platform for a variety of protein purification and process development applications.
Collapse
Affiliation(s)
- Geneviève Hélie
- Protein Purification, Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave. Montreal, QC H4P 2R2, Canada
| | - Marie Parat
- Protein Purification, Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave. Montreal, QC H4P 2R2, Canada
| | - Frédéric Massé
- Primary Assays, Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave. Montreal, QC H4P 2R2, Canada
| | - Cory J Gerdts
- Protein BioSolutions Inc., Suite 280, 401 Professional Drive, Gaithersburg, MD, 20879, USA
| | - Thomas P Loisel
- Protein Purification, Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave. Montreal, QC H4P 2R2, Canada
| | - Allan Matte
- Protein Purification, Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Ave. Montreal, QC H4P 2R2, Canada
| |
Collapse
|
39
|
Scietti L, Sampieri K, Pinzuti I, Bartolini E, Benucci B, Liguori A, Haag AF, Lo Surdo P, Pansegrau W, Nardi-Dei V, Santini L, Arora S, Leber X, Rindi S, Savino S, Costantino P, Maione D, Merola M, Speziale P, Bottomley MJ, Bagnoli F, Masignani V, Pizza M, Scharenberg M, Schlaeppi JM, Nissum M, Liberatori S. Exploring host-pathogen interactions through genome wide protein microarray analysis. Sci Rep 2016; 6:27996. [PMID: 27302108 PMCID: PMC4908583 DOI: 10.1038/srep27996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Seguinde Arora
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Xavier Leber
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Simonetta Rindi
- Department of Molecular Medicine, Unit of Biochemistry, Viale Taramelli 3/b, 27100 Pavia, Italy
| | | | | | | | - Marcello Merola
- GSK Vaccines, Via Fiorentina 1, 53100 Siena, Italy.,University of Naples "Federico II", Department of Biology, via Cinthia 4, 80126 Naples, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, Viale Taramelli 3/b, 27100 Pavia, Italy
| | | | | | | | | | - Meike Scharenberg
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Jean-Marc Schlaeppi
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | | | | |
Collapse
|
40
|
Grünewald J, Klock HE, Cellitti SE, Bursulaya B, McMullan D, Jones DH, Chiu HP, Wang X, Patterson P, Zhou H, Vance J, Nigoghossian E, Tong H, Daniel D, Mallet W, Ou W, Uno T, Brock A, Lesley SA, Geierstanger BH. Efficient Preparation of Site-Specific Antibody-Drug Conjugates Using Phosphopantetheinyl Transferases. Bioconjug Chem 2015; 26:2554-62. [PMID: 26588668 DOI: 10.1021/acs.bioconjchem.5b00558] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Post-translational modification catalyzed by phosphopantetheinyl transferases (PPTases) has previously been used to site-specifically label proteins with structurally diverse molecules. PPTase catalysis results in covalent modification of a serine residue in acyl/peptidyl carrier proteins and their surrogate substrates which are typically fused to the N- or C-terminus. To test the utility of PPTases for preparing antibody-drug conjugates (ADCs), we inserted 11 and 12-mer PPTase substrate sequences at 110 constant region loop positions of trastuzumab. Using Sfp-PPTase, 63 sites could be efficiently labeled with an auristatin toxin, resulting in 95 homogeneous ADCs. ADCs labeled in the CH1 domain displayed in general excellent pharmacokinetic profiles and negligible drug loss. A subset of CH2 domain conjugates underwent rapid clearance in mouse pharmacokinetic studies. Rapid clearance correlated with lower thermal stability of the particular antibodies. Independent of conjugation site, almost all ADCs exhibited subnanomolar in vitro cytotoxicity against HER2-positive cell lines. One selected ADC was shown to induce tumor regression in a xenograft model at a single dose of 3 mg/kg, demonstrating that PPTase-mediated conjugation is suitable for the production of highly efficacious and homogeneous ADCs.
Collapse
Affiliation(s)
- Jan Grünewald
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Heath E Klock
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Susan E Cellitti
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Daniel McMullan
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - David H Jones
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Hsien-Po Chiu
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Xing Wang
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Paula Patterson
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Huanfang Zhou
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Julie Vance
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Edward Nigoghossian
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Hung Tong
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Dylan Daniel
- Novartis Institutes for BioMedical Research , 4560 Horton Street, Emeryville, California 94608-2916, United States
| | - William Mallet
- Novartis Institutes for BioMedical Research , 4560 Horton Street, Emeryville, California 94608-2916, United States
| | - Weijia Ou
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Tetsuo Uno
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Ansgar Brock
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Scott A Lesley
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| | - Bernhard H Geierstanger
- Genomics Institute of the Novartis Research Foundation , 10675 John-Jay-Hopkins Drive, San Diego, California 92121-1125, United States
| |
Collapse
|
41
|
Pigment Epithelium-Derived Factor (PEDF) is a Determinant of Stem Cell Fate: Lessons from an Ultra-Rare Disease. J Dev Biol 2015; 3:112-128. [PMID: 27239449 PMCID: PMC4883593 DOI: 10.3390/jdb3040112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PEDF is a secreted glycoprotein that is widely expressed by multiple organs. Numerous functional contributions have been attributed to PEDF with antiangiogenic, antitumor, anti-inflammatory, and neurotrophic properties among the most prominent. The discovery that null mutations in the PEDF gene results in Osteogenesis Imperfecta Type VI, a rare autosomal recessive bone disease characterized by multiple fractures, highlights a critical developmental function for this protein. This ultra-rare orphan disease has provided biological insights into previous studies that noted PEDF’s effects on various stem cell populations. In addition to bone development, PEDF modulates resident stem cell populations in the brain, muscle, and eye. Functional effects on human embryonic stem cells have also been demonstrated. An overview of recent advances in our understanding by which PEDF regulates stem cells and their potential clinical applications will be evaluated in this review.
Collapse
|
42
|
Gonzales KAU, Ng HH. Biological Networks Governing the Acquisition, Maintenance, and Dissolution of Pluripotency: Insights from Functional Genomics Approaches. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:189-98. [PMID: 26582790 DOI: 10.1101/sqb.2015.80.027326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The repertoire of transcripts encoded by the genome contributes to the diversity of cellular states. Functional genomics aims to comprehensively uncover the roles of these transcripts to reconstruct biological networks and transform this information into useful knowledge. High-throughput functional screening has served as a powerful genetic discovery tool by enabling massively parallel implementation of biological assays. In recent years, high-throughput screening has unearthed crucial players in the regulation of different aspects of pluripotency, which is a unique property that enables a cell to differentiate into multiple cell types of the three major lineages. Pluripotency thus represents an interesting biological paradigm for studying the acquisition, maintenance, and dissolution of cellular states. In this review, we highlight the major findings of high-throughput studies to dissect these three aspects of pluripotency for the mouse and human systems. Collectively, they provide new insights into cell fate maintenance and transition. In addition, we also discuss the opportunities and challenges awaiting high-throughput screening in the future.
Collapse
Affiliation(s)
| | - Huck-Hui Ng
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore 138672, Singapore Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore Department of Biological Sciences, National University of Singapore, Singapore 117597, Singapore School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
43
|
Automated harvesting and 2-step purification of unclarified mammalian cell-culture broths containing antibodies. J Chromatogr A 2015; 1418:103-109. [PMID: 26431859 DOI: 10.1016/j.chroma.2015.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 11/22/2022]
Abstract
Therapeutic monoclonal antibodies represent one of the fastest growing segments in the pharmaceutical market. The growth of the segment has necessitated development of new efficient and cost saving platforms for the preparation and analysis of early candidates for faster and better antibody selection and characterization. We report on a new integrated platform for automated harvesting of whole unclarified cell-culture broths, followed by in-line tandem affinity-capture, pH neutralization and size-exclusion chromatography of recombinant antibodies expressed transiently in mammalian human embryonic kidney 293T-cells at the 1-L scale. The system consists of two bench-top chromatography instruments connected to a central unit with eight disposable filtration devices used for loading and filtering the cell cultures. The staggered parallel multi-step configuration of the system allows unattended processing of eight samples in less than 24h. The system was validated with a random panel of 45 whole-cell culture broths containing recombinant antibodies in the early profiling phase. The results showed that the overall performances of the preparative automated system were higher compared to the conventional downstream process including manual harvesting and purification. The mean recovery of purified material from the culture-broth was 66.7%, representing a 20% increase compared to that of the manual process. Moreover, the automated process reduced by 3-fold the amount of residual aggregates in the purified antibody fractions, indicating that the automated system allows the cost-efficient and timely preparation of antibodies in the 20-200mg range, and covers the requirements for early in vitro and in vivo profiling and formulation of these drug candidates.
Collapse
|
44
|
PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases. Clin Sci (Lond) 2015; 128:805-23. [PMID: 25881671 PMCID: PMC4557399 DOI: 10.1042/cs20130463] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a broadly expressed multifunctional member of the serine proteinase inhibitor (serpin) family. This widely studied protein plays critical roles in many physiological and pathophysiological processes, including neuroprotection, angiogenesis, fibrogenesis and inflammation. The present review summarizes the temporal and spatial distribution patterns of PEDF in a variety of developing and adult organs, and discusses its functions in maintaining physiological homoeostasis. The major focus of the present review is to discuss the implication of PEDF in diabetic and hypoxia-induced angiogenesis, and the pathways mediating PEDF's effects under these conditions. Furthermore, the regulatory mechanisms of PEDF expression, function and degradation are also reviewed. Finally, the therapeutic potential of PEDF as an anti-angiogenic drug is briefly summarized.
Collapse
|
45
|
Ho TC, Chiang YP, Chuang CK, Chen SL, Hsieh JW, Lan YW, Tsao YP. PEDF-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells. Am J Physiol Cell Physiol 2015; 309:C159-68. [PMID: 26040897 DOI: 10.1152/ajpcell.00344.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/20/2015] [Indexed: 02/05/2023]
Abstract
In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Pin Chiang
- Department of Rehabilitation Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Institute of Biotechnology, National Taipei University of Technology, Taipei, Taiwan; College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Show-Li Chen
- Department of Microbiology, School of Medicine, National Taiwan University, Taipei, Taiwan; and
| | - Jui-Wen Hsieh
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Nursing and Management College, Taipei, Taiwan
| | - Yu-Wen Lan
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Nursing and Management College, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan;
| |
Collapse
|
46
|
Wilcox KC, Marunde MR, Das A, Velasco PT, Kuhns BD, Marty MT, Jiang H, Luan CH, Sligar SG, Klein WL. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer's-Associated Aβ Oligomers. PLoS One 2015; 10:e0125263. [PMID: 25928376 PMCID: PMC4415972 DOI: 10.1371/journal.pone.0125263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/23/2015] [Indexed: 01/05/2023] Open
Abstract
Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS) tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs). AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer's dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs). This method gives a soluble membrane protein library (SMPL)--a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer's model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can facilitate drug discovery for membrane protein targets.
Collapse
Affiliation(s)
- Kyle C. Wilcox
- Department of Neurobiology, Northwestern University, Evanston, IL, United States of America
| | - Matthew R. Marunde
- Department of Neurobiology, Northwestern University, Evanston, IL, United States of America
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois—Urbana Champaign, Urbana, IL, United States of America
- Department of Biochemistry, University of Illinois—Urbana Champaign, Urbana, IL, United States of America
| | - Pauline T. Velasco
- Department of Neurobiology, Northwestern University, Evanston, IL, United States of America
| | - Benjamin D. Kuhns
- Department of Neurobiology, Northwestern University, Evanston, IL, United States of America
| | - Michael T. Marty
- Department of Chemistry, University of Illinois—Urbana Champaign, Urbana, IL, United States of America
| | - Haoming Jiang
- Department of Neurobiology, Northwestern University, Evanston, IL, United States of America
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Stephen G. Sligar
- Department of Biochemistry, University of Illinois—Urbana Champaign, Urbana, IL, United States of America
- Department of Chemistry, University of Illinois—Urbana Champaign, Urbana, IL, United States of America
| | - William L. Klein
- Department of Neurobiology, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
47
|
Sun Y, Vandenbriele C, Kauskot A, Verhamme P, Hoylaerts MF, Wright GJ. A Human Platelet Receptor Protein Microarray Identifies the High Affinity Immunoglobulin E Receptor Subunit α (FcεR1α) as an Activating Platelet Endothelium Aggregation Receptor 1 (PEAR1) Ligand. Mol Cell Proteomics 2015; 14:1265-74. [PMID: 25713122 PMCID: PMC4424398 DOI: 10.1074/mcp.m114.046946] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Indexed: 11/25/2022] Open
Abstract
Genome-wide association studies to identify loci responsible for platelet function and cardiovascular disease susceptibility have repeatedly identified polymorphisms linked to a gene encoding platelet endothelium aggregation receptor 1 (PEAR1), an “orphan” cell surface receptor that is activated to stabilize platelet aggregates. To investigate how PEAR1 signaling is initiated, we sought to identify its extracellular ligand by creating a protein microarray representing the secretome and receptor repertoire of the human platelet. Using an avid soluble recombinant PEAR1 protein and a systematic screening assay designed to detect extracellular interactions, we identified the high affinity immunoglobulin E (IgE) receptor subunit α (FcεR1α) as a PEAR1 ligand. FcεR1α and PEAR1 directly interacted through their membrane-proximal Ig-like and 13th epidermal growth factor domains with a relatively strong affinity (KD ∼ 30 nm). Precomplexing FcεR1α with IgE potently inhibited the FcεR1α-PEAR1 interaction, and this was relieved by the anti-IgE therapeutic omalizumab. Oligomerized FcεR1α potentiated platelet aggregation and led to PEAR1 phosphorylation, an effect that was also inhibited by IgE. These findings demonstrate how a protein microarray resource can be used to gain important insight into the function of platelet receptors and provide a mechanistic basis for the initiation of PEAR1 signaling in platelet aggregation.
Collapse
Affiliation(s)
- Yi Sun
- From the ‡Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, United Kingdom and
| | - Christophe Vandenbriele
- §Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Alexandre Kauskot
- §Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Peter Verhamme
- §Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Marc F Hoylaerts
- §Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Gavin J Wright
- From the ‡Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, United Kingdom and
| |
Collapse
|
48
|
Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep 2014; 10:239-52. [PMID: 25558064 DOI: 10.1016/j.celrep.2014.12.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 10/03/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023] Open
Abstract
The balance and distribution of epithelial cell types is required to maintain tissue homeostasis. A hallmark of airway diseases is epithelial remodeling, leading to increased goblet cell numbers and an overproduction of mucus. In the conducting airway, basal cells act as progenitors for both secretory and ciliated cells. To identify mechanisms regulating basal cell fate, we developed a screenable 3D culture system of airway epithelial morphogenesis. We performed a high-throughput screen using a collection of secreted proteins and identified inflammatory cytokines that specifically biased basal cell differentiation toward a goblet cell fate, culminating in enhanced mucus production. We also demonstrate a specific requirement for Notch2 in cytokine-induced goblet cell metaplasia in vitro and in vivo. We conclude that inhibition of Notch2 prevents goblet cell metaplasia induced by a broad range of stimuli and propose Notch2 neutralization as a therapeutic strategy for preventing goblet cell metaplasia in airway diseases.
Collapse
|
49
|
Proteomics and metabolomics for in situ monitoring of wound healing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:934848. [PMID: 25162036 PMCID: PMC4137721 DOI: 10.1155/2014/934848] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
Wound healing of soft tissue and bone defects is a complex process in which cellular differentiation and adaption are regulated by internal and external factors, among them are many different proteins. In contrast to insights into the significance of various single proteins based on model systems, the knowledge about the processes at the actual site of wound healing is still limited. This is caused by a general lack of methods that allow sampling of extracellular factors, metabolites, and proteins in situ. Sampling of wound fluids in combination with proteomics and metabolomics is one of the promising approaches to gain comprehensive and time resolved data on effector molecules. Here, we describe an approach to sample metabolites by microdialysis and to extract proteins simultaneously by adsorption. With this approach it is possible (i) to collect, enrich, and purify proteins for a comprehensive proteome analysis; (ii) to detect more than 600 proteins in different defects including more than 100 secreted proteins, of which many proteins have previously been demonstrated to have diagnostic or predictive power for the wound healing state; and (iii) to combine continuous sampling of cytokines and metabolites and discontinuous sampling of larger proteins to gain complementary information of the same defect.
Collapse
|
50
|
Wang H, Zhang Q, Fang X. Transcriptomics and proteomics in stem cell research. Front Med 2014; 8:433-44. [PMID: 24972645 DOI: 10.1007/s11684-014-0336-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Stem cells are capable of self-renewal and differentiation, and the processes regulating these events are among the most comprehensively investigated topics in life sciences. In particular, the molecular mechanisms of the self-renewal, proliferation, and differentiation of stem cells have been extensively examined. Multi-omics integrative analysis, such as transcriptomics combined with proteomics, is one of the most promising approaches to the systemic investigation of stem cell biology. We reviewed the available information on stem cells by examining published results using transcriptomic and proteomic characterization of the different stem cell processes. Comprehensive understanding of these important processes can only be achieved using a systemic methodology, and employing such method will strengthen the study on stem cell biology and promote the clinical applications of stem cells.
Collapse
Affiliation(s)
- Hai Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | |
Collapse
|