1
|
Liao K, Zhu M, Guo L, Gao Z, Cheng J, Sun B, Qian Y, Lin B, Zhang J, Qian T, Jiang Y, Xu Y, Zhong Q, Wang X. Assessment of prognosis and responsiveness to immunotherapy in colorectal cancer patients based on the level of immune cell infiltration. Front Immunol 2025; 16:1514238. [PMID: 39963131 PMCID: PMC11830669 DOI: 10.3389/fimmu.2025.1514238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Objective To build a new prognostic risk assessment model based on immune cell co-expression networks for predicting overall survival and evaluating the efficacy of immunotherapy for colon cancer patients. Methods The Cancer Genome Atlas (TCGA) database was used to obtain mRNA expression profiling data, clinical information, and somatic mutation data from colorectal cancer patients. The degree of tumor immune cell infiltration of the samples was analyzed using the CIBERSORT algorithm. Co-expression of immune-related genes was analyzed using weighted correlation network analysis (WGCNA) and gene modules were identified. Prognosis-related genes were screened and models were constructed using LASSO-Cox analysis. The models were validated by survival analysis. The prognostic potential of the models was quantitatively assessed using Cox regression analysis and the development of column line plots. Immunotherapy sensitivity analysis was performed using CIBERSORT and TIMER algorithms. Gene biofunction analysis was performed using Gene set enrichment analysis (GSEA) and Gene set variation analysis (GSVA). And the chemotherapeutic response to different drugs was assessed. Results We established a novel prognostic model utilizing the WGCNA method, which demonstrated robust predictive accuracy for patient survival. The high-risk subgroup in our model exhibited elevated immune cell infiltration coupled with a higher tumor mutation burden, but the difference in response to immunotherapy was not significant compared to the low-risk group. Furthermore, we identified distinct chemotherapy responses to 39 drugs between these risk subgroups. Conclusion This study revealed a significant correlation between high levels of immune infiltration and unfavorable prognosis in patients with colon cancer. Furthermore, an accurate prognostic risk prediction model based on the co-expression of relevant genes by immune cells was developed, enabling precise prediction of survival of colon cancer patients. These findings offer valuable insights for accurate prognostication and comprehensive management of individuals diagnosed with colon cancer.
Collapse
Affiliation(s)
- Kaili Liao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Minqi Zhu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lei Guo
- The 2 Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zijun Gao
- The 2 Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jinting Cheng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bing Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yihui Qian
- The 2 Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bingying Lin
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jingyan Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tingyi Qian
- The 1 Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yixin Jiang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanmei Xu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qionghui Zhong
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Hong JW, Lim JH, Kang EH, Kim YS. A Novel Approach to Peripheral Nerve Regeneration: Local FK-506 Delivery Using a Reservoir Flap Model. Yonsei Med J 2024; 65:718-726. [PMID: 39609087 PMCID: PMC11605046 DOI: 10.3349/ymj.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE Peripheral nerve injuries can lead to lasting functional impairments, impacting movement and quality of life. FK-506, a widely used immunosuppressant, has demonstrated potential in promoting nerve regeneration in addition to its immunosuppressive effects. This study investigates the use of a local reservoir flap to deliver FK-506 directly to the nerve injury site, aiming to enhance nerve regeneration while minimizing systemic immunosuppression. MATERIALS AND METHODS Sciatic nerve injuries were surgically induced in 24 rats, which were divided into control, 0.5 mg/kg FK-506 (Exp 1), and 2.0 mg/kg FK-506 (Exp 2) groups. A superficial inferior epigastric artery flap served as a reservoir for FK-506, allowing direct delivery to the injury site. FK-506 was administered intermittently over a 4-week period. Outcomes included the Sciatic Functional Index (SFI), muscle recovery (width and weight), nerve morphology, expression of neurogenic markers such as GDNF, immune cell counts, and body weight. RESULTS Exp 1 (0.5 mg/kg) demonstrated significant improvements in SFI, GDNF expression, and muscle width compared to the control and high-dose groups. These findings suggest that FK-506 administration via a reservoir flap, particularly at a lower dose, supports effective nerve regeneration. Additionally, FK-506 treatment did not result in significant changes in immune cell profiles or body weight, indicating minimal systemic effects. CONCLUSION Localized FK-506 administration via a reservoir flap effectively enhances peripheral nerve regeneration and minimizes systemic immunosuppression, making it a promising approach for clinical application in treating peripheral nerve injuries.
Collapse
Affiliation(s)
- Jong Won Hong
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hyun Lim
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Hye Kang
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Korea
| | - Young Seok Kim
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Zeng Z, Xu S, Wang R, Han X. FKBP4 promotes glycolysis and hepatocellular carcinoma progression via p53/HK2 axis. Sci Rep 2024; 14:26893. [PMID: 39505995 PMCID: PMC11542027 DOI: 10.1038/s41598-024-78383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
FKBP4, a member of the FK506-binding protein (FKBP) family, is a promising target for a variety of disorders, including cancer. However, its underlying molecular mechanism and potential function in hepatocellular carcinoma (HCC) are largely elusive. Therefore, we aimed to investigate the expression status, functional implications and underlying mechanisms of FKBP4 in HCC. Our bioinformatics analysis of TCGA LIHC datasets, ICGC LIRI-JP datasets and GEO datasets results showed FKBP4 was upregulated in HCC tissues. We also confirmed the elevated FKBP4 in clinical HCC samples. Additionally, quantitative RT-PCR results revealed FKBP4 was highly expressed in all five tested HCC cell lines. We also observed a correlation between elevated FKBP4 expression and poor prognosis in HCC patients. Loss of FKBP4 can inhibit the proliferation and migration in HCC cells. Furthermore, we found that silencing FKBP4 suppressed glucose uptake, lactic acid production and 18F-FDG uptake compared with the control group. Mechanistically, our funding indicated that FKBP4 participates in glycolysis through p53 mediated HK2 signaling pathway, specially, FKBP4 knockdown promotes the expression and stability of p53 protein rather than affecting the transcription level. Finally, rescue experiments revealed that simultaneous knockdown of both FKBP4 and p53 partially reversed the inhibitory effects on HK2 protein levels and 18F-FDG uptake. Our study elucidates a novel role of FKBP4 in promoting HCC development and glycolysis by modulating the p53/HK2 signaling pathway. Given the critical role of aerobic glycolysis in the progression of HCC, targeting FKBP4 may offer a new therapeutic strategy for treating this malignancy.
Collapse
Affiliation(s)
- Zhenzhen Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China
| | - Shasha Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China
| | - Ruihua Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China.
| | - Xingmin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, China.
| |
Collapse
|
4
|
Hanaki S, Habara M, Tomiyasu H, Sato Y, Miki Y, Masaki T, Shibutani S, Shimada M. NFAT activation by FKBP52 promotes cancer cell proliferation by suppressing p53. Life Sci Alliance 2024; 7:e202302426. [PMID: 38803221 PMCID: PMC11109481 DOI: 10.26508/lsa.202302426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
FK506-binding protein 52 (FKBP52) is a member of the FKBP family of proline isomerases. FKBP52 is up-regulated in various cancers and functions as a positive regulator of steroid hormone receptors. Depletion of FKBP52 is known to inhibit cell proliferation; however, the detailed mechanism remains poorly understood. In this study, we found that FKBP52 depletion decreased MDM2 transcription, leading to stabilization of p53, and suppressed cell proliferation. We identified NFATc1 and NFATc3 as transcription factors that regulate MDM2 We also found that FKBP52 associated with NFATc3 and facilitated its nuclear translocation. In addition, calcineurin, a well-known Ca2+ phosphatase essential for activation of NFAT, plays a role in MDM2 transcription. Supporting this notion, MDM2 expression was found to be regulated by intracellular Ca2+ Taken together, these findings reveal a new role of FKBP52 in promoting cell proliferation via the NFAT-MDM2-p53 axis, and indicate that inhibition of FKBP52 could be a new therapeutic tool to activate p53 and inhibit cell proliferation.
Collapse
Affiliation(s)
- Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Takahiro Masaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Shusaku Shibutani
- Department of Veterinary Hygiene, Yamaguchi University, Yamaguchi, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
- Department of Molecular Biology, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Lesport E, Commeau L, Genet M, Baulieu EE, Tawk M, Giustiniani J. A decrease in Fkbp52 alters autophagosome maturation and A152T-tau clearance in vivo. Front Cell Neurosci 2024; 18:1425222. [PMID: 39119047 PMCID: PMC11306173 DOI: 10.3389/fncel.2024.1425222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The failure of the autophagy-lysosomal pathway to clear the pathogenic forms of Tau exacerbates the pathogenesis of tauopathies. We have previously shown that the immunophilin FKBP52 interacts both physically and functionally with Tau, and that a decrease in FKBP52 protein levels is associated with Tau deposition in affected human brains. We have also shown that FKBP52 is physiologically present within the lysosomal system in healthy human neurons and that a decrease in FKBP52 expression alters perinuclear lysosomal positioning and Tau clearance during Tau-induced proteotoxic stress in vitro. In this study, we generate a zebrafish fkbp4 loss of function mutant and show that axonal retrograde trafficking of Lamp1 vesicles is altered in this mutant. Moreover, using our transgenic HuC::mCherry-EGFP-LC3 line, we demonstrate that the autophagic flux is impaired in fkbp4 mutant embryos, suggesting a role for Fkbp52 in the maturation of autophagic vesicles. Alterations in both axonal transport and autophagic flux are more evident in heterozygous rather than homozygous fkbp4 mutants. Finally, taking advantage of the previously described A152T-Tau transgenic fish, we show that the clearance of pathogenic A152T-Tau mutant proteins is slower in fkbp4 +/- mutants in comparison to fkbp4 +/+ larvae. Altogether, these results indicate that Fkbp52 is required for the normal trafficking and maturation of lysosomes and autophagic vacuoles along axons, and that its decrease is sufficient to hinder the clearance of pathogenic Tau in vivo.
Collapse
Affiliation(s)
- Emilie Lesport
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Lucie Commeau
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
| | - Mélanie Genet
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
| | - Etienne-Emile Baulieu
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Marcel Tawk
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Julien Giustiniani
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Almeida MC, Eger SJ, He C, Audouard M, Nikitina A, Glasauer SMK, Han D, Mejía-Cupajita B, Acosta-Uribe J, Villalba-Moreno ND, Littau JL, Elcheikhali M, Rivera EK, Carrettiero DC, Villegas-Lanau CA, Sepulveda-Falla D, Lopera F, Kosik KS. Single-nucleus RNA sequencing demonstrates an autosomal dominant Alzheimer's disease profile and possible mechanisms of disease protection. Neuron 2024; 112:1778-1794.e7. [PMID: 38417436 PMCID: PMC11156559 DOI: 10.1016/j.neuron.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Highly penetrant autosomal dominant Alzheimer's disease (ADAD) comprises a distinct disease entity as compared to the far more prevalent form of AD in which common variants collectively contribute to risk. The downstream pathways that distinguish these AD forms in specific cell types have not been deeply explored. We compared single-nucleus transcriptomes among a set of 27 cases divided among PSEN1-E280A ADAD carriers, sporadic AD, and controls. Autophagy genes and chaperones clearly defined the PSEN1-E280A cases compared to sporadic AD. Spatial transcriptomics validated the activation of chaperone-mediated autophagy genes in PSEN1-E280A. The PSEN1-E280A case in which much of the brain was spared neurofibrillary pathology and harbored a homozygous APOE3-Christchurch variant revealed possible explanations for protection from AD pathology including overexpression of LRP1 in astrocytes, increased expression of FKBP1B, and decreased PSEN1 expression in neurons. The unique cellular responses in ADAD and sporadic AD require consideration when designing clinical trials.
Collapse
Affiliation(s)
- Maria Camila Almeida
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Center for Natural and Humans Sciences, Federal University of ABC, Sao Bernardo do Campo, SP 09608020, Brazil
| | - Sarah J Eger
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Caroline He
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Morgane Audouard
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Arina Nikitina
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Dasol Han
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Barbara Mejía-Cupajita
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia
| | - Juliana Acosta-Uribe
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia
| | - Nelson David Villalba-Moreno
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jessica Lisa Littau
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Megan Elcheikhali
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erica Keane Rivera
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Daniel Carneiro Carrettiero
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Center for Natural and Humans Sciences, Federal University of ABC, Sao Bernardo do Campo, SP 09608020, Brazil
| | | | - Diego Sepulveda-Falla
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
7
|
Agam G, Atawna B, Damri O, Azab AN. The Role of FKBPs in Complex Disorders: Neuropsychiatric Diseases, Cancer, and Type 2 Diabetes Mellitus. Cells 2024; 13:801. [PMID: 38786025 PMCID: PMC11119362 DOI: 10.3390/cells13100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Stress is a common denominator of complex disorders and the FK-506 binding protein (FKBP)51 plays a central role in stress. Hence, it is not surprising that multiple studies imply the involvement of the FKBP51 protein and/or its coding gene, FKBP5, in complex disorders. This review summarizes such reports concentrating on three disorder clusters-neuropsychiatric, cancer, and type 2 diabetes mellitus (T2DM). We also attempt to point to potential mechanisms suggested to mediate the effect of FKBP5/FKBP51 on these disorders. Neuropsychiatric diseases considered in this paper include (i) Huntington's disease for which increased autophagic cellular clearance mechanisms related to decreased FKBP51 protein levels or activity is discussed, Alzheimer's disease for which increased FKBP51 activity has been shown to induce Tau phosphorylation and aggregation, and Parkinson's disease in the context of which FKBP12 is mentioned; and (ii) mental disorders, for which significant association with the single nucleotide polymorphism (SNP) rs1360780 of FKBP5 intron 7 along with decreased DNA methylation were revealed. Since cancer is a large group of diseases that can start in almost any organ or tissue of the body, FKBP51's role depends on the tissue type and differences among pathways expressed in those tumors. The FKBP51-heat-shock protein-(Hsp)90-p23 super-chaperone complex might function as an oncogene or as a tumor suppressor by downregulating the serine/threonine protein kinase (AKt) pathway. In T2DM, two potential pathways for the involvement of FKBP51 are highlighted as affecting the pathogenesis of the disease-the peroxisome proliferator-activated receptor-γ (PPARγ) and AKt.
Collapse
Affiliation(s)
- Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Bayan Atawna
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
8
|
Zhuang S, Chakraborty P, Zweckstetter M. Regulation of tau by peptidyl-prolyl isomerases. Curr Opin Struct Biol 2024; 84:102739. [PMID: 38061261 DOI: 10.1016/j.sbi.2023.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 02/09/2024]
Abstract
Tau is an intrinsically disordered protein found abundantly in axons, where it binds to microtubules. Since tau is a central player in the dynamic microtubule network, it is highly regulated by post-translational modifications. Abnormal hyperphosphorylation and aggregation of tau characterize a group of diseases called tauopathies. A specific protein family of cis/trans peptidyl-prolyl isomerases (PPIases) can interact with tau to regulate its aggregation and neuronal resilience. Structural interactions between tau and specific PPIases have been determined, establishing possible mechanisms for tau regulation and modification. While there have been numerous in vivo studies evaluating the impact of PPIase expression on tau biology/pathology, the direct roles of PPIases have yet to be fully characterized. Different PPIases correlate to either increased or decreased levels of tau-associated degeneration. Therefore, the ability of PPIases to structurally modify and regulate tau should be further investigated due to its potential therapeutic implications for Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Shannon Zhuang
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany; Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
9
|
He C, Gu J, Wang D, Wang K, Wang Y, You Q, Wang L. Small molecules targeting molecular chaperones for tau regulation: Achievements and challenges. Eur J Med Chem 2023; 261:115859. [PMID: 37839344 DOI: 10.1016/j.ejmech.2023.115859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Abnormal post-translational modification of microtubule-associated protein Tau (MAPT) is a prominent pathological feature in Alzheimer's disease (AD). Previous research has focused on designing small molecules to target Tau modification, aiming to restore microtubule stability and regulate Tau levels in vivo. However, progress has been hindered, and no effective Tau-targeted drugs have been successfully marketed, which urgently requires more strategies. Heat shock proteins (HSPs), especially Hsp90 and Hsp70, have been found to play a crucial role in Tau maturation and degradation. This review explores innovative approaches using small molecules that interact with the chaperone system to regulate Tau levels. We provide a comprehensive overview of the mechanisms involving HSPs and their co-chaperones in the Tau regulation cycle. Additionally, we analyze small molecules targeting these chaperone systems to modulate Tau function. By understanding the characteristics of the molecular chaperone system and its specific impact on Tau, we aim to provide a perspective that seeks to regulate Tau levels through the manipulation of the molecular chaperone system and ultimately develop effective treatments for AD.
Collapse
Affiliation(s)
- Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Danni Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Keran Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Tong F, Lu G, Zang J, Hao D, Xu W, Chen J, Ding Q, Xiong H. FKBP5 associated CD8 T cell infiltration is a novel prognostic biomarker in luminal B breast cancer. J Int Med Res 2023; 51:3000605231211771. [PMID: 37987640 PMCID: PMC10664447 DOI: 10.1177/03000605231211771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVE To investigate the relationship between FKBP prolyl isomerase 5 (FKBP5) gene expression and CD8 T cells in tumour progression and immunology of the luminal B subtype of breast cancer (LBBC) using bioinformatics analyses. METHODS The Gene Expression Profiling Interactive Analysis 2, Human Protein Atlas and breast cancer gene-expression miner v4.5 databases were used for data mining and analysing FKBP5, its co-expressed genes and CD8 T cell-related markers. The Tumor IMmune Estimation Resource 2.0 database was used for analysing the correlation and prognosis of FKBP5 and CD8 T cell infiltration level in LBBC. RESULTS Upregulated FKBP5 expression was correlated with improved survival in LBBC. Upregulated FKBP5-related CD8 T cell markers were also demonstrated to be significantly correlated with better survival in LBBC and might play a role in the biological activity of FKBP5. CONCLUSION These findings suggest that FKBP5 and its associated CD8 T cell infiltration are potential benign prognostic indicators for LBBC.
Collapse
Affiliation(s)
- Fei Tong
- Department of General Surgery, The People's Hospital of Long you County, Quzhou, Zhejiang Province, China
| | - Genlin Lu
- Department of General Surgery, The People's Hospital of Long you County, Quzhou, Zhejiang Province, China
| | - Jie Zang
- Department of General Surgery, Zhejiang Putuo Hospital, Zhoushan, Zhejiang Province, China
| | - Dingji Hao
- Department of Thyroid Breast Hernia Surgery, Tonglu County Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Wangjue Xu
- Department of General Surgery, The People's Hospital of Long you County, Quzhou, Zhejiang Province, China
| | - Jida Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qiong Ding
- Department of General Surgery, Zhejiang Putuo Hospital, Zhoushan, Zhejiang Province, China
| | - Hanchu Xiong
- Cancer Centre, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Ramirez LM, Zweckstetter M. Molecular-level interplay between intrinsically disordered clients and Hsp90. Curr Opin Chem Biol 2023; 74:102304. [PMID: 37068388 DOI: 10.1016/j.cbpa.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/19/2023]
Abstract
Proteostasis is maintained by a network of molecular chaperones, a prominent member of which is the 90-kilodalton heat shock protein Hsp90. The chaperone function of Hsp90 has been extensively reviewed previously, emphasizing its ATPase activity and remodeling of folded client proteins. Experimental evidence implicating Hsp90 in neurodegenerative diseases has bolstered interest in the noncanonical chaperoning of intrinsically disordered protein (IDPs), however the interplay between Hsp90 and its disordered clients remains poorly understood. In this review we describe recent advances that have contributed to our understanding of the intricate mechanisms characterizing Hsp90-mediated chaperoning of the IDPs tau and α-synuclein and survey emerging insights into the modulation of the chaperone-client interplay in the context of neurodegeneration.
Collapse
Affiliation(s)
- Lisa Marie Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Gӧttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Gӧttingen, Germany; Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Gӧttingen, Germany.
| |
Collapse
|
12
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
13
|
Meduri G, Guillemeau K, Daguinot C, Dounane O, Genet M, Ferrara L, Chambraud B, Baulieu EE, Giustiniani J. Concomitant Neuronal Tau Deposition and FKBP52 Decrease Is an Early Feature of Different Human and Experimental Tauopathies. J Alzheimers Dis 2023; 94:313-331. [PMID: 37248902 PMCID: PMC10357213 DOI: 10.3233/jad-230127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pathological tau proteins constitute neurofibrillary tangles that accumulate in tauopathies including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and familial frontotemporal lobar degeneration (FTLD-Tau). We previously showed that the FKBP52 immunophilin interacts functionally with tau and strongly decreases in AD brain neurons in correlation with tau deposition. We also reported that FKBP52 co-localizes with autophagy-lysosomal markers and an early pathological tau isoform in AD neurons, suggesting its involvement in autophagic tau clearance. OBJECTIVE Our objective was to evaluate if differences in neuronal FKBP52 expression levels and subcellular localization might be detected in AD, PSP, familial FTLD-Tau, and in the hTau-P301 S mouse model compared to controls. METHODS Cell by cell immunohistofluorescence analyses and quantification of FKBP52 were performed on postmortem brain samples of some human tauopathies and on hTau-P301 S mice spinal cords. RESULTS We describe a similar FKBP52 decrease and its localization with early pathological tau forms in the neuronal autophagy-lysosomal pathway in various tauopathies and hTau-P301 S mice. We find that FKBP52 decreases early during the pathologic process as it occurs in rare neurons with tau deposits in the marginally affected frontal cortex region of AD Braak IV brains and in the spinal cord of symptomless 1-month-old hTau-P301 S mice. CONCLUSION As FKBP52 plays a significant role in cellular signaling and conceivably in tau clearance, our data support the idea that the prevention of FKBP52 decrease or the restoration of its normal expression at early pathologic stages might represent a new potential therapeutic approach in tauopathies including AD, familial FTLD-Tau, and PSP.
Collapse
Affiliation(s)
- Geri Meduri
- Institut Professeur Baulieu, Kremlin-Bicêtre, France
| | | | | | - Omar Dounane
- Institut Professeur Baulieu, Kremlin-Bicêtre, France
| | - Melanie Genet
- Institut Professeur Baulieu, Kremlin-Bicêtre, France
| | - Luigi Ferrara
- Department of Biosciences, Biotechnology and Biopharmacology, UNIBA University, Bari, Italy
| | | | - Etienne Emile Baulieu
- Université Paris-Saclay, INSERM U1195, Kremlin-Bicêtre, France
- Institut Professeur Baulieu, Kremlin-Bicêtre, France
| | - Julien Giustiniani
- Université Paris-Saclay, INSERM U1195, Kremlin-Bicêtre, France
- Institut Professeur Baulieu, Kremlin-Bicêtre, France
| |
Collapse
|
14
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
15
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
16
|
Chambraud B, Byrne C, Meduri G, Baulieu EE, Giustiniani J. FKBP52 in Neuronal Signaling and Neurodegenerative Diseases: A Microtubule Story. Int J Mol Sci 2022; 23:ijms23031738. [PMID: 35163662 PMCID: PMC8836061 DOI: 10.3390/ijms23031738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The FK506-binding protein 52 (FKBP52) belongs to a large family of ubiquitously expressed and highly conserved proteins (FKBPs) that share an FKBP domain and possess Peptidyl-Prolyl Isomerase (PPIase) activity. PPIase activity catalyzes the isomerization of Peptidyl-Prolyl bonds and therefore influences target protein folding and function. FKBP52 is particularly abundant in the nervous system and is partially associated with the microtubule network in different cell types suggesting its implication in microtubule function. Various studies have focused on FKBP52, highlighting its importance in several neuronal microtubule-dependent signaling pathways and its possible implication in neurodegenerative diseases such as tauopathies (i.e., Alzheimer disease) and alpha-synucleinopathies (i.e., Parkinson disease). This review summarizes our current understanding of FKBP52 actions in the microtubule environment, its implication in neuronal signaling and function, its interactions with other members of the FKBPs family and its involvement in neurodegenerative disease.
Collapse
Affiliation(s)
- Béatrice Chambraud
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
| | - Cillian Byrne
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Laboratoire des Biomolécules, LBM7203, CNRS, École Normale Supérieure, PSL University, Sorbonne Université, 75005 Paris, France
| | - Geri Meduri
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
| | - Etienne Emile Baulieu
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Correspondence: (E.E.B.); (J.G.); Tel.: +33-1-49-59-18-72 (J.G.); Fax: +33-1-49-59-92-03 (J.G.)
| | - Julien Giustiniani
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Correspondence: (E.E.B.); (J.G.); Tel.: +33-1-49-59-18-72 (J.G.); Fax: +33-1-49-59-92-03 (J.G.)
| |
Collapse
|
17
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
18
|
Smedlund KB, Sanchez ER, Hinds TD. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab 2021; 32:862-874. [PMID: 34481731 PMCID: PMC8516732 DOI: 10.1016/j.tem.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
The molecular chaperone FK506-binding protein 51 (FKBP51) is gaining attention as a meaningful biomarker of metabolic dysfunction. This review examines the emerging contributions of FKBP51 in adipogenesis and lipid metabolism, myogenesis and protein catabolism, and glucocorticoid-induced skin hypoplasia and dermal adipocytes. The FKBP51 signaling mechanisms that may explain these metabolic consequences are discussed. These mechanisms are diverse, with FKBP51 independently and directly regulating phosphorylation cascades and nuclear receptors. We provide a discussion of the newly developed compounds that antagonize FKBP51, which may offer therapeutic advantages for adiposity. These observations suggest we are only beginning to uncover the complex nature of FKBP51 and its molecular chaperoning of metabolism.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Edwin R Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Terry D Hinds
- Barnstable Brown Diabetes Center, Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA.
| |
Collapse
|
19
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
20
|
FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to promote lung adenocarcinoma progression via IKK/NF-κB signaling. Cell Death Dis 2021; 12:602. [PMID: 34112753 PMCID: PMC8192522 DOI: 10.1038/s41419-021-03857-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/21/2022]
Abstract
FKBP4 belongs to the family of immunophilins, which serve as a regulator for steroid receptor activity. Thus, FKBP4 has been recognized to play a critical role in several hormone-dependent cancers, including breast and prostate cancer. However, there is still no research to address the role of FKBP4 on lung adenocarcinoma (LUAD) progression. We found that FKBP4 expression was elevated in LUAD samples and predicted significantly shorter overall survival based on TCGA and our cohort of LUAD patients. Furthermore, FKBP4 robustly increased the proliferation, metastasis, and invasion of LUAD in vitro and vivo. Mechanistic studies revealed the interaction between FKBP4 and IKK kinase complex. We found that FKBP4 potentiated IKK kinase activity by interacting with Hsp90 and IKK subunits and promoting Hsp90/IKK association. Also, FKBP4 promotes the binding of IKKγ to IKKβ, which supported the facilitation role in IKK complex assembly. We further identified that FKBP4 TPR domains are essential for FKBP4/IKK interaction since its association with Hsp90 is required. In addition, FKBP4 PPIase domains are involved in FKBP4/IKKγ interaction. Interestingly, the association between FKBP4 and Hsp70/RelA favors the transport of RelA toward the nucleus. Collectively, FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to potentiate the transcriptional activity and nuclear translocation of NF-κB, thereby promoting LUAD progression. Our findings suggest that FKBP4 may function as a prognostic biomarker of LUAD and provide a newly mechanistic insight into modulating IKK/NF-κB signaling.
Collapse
|
21
|
FKBP52 overexpression accelerates hippocampal-dependent memory impairments in a tau transgenic mouse model. NPJ Aging Mech Dis 2021; 7:9. [PMID: 33941782 PMCID: PMC8093247 DOI: 10.1038/s41514-021-00062-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Abnormal accumulation of hyperphosphorylated tau induces pathogenesis in neurodegenerative diseases, like Alzheimer's disease. Molecular chaperones with peptidyl-prolyl cis/trans isomerase (PPIase) activity are known to regulate these processes. Previously, in vitro studies have shown that the 52 kDa FK506-binding protein (FKBP52) interacts with tau inducing its oligomerization and fibril formation to promote toxicity. Thus, we hypothesized that increased expression of FKBP52 in the brains of tau transgenic mice would alter tau phosphorylation and neurofibrillary tangle formation ultimately leading to memory impairments. To test this, tau transgenic (rTg4510) and wild-type mice received bilateral hippocampal injections of virus overexpressing FKBP52 or GFP control. We examined hippocampal-dependent memory, synaptic plasticity, tau phosphorylation status, and neuronal health. This work revealed that rTg4510 mice overexpressing FKBP52 had impaired spatial learning, accompanied by long-term potentiation deficits and hippocampal neuronal loss, which was associated with a modest increase in total caspase 12. Together with previous studies, our findings suggest that FKBP52 may sensitize neurons to tau-mediated dysfunction via activation of a caspase-dependent pathway, contributing to memory and learning impairments.
Collapse
|
22
|
Criado-Marrero M, Gebru NT, Blazier DM, Gould LA, Baker JD, Beaulieu-Abdelahad D, Blair LJ. Hsp90 co-chaperones, FKBP52 and Aha1, promote tau pathogenesis in aged wild-type mice. Acta Neuropathol Commun 2021; 9:65. [PMID: 33832539 PMCID: PMC8033733 DOI: 10.1186/s40478-021-01159-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The microtubule associated protein tau is an intrinsically disordered phosphoprotein that accumulates under pathological conditions leading to formation of neurofibrillary tangles, a hallmark of Alzheimer's disease (AD). The mechanisms that initiate the accumulation of phospho-tau aggregates and filamentous deposits are largely unknown. In the past, our work and others' have shown that molecular chaperones play a crucial role in maintaining protein homeostasis and that imbalance in their levels or activity can drive tau pathogenesis. We have found two co-chaperones of the 90 kDa heat shock protein (Hsp90), FK506-binding protein 52 (FKBP52) and the activator of Hsp90 ATPase homolog 1 (Aha1), promote tau aggregation in vitro and in the brains of tau transgenic mice. Based on this, we hypothesized that increased levels of these chaperones could promote tau misfolding and accumulation in the brains of aged wild-type mice. We tested this hypothesis by overexpressing Aha1, FKBP52, or mCherry (control) proteins in the hippocampus of 9-month-old wild-type mice. After 7 months of expression, mice were evaluated for cognitive and pathological changes. Our results show that FKBP52 overexpression impaired spatial reversal learning, while Aha1 overexpression impaired associative learning in aged wild-type mice. FKBP52 and Aha1 overexpression promoted phosphorylation of distinct AD-relevant tau species. Furthermore, FKBP52 activated gliosis and promoted neuronal loss leading to a reduction in hippocampal volume. Glial activation and phospho-tau accumulation were also detected in areas adjacent to the hippocampus, including the entorhinal cortex, suggesting that after initiation these pathologies can propagate through other brain regions. Overall, our findings suggest a role for chaperone imbalance in the initiation of tau accumulation in the aging brain.
Collapse
Affiliation(s)
- Marangelie Criado-Marrero
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Niat T Gebru
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Danielle M Blazier
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Lauren A Gould
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Jeremy D Baker
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - David Beaulieu-Abdelahad
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Laura J Blair
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
- Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
23
|
Chambraud B, Daguinot C, Guillemeau K, Genet M, Dounane O, Meduri G, Poüs C, Baulieu EE, Giustiniani J. Decrease of neuronal FKBP4/FKBP52 modulates perinuclear lysosomal positioning and MAPT/Tau behavior during MAPT/Tau-induced proteotoxic stress. Autophagy 2021; 17:3491-3510. [PMID: 33459145 DOI: 10.1080/15548627.2021.1875611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Defects of autophagy-lysosomal protein degradation are thought to contribute to the pathogenesis of several neurodegenerative diseases, and the accumulation of aggregation prone proteins such as MAPT/Tau in Alzheimer disease (AD). We previously showed the localization of the immunophilin FKBP4/FKBP52 in the lysosomal system of healthy human neurons suggesting its possible role in lysosome function. We also showed that decreased FKBP4 levels in AD brain neurons correlate with abnormal MAPT accumulation and aggregation. In this study, we demonstrate that FKBP4 decrease in a human neuronal cell line (SH-SY5Y) and in dorsal root ganglion (DRG) neurons from human MAPTP301S transgenic mice affected the function of the autophagy-lysosomal system under MAPT induced proteotoxic stress conditions. We show that acute MAPT accumulation in SH-SY5Y cells induced perinuclear clustering of lysosomes, triggered FKBP4 localization around the clusters and its colocalization with MAPT and MAP1LC3/LC3-positive autophagic vesicles; a similar FKBP4 localization was detected in some AD brain neurons. We demonstrate that FKBP4 decrease altered lysosomal clustering along with MAPT and MAP1LC3 secretion increase. Although ectopic FKBP4 expression could not induce autophagy under our experimental conditions, it prevented MAPT secretion after MAPT accumulation in SH-SY5Y cells implying a regulatory role of FKBP4 on MAPT secretion. Finally, we observe that FKBP4 deficiency decreased MAP1LC3-II expression and provoked MAPT accumulation during long-term stress in mouse DRG neurons. We hypothesize that the abnormal FKBP4 decrease observed in AD brain neurons might hinder autophagy efficiency and contribute to the progression of the tauopathy by modulating MAPT secretion and accumulation during MAPT pathogenesis.Abbreviations: AD: Alzheimer disease; AKT/protein kinase B: AKT serine/threonine kinase; ALP: Autophagy-lysosomal pathway; ATG: autophagy-related; BafA1: bafilomycin A1; CQ: chloroquine; CTSD: cathepsin D; DIV: days in vitro; DRG: dorsal root ganglion neurons; Dox: doxycycline; DNAJC5: DnaJ heat shock protein family (Hsp40) member C5; EL: empty lentiviral vectors; ENO2/NSE: enolase 2, gamma neuronal; FKBP4/FKBP52: FKBP prolyl isomerase 4; FTLD-Tau: frontotemporal lobar degeneration with Tau pathology; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LDH: lactate dehydrogenase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPT/Tau: microtubule associated protein tau; MTT: tetrazolium salt; NFTs: neurofibrillary tangles; RPE-1: retinal pigment epithelial cells; shRNA: small-hairpin ribonucleic acid; SQSTM1/p62: sequestosome 1; SD: standard deviation; SEM: standard error of the mean; SH-SY5Y: human neuroblastoma cells; Sh1 or Sh2: Lentiviral shRNA vectors inducing FKBP4 decrease; SH-52GFP: MAPT/Tau-inducible SH-SY5Y cell line constitutively expressing FKBP4-GFP; TUBB3/βIII tubulin: tubulin beta 3 class III; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | | | | | - Melanie Genet
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Omar Dounane
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Geri Meduri
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Christian Poüs
- INSERM UMR-S-1193, Université Paris-Saclay, Châtenay-Malabry, France.,Biochimie-Hormonologie , AP-HP Université Paris-Saclay, Site Antoine Béclère, Clamart, France
| | | | | |
Collapse
|
24
|
Peak SL, Gracia L, Lora G, Jinwal UK. Hsp90-interacting Co-chaperones and their Family Proteins in Tau Regulation: Introducing a Novel Role for Cdc37L1. Neuroscience 2020; 453:312-323. [PMID: 33246057 DOI: 10.1016/j.neuroscience.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Tau is a microtubule-associated protein that serves as a promoter of microtubule assembly and stability in neuron cells. In a collective group of neurodegenerative diseases called tauopathies, tau processing is altered as a result of gene mutations and post-translational modifications. In particular, in Alzheimer's disease (AD) or AD-like conditions, tau becomes hyperphosphorylated and forms toxic aggregates inside the cell. The chaperone heat shock protein 90 (Hsp90) plays an important role in the proper folding, degradation, and recycling of tau proteins and tau kinases. Hsp90 has many co-chaperones that aid in tau processing. In particular, a few of these co-chaperones, such as FK506-binding protein (FKBP) 51, protein phosphatase (PP) 5, cell division cycle 37 (Cdc37), and S100A1 have family members that are reported to affect Hsp90-mediated tau processing in either a similar or an opposite manner. Here, we provide a holistic review of these selected co-chaperones and their family proteins and introduce a novel Hsp90-binding Cdc37 relative, Cdc37-like-1 (Cdc37L1 or L1) in tau regulation. Overall, the proteins discussed here highlight the importance of studying family proteins in order to fully understand the mechanism of tau pathogenesis and to establish drug targets for the treatment of tauopathies.
Collapse
Affiliation(s)
- Stephanie L Peak
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Liam Gracia
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA; Department of Orthopedic Surgery, Duke University, 308 Research Dr, Durham NC 27710, NC, USA
| | - Gabriella Lora
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Umesh K Jinwal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
25
|
de la Sierra-Gallay IL, Belnou M, Chambraud B, Genet M, van Tilbeurgh H, Aumont-Nicaise M, Desmadril M, Baulieu EE, Jacquot Y, Byrne C. Bioinspired Hybrid Fluorescent Ligands for the FK1 Domain of FKBP52. J Med Chem 2020; 63:10330-10338. [PMID: 32866001 DOI: 10.1021/acs.jmedchem.0c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The protein FKBP52 is a steroid hormone receptor coactivator likely involved in neurodegenerative disease. A series of small, water-soluble, bioinspired, pseudopeptidic fluorescent ligands for the FK1 domain of this protein are described. The design is such that engulfing of the ligand in the pocket of this domain is accompanied by hydrogen-bonding of the dansyl chromophore which functions as both an integral part of the ligand and a fluorescent reporter. Binding is concomitant with a significant wavelength shift and an enhancement of the ligand fluorescence signal. Excitation of FK1 domain native tryptophan residues in the presence of bound ligand results in Förster resonance energy transfer. Variation of key ligand residues within the short sequence was undertaken, and the interaction of the resulting library with the protein was measured by techniques including isothermal calorimetry analysis, fluorescence, and FRET quenching, and a range of Kd values were determined. Cocrystallization of a protein ligand complex at 2.30 Å resolution provided detailed information at the atomic scale, while also providing insight into native substrate binding.
Collapse
Affiliation(s)
- Inès Li de la Sierra-Gallay
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS UMR9198, Université Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
| | - Mathilde Belnou
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | | | - Melanie Genet
- Institut Baulieu, INSERM UMR 1195, Neuroprotection et Neurorégénération, Université Paris-Saclay, 94270Le Kremlin Bicêtre, France
| | - Herman van Tilbeurgh
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS UMR9198, Université Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
| | - Magali Aumont-Nicaise
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS UMR9198, Université Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
| | - Michel Desmadril
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS UMR9198, Université Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
| | - Etienne-Emile Baulieu
- Institut Baulieu, INSERM UMR 1195, Neuroprotection et Neurorégénération, Université Paris-Saclay, 94270Le Kremlin Bicêtre, France
| | - Yves Jacquot
- Cibles Thérapeutiques et Conception de Médicaments (CiTCoM), CNRS UMR 8038, INSERM U1268, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 75270 Paris Cedex 06, France
| | - Cillian Byrne
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France.,Institut Baulieu, INSERM UMR 1195, Neuroprotection et Neurorégénération, Université Paris-Saclay, 94270Le Kremlin Bicêtre, France
| |
Collapse
|
26
|
Muralidar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B. Role of tau protein in Alzheimer's disease: The prime pathological player. Int J Biol Macromol 2020; 163:1599-1617. [PMID: 32784025 DOI: 10.1016/j.ijbiomac.2020.07.327] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a prevalently found tauopathy characterized by memory loss and cognitive insufficiency. AD is an age-related neurodegenerative disease with two major hallmarks which includes extracellular amyloid plaques made of amyloid-β (Aβ) and intracellular neurofibrillary tangles of hyperphosphorylated tau. With population aging worldwide, there is an indispensable need for treatment strategies that can potentially manage this developing dementia. Despite broad researches on targeting Aβ in the past two decades, research findings on Aβ targeted therapeutics failed to prove efficacy in the treatment of AD. Tau protein with its extensive pathological role in several neurodegenerative diseases can be considered as a promising target candidate for developing therapeutic interventions. The abnormal hyperphosphorylation of tau plays detrimental pathological functions which ultimately lead to neurodegeneration. This review will divulge the importance of tau in AD pathogenesis, the interplay of Aβ and tau, the pathological functions of tau, and potential therapeutic strategies for an effective management of neuronal disorders.
Collapse
Affiliation(s)
- Shibi Muralidar
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Senthil Visaga Ambi
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.
| | - Saravanan Sekaran
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Diraviyam Thirumalai
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Balamurugan Palaniappan
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
27
|
Regulation of FKBP51 and FKBP52 functions by post-translational modifications. Biochem Soc Trans 2020; 47:1815-1831. [PMID: 31754722 DOI: 10.1042/bst20190334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.
Collapse
|
28
|
Akhter Y, Nabi J, Hamid H, Tabassum N, Pottoo FH, Sharma A. Protein Quality Control in Neurodegeneration and Neuroprotection. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteostasis is essential for regulating the integrity of the proteome. Disruption of proteostasis under some rigorous conditions leads to the aggregation and accumulation of misfolded toxic proteins, which plays a central role in the pathogenesis of protein conformational disorders. The protein quality control (PQC) system serves as a multi-level security system to shield cells from abnormal proteins. The intrinsic PQC systems maintaining proteostasis include the ubiquitin-proteasome system (UPS), chaperon-mediated autophagy (CMA), and autophagy-lysosome pathway (ALP) that serve to target misfolded proteins for unfolding, refolding, or degradation. Alterations of PQC systems in neurons have been implicated in the pathogenesis of various neurodegenerative disorders. This chapter provides an overview of PQC pathways to set a framework for discussion of the role of PQC in neurodegenerative disorders. Additionally, various pharmacological approaches targeting PQC are summarized.
Collapse
Affiliation(s)
- Yasmeena Akhter
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Jahangir Nabi
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Hinna Hamid
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmaology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Aashish Sharma
- Centre for Research in Medical Devices (CURAM), National University of Ireland, Ireland & School of Medical and Allied Sciences, GD Goenka University, Gurgaon, India
| |
Collapse
|
29
|
Mangé A, Coyaud E, Desmetz C, Laurent E, Béganton B, Coopman P, Raught B, Solassol J. FKBP4 connects mTORC2 and PI3K to activate the PDK1/Akt-dependent cell proliferation signaling in breast cancer. Am J Cancer Res 2019; 9:7003-7015. [PMID: 31660083 PMCID: PMC6815969 DOI: 10.7150/thno.35561] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose: Among the FKBP family members, FKBP4 has been described to have a potential role in tumorigenesis, and as a putative tissue marker. We previously showed that FKBP4, an HSP90-associated co-chaperone, can elicit immune response as a tumor-specific antigen, and are overexpressed in breast cancer. Experimental design: In this study, we examined how loss of FKBP4 affect breast cancer progression and exploited protein interactomics to gain mechanistic insight into this process. Results: We found that FKBP4 expression is associated with breast cancer progression and prognosis, especially of ER-negative breast cancer. Furthermore, FKBP4 depletion specifically reduces cell growth and proliferation of triple negative breast cancer cell model and xenograft tumor model. Using specific protein interactome strategy by BirA proximity-dependent biotin identification, we demonstrated that FKBP4 is a novel PI3K-Akt-mTOR proximal interacting protein. Conclusion: Our results suggest that FKBP4 interacts with PI3K and can enhance Akt activation through PDK1 and mTORC2.
Collapse
|
30
|
Velloso FJ, Campos AR, Sogayar MC, Correa RG. Proteome profiling of triple negative breast cancer cells overexpressing NOD1 and NOD2 receptors unveils molecular signatures of malignant cell proliferation. BMC Genomics 2019; 20:152. [PMID: 30791886 PMCID: PMC6385390 DOI: 10.1186/s12864-019-5523-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Triple negative breast cancer (TNBC) is a malignancy with very poor prognosis, due to its aggressive clinical characteristics and lack of response to receptor-targeted drug therapy. In TNBC, immune-related pathways are typically upregulated and may be associated with a better prognosis of the disease, encouraging the pursuit for immunotherapeutic options. A number of immune-related molecules have already been associated to the onset and progression of breast cancer, including NOD1 and NOD2, innate immune receptors of bacterial-derived components which activate pro-inflammatory and survival pathways. In the context of TNBC, overexpression of either NOD1or NOD2 is shown to reduce cell proliferation and increase clonogenic potential in vitro. To further investigate the pathways linking NOD1 and NOD2 signaling to tumorigenesis in TNBC, we undertook a global proteome profiling of TNBC-derived cells ectopically expressing each one of these NOD receptors. Results We have identified a total of 95 and 58 differentially regulated proteins in NOD1- and NOD2-overexpressing cells, respectively. We used bioinformatics analyses to identify enriched molecular signatures aiming to integrate the differentially regulated proteins into functional networks. These analyses suggest that overexpression of both NOD1 and NOD2 may disrupt immune-related pathways, particularly NF-κB and MAPK signaling cascades. Moreover, overexpression of either of these receptors may affect several stress response and protein degradation systems, such as autophagy and the ubiquitin-proteasome complex. Interestingly, the levels of several proteins associated to cellular adhesion and migration were also affected in these NOD-overexpressing cells. Conclusions Our proteomic analyses shed new light on the molecular pathways that may be modulating tumorigenesis via NOD1 and NOD2 signaling in TNBC. Up- and downregulation of several proteins associated to inflammation and stress response pathways may promote activation of protein degradation systems, as well as modulate cell-cycle and cellular adhesion proteins. Altogether, these signals seem to be modulating cellular proliferation and migration via NF-κB, PI3K/Akt/mTOR and MAPK signaling pathways. Further investigation of altered proteins in these pathways may provide more insights on relevant targets, possibly enabling the immunomodulation of tumorigenesis in the aggressive TNBC phenotype. Electronic supplementary material The online version of this article (10.1186/s12864-019-5523-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando J Velloso
- Cell and Molecular Therapy Center (NUCEL), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Alexandre R Campos
- SBP Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Ricardo G Correa
- SBP Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
31
|
Zgajnar NR, De Leo SA, Lotufo CM, Erlejman AG, Piwien-Pilipuk G, Galigniana MD. Biological Actions of the Hsp90-binding Immunophilins FKBP51 and FKBP52. Biomolecules 2019; 9:biom9020052. [PMID: 30717249 PMCID: PMC6406450 DOI: 10.3390/biom9020052] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
Immunophilins are a family of proteins whose signature domain is the peptidylprolyl-isomerase domain. High molecular weight immunophilins are characterized by the additional presence of tetratricopeptide-repeats (TPR) through which they bind to the 90-kDa heat-shock protein (Hsp90), and via this chaperone, immunophilins contribute to the regulation of the biological functions of several client-proteins. Among these Hsp90-binding immunophilins, there are two highly homologous members named FKBP51 and FKBP52 (FK506-binding protein of 51-kDa and 52-kDa, respectively) that were first characterized as components of the Hsp90-based heterocomplex associated to steroid receptors. Afterwards, they emerged as likely contributors to a variety of other hormone-dependent diseases, stress-related pathologies, psychiatric disorders, cancer, and other syndromes characterized by misfolded proteins. The differential biological actions of these immunophilins have been assigned to the structurally similar, but functionally divergent enzymatic domain. Nonetheless, they also require the complementary input of the TPR domain, most likely due to their dependence with the association to Hsp90 as a functional unit. FKBP51 and FKBP52 regulate a variety of biological processes such as steroid receptor action, transcriptional activity, protein conformation, protein trafficking, cell differentiation, apoptosis, cancer progression, telomerase activity, cytoskeleton architecture, etc. In this article we discuss the biology of these events and some mechanistic aspects.
Collapse
Affiliation(s)
- Nadia R Zgajnar
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
| | - Sonia A De Leo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| | - Cecilia M Lotufo
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| |
Collapse
|
32
|
Byrne C, Belnou M, Baulieu E, Lequin O, Jacquot Y. Electronic circular dichroism and nuclear magnetic resonance studies of peptides derived from the FKBP52‐interacting β‐turn of the hERα ligand‐binding domain. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cillian Byrne
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
- Institut Baulieu, Université Paris‐SaclayINSERM UMR 1195, Neuroprotection and Neuroregeneration Le Kremlin Bicêtre France
| | - Mathilde Belnou
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
| | - Etienne‐Emile Baulieu
- Institut Baulieu, Université Paris‐SaclayINSERM UMR 1195, Neuroprotection and Neuroregeneration Le Kremlin Bicêtre France
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
| | - Yves Jacquot
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
| |
Collapse
|
33
|
Tan CC, Zhang XY, Tan L, Yu JT. Tauopathies: Mechanisms and Therapeutic Strategies. J Alzheimers Dis 2019; 61:487-508. [PMID: 29278892 DOI: 10.3233/jad-170187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tauopathies are morphologically, biochemically, and clinically heterogeneous neurodegenerative diseases defined by the accumulation of abnormal tau proteins in the brain. There is no effective method to prevent and reverse the tauopathies, but this gloomy picture has been changed by recent research advances. Evidences from genetic studies, experimental animal models, and molecular and cell biology have shed light on the main mechanisms of the diseases. The development of radiology and biochemistry, especially the development of PET imaging, will provide important biomarkers for the clinical diagnosis and treatment. Given the central role of tau in tauopathies, many treatments have constantly emerged, including targeting phosphorylation, targeting aggregation, increasing microtubule stabilization, tau immunization, clearance of tau, anti-inflammatory treatment, and other therapeutics. There is still a long way to go before we obtain drug therapy targeted at multifactor mechanisms.
Collapse
Affiliation(s)
- Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiao-Yan Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
34
|
Danis C, Dupré E, Hanoulle X, Landrieu I, Lasorsa A, Neves JF, Schneider R, Smet-Nocca C. Nuclear Magnetic Resonance Spectroscopy Insights into Tau Structure in Solution: Impact of Post-translational Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:35-45. [PMID: 32096026 DOI: 10.1007/978-981-32-9358-8_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although Tau is an intrinsically disordered protein, some level of structure can still be defined, corresponding to short stretches of dynamic secondary structures and a preferential global fold described as an ensemble of conformations. These structures can be modified by Tau phosphorylation, and potentially other post-translational modifications. The analytical capacity of Nuclear Magnetic Resonance (NMR) spectroscopy provides the advantage of offering a residue-specific view of these modifications, allowing to link specific sites to a particular structure. The cis or trans conformation of X-Proline peptide bonds is an additional characteristic parameter of Tau structure that is targeted and modified by prolyl cis/trans isomerases. The challenge in molecular characterization of Tau lies in being able to link structural parameters to functional consequences in normal functions and dysfunctions of Tau, including potential misfolding on the path to aggregation and/or perturbation of the interactions of Tau with its many molecular partners. Phosphorylation of Ser and Thr residues has the potential to impact the local and global structure of Tau.
Collapse
Affiliation(s)
- Clément Danis
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Elian Dupré
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Xavier Hanoulle
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Isabelle Landrieu
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| | - Alessia Lasorsa
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - João Filipe Neves
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Robert Schneider
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Caroline Smet-Nocca
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
35
|
Ghartey-Kwansah G, Li Z, Feng R, Wang L, Zhou X, Chen FZ, Xu MM, Jones O, Mu Y, Chen S, Bryant J, Isaacs WB, Ma J, Xu X. Comparative analysis of FKBP family protein: evaluation, structure, and function in mammals and Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:7. [PMID: 29587629 PMCID: PMC5870485 DOI: 10.1186/s12861-018-0167-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Background FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases. Main body This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides. (1) Molecular phylogenetic analysis of FKBP family proteins revealed that the eight known Drosophila FKBPs share homology with the human FKBP12. This indicates a close evolutionary relationship, and possible origination from a common ancestor. (2) The known FKBPs contain FK domains, that is, a prolyl cis/trans isomerase (PPIase) domain that mediates immune suppression through inhibition of calcineurin. The dFKBP59, CG4735/Shutdown, CG1847, and CG5482 have a Tetratricopeptide receptor domain at the C-terminus, which regulates transcription and protein transportation. (3) FKBP51 and FKBP52 (dFKBP59), along with Cyclophilin 40 and protein phosphatase 5, function as Hsp90 immunophilin co-chaperones within steroid receptor-Hsp90 heterocomplexes. These immunophilins are potential drug targets in pathways associated with normal physiology and may be used to treat a variety of steroid-based diseases by targeting exocytic/endocytic cycling and vesicular trafficking. (4) By associating with presinilin, a critical component of the Notch signaling pathway, FKBP14 is a downstream effector of Notch activation at the membrane. Meanwhile, Shutdown associates with transposons in the PIWI-interacting RNA pathway, playing a crucial role in both germ cells and ovarian somas. Mutations in or silencing of dFKBPs lead to early embryonic lethality in Drosophila. Therefore, further understanding the mechanisms of FK506 and rapamycin binding to immunophilin FKBPs in endocrine, cardiovascular, and neurological function in both mammals and Drosophila would provide prospects in generating unique, insect specific therapeutics targeting the above cellular signaling pathways. Conclusion This review will evaluate the functional roles of FKBP family proteins, and systematically summarize the similarities and differences between FKBP proteins in Drosophila and Mammals. Specific therapeutics targeting cellular signaling pathways will also be discussed.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Zhongguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.,Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Meng Meng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC, USA
| | - Odell Jones
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulian Mu
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jianjie Ma
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China. .,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.
| |
Collapse
|
36
|
Binot C, Chouard CH. Neurodegenerative diseases, infectious pathologies and liquid crystals: Hypothesis of a common information vector involving a multidisciplinary approach. Rev Neurol (Paris) 2018; 174:540-554. [PMID: 29555421 DOI: 10.1016/j.neurol.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/26/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
The existence of an information vector common to very different pathologies is the hypothesis of one of us, the argumentation and discussion of which we present here. It is a mesomorphic state of material called liquid crystal. The liquid-ordered (Lo) phase, made up of membrane rafts mediated by cholesterol, lies at the center of our concept. This mesophase is either preexistent and then modified by the pathogenic process, or initiated by the latter. The most notable disorders involved are Alzheimer's, Parkinson's, Charcot and Creutzfeldt-Jakob diseases, flu-like illnesses and acquired immunodeficiency syndrome (AIDS), although this list may well be extended to include other anisotropic, birefringent amyloid proteinopathies, which have properties compatible with those of liquid crystals. Incidentally, numerous conventional infectious pathologies can also induce a mesomorphic state in cell membranes. It has already been established that mesophases contain the chemical information transmitted from the intramolecular microscopic level, where covalent bonds are applied. Information is then transmitted at the intermolecular macroscopic level, where it is made up of informed, self-organized collections. Electrostatic interactions, coordination of metallic ions, van der Waals forces and donor-acceptor interactions of hydrogen bonding all come into play. These reactions are produced notably in the nanodomains enriched by cholesterol and sphingolipids. Lipids in the cell membrane are where the phase separations favoring elastic hydrodynamic instabilities conducive to the Lo phase take place. In addition, perturbations of the mesomorphic states of membrane rafts due, for example, to lipid dysfunction-even mild ones-with an intracerebral or generalized location could bring about a displacement of thermodynamic equilibrium favoring the initiation and progression of the pathologies under consideration here. Indeed, the most recent work has rendered our hypothesis highly probable. Moreover, our hypothesis is supported by medical and biological observations arising essentially from biophysics and widely documented in the literature. Thus, these facts expand the number of diagnostic and therapeutic perspectives that could be evoked and perhaps even demand exploration.
Collapse
Affiliation(s)
- C Binot
- Bureau privé, rue de Terre-Neuve, 17410 Saint-Martin-de-Ré, France
| | - C-H Chouard
- Académie de médecine, 10, boulevard Flandrin, 75116 Paris, France.
| |
Collapse
|
37
|
Dilworth D, Gudavicius G, Xu X, Boyce AKJ, O’Sullivan C, Serpa JJ, Bilenky M, Petrochenko EV, Borchers CH, Hirst M, Swayne LA, Howard P, Nelson CJ. The prolyl isomerase FKBP25 regulates microtubule polymerization impacting cell cycle progression and genomic stability. Nucleic Acids Res 2018; 46:2459-2478. [PMID: 29361176 PMCID: PMC5861405 DOI: 10.1093/nar/gky008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/14/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022] Open
Abstract
FK506 binding proteins (FKBPs) catalyze the interconversion of cis-trans proline conformers in proteins. Importantly, FK506 drugs have anti-cancer and neuroprotective properties, but the effectors and mechanisms underpinning these properties are not well understood because the cellular function(s) of most FKBP proteins are unclear. FKBP25 is a nuclear prolyl isomerase that interacts directly with nucleic acids and is associated with several DNA/RNA binding proteins. Here, we show the catalytic FKBP domain binds microtubules (MTs) directly to promote their polymerization and stabilize the MT network. Furthermore, FKBP25 associates with the mitotic spindle and regulates entry into mitosis. This interaction is important for mitotic spindle dynamics, as we observe increased chromosome instability in FKBP25 knockdown cells. Finally, we provide evidence that FKBP25 association with chromatin is cell-cycle regulated by Protein Kinase C phosphorylation. This disrupts FKBP25-DNA contacts during mitosis while maintaining its interaction with the spindle apparatus. Collectively, these data support a model where FKBP25 association with chromatin and MTs is carefully choreographed to ensure faithful genome duplication. Additionally, they highlight that FKBP25 is a MT-associated FK506 receptor and potential therapeutic target in MT-associated diseases.
Collapse
Affiliation(s)
- David Dilworth
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Geoff Gudavicius
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Xiaoxue Xu
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Connor O’Sullivan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Jason J Serpa
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Misha Bilenky
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Evgeniy V Petrochenko
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Martin Hirst
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Perry Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Christopher J Nelson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
38
|
Young ZT, Mok SA, Gestwicki JE. Therapeutic Strategies for Restoring Tau Homeostasis. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024612. [PMID: 28159830 DOI: 10.1101/cshperspect.a024612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Normal tau homeostasis is achieved when the synthesis, processing, and degradation of the protein is balanced. Together, the pathways that regulate tau homeostasis ensure that the protein is at the proper levels and that its posttranslational modifications and subcellular localization are appropriately controlled. These pathways include the enzymes responsible for posttranslational modifications, those systems that regulate mRNA splicing, and the molecular chaperones that control tau turnover and its binding to microtubules. In tauopathies, this delicate balance is disturbed. Tau becomes abnormally modified by posttranslational modification, it loses affinity for microtubules, and it accumulates in proteotoxic aggregates. How and why does this imbalance occur? In this review, we discuss how molecular chaperones and other components of the protein homeostasis (e.g., proteostasis) network normally govern tau quality control. We also discuss how aging might reduce the capacity of these systems and how tau mutations might further affect this balance. Finally, we discuss how small-molecule inhibitors are being used to probe and perturb the tau quality-control systems, playing a particularly prominent role in revealing the logic of tau homeostasis. As such, there is now interest in developing these chemical probes into therapeutics, with the goal of restoring normal tau homeostasis to treat disease.
Collapse
Affiliation(s)
- Zapporah T Young
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Sue Ann Mok
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
39
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
40
|
Baulieu EE. Steroids and Brain, a Rising Bio-Medical Domain: a Perspective. Front Endocrinol (Lausanne) 2018; 9:316. [PMID: 29963010 PMCID: PMC6013745 DOI: 10.3389/fendo.2018.00316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/25/2018] [Indexed: 11/21/2022] Open
Abstract
Some newly described steroid-related compounds, also found in the rest of the body, are formed and active in the central nervous system, particularly in the brain. Some are of pharmacological and physiopathological interest. We specifically report on two compounds, "MAP4343," a new neurosteroid very efficient antidepressant, and "FKBP52," a protein component of hetero-oligomeric steroid receptors that we found involved in cerebral function, including in Alzheimer's disease.
Collapse
|
41
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
42
|
Oliveira J, Costa M, de Almeida MSC, da Cruz e Silva OA, Henriques AG. Protein Phosphorylation is a Key Mechanism in Alzheimer’s Disease. J Alzheimers Dis 2017; 58:953-978. [DOI: 10.3233/jad-170176] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joana Oliveira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Márcio Costa
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | | | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
43
|
Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy WY, Duennwald ML, Prado VF, Prado MAM. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Front Neurosci 2017; 11:254. [PMID: 28559789 PMCID: PMC5433227 DOI: 10.3389/fnins.2017.00254] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer's disease (AD). Assembles of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degradation, mostly by the proteasome. They form an important line of defense against misfolded proteins and are part of the cellular quality control system. The heat shock protein (Hsp) family, particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD. However, the role of Hsp90 in regulating protein misfolding is not yet fully understood. For example, knockdown of Hsp90 and its co-chaperones in a Caenorhabditis elegans model of Aβ misfolding leads to increased toxicity. On the other hand, the use of Hsp90 inhibitors in AD mouse models reduces Aβ toxicity, and normalizes synaptic function. Stress-inducible phosphoprotein 1 (STI1), an intracellular co-chaperone, mediates the transfer of clients from Hsp70 to Hsp90. Importantly, STI1 has been shown to regulate aggregation of amyloid-like proteins in yeast. In addition to its intracellular function, STI1 can be secreted by diverse cell types, including astrocytes and microglia and function as a neurotrophic ligand by triggering signaling via the cellular prion protein (PrPC). Extracellular STI1 can prevent Aβ toxic signaling by (i) interfering with Aβ binding to PrPC and (ii) triggering pro-survival signaling cascades. Interestingly, decreased levels of STI1 in C. elegans can also increase toxicity in an amyloid model. In this review, we will discuss the role of intracellular and extracellular STI1 and the Hsp70/Hsp90 chaperone network in mechanisms underlying protein misfolding in neurodegenerative diseases, with particular focus on AD.
Collapse
Affiliation(s)
- Rachel E Lackie
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada
| | - Andrzej Maciejewski
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Department of Biochemistry, University of Western OntarioLondon, ON, Canada
| | - Valeriy G Ostapchenko
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada
| | - Jose Marques-Lopes
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, University of Western OntarioLondon, ON, Canada
| | - Martin L Duennwald
- Department of Pathology and Laboratory Medicine, University of Western OntarioLondon, ON, Canada
| | - Vania F Prado
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada.,Department of Physiology and Pharmacology, University of Western OntarioLondon, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, ON, Canada
| | - Marco A M Prado
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada.,Department of Physiology and Pharmacology, University of Western OntarioLondon, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
44
|
LeMaster DM, Hernandez G. Conformational Dynamics in FKBP Domains: Relevance to Molecular Signaling and Drug Design. Curr Mol Pharmacol 2016; 9:5-26. [PMID: 25986571 DOI: 10.2174/1874467208666150519113146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/25/2015] [Accepted: 05/17/2015] [Indexed: 01/05/2023]
Abstract
Among the 22 FKBP domains in the human genome, FKBP12.6 and the first FKBP domains (FK1) of FKBP51 and FKBP52 are evolutionarily and structurally most similar to the archetypical FKBP12. As such, the development of inhibitors with selectivity among these four FKBP domains poses a significant challenge for structure-based design. The pleiotropic effects of these FKBP domains in a range of signaling processes such as the regulation of ryanodine receptor calcium channels by FKBP12 and FKBP12.6 and steroid receptor regulation by the FK1 domains of FKBP51 and FKBP52 amply justify the efforts to develop selective therapies. In contrast to their close structural similarities, these four FKBP domains exhibit a substantial diversity in their conformational flexibility. A number of distinct conformational transitions have been characterized for FKBP12 spanning timeframes from 20 s to 10 ns and in each case these dynamics have been shown to markedly differ from the conformational behavior for one or more of the other three FKBP domains. Protein flexibilitybased inhibitor design could draw upon the transitions that are significantly populated in only one of the targeted proteins. Both the similarities and differences among these four proteins valuably inform the understanding of how dynamical effects propagate across the FKBP domains as well as potentially how such intramolecular transitions might couple to the larger scale transitions that are central to the signaling complexes in which these FKBP domains function.
Collapse
Affiliation(s)
| | - Griselda Hernandez
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, 12201, USA; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, New York, 12201, USA.
| |
Collapse
|
45
|
Byrne C, Henen MA, Belnou M, Cantrelle FX, Kamah A, Qi H, Giustiniani J, Chambraud B, Baulieu EE, Lippens G, Landrieu I, Jacquot Y. A β-Turn Motif in the Steroid Hormone Receptor’s Ligand-Binding Domains Interacts with the Peptidyl-prolyl Isomerase (PPIase) Catalytic Site of the Immunophilin FKBP52. Biochemistry 2016; 55:5366-76. [DOI: 10.1021/acs.biochem.6b00506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cillian Byrne
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure,
PSL Research University, CNRS UMR 7203, Laboratoire des Biomolécules, 4, place Jussieu, 75252 Paris Cedex 05, France
- Institut Baulieu, INSERM UMR 1195, Neuroprotection
and Neuroregeneration,
Université Paris-Saclay, Bât. Gregory Pincus, 80, rue du Général Leclerc, 94276 Le Kremlin Bicêtre Cedex, France
| | - Morkos A. Henen
- CNRS, UMR 8576,
Glycobiologie Structurale et Fonctionnelle, Université des
Sciences et Technologies de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
| | - Mathilde Belnou
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure,
PSL Research University, CNRS UMR 7203, Laboratoire des Biomolécules, 4, place Jussieu, 75252 Paris Cedex 05, France
| | - François-Xavier Cantrelle
- CNRS, UMR 8576,
Glycobiologie Structurale et Fonctionnelle, Université des
Sciences et Technologies de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
| | - Amina Kamah
- CNRS, UMR 8576,
Glycobiologie Structurale et Fonctionnelle, Université des
Sciences et Technologies de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
| | - Haoling Qi
- CNRS, UMR 8576,
Glycobiologie Structurale et Fonctionnelle, Université des
Sciences et Technologies de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
| | - Julien Giustiniani
- Institut Baulieu, INSERM UMR 1195, Neuroprotection
and Neuroregeneration,
Université Paris-Saclay, Bât. Gregory Pincus, 80, rue du Général Leclerc, 94276 Le Kremlin Bicêtre Cedex, France
| | - Béatrice Chambraud
- Institut Baulieu, INSERM UMR 1195, Neuroprotection
and Neuroregeneration,
Université Paris-Saclay, Bât. Gregory Pincus, 80, rue du Général Leclerc, 94276 Le Kremlin Bicêtre Cedex, France
| | - Etienne-Emile Baulieu
- Institut Baulieu, INSERM UMR 1195, Neuroprotection
and Neuroregeneration,
Université Paris-Saclay, Bât. Gregory Pincus, 80, rue du Général Leclerc, 94276 Le Kremlin Bicêtre Cedex, France
| | - Guy Lippens
- CNRS, UMR 8576,
Glycobiologie Structurale et Fonctionnelle, Université des
Sciences et Technologies de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
- LISBP,
Université
de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Isabelle Landrieu
- CNRS, UMR 8576,
Glycobiologie Structurale et Fonctionnelle, Université des
Sciences et Technologies de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
| | - Yves Jacquot
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure,
PSL Research University, CNRS UMR 7203, Laboratoire des Biomolécules, 4, place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
46
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [PMID: 27615390 DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 425] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
47
|
Dunyak BM, Gestwicki JE. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. J Med Chem 2016; 59:9622-9644. [PMID: 27409354 DOI: 10.1021/acs.jmedchem.6b00411] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidyl-proline isomerases (PPIases) are a chaperone superfamily comprising the FK506-binding proteins (FKBPs), cyclophilins, and parvulins. PPIases catalyze the cis/trans isomerization of proline, acting as a regulatory switch during folding, activation, and/or degradation of many proteins. These "clients" include proteins with key roles in cancer, neurodegeneration, and psychiatric disorders, suggesting that PPIase inhibitors could be important therapeutics. However, the active site of PPIases is shallow, solvent-exposed, and well conserved between family members, making selective inhibitor design challenging. Despite these hurdles, macrocyclic natural products, including FK506, rapamycin, and cyclosporin, bind PPIases with nanomolar or better affinity. De novo attempts to derive new classes of inhibitors have been somewhat less successful, often showcasing the "undruggable" features of PPIases. Interestingly, the most potent of these next-generation molecules tend to integrate features of the natural products, including macrocyclization or proline mimicry strategies. Here, we review recent developments and ongoing challenges in the inhibition of PPIases, with a focus on how natural products might inform the creation of potent and selective inhibitors.
Collapse
Affiliation(s)
- Bryan M Dunyak
- Department of Biological Chemistry, University of Michigan Medical School , 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| |
Collapse
|
48
|
Young MJ, Geiszler PC, Pardon MC. A novel role for the immunophilin FKBP52 in motor coordination. Behav Brain Res 2016; 313:97-110. [PMID: 27418439 DOI: 10.1016/j.bbr.2016.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/09/2016] [Accepted: 07/10/2016] [Indexed: 02/01/2023]
Abstract
FKBP52 is a ubiquitously distributed immunophilin that has been associated with wide-ranging functions in cell signalling as well as hormonal and stress responses. Amongst other pathways, it acts via complex-formation with corticosteroid receptors and has consequently been associated with stress- and age- related neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Reduced levels of FKBP52 have been linked to tau dysfunction and amyloid beta toxicity in AD. However, FKBP52's role in cognition and neurodegenerative disorder-like phenotypes remain to be elucidated. The present study aimed therefore at investigating the cognitive and behavioural effects of reduced FKBP52 levels of genetically modified mice during ageing. Female and male FKBP52(+/+), FKBP52(+/-) and FKBP52(-/-) mice were compared at two-, ten-, twelve-, fifteen- and eighteen-months-of-age in a series of behavioural tests covering specie-specific behaviour, motor activity and coordination, fear-, spatial and recognition memory as well as curiosity and emotionality. Whilst cognitively unimpaired, FKBP52(+/-) mice performed worse on an accelerating rotating rod than FKBP52(+/+) littermates across all age-groups suggesting that FKBP52 is involved in processes controlling motor coordination. This deficit did not exacerbate with age but did worsen with repeated testing; pointing towards a role for FKBP52 in learning of tasks requiring motor coordination abilities. This study contributes to the knowledge base of FKBP52's implication in neurodegenerative diseases by demonstrating that FKBP52 by itself does not directly affect cognition and may therefore rather play an indirect, modulatory role in the functional pathology of AD, whereas it directly affects motor coordination, an early sign of neurodegenerative damages to the brain.
Collapse
Affiliation(s)
- Matthew J Young
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Philippine C Geiszler
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Marie-Christine Pardon
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom.
| |
Collapse
|
49
|
Meduri G, Guillemeau K, Dounane O, Sazdovitch V, Duyckaerts C, Chambraud B, Baulieu EE, Giustiniani J. Caspase-cleaved Tau-D(421) is colocalized with the immunophilin FKBP52 in the autophagy-endolysosomal system of Alzheimer's disease neurons. Neurobiol Aging 2016; 46:124-37. [PMID: 27479154 DOI: 10.1016/j.neurobiolaging.2016.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/27/2016] [Accepted: 06/24/2016] [Indexed: 01/06/2023]
Abstract
Pathologic modifications of the Tau protein leading to neurofibrillary tangle (NFT) formation are a common feature of a wide range of neurodegenerative diseases known as tauopathies, which include Alzheimer's disease (AD). We previously showed that the immunophilin FKBP52 physically and functionally interacts with Tau, and we recently reported that FKBP52 levels are abnormally low in AD patients' brains. To decipher the mechanism of FKBP52 decrease in AD brains, we performed multiple labeling immunohistofluorescence and lysosomal purification using postmortem brain samples of healthy controls (n = 8) and AD (n = 20) patients. Confocal analysis revealed that FKBP52 localizes to the endolysosomal system. We also report FKBP52 colocalization with the truncated Tau-D(421) in the autophagy-endolysosomal system in some AD neurons and that the decrease of FKBP52 correlates with NFT formation. Additional experiments of autophagy inhibition in Tau-inducible SH-SY5Y cells allowed demonstrating FKBP52 release in the extracellular milieu. Our findings point out the possibility that FKBP52 could be abnormally released from NFTs negative neurons in AD brains in correlation with the early pathologic Tau-D(421) neuronal accumulation.
Collapse
Affiliation(s)
- Geri Meduri
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Kevin Guillemeau
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Omar Dounane
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Véronique Sazdovitch
- Laboratoire de Neuropathologie Escourolle, Hôpital de La Salpêtrière, AP-HP, Paris, France
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Escourolle, Hôpital de La Salpêtrière, AP-HP, Paris, France
| | - Béatrice Chambraud
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Etienne Emile Baulieu
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| | - Julien Giustiniani
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
50
|
Rotoli D, Morales M, Del Carmen Maeso M, Del Pino García M, Morales A, Ávila J, Martín-Vasallo P. Expression and localization of the immunophilin FKBP51 in colorectal carcinomas and primary metastases, and alterations following oxaliplatin-based chemotherapy. Oncol Lett 2016; 12:1315-1322. [PMID: 27446431 PMCID: PMC4950813 DOI: 10.3892/ol.2016.4772] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/29/2016] [Indexed: 01/17/2023] Open
Abstract
The immunophilin FK506-binding protein 5 (FKBP51) is a scaffold protein that serves a pivotal role in the regulation of multiple signaling pathways, integrating external and internal stimuli into distinct signal outputs. In a previous study, we identified several genes that are significantly up- or downregulated in the peripheral white cells (PWCs) of colorectal adenocarcinoma (CRC) patients undergoing oxaliplatin-based chemotherapy. In our screening, FKBP51 gene expression was downregulated following chemotherapy. In order to determine whether this alteration in gene expression observed in PWCs may be detected at the protein level in tumors and metastases following the administration of adjuvant chemotherapy, an immunohistochemical analysis of FKBP51 in CRC and primary metastasis tissues was performed. The present study confirmed the downregulation of FKBP51 gene expression elicited by chemotherapy with folinic acid (leucovorin), fluorouracil and oxaliplatin in metastasized liver tissue that had been resected after the oxaliplatin-based chemotherapy, compared with tissue section samples of CRC from patients (prior to antineoplastic treatment). Furthermore, the results indicated that, in CRC tissue sections, the expression of FKBP51 protein is associated with an immature phenotype of stromal fibroblasts and with the epithelial-to-mesenchymal transition (EMT) phenotype, suggesting a role for this protein in the EMT process in CRC. Finally, the observation that only certain cells of the stroma express FKBP51 protein suggests a potential role for this immunophilin as a stroma cell subtype marker.
Collapse
Affiliation(s)
- Deborah Rotoli
- Developmental Biology Laboratory, UD- Biochemistry and Molecular Biology and Centre for Biomedical Research of the Canary Islands, La Laguna University, La Laguna, 38206 Tenerife, Spain; National Research Council, Institute of Endocrinology and Experimental Oncology, I-80131 Naples, Italy
| | - Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; Unit of Medical Oncology, Hospiten Hospitals, Santa Cruz de Tenerife, 38001 Tenerife, Spain
| | - María Del Carmen Maeso
- Service of Pathology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | | | - Araceli Morales
- Department of Physiology, Institute of Biomedical Technologies, School of Medicine and Centre for Biomedical Research of The Canary Islands, University of La Laguna, La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Julio Ávila
- Developmental Biology Laboratory, UD- Biochemistry and Molecular Biology and Centre for Biomedical Research of the Canary Islands, La Laguna University, La Laguna, 38206 Tenerife, Spain
| | - Pablo Martín-Vasallo
- Developmental Biology Laboratory, UD- Biochemistry and Molecular Biology and Centre for Biomedical Research of the Canary Islands, La Laguna University, La Laguna, 38206 Tenerife, Spain
| |
Collapse
|