1
|
Moo EK, Joumaa V, Herzog W. Effect of pre-activation force on active force generation in skeletal muscle. J Biomech 2025; 186:112744. [PMID: 40344920 DOI: 10.1016/j.jbiomech.2025.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Cross bridges play a central role in skeletal muscle force generation. The level of force per cross bridge and the number of attached cross bridges are thought to determine muscle performance. Recent studies propose the so-called myosin-activation hypothesis, which suggests that stress exerted on myosin filaments increases the number of attached cross bridges and, hence, active force. This study was aimed at investigating the influence of passive stress magnitude exerted at the onset of activation on active force in a whole muscle preparation. The tibialis anterior (TA) muscle-tendon unit (MTU) of mice (N = 8) was stretched uniaxially in situ to long lengths where substantial viscoelastic passive force relaxation occurs. Muscle stress upon activation was varied by activating the TA either immediately at the end of the passive stretch (high passive force), or following nearly complete passive force relaxation (low passive force). Total forces with and without activation were measured from every MTU. Active forces were calculated by subtracting the passive force relaxation curve from the total force measured over a 1.13-s activation. We found that active force generated by the TA at low passive stress was 5-13 % higher than that at high passive stress. While the results seem contradictory to the myosin-activation hypothesis, we speculate that the results arose either from length adjustments between muscle and tendon during passive force relaxation, from excessive lattice spacing compression, or from unfavourable alterations of myosin conformation by high passive stress. Further research is required to improve our understanding of active force generation under the influence of viscoelasticity of muscle and tendon.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| |
Collapse
|
2
|
Fujita H, Watanabe TM. Use of optical techniques to evaluate the ionizing radiation effects on biological specimens. JOURNAL OF RADIATION RESEARCH 2024; 65:i117-i125. [PMID: 39679890 DOI: 10.1093/jrr/rrae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Indexed: 12/17/2024]
Abstract
Radiation induces various changes in biological specimens; however, the evaluation of these changes is usually complicated and can be achieved only through investment in time and labor. Optical methods reduce the cost of such evaluations as they require less pretreatment of the sample, are adaptable to high-throughput screening and are easy to automate. Optical methods are also advantageous, owing to their real-time and onsite evaluation capabilities. Here, we discuss three optical technologies to evaluate the effects of radiation on biological samples: single-molecule tracking microscopy to evaluate the changes in the physical properties of DNA, Raman spectral microscopy for dosimetry using human hair and second-harmonic generation microscopy to evaluate the effect of radiation on the differentiation of stem cells. These technologies can also be combined for more detailed information and are applicable to other biological samples. Although optical methods are not commonly used to evaluate the effects of radiation, advances in this technology may facilitate the easy and rapid assessment of radiation effects on biological samples.
Collapse
Affiliation(s)
- Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima 734-0037, Japan
| | - Tomonobu M Watanabe
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima 734-0037, Japan
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
3
|
Wang S, Pan J, Zhang X, Li Y, Liu W, Lin R, Wang X, Kang D, Li Z, Huang F, Chen L, Chen J. Towards next-generation diagnostic pathology: AI-empowered label-free multiphoton microscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:254. [PMID: 39277586 PMCID: PMC11401902 DOI: 10.1038/s41377-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Diagnostic pathology, historically dependent on visual scrutiny by experts, is essential for disease detection. Advances in digital pathology and developments in computer vision technology have led to the application of artificial intelligence (AI) in this field. Despite these advancements, the variability in pathologists' subjective interpretations of diagnostic criteria can lead to inconsistent outcomes. To meet the need for precision in cancer therapies, there is an increasing demand for accurate pathological diagnoses. Consequently, traditional diagnostic pathology is evolving towards "next-generation diagnostic pathology", prioritizing on the development of a multi-dimensional, intelligent diagnostic approach. Using nonlinear optical effects arising from the interaction of light with biological tissues, multiphoton microscopy (MPM) enables high-resolution label-free imaging of multiple intrinsic components across various human pathological tissues. AI-empowered MPM further improves the accuracy and efficiency of diagnosis, holding promise for providing auxiliary pathology diagnostic methods based on multiphoton diagnostic criteria. In this review, we systematically outline the applications of MPM in pathological diagnosis across various human diseases, and summarize common multiphoton diagnostic features. Moreover, we examine the significant role of AI in enhancing multiphoton pathological diagnosis, including aspects such as image preprocessing, refined differential diagnosis, and the prognostication of outcomes. We also discuss the challenges and perspectives faced by the integration of MPM and AI, encompassing equipment, datasets, analytical models, and integration into the existing clinical pathways. Finally, the review explores the synergy between AI and label-free MPM to forge novel diagnostic frameworks, aiming to accelerate the adoption and implementation of intelligent multiphoton pathology systems in clinical settings.
Collapse
Affiliation(s)
- Shu Wang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Junlin Pan
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Xiao Zhang
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
| | - Yueying Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Wenxi Liu
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
| | - Ruolan Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xingfu Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhijun Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Feng Huang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China.
| | - Liangyi Chen
- New Cornerstone Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100091, China.
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
4
|
Chebotarev AS, Ledyaeva VS, Patsap OI, Ivanov AA, Fedotov AB, Belousov VV, Shokhina AG, Lanin AA. Multimodal label-free imaging of murine hepatocellular carcinoma with a subcellular resolution. JOURNAL OF BIOPHOTONICS 2023; 16:e202300228. [PMID: 37679905 DOI: 10.1002/jbio.202300228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
We demonstrate label-free imaging of genetically induced hepatocellular carcinoma (HCC) in a murine model provided by two- and three-photon fluorescence microscopy of endogenous fluorophores excited at the central wavelengths of 790, 980 and 1250 nm and reinforced by second and third harmonic generation microscopy. We show, that autofluorescence imaging presents abundant information about cell arrangement and lipid accumulation in hepatocytes and hepatic stellate cells (HSCs), harmonics generation microscopy provides a versatile tool for fibrogenesis and steatosis study. Multimodal images may be performed by a single ultrafast laser source at 1250 nm falling in tissue transparency window. Various grades of HCC are examined revealing fibrosis, steatosis, liver cell dysplasia, activation of HSCs and hepatocyte necrosis, that shows a great ability of multimodal label-free microscopy to intravital visualization of liver pathology development.
Collapse
Affiliation(s)
- Artem S Chebotarev
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| | | | - Olga I Patsap
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency, Moscow, Russia
| | - Anatoli A Ivanov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| | - Andrei B Fedotov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency, Moscow, Russia
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Arina G Shokhina
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency, Moscow, Russia
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Aleksandr A Lanin
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| |
Collapse
|
5
|
Fujita H, Kaneshiro J, Takeda M, Sasaki K, Yamamoto R, Umetsu D, Kuranaga E, Higo S, Kondo T, Asano Y, Sakata Y, Miyagawa S, Watanabe TM. Estimation of crossbridge-state during cardiomyocyte beating using second harmonic generation. Life Sci Alliance 2023; 6:e202302070. [PMID: 37236659 PMCID: PMC10215972 DOI: 10.26508/lsa.202302070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Estimation of dynamic change of crossbridge formation in living cardiomyocytes is expected to provide crucial information for elucidating cardiomyopathy mechanisms, efficacy of an intervention, and others. Here, we established an assay system to dynamically measure second harmonic generation (SHG) anisotropy derived from myosin filaments depended on their crossbridge status in pulsating cardiomyocytes. Experiments utilizing an inheritable mutation that induces excessive myosin-actin interactions revealed that the correlation between sarcomere length and SHG anisotropy represents crossbridge formation ratio during pulsation. Furthermore, the present method found that ultraviolet irradiation induced an increased population of attached crossbridges that lost the force-generating ability upon myocardial differentiation. Taking an advantage of infrared two-photon excitation in SHG microscopy, myocardial dysfunction could be intravitally evaluated in a Drosophila disease model. Thus, we successfully demonstrated the applicability and effectiveness of the present method to evaluate the actomyosin activity of a drug or genetic defect on cardiomyocytes. Because genomic inspection alone may not catch the risk of cardiomyopathy in some cases, our study demonstrated herein would be of help in the risk assessment of future heart failure.
Collapse
Affiliation(s)
- Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Junichi Kaneshiro
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kensuke Sasaki
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Rikako Yamamoto
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Daiki Umetsu
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shuichiro Higo
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takumi Kondo
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomonobu M Watanabe
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
6
|
Yu W, Li X, Wang B, Qu J, Liu L. Optical diffraction tomography of second-order nonlinear structures in weak scattering media: theoretical analysis and experimental consideration. OPTICS EXPRESS 2022; 30:45724-45737. [PMID: 36522971 DOI: 10.1364/oe.472637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Computed tomography (CT) allows for high lateral and axial resolution imaging of the endogenous structure of matter thanks to its large spatial frequency support and has been realized in X-ray and linear optical domain known as optical diffraction tomography (ODT). Here, we present the theoretical basis and experimental considerations for ODT of second-order nonlinear structures in weak scattering media. We have derived the relation between second harmonic wave and the anisotropic nonlinear tensor in spatial frequency domain under first-order Born approximation. Our results show that, under a plane wave illumination, the two dimensional (2D) spatial spectra of generated second harmonic complex field relates to the inverse lattice of nonlinear structure on Ewald sphere shells. The centers of the Ewald spheres are determined by 2 times wavevector of the incident fundamental wave and the radii are determined by the modulus of the second harmonic wavevector. More importantly, it shows that the 2D spatial spectra is a superposition of the Ewald spheres of different components of the anisotropic nonlinear tensor. We propose to solve the inverse problem by controlling the polarizations of the fundamental and second harmonic signal. We tested the feasibility of the proposed method using a numerical phantom and make some discussions on practical implementations, including angular scanning schemes, polarization detection and illumination profile for optimizing reconstruction region. Possessing high resolution, wide-field imaging and polarization-sensitive property, we believe that the proposed scheme would have important applications in nonlinear microscopy.
Collapse
|
7
|
Sun H, Wang S, Chen J, Yu H. Label-free second harmonic generation imaging of cerebral vascular wall in local ischemia mouse model in vivo. Neuroscience 2022; 502:10-24. [PMID: 36055560 DOI: 10.1016/j.neuroscience.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Second harmonic generation (SHG) imaging is label-free and non-invasive, and it has been extensively applied in multiple biological and medical studies, but not in the brain in vivo. In this study, we modified classical two photon excited fluorescence (TPEF) system to perform in vivo simultaneous TPEF and SHG imaging in the local ischemia mouse model. In cerebral vascular walls, we found strong SHG signal, which co-localized with collagen. In the continuous 2 days' in vivo imaging, this SHG signal remained stable in the local ischemic blood vessel in the initial 4 hours, then its signal abruptly increased and got spatially thickened 5 hours after thrombosis, and this tendency continued in the following 48 hours. This study provides direct and precise timeline of rapid collagen change in cerebral vascular walls in vivo, and reveals the subtle but significant temporal-spatial dynamics of this structural signal during local ischemia. Thus, this cerebral in vivo SHG imaging provides a powerful tool to identify the early and subtle pathological change of collagen around clinical key therapeutic time window.
Collapse
Affiliation(s)
- Hengfei Sun
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shu Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Hongbo Yu
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
8
|
Abstract
Fluorescence microscopy has represented a crucial technique to explore the cellular and molecular mechanisms in the field of biomedicine. However, the conventional one-photon microscopy exhibits many limitations when living samples are imaged. The new technologies, including two-photon microscopy (2PM), have considerably improved the in vivo study of pathophysiological processes, allowing the investigators to overcome the limits displayed by previous techniques. 2PM enables the real-time intravital imaging of the biological functions in different organs at cellular and subcellular resolution thanks to its improved laser penetration and less phototoxicity. The development of more sensitive detectors and long-wavelength fluorescent dyes as well as the implementation of semi-automatic software for data analysis allowed to gain insights in essential physiological functions, expanding the frontiers of cellular and molecular imaging. The future applications of 2PM are promising to push the intravital microscopy beyond the existing limits. In this review, we provide an overview of the current state-of-the-art methods of intravital microscopy, focusing on the most recent applications of 2PM in kidney physiology.
Collapse
|
9
|
Murakami Y, Masaki M, Miyazaki S, Oketani R, Hayashi Y, Yanagisawa M, Honjoh S, Kano H. Spectroscopic second and third harmonic generation microscopy using a femtosecond laser source in the third near-infrared (NIR-III) optical window. BIOMEDICAL OPTICS EXPRESS 2022; 13:694-708. [PMID: 35284173 PMCID: PMC8884214 DOI: 10.1364/boe.446273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In this study, second harmonic generation (SHG) and third harmonic generation (THG) spectroscopic imaging were performed on biological samples using a femtosecond laser source in the third near-infrared (NIR) optical window (NIR-III). Using a visible-NIR spectrometer, the SHG and THG signals were simultaneously detected and were extracted using spectral analysis. Visualization of biological samples such as cultured cells (HEK293 T), mouse brain slices, and the nematode Caenorhabditis elegans was performed in a label-free manner. In particular, in an SHG image of an entire coronal brain section (8 × 6 mm2), we observed mesh-like and filamentous structures in the arachnoid mater and wall of the cerebral ventricle, probably corresponding to the collagen fibers, cilia, and rootlet. Moreover, the THG images clearly depicted the densely packed axons in the white matter and cell nuclei at the cortex of the mouse brain slice sample and lipid-rich granules such as lipid droplets inside the nematode. The observations and conclusions drawn from this technique confirm that it can be utilized for various biological applications, including in vivo label-free imaging of living animals.
Collapse
Affiliation(s)
- Yusuke Murakami
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Minori Masaki
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Miyazaki
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryosuke Oketani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hayashi
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 603-8363, Japan
| | - Masashi Yanagisawa
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sakiko Honjoh
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideaki Kano
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Sherlock B, Chen J, Mansfield J, Green E, Winlove C. Biophotonic tools for probing extracellular matrix mechanics. Matrix Biol Plus 2021; 12:100093. [PMID: 34934939 PMCID: PMC8661043 DOI: 10.1016/j.mbplus.2021.100093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
The complex, hierarchical and heterogeneous biomechanics of the extracellular matrix (ECM) are central to the health of multicellular organisms. Characterising the distribution, dynamics and above all else origins of ECM biomechanics are challenges that have captivated researchers for decades. Recently, a suite of biophotonics techniques have emerged as powerful new tools to investigate ECM biomechanics. In this mini-review, we discuss how the non-destructive, sub-micron resolution imaging capabilities of Raman spectroscopy and nonlinear microscopy are being used to interrogate the biomechanics of thick, living tissues. These high speed, label-free techniques are implemented during mechanical testing, providing unprecedented insight into the compositional and structural response of the ECM to changes in the mechanical environment.
Collapse
Affiliation(s)
- B.E. Sherlock
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, United Kingdom
| | - J. Chen
- College of Engineering, Mathematical and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - J.C. Mansfield
- College of Engineering, Mathematical and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - E. Green
- College of Engineering, Mathematical and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - C.P. Winlove
- College of Engineering, Mathematical and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| |
Collapse
|
11
|
Tsafas V, Giouroukou K, Kounakis K, Mari M, Fotakis C, Tavernarakis N, Filippidis G. Monitoring aging-associated structural alterations in Caenorhabditis elegans striated muscles via polarization-dependent second-harmonic generation measurements. JOURNAL OF BIOPHOTONICS 2021; 14:e202100173. [PMID: 34405541 DOI: 10.1002/jbio.202100173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The in-vivo elucidation of the molecular mechanisms underlying muscles dysfunction due to aging via non-invasive label free imaging techniques is an important issue with high biological significance. In this study, polarization-dependent second-harmonic generation (PSHG) was used to evaluate structural alterations in the striated muscles during Caenorhabditis elegans lifespan. Young and old wild-type animals were irradiated. The obtained results showed that it was not feasible to detect differences in the structure of myosin that could be correlated with the aging of the worms, via the implementation of the classical, widely used, cylindrical symmetry model and the calculation of the SHG anisotropy values. A trigonal symmetry model improved the extracted results; however, the best outcome was originated from the application of a general model. Myosin structural modifications were monitored via the estimation of the difference in spectral phases derived from discrete Fourier transform analysis. Age classification of the nematodes was achieved by employing both models, proving the usefulness of the usage of PSHG microscopy as a potential diagnostic tool for the investigation of muscle diseases.
Collapse
Affiliation(s)
- Vassilis Tsafas
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, Greece
- Department of Physics, University of Crete, Heraklion, Greece
| | - Konstantina Giouroukou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, Greece
- Department of Physics, University of Crete, Heraklion, Greece
| | - Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- Medical School, University of Crete, Heraklion, Greece
| | - Meropi Mari
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, Greece
| | - Costas Fotakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, Greece
- Department of Physics, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- Medical School, University of Crete, Heraklion, Greece
| | - George Filippidis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, Greece
| |
Collapse
|
12
|
Stokes polarimetry-based second harmonic generation microscopy for collagen and skeletal muscle fiber characterization. Lasers Med Sci 2020; 36:1161-1167. [PMID: 32945997 PMCID: PMC8282547 DOI: 10.1007/s10103-020-03144-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/10/2020] [Indexed: 12/04/2022]
Abstract
The complete polarization state of second harmonic (SH) light was measured and characterized by collagen type I and skeletal muscle fiber using a Stokes vector-based SHG microscope. The polarization states of the SH signal are analyzed in a pixel-by-pixel manner and displayed through two dimensional (2D) Stokes vector images. Various polarization parameters are reconstructed using Stokes values to quantify the polarization properties of SH light. Also, the measurements are extended for different input polarization states to investigate the molecular structure of second harmonic generation (SHG) active molecules such as collagen type I and myosin.
Collapse
|
13
|
Watanabe TM, Fujita H, Kaneshiro J. [Application of scattering microscopy for evaluation of iPS cell and its differentiated cells]. Nihon Yakurigaku Zasshi 2020; 155:312-318. [PMID: 32879172 DOI: 10.1254/fpj.20042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Various artificial cells and artificial tissues can be generated from induced pluripotent stem cells (iPS cells). There is now an urgent need to standardize the quality evaluation and management of iPS cells. Recently, artificial intelligence (AI) technology such as machine learning is providing evaluation method for the quality of iPS cells and iPS cell-derived somatic cells based on optical microscopy. Light, which is the principle of optical microscopy, has an interesting and important feature. There are various kinds of interaction between light and molecule, and the scattered light includes internal information of the molecule. Raman scattering inheres all the vibration mode of molecular bonds composing a molecule, and second harmonic generation (SHG) light, which is one of second-order non-linear scattering light, is derived from electric polarizations in the molecule, in other words, carries structural information within the protein. While states of a cell are usually defined by protein/gene expression patterns, we have proposed to apply Raman spectra for cellular fingerprinting as an alternative for identifying the cell state, and now succeeded in predicting gene-expression of antibiotic resistant bacteria in combination with machine learning technology. Meanwhile, SHG microscopy has been used to visualize fiber structures in living specimens, such as collagen, and microtubules as a label-free modality. By utilizing the feature that SHG senses protein structure change, we developed a new method to measure actomyosin activity in cardiac cells. The most important advantage of the use of the scattering light is their non-labeling and non-invasive capability.
Collapse
Affiliation(s)
- Tomonobu M Watanabe
- Laboratory for Comprehensive bioimaging, RIKEN Center for Biosystems Dynamics Research.,Department of Stem Cell Biology,Research Institute for Radiation Biology and Medicine, Hiroshima University
| | - Hideaki Fujita
- Laboratory for Comprehensive bioimaging, RIKEN Center for Biosystems Dynamics Research
| | - Junichi Kaneshiro
- Laboratory for Comprehensive bioimaging, RIKEN Center for Biosystems Dynamics Research
| |
Collapse
|
14
|
de Vito G, Ricci P, Turrini L, Gavryusev V, Müllenbroich C, Tiso N, Vanzi F, Silvestri L, Pavone FS. Effects of excitation light polarization on fluorescence emission in two-photon light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4651-4665. [PMID: 32923069 PMCID: PMC7449752 DOI: 10.1364/boe.396388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/20/2020] [Accepted: 07/07/2020] [Indexed: 05/05/2023]
Abstract
Light-sheet microscopy (LSM) is a powerful imaging technique that uses a planar illumination oriented orthogonally to the detection axis. Two-photon (2P) LSM is a variant of LSM that exploits the 2P absorption effect for sample excitation. The light polarization state plays a significant, and often overlooked, role in 2P absorption processes. The scope of this work is to test whether using different polarization states for excitation light can affect the detected signal levels in 2P LSM imaging of typical biological samples with a spatially unordered dye population. Supported by a theoretical model, we compared the fluorescence signals obtained using different polarization states with various fluorophores (fluorescein, EGFP and GCaMP6s) and different samples (liquid solution and fixed or living zebrafish larvae). In all conditions, in agreement with our theoretical expectations, linear polarization oriented parallel to the detection plane provided the largest signal levels, while perpendicularly-oriented polarization gave low fluorescence signal with the biological samples, but a large signal for the fluorescein solution. Finally, circular polarization generally provided lower signal levels. These results highlight the importance of controlling the light polarization state in 2P LSM of biological samples. Furthermore, this characterization represents a useful guide to choose the best light polarization state when maximization of signal levels is needed, e.g. in high-speed 2P LSM.
Collapse
Affiliation(s)
- Giuseppe de Vito
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health, Viale Pieraccini 6, Florence, FI 50139, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
| | - Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
| | - Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino, FI 50019, Italy
| | - Vladislav Gavryusev
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino, FI 50019, Italy
| | - Caroline Müllenbroich
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- School of Physics and Astronomy, Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, UK
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
| | - Natascia Tiso
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, Padua, PD 35131, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino, FI 50019, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino, FI 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino, FI 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
15
|
Golaraei A, Kontenis L, Karunendiran A, Stewart BA, Barzda V. Dual- and single-shot susceptibility ratio measurements with circular polarizations in second-harmonic generation microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960167. [PMID: 31975533 DOI: 10.1002/jbio.201960167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Polarization-resolved second-harmonic generation (P-SHG) microscopy is a technique capable of characterizing nonlinear optical properties of noncentrosymmetric biomaterials by extracting the nonlinear susceptibility tensor components ratio χzzz2'/χzxx2' , with z-axis parallel and x-axis perpendicular to the C6 symmetry axis of molecular fiber, such as a myofibril or a collagen fiber. In this paper, we present two P-SHG techniques based on incoming and outgoing circular polarization states for a fast extraction of χzzz2'/χzxx2' : A dual-shot configuration where the SHG circular anisotropy generated using incident right- and left-handed circularly-polarized light is measured; and a single-shot configuration for which the SHG circular anisotropy is measured using only one incident circular polarization state. These techniques are used to extract the χzzz2'/χzxx2' of myosin fibrils in the body wall muscles of Drosophila melanogaster larva. The results are in good agreement with values obtained from the double Stokes-Mueller polarimetry. The dual- and single-shot circular anisotropy measurements can be used for fast imaging that is independent of the in-plane orientation of the sample. They can be used for imaging of contracting muscles, or for high throughput imaging of large sample areas.
Collapse
Affiliation(s)
- Ahmad Golaraei
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Lukas Kontenis
- Light Conversion, Vilnius, Lithuania
- Faculty of Physics, Laser Research Centre, Vilnius University, Vilnius, Lithuania
| | - Abiramy Karunendiran
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bryan A Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Virginijus Barzda
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Faculty of Physics, Laser Research Centre, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
16
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
17
|
Study of the Expression Transition of Cardiac Myosin Using Polarization-Dependent SHG Microscopy. Biophys J 2020; 118:1058-1066. [PMID: 31995740 DOI: 10.1016/j.bpj.2019.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/04/2023] Open
Abstract
Detection of the transition between the two myosin isoforms α- and β-myosin in living cardiomyocytes is essential for understanding cardiac physiology and pathology. In this study, the differences in symmetry of polarization spectra obtained from α- and β-myosin in various mammalian ventricles and propylthiouracil-treated rats are explored through polarization-dependent second harmonic generation microscopy. Here, we report for the, to our knowledge, first time that α- and β-myosin, as protein crystals, possess different symmetries: the former has C6 symmetry, and the latter has C3v. A single-sarcomere line scan further demonstrated that the differences in polarization-spectrum symmetry between α- and β-myosin came from their head regions: the head and neck domains of α- and β-myosin account for the differences in symmetry. In addition, the dynamic transition of the polarization spectrum from C6 to C3v line profile was observed in a cell culture in which norepinephrine induced an α- to β-myosin transition.
Collapse
|
18
|
Keikhosravi A, Li B, Liu Y, Eliceiri KW. Intensity-based registration of bright-field and second-harmonic generation images of histopathology tissue sections. BIOMEDICAL OPTICS EXPRESS 2020; 11:160-173. [PMID: 32010507 PMCID: PMC6968755 DOI: 10.1364/boe.11.000160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/09/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The use of second-harmonic generation (SHG) microscopy in biomedical research is rapidly increasing. This is due in large part to the wide spread interest of using this imaging technique to examine the role of fibrillar collagen organization in diseases such as cancer. The co-examination of SHG images and traditional bright-field (BF) images of hematoxylin and eosin (H&E) stained tissue as a gold standard clinical validation is usually required. However, image registration of these two modalities has been mostly done by manually selecting corresponding landmarks which is labor intensive and error prone. We designed, implemented, and validated the first image intensity-based registration method capable of automatically aligning SHG images and BF images. In our algorithmic approach, a feature extractor is used to pre-process the BF image to block the content features not visible in SHG images and the output image is then aligned with the SHG image by maximizing the common image features. An alignment matrix maximizing the image mutual information is found by evolutionary optimization and the optimization is facilitated using a hierarchical multiresolution framework. The automatic registration results were compared to traditional manual registration to assess the performance of the algorithm. The proposed algorithm has been successfully used in several biomedical studies such as pancreatic and kidney cancer studies and shown great efficacy.
Collapse
Affiliation(s)
- Adib Keikhosravi
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Authors contributed equally
| | - Bin Li
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
- Authors contributed equally
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Lim H. Harmonic Generation Microscopy 2.0: New Tricks Empowering Intravital Imaging for Neuroscience. Front Mol Biosci 2019; 6:99. [PMID: 31649934 PMCID: PMC6794408 DOI: 10.3389/fmolb.2019.00099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
Optical harmonic generation, e.g., second- (SHG) and third-harmonic generation (THG), provides intrinsic contrasts for three-dimensional intravital microscopy. Contrary to two-photon excited fluorescence (TPEF), however, they have found relatively specialized applications, such as imaging collagenous and non-specific tissues, respectively. Here we review recent advances that broaden the capacity of SHG and THG for imaging the central nervous system in particular. The fundamental contrast mechanisms are reviewed as they encode novel information including molecular origin, spectroscopy, functional probes, and image analysis, which lay foundations for promising future applications in neuroscience.
Collapse
Affiliation(s)
- Hyungsik Lim
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
20
|
Pinsard M, Schmeltz M, van der Kolk J, Patten SA, Ibrahim H, Ramunno L, Schanne-Klein MC, Légaré F. Elimination of imaging artifacts in second harmonic generation microscopy using interferometry. BIOMEDICAL OPTICS EXPRESS 2019; 10:3938-3952. [PMID: 31452986 PMCID: PMC6701527 DOI: 10.1364/boe.10.003938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 05/26/2023]
Abstract
Conventional second harmonic generation (SHG) microscopy might not clearly reveal the structure of complex samples if the interference between all scatterers in the focal volume results in artefactual patterns. We report here the use of interferometric second harmonic generation (I-SHG) microscopy to efficiently remove these artifacts from SHG images. Interfaces between two regions of opposite polarity are considered because they are known to produce imaging artifacts in muscle for instance. As a model system, such interfaces are first studied in periodically-poled lithium niobate (PPLN), where an artefactual incoherent SH signal is obtained because of irregularities at the interfaces, that overshadow the sought-after coherent contribution. Using I-SHG allows to remove the incoherent part completely without any spatial filtering. Second, I-SHG is also proven to resolve the double-band pattern expected in muscle where standard SHG exhibits in some regions artefactual single-band patterns. In addition to removing the artifacts at the interfaces between antiparallel domains in both structures (PPLN and muscle), I-SHG also increases their visibility by up to a factor of 5. This demonstrates that I-SHG is a powerful technique to image biological samples at enhanced contrast while suppressing artifacts.
Collapse
Affiliation(s)
- Maxime Pinsard
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications (INRS-EMT); 1650 Boul. Lionel-Boulet, Varennes (QC), J3X 1S2, Canada
| | - Margaux Schmeltz
- Laboratoire d'Optique et Biosciences (LOB), École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Jarno van der Kolk
- Department of Physics and Centre for Research in Photonics, University of Ottawa, Ottawa (ON), K1N 6N5, Canada
| | | | - Heide Ibrahim
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications (INRS-EMT); 1650 Boul. Lionel-Boulet, Varennes (QC), J3X 1S2, Canada
| | - Lora Ramunno
- Department of Physics and Centre for Research in Photonics, University of Ottawa, Ottawa (ON), K1N 6N5, Canada
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences (LOB), École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - François Légaré
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications (INRS-EMT); 1650 Boul. Lionel-Boulet, Varennes (QC), J3X 1S2, Canada
| |
Collapse
|
21
|
Yuan C, Wang Z, Borg TK, Ye T, Baicu C, Bradshaw A, Zile M, Runyan RB, Shao Y, Gao BZ. Changes in the crystallographic structures of cardiac myosin filaments detected by polarization-dependent second harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:3183-3195. [PMID: 31360597 PMCID: PMC6640825 DOI: 10.1364/boe.10.003183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
Detecting the structural changes caused by volume and pressure overload is critical to comprehending the mechanisms of physiologic and pathologic hypertrophy. This study explores the structural changes at the crystallographic level in myosin filaments in volume- and pressure-overloaded myocardia through polarization-dependent second harmonic generation microscopy. Here, for the first time, we report that the ratio of nonlinear susceptibility tensor components d33/d15 increased significantly in volume- and pressure-overloaded myocardial tissues compared with the ratio in normal mouse myocardial tissues. Through cell stretch experiments, we demonstrated that mechanical tension plays an important role in the increase of d33/d15 in volume- and pressure-overloaded myocardial tissues.
Collapse
Affiliation(s)
- Cai Yuan
- Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634, USA
| | - Zhonghai Wang
- Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634, USA
| | - Thomas K. Borg
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, South Carolina, 29425, USA
| | - Tong Ye
- Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634, USA
| | - Catalin Baicu
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Amy Bradshaw
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Michael Zile
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Raymond B. Runyan
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona, 85724, USA
| | - Yonghong Shao
- College of Optoelectronics Engineering, Shenzhen University, Shenzhen, 518061, China
| | - Bruce Z. Gao
- Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634, USA
| |
Collapse
|
22
|
Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level. Nat Commun 2018; 9:5287. [PMID: 30538243 PMCID: PMC6289965 DOI: 10.1038/s41467-018-07713-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/16/2018] [Indexed: 11/25/2022] Open
Abstract
Neurons communicate through electrochemical signaling within a complex network. These signals are composed of changes in membrane potentials and are traditionally measured with the aid of (toxic) fluorescent labels or invasive electrical probes. Here, we demonstrate an improvement in label-free second harmonic neuroimaging sensitivity by ~3 orders of magnitude using a wide-field medium repetition rate illumination. We perform a side-by-side patch-clamp and second harmonic imaging comparison to demonstrate the theoretically predicted linear correlation between whole neuron membrane potential changes and the square root of the second harmonic intensity. We assign the ion induced changes to the second harmonic intensity to changes in the orientation of membrane interfacial water, which is used to image spatiotemporal changes in the membrane potential and K+ ion flux. We observe a non-uniform spatial distribution and temporal activity of ion channels in mouse brain neurons. Non-invasive spatiotemporal probing of electric potentials in living neurons without chemical or genetic modification provides a major advancement to neuroscience. Here, the authors demonstrate the use of membrane water as a probe for neuronal membrane potentials and ionic flux.
Collapse
|
23
|
Dubreuil M, Tissier F, Le Roy L, Pennec JP, Rivet S, Giroux-Metges MA, Le Grand Y. Polarization-resolved second harmonic microscopy of skeletal muscle in sepsis. BIOMEDICAL OPTICS EXPRESS 2018; 9:6350-6358. [PMID: 31065433 PMCID: PMC6490978 DOI: 10.1364/boe.9.006350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 05/03/2023]
Abstract
Polarization-resolved second harmonic generation (P-SHG) microscopy is able to probe the sub-micrometer structural organization of myosin filaments within skeletal muscle. In this study, P-SHG microscopy was used to analyze the structural consequences of sepsis, which is the main cause of the critical illness polyneuromyopathy (CIPNM). Experiments conducted on two populations of rats demonstrated a significant difference of the anisotropy parameter between healthy and septic groups, indicating that P-SHG microscopy is promising for the diagnosis of CIPNM. The difference, which can be attributed to a change of myosin conformation at the sub-sarcomere scale, cannot be evidenced by classical SHG imaging.
Collapse
Affiliation(s)
- Matthieu Dubreuil
- Université de Bretagne Occidentale, Laboratoire d’optique et de magnétisme OPTIMAG EA 938, IBSAM, 6 avenue Le Gorgeu, Brest, 29238, France
| | - Florine Tissier
- Université de Bretagne Occidentale, Laboratoire optimisation des régulations physiologiques ORPHY EA 4324, IBSAM, 6 avenue Le Gorgeu, Brest, 29238, France
| | - Lucas Le Roy
- Université de Bretagne Occidentale, Laboratoire optimisation des régulations physiologiques ORPHY EA 4324, IBSAM, 6 avenue Le Gorgeu, Brest, 29238, France
| | - Jean-Pierre Pennec
- Université de Bretagne Occidentale, Laboratoire optimisation des régulations physiologiques ORPHY EA 4324, IBSAM, 6 avenue Le Gorgeu, Brest, 29238, France
| | - Sylvain Rivet
- Université de Bretagne Occidentale, Laboratoire d’optique et de magnétisme OPTIMAG EA 938, IBSAM, 6 avenue Le Gorgeu, Brest, 29238, France
| | - Marie-Agnès Giroux-Metges
- Université de Bretagne Occidentale, Laboratoire optimisation des régulations physiologiques ORPHY EA 4324, IBSAM, 6 avenue Le Gorgeu, Brest, 29238, France
| | - Yann Le Grand
- Université de Bretagne Occidentale, Laboratoire d’optique et de magnétisme OPTIMAG EA 938, IBSAM, 6 avenue Le Gorgeu, Brest, 29238, France
| |
Collapse
|
24
|
Khattab M, Wang F, Clayton AHA. Conformational Plasticity in Tyrosine Kinase Inhibitor-Kinase Interactions Revealed with Fluorescence Spectroscopy and Theoretical Calculations. J Phys Chem B 2018; 122:4667-4679. [PMID: 29629773 DOI: 10.1021/acs.jpcb.8b01530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To understand drug-protein dynamics, it is necessary to account for drug molecular flexibility and binding site plasticity. Herein, we exploit fluorescence from a tyrosine kinase inhibitor, AG1478, as a reporter of its conformation and binding site environment when complexed with its cognate kinase. Water-soluble kinases, aminoglycoside phosphotransferase APH(3')-Ia and mitogen-activated protein kinase 14 (MAPK14), were chosen for this study. On the basis of our prior work, the AG1478 conformation (planar or twisted) was inferred from the fluorescence excitation spectrum and the polarity of the AG1478-binding site was deduced from the fluorescence emission spectrum, while red-edge excitation shift (REES) probed the heterogeneity of the binding site (protein conformation and hydration) distributions in the protein conformational ensemble. In the AG1478-APH(3')-Ia complex, both twisted (or partially twisted) and planar AG1478 conformations were evidenced from emission wavelength-dependent excitation spectra. The binding site environment provided by APH(3')-Ia was moderately polar (λmax = 480 nm) with evidence for considerable heterogeneity (REES = 34 nm). In contrast, in the AG1478-MAPK14 complex, AG1478 was in a predominantly planar conformation with a lower degree of conformational heterogeneity. The binding site environment provided by the MAPK14 protein was of relatively low polarity (λmax = 430 nm) with a smaller degree of heterogeneity (REES = 11 nm). The results are compared with the available X-ray data and discussed in the context of our current understanding of tyrosine kinase inhibitor conformation and protein conformational ensembles.
Collapse
|
25
|
Sapoznik E, Niu G, Zhou Y, Prim PM, Criswell TL, Soker S. A real-time monitoring platform of myogenesis regulators using double fluorescent labeling. PLoS One 2018; 13:e0192654. [PMID: 29444187 PMCID: PMC5812636 DOI: 10.1371/journal.pone.0192654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/26/2018] [Indexed: 11/18/2022] Open
Abstract
Real-time, quantitative measurement of muscle progenitor cell (myoblast) differentiation is an important tool for skeletal muscle research and identification of drugs that support skeletal muscle regeneration. While most quantitative tools rely on sacrificial approach, we developed a double fluorescent tagging approach, which allows for dynamic monitoring of myoblast differentiation through assessment of fusion index and nuclei count. Fluorescent tagging of both the cell cytoplasm and nucleus enables monitoring of cell fusion and the formation of new myotube fibers, similar to immunostaining results. This labeling approach allowed monitoring the effects of Myf5 overexpression, TNFα, and Wnt agonist on myoblast differentiation. It also enabled testing the effects of surface coating on the fusion levels of scaffold-seeded myoblasts. The double fluorescent labeling of myoblasts is a promising technique to visualize even minor changes in myogenesis of myoblasts in order to support applications such as tissue engineering and drug screening.
Collapse
Affiliation(s)
- Etai Sapoznik
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Guoguang Niu
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Peter M. Prim
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Tracy L. Criswell
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Schneidereit D, Nübler S, Prölß G, Reischl B, Schürmann S, Müller OJ, Friedrich O. Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach. LIGHT, SCIENCE & APPLICATIONS 2018; 7:79. [PMID: 30374401 PMCID: PMC6199289 DOI: 10.1038/s41377-018-0080-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 05/22/2023]
Abstract
Skeletal muscle is an archetypal organ whose structure is tuned to match function. The magnitude of order in muscle fibers and myofibrils containing motor protein polymers determines the directed force output of the summed force vectors and, therefore, the muscle's power performance on the structural level. Structure and function can change dramatically during disease states involving chronic remodeling. Cellular remodeling of the cytoarchitecture has been pursued using noninvasive and label-free multiphoton second harmonic generation (SHG) microscopy. Hereby, structure parameters can be extracted as a measure of myofibrillar order and thus are suggestive of the force output that a remodeled structure can still achieve. However, to date, the parameters have only been an indirect measure, and a precise calibration of optical SHG assessment for an exerted force has been elusive as no technology in existence correlates these factors. We engineered a novel, automated, high-precision biomechatronics system into a multiphoton microscope allows simultaneous isometric Ca2+-graded force or passive viscoelasticity measurements and SHG recordings. Using this MechaMorph system, we studied force and SHG in single EDL muscle fibers from wt and mdx mice; the latter serves as a model for compromised force and abnormal myofibrillar structure. We present Ca2+-graded isometric force, pCa-force curves, passive viscoelastic parameters and 3D structure in the same fiber for the first time. Furthermore, we provide a direct calibration of isometric force to morphology, which allows noninvasive prediction of the force output of single fibers from only multiphoton images, suggesting a potential application in the diagnosis of myopathies.
Collapse
Affiliation(s)
- Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
| | - Gerhard Prölß
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Radaelli F, D'Alfonso L, Collini M, Mingozzi F, Marongiu L, Granucci F, Zanoni I, Chirico G, Sironi L. μMAPPS: a novel phasor approach to second harmonic analysis for in vitro-in vivo investigation of collagen microstructure. Sci Rep 2017; 7:17468. [PMID: 29234132 PMCID: PMC5727101 DOI: 10.1038/s41598-017-17726-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Second Harmonic Generation (SHG) is a label-free imaging method used to monitor collagen organization in tissues. Due to its sensitivity to the incident polarization, it provides microstructural information otherwise unreachable by other intensity based imaging methods. We develop and test a Microscopic Multiparametric Analysis by Phasor projection of Polarization-dependent SHG (μMAPPS) that maps the features of the collagen architecture in tissues at the micrometer scale. μMAPPS retrieves pixel-by-pixel the collagen fibrils anisotropy and orientation by operating directly on two coupled phasor spaces, avoiding direct fitting of the polarization dependent SHG signal. We apply μMAPPS to fixed tissue sections and to the study of the collagen microscopic organization in tumors ex-vivo and in-vivo. We develop a clustering algorithm to automatically group pixels with similar microstructural features. μMAPPS can perform fast analyses of tissues and opens to future applications for in-situ diagnosis of pathologies and diseases that could assist histo-pathological evaluation.
Collapse
Affiliation(s)
- F Radaelli
- Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - L D'Alfonso
- Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - M Collini
- Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy.
- CNR - ISASI, Institute of Applied Sciences & Intelligent Systems, Via Campi Flegrei 34, Pozzuoli, NA, Italy.
| | - F Mingozzi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - L Marongiu
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - F Granucci
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - I Zanoni
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - G Chirico
- Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
- CNR - ISASI, Institute of Applied Sciences & Intelligent Systems, Via Campi Flegrei 34, Pozzuoli, NA, Italy
| | - L Sironi
- Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy.
| |
Collapse
|
28
|
Stringari C, Abdeladim L, Malkinson G, Mahou P, Solinas X, Lamarre I, Brizion S, Galey JB, Supatto W, Legouis R, Pena AM, Beaurepaire E. Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing. Sci Rep 2017; 7:3792. [PMID: 28630487 PMCID: PMC5476668 DOI: 10.1038/s41598-017-03359-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
Two-photon imaging of endogenous fluorescence can provide physiological and metabolic information from intact tissues. However, simultaneous imaging of multiple intrinsic fluorophores, such as nicotinamide adenine dinucleotide(phosphate) (NAD(P)H), flavin adenine dinucleotide (FAD) and retinoids in living systems is generally hampered by sequential multi-wavelength excitation resulting in motion artifacts. Here, we report on efficient and simultaneous multicolor two-photon excitation of endogenous fluorophores with absorption spectra spanning the 750-1040 nm range, using wavelength mixing. By using two synchronized pulse trains at 760 and 1041 nm, an additional equivalent two-photon excitation wavelength at 879 nm is generated, and achieves simultaneous excitation of blue, green and red intrinsic fluorophores. This method permits an efficient simultaneous imaging of the metabolic coenzymes NADH and FAD to be implemented with perfect image co-registration, overcoming the difficulties associated with differences in absorption spectra and disparity in concentration. We demonstrate ratiometric redox imaging free of motion artifacts and simultaneous two-photon fluorescence lifetime imaging (FLIM) of NADH and FAD in living tissues. The lifetime gradients of NADH and FAD associated with different cellular metabolic and differentiation states in reconstructed human skin and in the germline of live C. Elegans are thus simultaneously measured. Finally, we present multicolor imaging of endogenous fluorophores and second harmonic generation (SHG) signals during the early stages of Zebrafish embryo development, evidencing fluorescence spectral changes associated with development.
Collapse
Affiliation(s)
- Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France.
| | - Lamiae Abdeladim
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | - Guy Malkinson
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | - Xavier Solinas
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | - Isabelle Lamarre
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | | | | | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France
| | - Renaud Legouis
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Ana-Maria Pena
- L'Oréal Research and Innovation, 93600, Aulnay sous Bois, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau cedex, France.
| |
Collapse
|
29
|
Kontenis L, Samim M, Krouglov S, Barzda V. Third-harmonic generation Stokes-Mueller polarimetric microscopy. OPTICS EXPRESS 2017; 25:13174-13189. [PMID: 28788853 DOI: 10.1364/oe.25.013174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/27/2017] [Indexed: 05/28/2023]
Abstract
An experimental implementation of the nonlinear Stokes-Mueller polarimetric (NSMP) microscopy in third-harmonic generation modality is presented. The technique is able to extract all eight 2D-accessible χ(3) components for any sample from 64 polarization measurements, and can be applied to noninvasive ultrastructural characterization. The polarization signature of an isotropic glass coverslip is presented, and carotenoid crystallites in the root of orange carrot (Daucus carota) are investigated, showing complex χ(3) components with a significant chiral contribution.
Collapse
|
30
|
Campbell KR, Campagnola PJ. Wavelength-Dependent Second Harmonic Generation Circular Dichroism for Differentiation of Col I and Col III Isoforms in Stromal Models of Ovarian Cancer Based on Intrinsic Chirality Differences. J Phys Chem B 2017; 121:1749-1757. [PMID: 28170263 DOI: 10.1021/acs.jpcb.6b06822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive remodeling of the extracellular matrix (ECM) occurs in many epithelial cancers. For example, in ovarian cancer, upregulation of collagen isoform type III has been linked to invasive forms of the disease, and this change may be a potential biomarker. To examine this possibility, we implemented wavelength-dependent second harmonic generation circular dichroism (SHG-CD) imaging microscopy to quantitatively determine changes in chirality in ECM models comprised of different Col I/Col III composition. In these models, Col III was varied between 0 and 40%, and we found increasing Col III results in reduced net chirality, consistent with structural biology studies of Col I and III in tissues where the isoforms comingle in the same fibrils. We further examined the wavelength dependence of the SHG-CD to both optimize the response and gain insight into the underlying mechanism. We found using shorter SHG excitation wavelengths resulted in increased SHG-CD sensitivity, where this is consistent with the electric-dipole-coupled oscillator model suggested previously for the nonlinear chirality response from thin films. Moreover, the sensitivity is further consistent with the wavelength dependency of SHG intensity fit to a two-state model of the two-photon absorption in collagen. We also provide experimental calibration protocols to implement the SHG-CD modality on a laser scanning microscope. We last suggest that the technique has broad applicability in probing a wide range of diseased states with changes in collagen molecular structure.
Collapse
Affiliation(s)
- Kirby R Campbell
- Department of Biomedical Engineering, University of Wisconsin-Madison , 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Paul J Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison , 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Mercatelli R, Ratto F, Rossi F, Tatini F, Menabuoni L, Malandrini A, Nicoletti R, Pini R, Pavone FS, Cicchi R. Three-dimensional mapping of the orientation of collagen corneal lamellae in healthy and keratoconic human corneas using SHG microscopy. JOURNAL OF BIOPHOTONICS 2017; 10:75-83. [PMID: 27472438 DOI: 10.1002/jbio.201600122] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 05/02/2023]
Abstract
Keratoconus is an eye disorder that causes the cornea to take an abnormal conical shape, thus impairing its refractive functions and causing blindness. The late diagnosis of keratoconus is among the principal reasons for corneal surgical transplantation. This pathology is characterized by a reduced corneal stiffness in the region immediately below Bowman's membrane, probably due to a different lamellar organization, as suggested by previous studies. Here, the lamellar organization in this corneal region is characterized in three dimensions by means of second-harmonic generation (SHG) microscopy. In particular, a method based on a three-dimensional correlation analysis allows to probe the orientation of sutural lamellae close to the Bowman's membrane, finding statistical differences between healthy and keratoconic samples. This method is demonstrated also in combination with an epi-detection scheme, paving the way for a potential clinical ophthalmic application of SHG microscopy for the early diagnosis of keratoconus. SHG image acquired with sagittal optical sectioning (A) of a healthy cornea and (B) of a keratoconic cornea. Scale bars: 30 μm.
Collapse
Affiliation(s)
- Raffaella Mercatelli
- National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Fulvio Ratto
- Institute of Applied Physics "N. Carrara" (IFAC-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Francesca Rossi
- Institute of Applied Physics "N. Carrara" (IFAC-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Francesca Tatini
- Institute of Applied Physics "N. Carrara" (IFAC-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Luca Menabuoni
- U.O. Oculistica Nuovo Ospedale S. Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Alex Malandrini
- U.O. Oculistica Nuovo Ospedale S. Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | | | - Roberto Pini
- Institute of Applied Physics "N. Carrara" (IFAC-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
32
|
Cicchi R, Pavone FS. Probing Collagen Organization: Practical Guide for Second-Harmonic Generation (SHG) Imaging. Methods Mol Biol 2017; 1627:409-425. [PMID: 28836217 DOI: 10.1007/978-1-4939-7113-8_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Second-harmonic generation (SHG) microscopy is a powerful microscopy technique for imaging collagen and other biological molecules using a label-free approach. SHG microscopy offers the advantages of a nonlinear imaging modality together with those ones of a coherent technique. These features make SHG microscopy the ideal tool for imaging collagen at high resolution and for characterizing its organization at various hierarchical levels. Considering that collagen organization plays a crucial role in fibrosis and in its development, it would be beneficial for the researcher working in the field of fibrosis to have a manual listing crucial points to be considered when imaging collagen using SHG microscopy. This chapter provides an answer to this demand with state-of-the-art protocols, methods, and laboratory tips related to SHG microscopy. We also discuss advantages and limitations of the use of SHG for studying fibrosis.
Collapse
Affiliation(s)
- Riccardo Cicchi
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy.
| | - Francesco S Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
33
|
Paesen R, Smolders S, Vega JMDH, Eijnde BO, Hansen D, Ameloot M. Fully automated muscle quality assessment by Gabor filtering of second harmonic generation images. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:26003. [PMID: 26848544 DOI: 10.1117/1.jbo.21.2.026003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
Although structural changes on the sarcomere level of skeletal muscle are known to occur due to various pathologies, rigorous studies of the reduced sarcomere quality remain scarce. This can possibly be explained by the lack of an objective tool for analyzing and comparing sarcomere images across biological conditions. Recent developments in second harmonic generation (SHG) microscopy and increasing insight into the interpretation of sarcomere SHG intensity profiles have made SHG microscopy a valuable tool to study microstructural properties of sarcomeres. Typically, sarcomere integrity is analyzed by fitting a set of manually selected, one-dimensional SHG intensity profiles with a supramolecular SHG model. To circumvent this tedious manual selection step, we developed a fully automated image analysis procedure to map the sarcomere disorder for the entire image at once. The algorithm relies on a single-frequency wavelet-based Gabor approach and includes a newly developed normalization procedure allowing for unambiguous data interpretation. The method was validated by showing the correlation between the sarcomere disorder, quantified by the M-band size obtained from manually selected profiles, and the normalized Gabor value ranging from 0 to 1 for decreasing disorder. Finally, to elucidate the applicability of our newly developed protocol, Gabor analysis was used to study the effect of experimental autoimmune encephalomyelitis on the sarcomere regularity. We believe that the technique developed in this work holds great promise for high-throughput, unbiased, and automated image analysis to study sarcomere integrity by SHG microscopy.
Collapse
Affiliation(s)
- Rik Paesen
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Sophie Smolders
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | | | - Bert O Eijnde
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, BelgiumbHasselt University, REVAL-Rehabilitation Research Center, Agoralaan Building A, 3590 Diepenbeek, Belgium
| | - Dominique Hansen
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, BelgiumbHasselt University, REVAL-Rehabilitation Research Center, Agoralaan Building A, 3590 Diepenbeek, Belgium
| | - Marcel Ameloot
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, Belgium
| |
Collapse
|
34
|
Förderer M, Georgiev T, Mosqueira M, Fink RHA, Vogel M. Functional second harmonic generation microscopy probes molecular dynamics with high temporal resolution. BIOMEDICAL OPTICS EXPRESS 2016; 7:525-541. [PMID: 26977360 PMCID: PMC4771469 DOI: 10.1364/boe.7.000525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Second harmonic generation (SHG) microscopy is a powerful tool for label free ex vivo or in vivo imaging, widely used to investigate structure and organization of endogenous SHG emitting proteins such as myosin or collagen. Polarization resolved SHG microscopy renders supplementary information and is used to probe different molecular states. This development towards functional SHG microscopy is calling for new methods for high speed functional imaging of dynamic processes. In this work we present two approaches with linear polarized light and demonstrate high speed line scan measurements of the molecular dynamics of the motor protein myosin with a time resolution of 1 ms in mammalian muscle cells. Such a high speed functional SHG microscopy has high potential to deliver new insights into structural and temporal molecular dynamics under ex vivo or in vivo conditions.
Collapse
Affiliation(s)
- Moritz Förderer
- Medical Biophysics Unit, Institute for Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany;
| | - Tihomir Georgiev
- Medical Biophysics Unit, Institute for Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Matias Mosqueira
- Medical Biophysics Unit, Institute for Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Rainer H A Fink
- Medical Biophysics Unit, Institute for Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Martin Vogel
- Medical Biophysics Unit, Institute for Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany; Current address: Max Planck Institute of Biophysics, Frankfurt/Main, Germany;
| |
Collapse
|
35
|
Kontenis L, Samim M, Karunendiran A, Krouglov S, Stewart B, Barzda V. Second harmonic generation double stokes Mueller polarimetric microscopy of myofilaments. BIOMEDICAL OPTICS EXPRESS 2016; 7:559-69. [PMID: 26977362 PMCID: PMC4771471 DOI: 10.1364/boe.7.000559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
The experimental implementation of double Stokes Mueller polarimetric microscopy is presented. This technique enables a model-independent and complete polarimetric characterization of second harmonic generating samples using 36 Stokes parameter measurements at different combinations of incoming and outgoing polarizations. The degree of second harmonic polarization and the molecular nonlinear susceptibility ratio are extracted for individual focal volumes of a fruit fly larva wall muscle.
Collapse
Affiliation(s)
- Lukas Kontenis
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7,
Canada
- Department of Chemical and Physical Sciences, University of Toronto, 3359 Mississauga Road, Mississauga, ON, L5L 1C6,
Canada
| | - Masood Samim
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7,
Canada
- Department of Chemical and Physical Sciences, University of Toronto, 3359 Mississauga Road, Mississauga, ON, L5L 1C6,
Canada
- Princess Margaret Cancer Center/University Health Network, 610 University Avenue, Toronto, ON, M5G 2M3,
Canada
| | - Abiramy Karunendiran
- Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, L5L 1C6,
Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5,
Canada
| | - Serguei Krouglov
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7,
Canada
- Department of Chemical and Physical Sciences, University of Toronto, 3359 Mississauga Road, Mississauga, ON, L5L 1C6,
Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, L5L 1C6,
Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5,
Canada
| | - Virginijus Barzda
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7,
Canada
- Department of Chemical and Physical Sciences, University of Toronto, 3359 Mississauga Road, Mississauga, ON, L5L 1C6,
Canada
| |
Collapse
|
36
|
Awasthi S, Izu LT, Mao Z, Jian Z, Landas T, Lerner A, Shimkunas R, Woldeyesus R, Bossuyt J, Wood BM, Chen YJ, Matthews DL, Lieu DK, Chiamvimonvat N, Lam KS, Chen-Izu Y, Chan JW. Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live Cardiac Myocytes. Circ Res 2015; 118:e19-28. [PMID: 26643875 DOI: 10.1161/circresaha.115.307919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/07/2015] [Indexed: 01/24/2023]
Abstract
RATIONALE Cardiac myocyte contraction is caused by Ca(2+) binding to troponin C, which triggers the cross-bridge power stroke and myofilament sliding in sarcomeres. Synchronized Ca(2+) release causes whole cell contraction and is readily observable with current microscopy techniques. However, it is unknown whether localized Ca(2+) release, such as Ca(2+) sparks and waves, can cause local sarcomere contraction. Contemporary imaging methods fall short of measuring microdomain Ca(2+)-contraction coupling in live cardiac myocytes. OBJECTIVE To develop a method for imaging sarcomere level Ca(2+)-contraction coupling in healthy and disease model cardiac myocytes. METHODS AND RESULTS Freshly isolated cardiac myocytes were loaded with the Ca(2+)-indicator fluo-4. A confocal microscope equipped with a femtosecond-pulsed near-infrared laser was used to simultaneously excite second harmonic generation from A-bands of myofibrils and 2-photon fluorescence from fluo-4. Ca(2+) signals and sarcomere strain correlated in space and time with short delays. Furthermore, Ca(2+) sparks and waves caused contractions in subcellular microdomains, revealing a previously underappreciated role for these events in generating subcellular strain during diastole. Ca(2+) activity and sarcomere strain were also imaged in paced cardiac myocytes under mechanical load, revealing spontaneous Ca(2+) waves and correlated local contraction in pressure-overload-induced cardiomyopathy. CONCLUSIONS Multimodal second harmonic generation 2-photon fluorescence microscopy enables the simultaneous observation of Ca(2+) release and mechanical strain at the subsarcomere level in living cardiac myocytes. The method benefits from the label-free nature of second harmonic generation, which allows A-bands to be imaged independently of T-tubule morphology and simultaneously with Ca(2+) indicators. Second harmonic generation 2-photon fluorescence imaging is widely applicable to the study of Ca(2+)-contraction coupling and mechanochemotransduction in both health and disease.
Collapse
Affiliation(s)
- Samir Awasthi
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Leighton T Izu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Ziliang Mao
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Zhong Jian
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Trevor Landas
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Aaron Lerner
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Rafael Shimkunas
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Rahwa Woldeyesus
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Julie Bossuyt
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Brent M Wood
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Yi-Je Chen
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Dennis L Matthews
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Deborah K Lieu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Nipavan Chiamvimonvat
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Kit S Lam
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Ye Chen-Izu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis.
| | - James W Chan
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis.
| |
Collapse
|
37
|
In Vivo nonlinear optical imaging of immune responses: tissue injury and infection. Biophys J 2015; 107:2436-43. [PMID: 25418312 DOI: 10.1016/j.bpj.2014.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/24/2014] [Accepted: 09/09/2014] [Indexed: 12/25/2022] Open
Abstract
In this study, we demonstrate a noninvasive imaging approach based on multimodal nonlinear optical microscopy to in vivo image the responses of immune cells (neutrophils) to the tissue injury and bacterial infection in a zebrafish model. Specifically, the second harmonic generation from myosin thick filaments in sarcomere enabled a clear visualization of the muscle injury and infection. Two-photon excited fluorescence was used to track the behavior of the neutrophils that were transgenically labeled by red fluorescent protein. The corresponding reduced nicotinamide adenine dinucleotide (NADH) two-photon excited fluorescence images revealed a detailed morphological transformation process of individual neutrophils during muscle tissue injury and bacterial infection. The analysis of time-resolved NADH signals from the neutrophils provided important biological insights of the cellular energy metabolism during the immune responses. We found a significant increase of free/protein-bound NADH ratios in activated neutrophils in bacterial-infected tissue. In this study, we also discovered that, under 720 nm excitation, two wild-type strains (DH5? and BL21) of bacteria Escherichia coli emitted distinct endogenous fluorescence of double-peak at ?450 and ?520 nm, respectively. We demonstrated that the double-peak fluorescence signal could be used to differentiate the E. coli from surrounding tissues of dominant NADH signals, and to achieve label-free tracking of E. coli bacteria in vivo.
Collapse
|
38
|
Vogel M, Wingert A, Fink RHA, Hagl C, Ganikhanov F, Pfeffer CP. Enabling the detection of UV signal in multimodal nonlinear microscopy with catalogue lens components. J Microsc 2015; 260:62-72. [PMID: 26016390 DOI: 10.1111/jmi.12267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 04/26/2015] [Indexed: 12/01/2022]
Abstract
Using an optical system made from fused silica catalogue optical components, third-order nonlinear microscopy has been enabled on conventional Ti:sapphire laser-based multiphoton microscopy setups. The optical system is designed using two lens groups with straightforward adaptation to other microscope stands when one of the lens groups is exchanged. Within the theoretical design, the optical system collects and transmits light with wavelengths between the near ultraviolet and the near infrared from an object field of at least 1 mm in diameter within a resulting numerical aperture of up to 0.56. The numerical aperture can be controlled with a variable aperture stop between the two lens groups of the condenser. We demonstrate this new detection capability in third harmonic generation imaging experiments at the harmonic wavelength of ∼300 nm and in multimodal nonlinear optical imaging experiments using third-order sum frequency generation and coherent anti-Stokes Raman scattering microscopy so that the wavelengths of the detected signals range from ∼300 nm to ∼660 nm.
Collapse
Affiliation(s)
- Martin Vogel
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts, U.S.A
| | - Axel Wingert
- Medical Biophysics Group, University of Heidelberg, Heidelberg, Germany
| | - Rainer H A Fink
- Medical Biophysics Group, University of Heidelberg, Heidelberg, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, Ludwig-Maximilians-Universitaet, Munchen, Germany
| | - Feruz Ganikhanov
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, U.S.A
| | - Christian P Pfeffer
- Department of Cardiac Surgery, Ludwig-Maximilians-Universitaet, Munchen, Germany.,Department of Craniofacial and Developmental Biology, Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
39
|
Grazi E. The cross-bridge of skeletal muscle is not synchronized either by length or force step. Int J Mol Sci 2015; 16:12064-75. [PMID: 26023715 PMCID: PMC4490429 DOI: 10.3390/ijms160612064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/13/2015] [Accepted: 05/22/2015] [Indexed: 11/26/2022] Open
Abstract
Force and length steps, applied to a muscle fiber in the isometric state, are believed to synchronize attached cross-bridges. This alleged synchronization facilitates the interpretation of the experiments. A rapid force step elicits an elastic response of the attached cross-bridges, followed by an isotonic phase. The decay of this second isotonic phase is of the first order. This excludes that the attached cross-bridges may decay all at the same time. The change of the X-ray interference distance during the second phase measures the stroke size only in the unrealistic case that the cross-bridges are and remain all attached. A rapid force step does not synchronize attached cross-bridges. The change of X-ray interference during the second phase does not measure the stroke size. These conclusions significantly change the picture of the mechanism of skeletal muscle contraction.
Collapse
Affiliation(s)
- Enrico Grazi
- Department of Scienze Biomediche e Chirurgiche Specialistiche, Ferrara University, Via Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
40
|
Rouède D, Bellanger JJ, Bomo J, Baffet G, Tiaho F. Linear least square (LLS) method for pixel-resolution analysis of polarization dependent SHG images of collagen fibrils. OPTICS EXPRESS 2015; 23:13309-19. [PMID: 26074581 DOI: 10.1364/oe.23.013309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A linear least square (LLS) method is proposed to process polarization dependent SHG intensity analysis at pixel-resolution level in order to provide an analytic solution of nonlinear susceptibility χ(2) coefficients and of fibril orientation. This model is applicable to fibrils with identical orientation in the excitation volume. It has been validated on type I collagen fibrils from cell-free gel, tendon and extracellular matrix of F1 biliary epithelial cells. LLS is fast (a few hundred milliseconds for a 512 × 512 pixel image) and very easy to perform for non-expert in numerical signal processing. Theoretical simulation highlights the importance of signal to noise ratio for accurate determination of nonlinear susceptibility χ(2) coefficients. The results also suggest that, in addition to the peptide group, a second molecular nonlinear optical hyperpolarizability β contributes to the SHG signal. Finally from fibril orientation analysis, results show that F1 cells remodel extracellular matrix collagen fibrils by changing fibril orientation, which might have important physiological function in cell migration and communication.
Collapse
|
41
|
Teulon C, Gusachenko I, Latour G, Schanne-Klein MC. Theoretical, numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy. OPTICS EXPRESS 2015; 23:9313-28. [PMID: 25968762 DOI: 10.1364/oe.23.009313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Polarization-resolved second harmonic generation (P-SHG) microscopy is an efficient imaging modality for in situ observation of biopolymers structure in tissues, providing information about their mean in-plane orientation and their molecular structure and 3D distribution. Nevertheless, P-SHG signal build-up in a strongly focused regime is not throroughly understood yet, preventing reliable and reproducible measurements. In this study, theoretical analysis, vectorial numerical simulations and experiments are performed to understand how geometrical parameters, such as excitation and collection numerical apertures and detection direction, affect P-SHG imaging in homogeneous collagen tissues. A good agreement is obtained in tendon and cornea, showing that detection geometry significantly affects the SHG anisotropy measurements, but not the measurements of collagen in-plane orientation.
Collapse
|
42
|
Recher G, Coumailleau P, Rouède D, Tiaho F. Structural origin of the drastic modification of second harmonic generation intensity pattern occurring in tail muscles of climax stages xenopus tadpoles. J Struct Biol 2015; 190:1-10. [PMID: 25770062 DOI: 10.1016/j.jsb.2015.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/08/2015] [Accepted: 03/04/2015] [Indexed: 01/27/2023]
Abstract
Second harmonic generation (SHG) microscopy is a powerful tool for studying submicron architecture of muscles tissues. Using this technique, we show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of premetamorphic xenopus tadpole tail muscles is converted to double frequency (2f) sarcomeric SHG-IP in metamorphic climax stages due to massive physiological muscle proteolysis. This conversion was found to rise from 7% in premetamorphic muscles to about 97% in fragmented muscular apoptotic bodies. Moreover a 66% conversion was also found in non-fragmented metamorphic tail muscles. Also, a strong correlation between predominant 2f sarcomeric SHG-IPs and myofibrillar misalignment is established with electron microscopy. Experimental and theoretical results demonstrate the higher sensitivity and the supra resolution power of SHG microscopy over TPEF to reveal 3D myofibrillar misalignment. From this study, we suggest that 2f sarcomeric SHG-IP could be used as signature of triad defect and disruption of excitation-contraction coupling. As the mechanism of muscle proteolysis is similar to that found in mdx mouse muscles, we further suggest that xenopus tadpole tail resorption at climax stages could be used as an alternative or complementary model of Duchene muscular dystrophy.
Collapse
Affiliation(s)
- Gaëlle Recher
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Pascal Coumailleau
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France
| | - Denis Rouède
- IPR, CNRS, UMR-CNRS UR1-6251, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France
| | - François Tiaho
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France.
| |
Collapse
|
43
|
Abstract
The quest for ever more selective kinase inhibitors as potential future drugs has yielded a large repertoire of chemical probes that are selective for specific kinase conformations. These probes have been useful tools to obtain structural snapshots of kinase conformational plasticity. Similarly, kinetic and thermodynamic inhibitor binding experiments provide glimpses at the time scales and energetics of conformational interconversions. These experimental insights are complemented by computational predictions of conformational energy landscapes and simulations of conformational transitions and of the process of inhibitors binding to the protein kinase domain. A picture emerges in which highly selective inhibitors capitalize on the dynamic nature of kinases.
Collapse
Affiliation(s)
- Michael Tong
- Department
of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - Markus A. Seeliger
- Department
of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
44
|
Psilodimitrakopoulos S, Loza-Alvarez P, Artigas D. Fast monitoring of in-vivo conformational changes in myosin using single scan polarization-SHG microscopy. BIOMEDICAL OPTICS EXPRESS 2014; 5:4362-73. [PMID: 25574444 PMCID: PMC4285611 DOI: 10.1364/boe.5.004362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 05/18/2023]
Abstract
Fast imaging of molecular changes under high-resolution and label-free conditions are essential for understanding in-vivo processes, however, current techniques are not able to monitor such changes in real time. Polarization sensitive second harmonic generation (PSHG) imaging is a minimally invasive optical microscopy technique capable of quantifying molecular conformational changes occurring below the diffraction limit. Up to now, such information is generally retrieved by exciting the sample with different linear polarizations. This procedure requires the sample to remain static during measurements (from a few second to minutes), preventing the use of PSHG microscopy from studying moving samples or molecular dynamics in living organisms. Here we demonstrate an imaging method that is one order of magnitude faster than conventional PSHG. Based on circular polarization excitation and instantaneous polarimetry analysis of the second harmonic signal generated in the tissue, the method is able to instantaneously obtain molecular information within a pixel dwell time. As a consequence, a single scan is only required to retrieve all the information. This allowed us to perform PSHG imaging in moving C. elegans, monitoring myosin's dynamics during the muscular contraction and relaxation. Since the method provides images of the molecular state, an unprecedented global understanding of the muscles dynamics is possible by correlating changes in different regions of the sample.
Collapse
Affiliation(s)
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona),
Spain
| | - David Artigas
- ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona),
Spain
- Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, 08034,
Spain
| |
Collapse
|
45
|
Tilbury K, Lien CH, Chen SJ, Campagnola PJ. Differentiation of Col I and Col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality. Biophys J 2014; 106:354-65. [PMID: 24461010 DOI: 10.1016/j.bpj.2013.10.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/09/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
A profound remodeling of the extracellular matrix occurs in many epithelial cancers. In ovarian cancer, the minor collagen isoform of Col III becomes upregulated in invasive disease. Here we use second harmonic generation (SHG) imaging microscopy to probe structural differences in fibrillar models of the ovarian stroma comprised of mixtures of Col I and III. The SHG intensity and forward-backward ratios decrease with increasing Col III content, consistent with decreased phasematching due to more randomized structures. We further probe the net collagen α-helix pitch angle within the gel mixtures using what is believed to be a new pixel-based polarization-resolved approach that combines and extends previous analyses. The extracted pitch angles are consistent with those of peptide models and the method has sufficient sensitivity to differentiate Col I from the Col I/Col III mixtures. We further developed the pixel-based approach to extract the SHG signal polarization anisotropy from the same polarization-resolved image matrix. Using this approach, we found that increased Col III results in decreased alignment of the dipole moments within the focal volume. Collectively, the SHG measurements and analysis all indicate that incorporation of Col III results in decreased organization across several levels of collagen organization. Furthermore, the findings suggest that the collagen isoforms comingle within the same fibrils, in good agreement with ultrastructural data. The pixel-based polarization analyses (both excitation and emission) afford determination of structural properties without the previous requirement of having well-aligned fibers, and the approaches should be generally applicable in tissue.
Collapse
Affiliation(s)
- Karissa Tilbury
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chi-Hsiang Lien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin; Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan
| | - Shean-Jen Chen
- Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan
| | - Paul J Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin; Medical Physics Department, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
46
|
Garcia-Canadilla P, Gonzalez-Tendero A, Iruretagoyena I, Crispi F, Torre I, Amat-Roldan I, Bijnens BH, Gratacos E. Automated cardiac sarcomere analysis from second harmonic generation images. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:056010. [PMID: 24853145 DOI: 10.1117/1.jbo.19.5.056010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
Automatic quantification of cardiac muscle properties in tissue sections might provide important information related to different types of diseases. Second harmonic generation (SHG) imaging provides a stain-free microscopy approach to image cardiac fibers that, combined with our methodology of the automated measurement of the ultrastructure of muscle fibers, computes a reliable set of quantitative image features (sarcomere length, A-band length, thick-thin interaction length, and fiber orientation). We evaluated the performance of our methodology in computer-generated muscle fibers modeling some artifacts that are present during the image acquisition. Then, we also evaluated it by comparing it to manual measurements in SHG images from cardiac tissue of fetal and adult rabbits. The results showed a good performance of our methodology at high signal-to-noise ratio of 20 dB. We conclude that our automated measurements enable reliable characterization of cardiac fiber tissues to systematically study cardiac tissue in a wide range of conditions.
Collapse
Affiliation(s)
- Patricia Garcia-Canadilla
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, SpainbUniversitat Pompeu
| | - Anna Gonzalez-Tendero
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| | - Igor Iruretagoyena
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| | - Fatima Crispi
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| | - Iratxe Torre
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| | - Ivan Amat-Roldan
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| | - Bart H Bijnens
- Universitat Pompeu Fabra, PhySense, DTIC, Barcelona 08018, SpaincICREA, Barcelona 08010, Spain
| | - Eduard Gratacos
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| |
Collapse
|
47
|
Tokarz D, Cisek R, Krouglov S, Kontenis L, Fekl U, Barzda V. Molecular Organization of Crystalline β-Carotene in Carrots Determined with Polarization-Dependent Second and Third Harmonic Generation Microscopy. J Phys Chem B 2014; 118:3814-22. [DOI: 10.1021/jp411387p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Danielle Tokarz
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Richard Cisek
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
- Department
of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
| | - Serguei Krouglov
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
- Department
of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
| | - Lukas Kontenis
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
- Department
of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
| | - Ulrich Fekl
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Virginijus Barzda
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
- Department
of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
| |
Collapse
|
48
|
Rouède D, Coumailleau P, Schaub E, Bellanger JJ, Blanchard-Desce M, Tiaho F. Myofibrillar misalignment correlated to triad disappearance of mdx mouse gastrocnemius muscle probed by SHG microscopy. BIOMEDICAL OPTICS EXPRESS 2014; 5:858-875. [PMID: 24688819 PMCID: PMC3959848 DOI: 10.1364/boe.5.000858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
We show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of control muscles is converted to double frequency sarcomeric SHG-IP in preserved mdx mouse gastrocnemius muscles in the vicinity of necrotic fibers. These double frequency sarcomeric SHG-IPs are often spatially correlated to double frequency sarcomeric two-photon excitation fluorescence (TPEF) emitted from Z-line and I-bands and to one centered spot SHG angular intensity pattern (SHG-AIP) suggesting that these patterns are signature of myofibrillar misalignement. This latter is confirmed with transmission electron microscopy (TEM). Moreover, a good spatial correlation between SHG signature of myofibrillar misalignment and triad reduction is established. Theoretical simulation of sarcomeric SHG-IP is used to demonstrate the correlation between change of SHG-IP and -AIP and myofibrillar misalignment. The extreme sensitivity of SHG microscopy to reveal the submicrometric organization of A-band thick filaments is highlighted. This report is a first step toward future studies aimed at establishing live SHG signature of myofibrillar misalignment involving excitation contraction defects due to muscle damage and disease.
Collapse
Affiliation(s)
- Denis Rouède
- IPR, CNRS, UMR-CNRS UR1- 6251, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | - Pascal Coumailleau
- IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | - Emmanuel Schaub
- IPR, CNRS, UMR-CNRS UR1- 6251, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | | | | | - François Tiaho
- IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| |
Collapse
|
49
|
Samim M, Sandkuijl D, Tretyakov I, Cisek R, Barzda V. Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams. Int J Mol Sci 2013; 14:18520-34. [PMID: 24022688 PMCID: PMC3794793 DOI: 10.3390/ijms140918520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/21/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022] Open
Abstract
Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.
Collapse
Affiliation(s)
- Masood Samim
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada; E-Mails: (M.S.); (D.S.); (R.C.)
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; E-Mail:
| | - Daaf Sandkuijl
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada; E-Mails: (M.S.); (D.S.); (R.C.)
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; E-Mail:
| | - Ian Tretyakov
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; E-Mail:
| | - Richard Cisek
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada; E-Mails: (M.S.); (D.S.); (R.C.)
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; E-Mail:
| | - Virginijus Barzda
- Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada; E-Mails: (M.S.); (D.S.); (R.C.)
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-905-828-3808; Fax: +1-905-828-5425
| |
Collapse
|
50
|
Vielreicher M, Schürmann S, Detsch R, Schmidt MA, Buttgereit A, Boccaccini A, Friedrich O. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J R Soc Interface 2013; 10:20130263. [PMID: 23864499 DOI: 10.1098/rsif.2013.0263] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging.
Collapse
Affiliation(s)
- M Vielreicher
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Strasse 3, 91052 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|