1
|
Wang KT, Chen YC, Tsai FY, Judy CP, Adler CE. Pluripotent Stem Cell Plasticity is Sculpted by a Slit-Independent Robo Pathway in a Regenerative Animal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.14.648795. [PMID: 40376085 PMCID: PMC12080947 DOI: 10.1101/2025.04.14.648795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Whole-body regeneration requires adult stem cells with high plasticity to differentiate into missing cell types. Planarians possess a unique configuration of organs embedded in a vast pool of pluripotent stem cells. How stem cells integrate positional information with discrete fates remains unknown. Here, we use the planarian pharynx to define the cell fates that depend on the pioneer transcription factor FoxA. We find that Roundabout receptor RoboA suppresses aberrant pharynx cell fates by altering foxA expression, independent of the canonical ligand Slit. An RNAi screen for extracellular proteins identifies Anosmin-1 as a potential partner of RoboA. Perturbing global patterning demonstrates that roboA / anosmin-1 functions locally in the brain. By contrast, altering pharynx fate with foxA knockdown induces head-specific neurons in the pharynx, indicating a latent plasticity of stem cells. Our data links critical extracellular cues with cell fate decisions of highly plastic stem cells, ensuring the fidelity of organ regeneration.
Collapse
|
2
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Anosmin 1 N-terminal domains modulate prokineticin receptor 2 activation by prokineticin 2. Cell Signal 2022; 98:110417. [PMID: 35878754 DOI: 10.1016/j.cellsig.2022.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
The X-linked form of Kallmann syndrome (KS), characterized by hypogonadotropic hypogonadism and anosmia, is due to mutations in the ANOS1 gene that encodes for the extracellular matrix (ECM) protein anosmin 1. Prokineticins (PKs) exert their biological functions through the activation of the G protein-coupled receptors (GPCRs) prokineticin receptor 1 and 2 (PKR1, 2), and mutations in the PK2 and PKR2 genes are involved in the pathogenesis of KS. We have previously shown interaction between PKR2 and anosmin 1 in vitro. In the current report we present evidence of the modulation of PK2/PKR2 activity by anosmin 1, since this protein is able to enhance the activation of the ERK1/2 (extracellular signal-regulated kinase 1/2) pathway elicited by PK2 through PKR2. We also show that the N-terminal region of anosmin 1, capable of binding to the PK2-binding domain of PKR2, seems to be responsible for this effect. The whey acidic protein domain (WAP) is necessary for this modulatory activity, although data from GST pull-down (glutathione-S-transferase) and analysis of the N267K mutation in the fibronectin type III domain 1 (FnIII.1) suggest the cysteine-rich (CR) and the FnIII.1 domains could assist the WAP domain both in the binding to PKR2 and in the modulation of the activation of the receptor by PK2. Our data support the idea of a modulatory role of anosmin 1 in the biological effects controlled by the PK2/PKR2 system.
Collapse
|
4
|
Latchoumane CFV, Chopra P, Sun L, Ahmed A, Palmieri F, Wu HF, Guerreso R, Thorne K, Zeltner N, Boons GJ, Karumbaiah L. Synthetic Heparan Sulfate Hydrogels Regulate Neurotrophic Factor Signaling and Neuronal Network Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28476-28488. [PMID: 35708492 PMCID: PMC10108098 DOI: 10.1021/acsami.2c01575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Three-dimensional (3D) synthetic heparan sulfate (HS) constructs possess promising attributes for neural tissue engineering applications. However, their sulfation-dependent ability to facilitate molecular recognition and cell signaling has not yet been investigated. We hypothesized that fully sulfated synthetic HS constructs (bearing compound 1) that are functionalized with neural adhesion peptides will enhance fibroblast growth factor-2 (FGF2) binding and complexation with FGF receptor-1 (FGFR1) to promote the proliferation and neuronal differentiation of human neural stem cells (hNSCs) when compared to constructs with unsulfated controls (bearing compound 2). We tested this hypothesis in vitro using 2D and 3D substrates consisting of different combinations of HS tetrasaccharides (compounds 3 and 4) and an engineered integrin-binding chimeric peptide (CP), which were assembled using strain-promoted alkyne-azide cycloaddition (SPAAC) chemistry. Results indicated that the adhesion of hNSCs increased significantly when cultured on 2D glass substrates functionalized with chimeric peptide. hNSCs encapsulated in 1-CP hydrogels and cultured in media containing the mitogen FGF2 exhibited significantly higher neuronal differentiation when compared to hNSCs in 2-CP hydrogels. These observations were corroborated by Western blot analysis, which indicated the enhanced binding and retention of both FGF2 and FGFR1 by 1 as well as downstream phosphorylation of extracellular signal-regulated kinases (ERK1/2) and enhanced proliferation of hNSCs. Lastly, calcium activity imaging revealed that both 1 and 2 hydrogels supported the neuronal growth and activity of pre-differentiated human prefrontal cortex neurons. Collectively, these results demonstrate that synthetic HS hydrogels can be tailored to regulate growth factor signaling and neuronal fate and activity.
Collapse
Affiliation(s)
- Charles-Francois V Latchoumane
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Lifeng Sun
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3583, The Netherlands
| | - Aws Ahmed
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
| | - Francesco Palmieri
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3583, The Netherlands
| | - Hsueh-Fu Wu
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Rebecca Guerreso
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Kristen Thorne
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Nadja Zeltner
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Center for Molecular Medicine, University of Georgia, Athens, Georgia 30602, United States
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3583, The Netherlands
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, United States
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Di Schiavi E, Vistoli G, Moretti RM, Corrado I, Zuccarini G, Gervasoni S, Casati L, Bottai D, Merlo GR, Maggi R. Anosmin-1-Like Effect of UMODL1/Olfactorin on the Chemomigration of Mouse GnRH Neurons and Zebrafish Olfactory Axons Development. Front Cell Dev Biol 2022; 10:836179. [PMID: 35223856 PMCID: PMC8874799 DOI: 10.3389/fcell.2022.836179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The impairment of development/migration of hypothalamic gonadotropin-releasing hormone (GnRH) neurons is the main cause of Kallmann's syndrome (KS), an inherited disorder characterized by hypogonadism, anosmia, and other developmental defects. Olfactorin is an extracellular matrix protein encoded by the UMODL1 (uromodulin-like 1) gene expressed in the mouse olfactory region along the migratory route of GnRH neurons. It shares a combination of WAP and FNIII repeats, expressed in complementary domains, with anosmin-1, the product of the ANOS1 gene, identified as the causative of KS. In the present study, we have investigated the effects of olfactorin in vitro and in vivo models. The results show that olfactorin exerts an anosmin-1-like strong chemoattractant effect on mouse-immortalized GnRH neurons (GN11 cells) through the activation of the FGFR and MAPK pathways. In silico analysis of olfactorin and anosmin-1 reveals a satisfactory similarity at the N-terminal region for the overall arrangement of corresponding WAP and FNIII domains and marked similarities between WAP domains’ binding modes of interaction with the resolved FGFR1–FGF2 complex. Finally, in vivo experiments show that the down-modulation of the zebrafish z-umodl1 gene (orthologous of UMODL1) in both GnRH3:GFP and omp2k:gap-CFPrw034 transgenic zebrafish strains leads to a clear disorganization and altered fasciculation of the neurites of GnRH3:GFP neurons crossing at the anterior commissure and a significant increase in olfactory CFP + fibers with altered trajectory. Thus, our study shows olfactorin as an additional factor involved in the development of olfactory and GnRH systems and proposes UMODL1 as a gene worthy of diagnostic investigation in KS.
Collapse
Affiliation(s)
- Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Naples, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences DISFEB, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Corrado
- Department Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Giulia Zuccarini
- Department Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Daniele Bottai
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Giorgio Roberto Merlo
- Department Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Roberto Maggi
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
- *Correspondence: Roberto Maggi,
| |
Collapse
|
6
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
7
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
8
|
Zhou X, Vachon C, Cizeron M, Romatif O, Bülow HE, Jospin M, Bessereau JL. The HSPG syndecan is a core organizer of cholinergic synapses. J Cell Biol 2021; 220:212450. [PMID: 34213535 PMCID: PMC8258370 DOI: 10.1083/jcb.202011144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix has emerged as an active component of chemical synapses regulating synaptic formation, maintenance, and homeostasis. The heparan sulfate proteoglycan (HSPG) syndecans are known to regulate cellular and axonal migration in the brain. They are also enriched at synapses, but their synaptic functions remain more elusive. Here, we show that SDN-1, the sole orthologue of syndecan in C. elegans, is absolutely required for the synaptic clustering of homomeric α7-like acetylcholine receptors (AChRs) and regulates the synaptic content of heteromeric AChRs. SDN-1 is concentrated at neuromuscular junctions (NMJs) by the neurally secreted synaptic organizer Ce-Punctin/MADD-4, which also activates the transmembrane netrin receptor DCC. Those cooperatively recruit the FARP and CASK orthologues that localize α7-like-AChRs at cholinergic NMJs through physical interactions. Therefore, SDN-1 stands at the core of the cholinergic synapse organization by bridging the extracellular synaptic determinants to the intracellular synaptic scaffold that controls the postsynaptic receptor content.
Collapse
Affiliation(s)
- Xin Zhou
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Camille Vachon
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Mélissa Cizeron
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Océane Romatif
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Hannes E Bülow
- Department of Genetics and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - Maëlle Jospin
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
9
|
Of mice and men - and guinea pigs? Ann Anat 2021; 238:151765. [PMID: 34000371 DOI: 10.1016/j.aanat.2021.151765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022]
Abstract
This year marks the twentieth anniversary of the publication of the first draft of the human genome and its broad availability to the scientific community. In parallel, the annotation of the mouse genome led to the identification and analysis of countless genes by means of genetic manipulation. Today, when comparing both genomes, it might surprise that some genes are still seeking their respective homologs in either species. In this review, we aim at raising awareness for the remarkable differences between the researcher's favorite rodents, i.e., mice and rats, when it comes to the generation of rodent research models regarding genes with a particular delicate localization, namely the pseudoautosomal region on both sex chromosomes. Many of these genes are of utmost clinical relevance in humans and still miss a rodent disease model giving their absence in mice and rats or low sequence similarity compared to humans. The abundance of rodents within mammals prompted us to investigate different branches of rodents leading us to the re-discovery of the guinea pig as a mammalian research model for a distinct group of genes.
Collapse
|
10
|
Amran A, Pigatto L, Pocock R, Gopal S. Functions of the extracellular matrix in development: Lessons from Caenorhabditis elegans. Cell Signal 2021; 84:110006. [PMID: 33857577 DOI: 10.1016/j.cellsig.2021.110006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Cell-extracellular matrix interactions are crucial for the development of an organism from the earliest stages of embryogenesis. The main constituents of the extracellular matrix are collagens, laminins, proteoglycans and glycosaminoglycans that form a network of interactions. The extracellular matrix and its associated molecules provide developmental cues and structural support from the outside of cells during development. The complex nature of the extracellular matrix and its ability for continuous remodeling poses challenges when investigating extracellular matrix-based signaling during development. One way to address these challenges is to employ invertebrate models such as Caenorhabditis elegans, which are easy to genetically manipulate and have an invariant developmental program. C. elegans also expresses fewer extracellular matrix protein isoforms and exhibits reduced redundancy compared to mammalian models, thus providing a simpler platform for exploring development. This review summarizes our current understanding of how the extracellular matrix controls the development of neurons, muscles and the germline in C. elegans.
Collapse
Affiliation(s)
- Aqilah Amran
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Lara Pigatto
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia; Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Abstract
Establishment of neural circuits requires reproducible and precise interactions between growing axons, dendrites and their tissue environment. Cell adhesion molecules and guidance factors are involved in the process, but how specificity is achieved remains poorly understood. Glycans are the third major class of biopolymers besides nucleic acids and proteins, and are usually covalently linked to proteins to form glycoconjugates. Common to most glycans is an extraordinary level of molecular diversity, making them attractive candidates to contribute specificity during neural development. Indeed, many genes important for neural development encode glycoproteins, or enzymes involved in synthesizing or modifying glycans. Glycoconjugates are classified based on both the types of glycans and type of attachment that link them to proteins. Here I discuss progress in understanding the function of glycans, glycan modifications and glycoconjugates during neural development in Caenorhabditis elegans. I will also highlight relevance to human disease and known roles of glycoconjugates in regeneration.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
12
|
Pham K, Masoudi N, Leyva-Díaz E, Hobert O. A nervous system-specific subnuclear organelle in Caenorhabditis elegans. Genetics 2021; 217:1-17. [PMID: 33683371 PMCID: PMC8045701 DOI: 10.1093/genetics/iyaa016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
We describe here phase-separated subnuclear organelles in the nematode Caenorhabditis elegans, which we term NUN (NUclear Nervous system-specific) bodies. Unlike other previously described subnuclear organelles, NUN bodies are highly cell type specific. In fully mature animals, 4-10 NUN bodies are observed exclusively in the nucleus of neuronal, glial and neuron-like cells, but not in other somatic cell types. Based on co-localization and genetic loss of function studies, NUN bodies are not related to other previously described subnuclear organelles, such as nucleoli, splicing speckles, paraspeckles, Polycomb bodies, promyelocytic leukemia bodies, gems, stress-induced nuclear bodies, or clastosomes. NUN bodies form immediately after cell cycle exit, before other signs of overt neuronal differentiation and are unaffected by the genetic elimination of transcription factors that control many other aspects of neuronal identity. In one unusual neuron class, the canal-associated neurons, NUN bodies remodel during larval development, and this remodeling depends on the Prd-type homeobox gene ceh-10. In conclusion, we have characterized here a novel subnuclear organelle whose cell type specificity poses the intriguing question of what biochemical process in the nucleus makes all nervous system-associated cells different from cells outside the nervous system.
Collapse
Affiliation(s)
- Kenneth Pham
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
13
|
Jin H, Kim B. Neurite Branching Regulated by Neuronal Cell Surface Molecules in Caenorhabditis elegans. Front Neuroanat 2020; 14:59. [PMID: 32973467 PMCID: PMC7471659 DOI: 10.3389/fnana.2020.00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
The high synaptic density in the nervous system results from the ability of neurites to branch. Neuronal cell surface molecules play central roles during neurite branch formation. The underlying mechanisms of surface molecule activity have often been elucidated using invertebrates with simple nervous systems. Here, we review recent advances in understanding the molecular mechanisms of neurite branching in the nematode Caenorhabditis elegans. We discuss how cell surface receptor complexes link to and modulate actin dynamics to regulate dendritic and axonal branch formation. The mechanisms of neurite branching are often coupled with other neural circuit developmental processes, such as synapse formation and axon guidance, via the same cell-cell surface molecular interactions. We also cover ectopic and sex-specific neurite branching in C. elegans in an attempt to illustrate the importance of these studies in contributing to our understanding of conserved cell surface molecule regulation of neurite branch formation.
Collapse
Affiliation(s)
- HoYong Jin
- Department of Life Science, Dongguk University-Seoul, Goyang, South Korea
| | - Byunghyuk Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, South Korea
| |
Collapse
|
14
|
Christensen EL, Beasley A, Radchuk J, Mielko ZE, Preston E, Stuckett S, Murray JI, Hudson ML. ngn-1/neurogenin Activates Transcription of Multiple Terminal Selector Transcription Factors in the Caenorhabditis elegans Nervous System. G3 (BETHESDA, MD.) 2020; 10:1949-1962. [PMID: 32273286 PMCID: PMC7263688 DOI: 10.1534/g3.120.401126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022]
Abstract
Proper nervous system development is required for an organism's survival and function. Defects in neurogenesis have been linked to neurodevelopmental disorders such as schizophrenia and autism. Understanding the gene regulatory networks that orchestrate neural development, specifically cascades of proneural transcription factors, can better elucidate which genes are most important during early neurogenesis. Neurogenins are a family of deeply conserved factors shown to be both necessary and sufficient for the development of neural subtypes. However, the immediate downstream targets of neurogenin are not well characterized. The objective of this study was to further elucidate the role of ngn-1/neurogenin in nervous system development and to identify its downstream transcriptional targets, using the nematode Caenorhabditis elegans as a model for this work. We found that ngn-1 is required for axon outgrowth, nerve ring architecture, and neuronal cell fate specification. We also showed that ngn-1 may have roles in neuroblast migration and epithelial integrity during embryonic development. Using RNA sequencing and comparative transcriptome analysis, we identified eight transcription factors (hlh-34/NPAS1, unc-42/PROP1, ceh-17/PHOX2A, lim-4/LHX6, fax-1/NR2E3, lin-11/LHX1, tlp-1/ZNF503, and nhr-23/RORB) whose transcription is activated, either directly or indirectly, by ngn-1 Our results show that ngn-1 has a role in transcribing known terminal regulators that establish and maintain cell fate of differentiated neural subtypes and confirms that ngn-1 functions as a proneural transcription factor in C. elegans neurogenesis.
Collapse
Affiliation(s)
- Elyse L Christensen
- Department of Molecular and Cellular Biology, Kennesaw State University, GA 30144
| | - Alexandra Beasley
- Department of Molecular and Cellular Biology, Kennesaw State University, GA 30144
| | - Jessica Radchuk
- Department of Molecular and Cellular Biology, Kennesaw State University, GA 30144
| | - Zachery E Mielko
- Department of Molecular and Cellular Biology, Kennesaw State University, GA 30144
| | - Elicia Preston
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sidney Stuckett
- Department of Molecular and Cellular Biology, Kennesaw State University, GA 30144
| | - John I Murray
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Martin L Hudson
- Department of Molecular and Cellular Biology, Kennesaw State University, GA 30144
| |
Collapse
|
15
|
Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet 2020; 140:77-111. [PMID: 32200437 DOI: 10.1007/s00439-020-02147-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
A genetic basis of congenital isolated hypogonadotropic hypogonadism (CHH) can be defined in almost 50% of cases, albeit not necessarily the complete genetic basis. Next-generation sequencing (NGS) techniques have led to the discovery of a great number of loci, each of which has illuminated our understanding of human gonadotropin-releasing hormone (GnRH) neurons, either in respect of their embryonic development or their neuroendocrine regulation as the "pilot light" of human reproduction. However, because each new gene linked to CHH only seems to underpin another small percentage of total patient cases, we are still far from achieving a comprehensive understanding of the genetic basis of CHH. Patients have generally not benefited from advances in genetics in respect of novel therapies. In most cases, even genetic counselling is limited by issues of apparent variability in expressivity and penetrance that are likely underpinned by oligogenicity in respect of known and unknown genes. Robust genotype-phenotype relationships can generally only be established for individuals who are homozygous, hemizygous or compound heterozygotes for the same gene of variant alleles that are predicted to be deleterious. While certain genes are purely associated with normosmic CHH (nCHH) some purely with the anosmic form (Kallmann syndrome-KS), other genes can be associated with both nCHH and KS-sometimes even within the same kindred. Even though the anticipated genetic overlap between CHH and constitutional delay in growth and puberty (CDGP) has not materialised, previously unanticipated genetic relationships have emerged, comprising conditions of combined (or multiple) pituitary hormone deficiency (CPHD), hypothalamic amenorrhea (HA) and CHARGE syndrome. In this review, we report the current evidence in relation to phenotype and genetic peculiarities regarding 60 genes whose loss-of-function variants can disrupt the central regulation of reproduction at many levels: impairing GnRH neurons migration, differentiation or activation; disrupting neuroendocrine control of GnRH secretion; preventing GnRH neuron migration or function and/or gonadotropin secretion and action.
Collapse
Affiliation(s)
- Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy.,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Du Soon Swee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Richard Quinton
- Endocrine Unit, Royal Victoria Infirmary, Department of Endocrinology, Diabetes and Metabolism, Newcastle-Upon-Tyne Hospitals, Newcastle-Upon-Tyne, NE1 4LP, UK. .,Translational and Clinical Research Institute, University of Newcastle-Upon-Tyne, Newcastle-Upon-Tyne, UK.
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy. .,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| |
Collapse
|
16
|
Identification of Heparan-Sulfate Rich Cells in the Loose Connective Tissues of the Axolotl (Ambystoma mexicanum) with the Potential to Mediate Growth Factor Signaling during Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:7-17. [PMID: 33748405 DOI: 10.1007/s40883-019-00140-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Limb regeneration is the outcome of a complex sequence of events that are mediated by interactions between cells derived from the tissues of the amputated stump. Early in regeneration, these interactions are mediated by growth factor/morphogen signaling associated with nerves and the wound epithelium. One shared property of these proregenerative signaling molecules is that their activity is dependent on interactions with sulfated glycosaminoglycans (GAGs), heparan sulfate proteoglycan (HSPG) in particular, in the extracellular matrix (ECM). We hypothesized that there are cells in the axolotl that synthesize specific HSPGs that control growth factor signaling in time and space. In this study we have identified a subpopulation of cells within the ECM of axolotl skin that express high levels of sulfated GAGs on their cell surface. These cells are dispersed in a grid-like pattern throughout the dermis as well as the loose connective tissues that surround the tissues of the limb. These cells alter their morphology during regeneration, and are candidates for being a subpopulation of connective tissue cells that function as the cells required for pattern-formation during regeneration. Given their high level of HSPG expression, their stellate morphology, and their distribution throughout the loose connective tissues, we refer to these as the positional information GRID (Groups that are Regenerative, Interspersed and Dendritic) cells. In addition, we have identified cells that stain for high levels of expression of sulfated GAGs in mouse limb connective tissue that could have an equivalent function to GRID cells in the axolotl. The identification of GRID cells may have important implications for work in the area of Regenerative Engineering.
Collapse
|
17
|
Lu M, Mizumoto K. Gradient-independent Wnt signaling instructs asymmetric neurite pruning in C. elegans. eLife 2019; 8:e50583. [PMID: 31804181 PMCID: PMC6894928 DOI: 10.7554/elife.50583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
During development, the nervous system undergoes a refinement process by which neurons initially extend an excess number of neurites, the majority of which will be eliminated by the mechanism called neurite pruning. Some neurites undergo stereotyped and developmentally regulated pruning. However, the signaling cues that instruct stereotyped neurite pruning are yet to be fully elucidated. Here we show that Wnt morphogen instructs stereotyped neurite pruning for proper neurite projection patterning of the cholinergic motor neuron called PDB in C. elegans. In lin-44/wnt and lin-17/frizzled mutant animals, the PDB neurites often failed to prune and grew towards the lin-44-expressing cells. Surprisingly, membrane-tethered lin-44 is sufficient to induce proper neurite pruning in PDB, suggesting that neurite pruning does not require a Wnt gradient. LIN-17 and DSH-1/Dishevelled proteins were recruited to the pruning neurites in lin-44-dependent manners. Our results revealed the novel gradient-independent role of Wnt signaling in instructing neurite pruning.
Collapse
Affiliation(s)
- Menghao Lu
- Department of ZoologyUniversity of British ColumbiaVancouverCanada
| | - Kota Mizumoto
- Department of ZoologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, University of British ColumbiaVancouverCanada
| |
Collapse
|
18
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Axon-Dependent Patterning and Maintenance of Somatosensory Dendritic Arbors. Dev Cell 2019; 48:229-244.e4. [PMID: 30661986 DOI: 10.1016/j.devcel.2018.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/12/2018] [Accepted: 12/16/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms that pattern and maintain dendritic arbors are key to understanding the principles that govern nervous system assembly. The activity of presynaptic axons has long been known to shape dendrites, but activity-independent functions of axons in this process have remained elusive. Here, we show that in Caenorhabditis elegans, the axons of the ALA neuron control guidance and extension of the 1° dendrites of PVD somatosensory neurons independently of ALA activity. PVD 1° dendrites mimic ALA axon guidance defects in loss-of-function mutants for the extracellular matrix molecule MIG-6/Papilin or the UNC-6/Netrin pathway, suggesting that axon-dendrite adhesion is important for dendrite formation. We found that the SAX-7/L1CAM cell adhesion molecule engages in distinct molecular mechanisms to mediate extensions of PVD 1° dendrites and maintain the ALA-PVD axon-dendritic fascicle, respectively. Thus, axons can serve as critical scaffolds to pattern and maintain dendrites through contact-dependent but activity-independent mechanisms.
Collapse
|
20
|
Smock RG, Meijers R. Roles of glycosaminoglycans as regulators of ligand/receptor complexes. Open Biol 2018; 8:rsob.180026. [PMID: 30282658 PMCID: PMC6223220 DOI: 10.1098/rsob.180026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Glycosaminoglycans (GAGs) play a widespread role in embryonic development, as deletion of enzymes that contribute to GAG synthesis lead to deficiencies in cell migration and tissue modelling. Despite the biochemical and structural characterization of individual protein/GAG interactions, there is no concept available that links the molecular mechanisms of GAG/protein engagements to tissue development. Here, we focus on the role of GAG polymers in mediating interactions between cell surface receptors and their ligands. We categorize several switches that lead to ligand activation, inhibition, selection and addition, based on recent structural studies of select receptor/ligand complexes. Based on these principles, we propose that individual GAG polymers may affect several receptor pathways in parallel, orchestrating a cellular response to an environmental cue. We believe that it is worthwhile to study the role of GAGs as molecular switches, as this may lead to novel drug candidates to target processes such as angiogenesis, neuroregeneration and tumour metastasis.
Collapse
Affiliation(s)
- Robert G Smock
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
21
|
Townley RA, Bülow HE. Deciphering functional glycosaminoglycan motifs in development. Curr Opin Struct Biol 2018; 50:144-154. [PMID: 29579579 PMCID: PMC6078790 DOI: 10.1016/j.sbi.2018.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/12/2023]
Abstract
Glycosaminoglycans (GAGs) such as heparan sulfate, chondroitin/dermatan sulfate, and keratan sulfate are linear glycans, which when attached to protein backbones form proteoglycans. GAGs are essential components of the extracellular space in metazoans. Extensive modifications of the glycans such as sulfation, deacetylation and epimerization create structural GAG motifs. These motifs regulate protein-protein interactions and are thereby repsonsible for many of the essential functions of GAGs. This review focusses on recent genetic approaches to characterize GAG motifs and their function in defined signaling pathways during development. We discuss a coding approach for GAGs that would enable computational analyses of GAG sequences such as alignments and the computation of position weight matrices to describe GAG motifs.
Collapse
Affiliation(s)
- Robert A Townley
- Department of Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, United States; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
22
|
Synaptogenesis Is Modulated by Heparan Sulfate in Caenorhabditis elegans. Genetics 2018; 209:195-208. [PMID: 29559501 PMCID: PMC5937176 DOI: 10.1534/genetics.118.300837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/06/2018] [Indexed: 01/06/2023] Open
Abstract
The nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in Caenorhabditis elegans It is composed of sequential steps that are governed by > 3000 chemical connections. Here, we show that heparan sulfates (HS) play a role in the formation and function of the male neural network. HS, sulfated in position 3 by the HS modification enzyme HST-3.1/HS 3-O-sulfotransferase and attached to the HS proteoglycan glypicans LON-2/glypican and GPN-1/glypican, functions cell-autonomously and nonautonomously for response to hermaphrodite contact during mating. Loss of 3-O sulfation resulted in the presynaptic accumulation of RAB-3, a molecule that localizes to synaptic vesicles, and disrupted the formation of synapses in a component of the mating circuits. We also show that the neural cell adhesion protein NRX-1/neurexin promotes and the neural cell adhesion protein NLG-1/neuroligin inhibits the formation of the same set of synapses in a parallel pathway. Thus, neural cell adhesion proteins and extracellular matrix components act together in the formation of synaptic connections.
Collapse
|
23
|
Saied-Santiago K, Bülow HE. Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 2018; 247:54-74. [PMID: 28736980 PMCID: PMC5866094 DOI: 10.1002/dvdy.24555] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
The nervous system coordinates the functions of most multicellular organisms and their response to the surrounding environment. Its development involves concerted cellular interactions, including migration, axon guidance, and synapse formation. These processes depend on the molecular constituents and structure of the extracellular matrices (ECM). An essential component of ECMs are proteoglycans, i.e., proteins containing unbranched glycan chains known as glycosaminoglycans (GAGs). A defining characteristic of GAGs is their enormous molecular diversity, created by extensive modifications of the glycans during their biosynthesis. GAGs are widely expressed, and their loss can lead to catastrophic neuronal defects. Despite their importance, we are just beginning to understand the function and mechanisms of GAGs in neuronal development. In this review, we discuss recent evidence suggesting GAGs have specific roles in neuronal patterning and synaptogenesis. We examine the function played by the complex modifications present on GAG glycans and their roles in regulating different aspects of neuronal patterning. Moreover, the review considers the function of proteoglycan core proteins in these processes, stressing their likely role as co-receptors of different signaling pathways in a redundant and context-dependent manner. We conclude by discussing challenges and future directions toward a better understanding of these fascinating molecules during neuronal development. Developmental Dynamics 247:54-74, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
24
|
Saied-Santiago K, Townley RA, Attonito JD, da Cunha DS, Díaz-Balzac CA, Tecle E, Bülow HE. Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To Control Cellular Migrations and Positioning in Caenorhabditis elegans. Genetics 2017; 206:1951-1967. [PMID: 28576860 PMCID: PMC5560800 DOI: 10.1534/genetics.116.198739] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/20/2017] [Indexed: 11/18/2022] Open
Abstract
Heparan sulfates (HS) are linear polysaccharides with complex modification patterns, which are covalently bound via conserved attachment sites to core proteins to form heparan sulfate proteoglycans (HSPGs). HSPGs regulate many aspects of the development and function of the nervous system, including cell migration, morphology, and network connectivity. HSPGs function as cofactors for multiple signaling pathways, including the Wnt-signaling molecules and their Frizzled receptors. To investigate the functional interactions among the HSPG and Wnt networks, we conducted genetic analyses of each, and also between these networks using five cellular migrations in the nematode Caenorhabditis elegans We find that HSPG core proteins act genetically in a combinatorial fashion dependent on the cellular contexts. Double mutant analyses reveal distinct redundancies among HSPGs for different migration events, and different cellular migrations require distinct heparan sulfate modification patterns. Our studies reveal that the transmembrane HSPG SDN-1/Syndecan functions within the migrating cell to promote cellular migrations, while the GPI-linked LON-2/Glypican functions cell nonautonomously to establish the final cellular position. Genetic analyses with the Wnt-signaling system show that (1) a given HSPG can act with different Wnts and Frizzled receptors, and that (2) a given Wnt/Frizzled pair acts with different HSPGs in a context-dependent manner. Lastly, we find that distinct HSPG and Wnt/Frizzled combinations serve separate functions to promote cellular migration and establish position of specific neurons. Our studies suggest that HSPGs use structurally diverse glycans in coordination with Wnt-signaling pathways to control multiple cellular behaviors, including cellular and axonal migrations and, cellular positioning.
Collapse
Affiliation(s)
| | - Robert A Townley
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John D Attonito
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dayse S da Cunha
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eillen Tecle
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
25
|
Wilson MA, Iser WB, Son TG, Logie A, Cabral-Costa JV, Mattson MP, Camandola S. skn-1 is required for interneuron sensory integration and foraging behavior in Caenorhabditis elegans. PLoS One 2017; 12:e0176798. [PMID: 28459841 PMCID: PMC5411085 DOI: 10.1371/journal.pone.0176798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/17/2017] [Indexed: 11/19/2022] Open
Abstract
Nrf2/skn-1, a transcription factor known to mediate adaptive responses of cells to stress, also regulates energy metabolism in response to changes in nutrient availability. The ability to locate food sources depends upon chemosensation. Here we show that Nrf2/skn-1 is expressed in olfactory interneurons, and is required for proper integration of multiple food-related sensory cues in Caenorhabditis elegans. Compared to wild type worms, skn-1 mutants fail to perceive that food density is limiting, and display altered chemo- and thermotactic responses. These behavioral deficits are associated with aberrant AIY interneuron morphology and migration in skn-1 mutants. Both skn-1-dependent AIY autonomous and non-autonomous mechanisms regulate the neural circuitry underlying multisensory integration of environmental cues related to energy acquisition.
Collapse
Affiliation(s)
- Mark A. Wilson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, Maryland, United States of America
| | - Wendy B. Iser
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, Maryland, United States of America
| | - Tae Gen Son
- Department of Experimental Radiation, Research Center, Dongnam Institute of Radiological and Medical Science, Jwadong-ri, Jangan-eup, Gijang-gun, Busan, Republic of Korea
| | - Anne Logie
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, Maryland, United States of America
| | - Joao V. Cabral-Costa
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Craft TR, Forrester WC. The Caenorhabditis elegans matrix non-peptidase MNP-1 is required for neuronal cell migration and interacts with the Ror receptor tyrosine kinase CAM-1. Dev Biol 2017; 424:18-27. [PMID: 28238735 DOI: 10.1016/j.ydbio.2017.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
Directed cell migration is critical for metazoan development. During Caenorhabditis elegans development many neuronal, muscle and other cell types migrate. Multiple classes of proteins have been implicated in cell migration including secreted guidance cues, receptors for guidance cues and intracellular proteins that respond to cues to polarize cells and produce the forces that move them. In addition, cell surface and secreted proteases have been identified that may clear the migratory route and process guidance cues. We report here that mnp-1 is required for neuronal cell and growth cone migrations. MNP-1 is expressed by migrating cells and functions cell autonomously for cell migrations. We also find a genetic interaction between mnp-1 and cam-1, which encodes a Ror receptor tyrosine kinase required for some of the same cell migrations.
Collapse
Affiliation(s)
- Teresa R Craft
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, United States
| | - Wayne C Forrester
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
27
|
Blanchette CR, Thackeray A, Perrat PN, Hekimi S, Bénard CY. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans. PLoS Genet 2017; 13:e1006525. [PMID: 28068429 PMCID: PMC5221758 DOI: 10.1371/journal.pgen.1006525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/06/2016] [Indexed: 12/28/2022] Open
Abstract
The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development. During animal development, cells and neurons navigate long distances to reach their final target destinations. Migrating cells are guided by extracellular molecular cues, and cellular responses to these cues are regulated by heparan sulfate proteoglycans. Heparan sulfate proteoglycans are proteins with long heparan sulfate polysaccharide chains attached. Here we identify and study previously unavailable viable mutants that disrupt the elongation of the heparan sulfate chains in the nematode C. elegans. Our analysis shows that these HS-chain-elongation mutations affect the development of the nervous system as they result in misguided migrations of neurons and axons. Furthermore, we find that heparan sulfate chain elongation occurs in numerous cell types during development and that the coordinated production of heparan sulfate proteoglycans, in both the migrating cell and neighboring tissues, ensures proper migration. Our findings highlight the critical roles of heparan sulfate proteoglycans in nervous system development and the evolutionary conservation of the molecular mechanisms driving guided migrations.
Collapse
Affiliation(s)
- Cassandra R. Blanchette
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Andrea Thackeray
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Paola N. Perrat
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
| | | | - Claire Y. Bénard
- Department of Neurobiology, UMass Medical School, Worcester, Massachusetts, United States of America
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, Canada
- * E-mail: ,
| |
Collapse
|
28
|
Lim MA, Chitturi J, Laskova V, Meng J, Findeis D, Wiekenberg A, Mulcahy B, Luo L, Li Y, Lu Y, Hung W, Qu Y, Ho CY, Holmyard D, Ji N, McWhirter R, Samuel AD, Miller DM, Schnabel R, Calarco JA, Zhen M. Neuroendocrine modulation sustains the C. elegans forward motor state. eLife 2016; 5:19887. [PMID: 27855782 PMCID: PMC5120884 DOI: 10.7554/elife.19887] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Neuromodulators shape neural circuit dynamics. Combining electron microscopy, genetics, transcriptome profiling, calcium imaging, and optogenetics, we discovered a peptidergic neuron that modulates C. elegans motor circuit dynamics. The Six/SO-family homeobox transcription factor UNC-39 governs lineage-specific neurogenesis to give rise to a neuron RID. RID bears the anatomic hallmarks of a specialized endocrine neuron: it harbors near-exclusive dense core vesicles that cluster periodically along the axon, and expresses multiple neuropeptides, including the FMRF-amide-related FLP-14. RID activity increases during forward movement. Ablating RID reduces the sustainability of forward movement, a phenotype partially recapitulated by removing FLP-14. Optogenetic depolarization of RID prolongs forward movement, an effect reduced in the absence of FLP-14. Together, these results establish the role of a neuroendocrine cell RID in sustaining a specific behavioral state in C. elegans. DOI:http://dx.doi.org/10.7554/eLife.19887.001
Collapse
Affiliation(s)
- Maria A Lim
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jyothsna Chitturi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Valeriya Laskova
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Jun Meng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Daniel Findeis
- Institut für Genetik, Technische Universität Braunschweig Carolo Wilhelmina, Braunschweig, Germany
| | - Anne Wiekenberg
- Institut für Genetik, Technische Universität Braunschweig Carolo Wilhelmina, Braunschweig, Germany
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Linjiao Luo
- Key Laboratory of Modern Acoustics, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Yan Li
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Yangning Lu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Yixin Qu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Chi-Yip Ho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Douglas Holmyard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ni Ji
- Center for Brain Science, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| | - Rebecca McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Aravinthan Dt Samuel
- Center for Brain Science, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Ralf Schnabel
- Institut für Genetik, Technische Universität Braunschweig Carolo Wilhelmina, Braunschweig, Germany
| | - John A Calarco
- FAS Center for Systems Biology, Harvard University, Cambridge, United States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
30
|
Díaz-Balzac CA, Rahman M, Lázaro-Peña MI, Martin Hernandez LA, Salzberg Y, Aguirre-Chen C, Kaprielian Z, Bülow HE. Muscle- and Skin-Derived Cues Jointly Orchestrate Patterning of Somatosensory Dendrites. Curr Biol 2016; 26:2379-87. [PMID: 27451901 PMCID: PMC5021591 DOI: 10.1016/j.cub.2016.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/22/2023]
Abstract
Sensory dendrite arbors are patterned through cell-autonomously and non-cell-autonomously functioning factors [1-3]. Yet, only a few non-cell-autonomously acting proteins have been identified, including semaphorins [4, 5], brain-derived neurotrophic factors (BDNFs) [6], UNC-6/Netrin [7], and the conserved MNR-1/Menorin-SAX-7/L1CAM cell adhesion complex [8, 9]. This complex acts from the skin to pattern the stereotypic dendritic arbors of PVD and FLP somatosensory neurons in Caenorhabditis elegans through the leucine-rich transmembrane receptor DMA-1/LRR-TM expressed on PVD neurons [8, 9]. Here we describe a role for the diffusible C. elegans protein LECT-2, which is homologous to vertebrate leukocyte cell-derived chemotaxin 2 (LECT2)/Chondromodulin II. LECT2/Chondromodulin II has been implicated in a variety of pathological conditions [10-13], but the developmental functions of LECT2 have remained elusive. We find that LECT-2/Chondromodulin II is required for development of PVD and FLP dendritic arbors and can act as a diffusible cue from a distance to shape dendritic arbors. Expressed in body-wall muscles, LECT-2 decorates neuronal processes and hypodermal cells in a pattern similar to the cell adhesion molecule SAX-7/L1CAM. LECT-2 functions genetically downstream of the MNR-1/Menorin-SAX-7/L1CAM adhesion complex and upstream of the DMA-1 receptor. LECT-2 localization is dependent on SAX-7/L1CAM, but not on MNR-1/Menorin or DMA-1/LRR-TM, suggesting that LECT-2 functions as part of the skin-derived MNR-1/Menorin-SAX-7/L1CAM adhesion complex. Collectively, our findings suggest that LECT-2/Chondromodulin II acts as a muscle-derived, diffusible cofactor together with a skin-derived cell adhesion complex to orchestrate the molecular interactions of three tissues during patterning of somatosensory dendrites.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maisha Rahman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - María I Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Cristina Aguirre-Chen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Zaven Kaprielian
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
31
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 18. Hypogonadotropic Hypogonadisms. Pediatric and Pubertal Presentations. Pediatr Dev Pathol 2016; 19:291-309. [PMID: 27135528 DOI: 10.2350/16-04-1810-pb.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | | | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
32
|
Dong B, Moseley-Alldredge M, Schwieterman AA, Donelson CJ, McMurry JL, Hudson ML, Chen L. EFN-4 functions in LAD-2-mediated axon guidance in Caenorhabditis elegans. Development 2016; 143:1182-91. [PMID: 26903502 DOI: 10.1242/dev.128934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/12/2016] [Indexed: 11/20/2022]
Abstract
During development of the nervous system, growing axons rely on guidance molecules to direct axon pathfinding. A well-characterized family of guidance molecules are the membrane-associated ephrins, which together with their cognate Eph receptors, direct axon navigation in a contact-mediated fashion. InC. elegans, the ephrin-Eph signaling system is conserved and is best characterized for their roles in neuroblast migration during early embryogenesis. This study demonstrates a role for the C. elegans ephrin EFN-4 in axon guidance. We provide both genetic and biochemical evidence that is consistent with the C. elegans divergent L1 cell adhesion molecule LAD-2 acting as a non-canonical ephrin receptor to EFN-4 to promote axon guidance. We also show that EFN-4 probably functions as a diffusible factor because EFN-4 engineered to be soluble can promote LAD-2-mediated axon guidance. This study thus reveals a potential additional mechanism for ephrins in regulating axon guidance and expands the repertoire of receptors by which ephrins can signal.
Collapse
Affiliation(s)
- Bingyun Dong
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alicia A Schwieterman
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Cory J Donelson
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jonathan L McMurry
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Martin L Hudson
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Lihsia Chen
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
33
|
The Caenorhabditis elegans Ephrin EFN-4 Functions Non-cell Autonomously with Heparan Sulfate Proteoglycans to Promote Axon Outgrowth and Branching. Genetics 2015; 202:639-60. [PMID: 26645816 DOI: 10.1534/genetics.115.185298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/02/2015] [Indexed: 01/21/2023] Open
Abstract
The Eph receptors and their cognate ephrin ligands play key roles in many aspects of nervous system development. These interactions typically occur within an individual tissue type, serving either to guide axons to their terminal targets or to define boundaries between the rhombomeres of the hindbrain. We have identified a novel role for the Caenorhabditis elegans ephrin EFN-4 in promoting primary neurite outgrowth in AIY interneurons and D-class motor neurons. Rescue experiments reveal that EFN-4 functions non-cell autonomously in the epidermis to promote primary neurite outgrowth. We also find that EFN-4 plays a role in promoting ectopic axon branching in a C. elegans model of X-linked Kallmann syndrome. In this context, EFN-4 functions non-cell autonomously in the body-wall muscle and in parallel with HS modification genes and HSPG core proteins. This is the first report of an epidermal ephrin providing a developmental cue to the nervous system.
Collapse
|
34
|
Kim SH. Congenital Hypogonadotropic Hypogonadism and Kallmann Syndrome: Past, Present, and Future. Endocrinol Metab (Seoul) 2015; 30:456-66. [PMID: 26790381 PMCID: PMC4722398 DOI: 10.3803/enm.2015.30.4.456] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 11/24/2022] Open
Abstract
The proper development and coordination of the hypothalamic-pituitary-gonadal (HPG) axis are essential for normal reproductive competence. The key factor that regulates the function of the HPG axis is gonadotrophin-releasing hormone (GnRH). Timely release of GnRH is critical for the onset of puberty and subsequent sexual maturation. Misregulation in this system can result in delayed or absent puberty and infertility. Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS) are genetic disorders that are rooted in a GnRH deficiency but often accompanied by a variety of non-reproductive phenotypes such as the loss of the sense of smell and defects of the skeleton, eye, ear, kidney, and heart. Recent progress in DNA sequencing technology has produced a wealth of information regarding the genetic makeup of CHH and KS patients and revealed the resilient yet complex nature of the human reproductive neuroendocrine system. Further research on the molecular basis of the disease and the diverse signal pathways involved will aid in improving the diagnosis, treatment, and management of CHH and KS patients as well as in developing more precise genetic screening and counseling regime.
Collapse
Affiliation(s)
- Soo Hyun Kim
- Molecular Cell Sciences Research Centre, St. George's Medical School, University of London, London, United Kingdom.
| |
Collapse
|
35
|
Díaz-Balzac CA, Lázaro-Peña MI, Ramos-Ortiz GA, Bülow HE. The Adhesion Molecule KAL-1/anosmin-1 Regulates Neurite Branching through a SAX-7/L1CAM-EGL-15/FGFR Receptor Complex. Cell Rep 2015; 11:1377-84. [PMID: 26004184 PMCID: PMC4464948 DOI: 10.1016/j.celrep.2015.04.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/20/2015] [Accepted: 04/27/2015] [Indexed: 01/10/2023] Open
Abstract
Neurite branching is essential for correct assembly of neural circuits, yet it remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann syndrome, regulates neurite branching through mechanisms largely unknown. Here, we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig) domains of SAX-7/L1CAM and the FN(III) domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María I Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gibram A Ramos-Ortiz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biology, University of Puerto Rico-Río Piedras, San Juan 00931, Puerto Rico
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
36
|
SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration. G3-GENES GENOMES GENETICS 2015; 5:1567-74. [PMID: 26022293 PMCID: PMC4528313 DOI: 10.1534/g3.115.018770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration.
Collapse
|
37
|
Al Shamrani M, Mahmoudi F, Abu-Amero KK, Khan AO. Congenital cranial dysinnervation disorder in a boy with congenital mirror movements. J AAPOS 2015; 19:191-2. [PMID: 25838174 DOI: 10.1016/j.jaapos.2014.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/16/2014] [Accepted: 10/30/2014] [Indexed: 11/29/2022]
Abstract
"Mirror movements" are an axonal guidance disorder that consists of involuntary contralateral movements that mimic unilateral intentional ones, typically involving the fingers of the hand. They can be isolated or associated with conditions such as Klippel-Feil syndrome, Kallmann syndrome, or congenital hemiplegia. Isolated congenital mirror movements are sometimes caused by autosomal dominant mutation in the genes DCC or RAD51. At least 4 previously reported cases had strabismus, 3 with Moebius syndrome and 1 with Duane retraction syndrome. We report the case of a boy with an unusual incomitant strabismus consistent with orbital dysinnervation and suggest that for some patients with congenital mirror movements the neurological miswiring extends to the orbit, causing congenital cranial dysinnervation disorder.
Collapse
Affiliation(s)
- Mohammed Al Shamrani
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh
| | - Faeeqah Mahmoudi
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh; Department of Ophthalmology, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Khaled K Abu-Amero
- Ophthalmic Genetics Laboratory, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Ophthalmology, College of Medicine, University of Florida, Jacksonville
| | - Arif O Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh.
| |
Collapse
|
38
|
García-González D, Murcia-Belmonte V, Esteban PF, Ortega F, Díaz D, Sánchez-Vera I, Lebrón-Galán R, Escobar-Castañondo L, Martínez-Millán L, Weruaga E, García-Verdugo JM, Berninger B, de Castro F. Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb. Brain Struct Funct 2014; 221:239-60. [PMID: 25300351 DOI: 10.1007/s00429-014-0904-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
Abstract
New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB.
Collapse
Affiliation(s)
- Diego García-González
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain.
- Clinical Neurobiology, German Center for Cancer Research (DKFZ), Heidelberg, Germany.
| | - Verónica Murcia-Belmonte
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Pedro F Esteban
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Felipe Ortega
- University Medical Center Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - David Díaz
- Instituto de Neurociencias de Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - Irene Sánchez-Vera
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia, Spain
- Unidad mixta de Esclerosis múltiple y neurorregeneración, IIS Hospital La Fe, Valencia, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | - Luis Martínez-Millán
- Departmento de Neurosciencias, Facultad de Medicina, Universidad del País Vasco, Leioa, Spain
| | - Eduardo Weruaga
- Instituto de Neurociencias de Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia, Spain
| | - Benedikt Berninger
- University Medical Center Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain.
| |
Collapse
|
39
|
Levi-Ferber M, Salzberg Y, Safra M, Haviv-Chesner A, Bülow HE, Henis-Korenblit S. It's all in your mind: determining germ cell fate by neuronal IRE-1 in C. elegans. PLoS Genet 2014; 10:e1004747. [PMID: 25340700 PMCID: PMC4207656 DOI: 10.1371/journal.pgen.1004747] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/11/2014] [Indexed: 01/26/2023] Open
Abstract
The C. elegans germline is pluripotent and mitotic, similar to self-renewing mammalian tissues. Apoptosis is triggered as part of the normal oogenesis program, and is increased in response to various stresses. Here, we examined the effect of endoplasmic reticulum (ER) stress on apoptosis in the C. elegans germline. We demonstrate that pharmacological or genetic induction of ER stress enhances germline apoptosis. This process is mediated by the ER stress response sensor IRE-1, but is independent of its canonical downstream target XBP-1. We further demonstrate that ire-1-dependent apoptosis in the germline requires both CEP-1/p53 and the same canonical apoptotic genes as DNA damage-induced germline apoptosis. Strikingly, we find that activation of ire-1, specifically in the ASI neurons, but not in germ cells, is sufficient to induce apoptosis in the germline. This implies that ER stress related germline apoptosis can be determined at the organism level, and is a result of active IRE-1 signaling in neurons. Altogether, our findings uncover ire-1 as a novel cell non-autonomous regulator of germ cell apoptosis, linking ER homeostasis in sensory neurons and germ cell fate.
Collapse
Affiliation(s)
- Mor Levi-Ferber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, New York, United States of America
| | - Modi Safra
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Anat Haviv-Chesner
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, New York, United States of America
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
40
|
Salzberg Y, Ramirez-Suarez NJ, Bülow HE. The proprotein convertase KPC-1/furin controls branching and self-avoidance of sensory dendrites in Caenorhabditis elegans. PLoS Genet 2014; 10:e1004657. [PMID: 25232734 PMCID: PMC4169376 DOI: 10.1371/journal.pgen.1004657] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
Animals sample their environment through sensory neurons with often elaborately branched endings named dendritic arbors. In a genetic screen for genes involved in the development of the highly arborized somatosensory PVD neuron in C. elegans, we have identified mutations in kpc-1, which encodes the homolog of the proprotein convertase furin. We show that kpc-1/furin is necessary to promote the formation of higher order dendritic branches in PVD and to ensure self-avoidance of sister branches, but is likely not required during maintenance of dendritic arbors. A reporter for kpc-1/furin is expressed in neurons (including PVD) and kpc-1/furin can function cell-autonomously in PVD neurons to control patterning of dendritic arbors. Moreover, we show that kpc-1/furin also regulates the development of other neurons in all major neuronal classes in C. elegans, including aspects of branching and extension of neurites as well as cell positioning. Our data suggest that these developmental functions require proteolytic activity of KPC-1/furin. Recently, the skin-derived MNR-1/menorin and the neural cell adhesion molecule SAX-7/L1CAM have been shown to act as a tripartite complex with the leucine rich transmembrane receptor DMA-1 on PVD mechanosensory to orchestrate the patterning of dendritic branches. Genetic analyses show that kpc-1/furin functions in a pathway with MNR-1/menorin, SAX-7/L1CAM and DMA-1 to control dendritic branch formation and extension of PVD neurons. We propose that KPC-1/furin acts in concert with the ‘menorin’ pathway to control branching and growth of somatosensory dendrites in PVD. Sensory neurons receive input from other neurons or sample their environment through elaborate structures termed dendritic trees. The correct patterning of dendritic trees is crucial for the proper function of the nervous system, and ample evidence points to the involvement of dendritic defects in a wide range of neuropsychiatric diseases. However, we still do not understand fully how this process is regulated at the molecular level. We discovered an important role for the protein-processing enzyme KPC-1/furin in the development of touch-sensitive dendritic trees in the roundworm C. elegans. Animals lacking this enzyme show multiple defects in the size, shape and number of these dendritic branches as well as other neurons. We further show that the gene encoding KPC-1 is expressed widely in the nervous system and that it is required within the branching neuron to exert its function on dendritic growth. Finally, we reveal a genetic connection between KPC-1 function and genes of the menorin pathway, which was recently discovered to also play an essential role in dendrite development. Thus, our findings add new insight into the molecular understanding of dendrite formation.
Collapse
Affiliation(s)
- Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Nelson J. Ramirez-Suarez
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Díaz-Balzac CA, Lázaro-Peña MI, Tecle E, Gomez N, Bülow HE. Complex cooperative functions of heparan sulfate proteoglycans shape nervous system development in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2014; 4:1859-70. [PMID: 25098771 PMCID: PMC4199693 DOI: 10.1534/g3.114.012591] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022]
Abstract
The development of the nervous system is a complex process requiring the integration of numerous molecular cues to form functional circuits. Many cues are regulated by heparan sulfates, a class of linear glycosaminoglycan polysaccharides. These sugars contain distinct modification patterns that regulate protein-protein interactions. Misexpressing the homolog of KAL-1/anosmin-1, a neural cell adhesion molecule mutant in Kallmann syndrome, in Caenorhabditis elegans causes a highly penetrant, heparan sulfate-dependent axonal branching phenotype in AIY interneurons. In an extended forward genetic screen for modifiers of this phenotype, we identified alleles in new as well as previously identified genes involved in HS biosynthesis and modification, namely the xylosyltransferase sqv-6, the HS-6-O-sulfotransferase hst-6, and the HS-3-O-sulfotransferase hst-3.2. Cell-specific rescue experiments showed that different HS biosynthetic and modification enzymes can be provided cell-nonautonomously by different tissues to allow kal-1-dependent branching of AIY. In addition, we show that heparan sulfate proteoglycan core proteins that carry the heparan sulfate chains act genetically in a highly redundant fashion to mediate kal-1-dependent branching in AIY neurons. Specifically, lon-2/glypican and unc-52/perlecan act in parallel genetic pathways and display synergistic interactions with sdn-1/syndecan to mediate kal-1 function. Because all of these heparan sulfate core proteins have been shown to act in different tissues, these studies indicate that KAL-1/anosmin-1 requires heparan sulfate with distinct modification patterns of different cellular origin for function. Our results support a model in which a three-dimensional scaffold of heparan sulfate mediates KAL-1/anosmin-1 and intercellular communication through complex and cooperative interactions. In addition, the genes we have identified could contribute to the etiology of Kallmann syndrome in humans.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - María I Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Eillen Tecle
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Nathali Gomez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
42
|
Kinnunen TK. Combinatorial roles of heparan sulfate proteoglycans and heparan sulfates in Caenorhabditis elegans neural development. PLoS One 2014; 9:e102919. [PMID: 25054285 PMCID: PMC4108370 DOI: 10.1371/journal.pone.0102919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 06/25/2014] [Indexed: 02/06/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease.
Collapse
Affiliation(s)
- Tarja K. Kinnunen
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom, and Department of Biology, University of Huddersfield, Huddersfield, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Salian-Mehta S, Xu M, Knox AJ, Plummer L, Slavov D, Taylor M, Bevers S, Hodges RS, Crowley WF, Wierman ME. Functional consequences of AXL sequence variants in hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2014; 99:1452-60. [PMID: 24476074 PMCID: PMC3973777 DOI: 10.1210/jc.2013-3426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Prior studies showed that Axl /Tyro3 null mice have delayed first estrus and abnormal cyclicity due to developmental defects in GnRH neuron migration and survival. OBJECTIVE The objective of the study was to test whether the absence of Axl would alter reproductive function in mice and that mutations in AXL are present in patients with Kallmann syndrome (KS) or normosmic idiopathic hypogonadotropic hypogonadism (nIHH). DESIGN AND SETTING The sexual maturation of Axl null mice was examined. The coding region of AXL was sequenced in 104 unrelated, carefully phenotyped KS or nIHH subjects. Frequency of mutations was compared with other causes of GnRH deficiency. Functional assays were performed on the detected mutations. RESULTS Axl null mice demonstrated delay in first estrus and the interval between vaginal opening and first estrus. Three missense AXL mutations (p.L50F, p.S202C, and p.Q361P) and one intronic variant 6 bp upstream from the start of exon 5 (c.586-6 C>T) were identified in two KS and 2 two nIHH subjects. Comparison of the frequencies of AXL mutations with other putative causes of idiopathic hypogonadotropic hypogonadism confirmed they are rare variants. Testing of the c.586-6 C>T mutation revealed no abnormal splicing. Surface plasmon resonance analysis of the p.L50F, p.S202C, and p.Q361P mutations showed no altered Gas6 ligand binding. In contrast, GT1-7 GnRH neuronal cells expressing p.S202C or p.Q361P demonstrated defective ligand dependent receptor processing and importantly aberrant neuronal migration. In addition, the p.Q361P showed defective ligand independent chemotaxis. CONCLUSIONS Functional consequences of AXL sequence variants in patients with idiopathic hypogonadotropic hypogonadism support the importance of AXL and the Tyro3, Axl, Mer (TAM) family in reproductive development.
Collapse
Affiliation(s)
- S Salian-Mehta
- Division of Endocrinology, Metabolism, and Diabetes (S.S.-M., M.X., A.J.K., M.E.W.), Division of Cardiology (D.S., M.T.), and Department of Biochemistry and Molecular Genetics (S.B., R.S.H.), University of Colorado School of Medicine, Aurora, Colorado 80045; Veterans Affairs Research Service (M.E.W.), Veterans Affairs Medical Center, Denver, Colorado 80220; and Harvard Reproductive Endocrine Science Center and the Reproductive Endocrine Unit (L.P., W.F.C.), Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
A personal voyage through the proteoglycan field. Matrix Biol 2014; 35:3-7. [DOI: 10.1016/j.matbio.2014.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/01/2014] [Accepted: 01/01/2014] [Indexed: 12/11/2022]
|
45
|
de Castro F, Esteban PF, Bribián A, Murcia-Belmonte V, García-González D, Clemente D. The Adhesion Molecule Anosmin-1 in Neurology: Kallmann Syndrome and Beyond. ADVANCES IN NEUROBIOLOGY 2014; 8:273-92. [DOI: 10.1007/978-1-4614-8090-7_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Murcia-Belmonte V, Medina-Rodríguez EM, Bribián A, de Castro F, Esteban PF. ERK1/2 signaling is essential for the chemoattraction exerted by human FGF2 and human anosmin-1 on newborn rat and mouse OPCs via FGFR1. Glia 2013; 62:374-86. [PMID: 24375670 DOI: 10.1002/glia.22609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 01/14/2023]
Abstract
Signaling through fibroblast growth factor receptors (FGFRs) is essential for many cellular processes including proliferation and migration, as well as differentiation events such as myelination. Anosmin-1 is an extracellular matrix (ECM) glycoprotein that interacts with the fibroblast growth factor receptor 1 (FGFR1) to exert its biological actions through this receptor, although the intracellular pathways underlying anosmin-1 signaling remain largely unknown. This protein is defective in the X-linked form of Kallmann syndrome (KS) and has a prominent role in the migration of neuronal and oligodendroglial precursors. We have shown that anosmin-1 exerts a chemotactic effect via FGFR1 on neuronal precursors from the subventricular zone (SVZ) and the essential role of the ERK1/2 signaling. We report here the positive chemotactic effect of FGF2 and anosmin-1 on rat and mouse postnatal OPCs via FGFR1. The same effect was observed with the truncated N-terminal region of anosmin-1 (A1Nt). The introduction in anosmin-1 of the missense mutation F517L found in patients suffering from KS annulled the chemotactic activity; however, the mutant form carrying the disease-causing mutation E514K also found in KS patients, behaved as the wild-type protein. The chemoattraction exhibited by FGF2 and anosmin-1 on OPCs was blocked by the mitogen-activated protein kinase (MAPK) inhibitor U0126, suggesting that the activation of the ERK1/2 MAPK signaling pathway following interaction with the FGFR1 is necessary for FGF2 and anosmin-1 to exert their chemotactic effect. In fact, both proteins were able to induce the phosphorylation of the ERK1/2 kinases after the activation of the FGFR1 receptor.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda, s/n, E-45071-Toledo, Spain
| | | | | | | | | |
Collapse
|
47
|
Caenorhabditis elegans anillin (ani-1) regulates neuroblast cytokinesis and epidermal morphogenesis during embryonic development. Dev Biol 2013; 383:61-74. [DOI: 10.1016/j.ydbio.2013.08.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 08/24/2013] [Accepted: 08/27/2013] [Indexed: 11/23/2022]
|
48
|
Grossman EN, Giurumescu CA, Chisholm AD. Mechanisms of ephrin receptor protein kinase-independent signaling in amphid axon guidance in Caenorhabditis elegans. Genetics 2013; 195:899-913. [PMID: 23979582 PMCID: PMC3813872 DOI: 10.1534/genetics.113.154393] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/16/2013] [Indexed: 12/30/2022] Open
Abstract
Eph receptors and their ephrin ligands are key conserved regulators of axon guidance and can function in a variety of signaling modes. Here we analyze the genetic and cellular requirements for Eph signaling in a Caenorhabditis elegans axon guidance choice point, the ventral guidance of axons in the amphid commissure. The C. elegans Eph receptor EFN-1 has both kinase-dependent and kinase-independent roles in amphid ventral guidance. Of the four C. elegans ephrins, we find that only EFN-1 has a major role in amphid axon ventral guidance, and signals in both a receptor kinase-dependent and kinase-independent manner. Analysis of EFN-1 and EFN-1 expression and tissue-specific requirements is consistent with a model in which VAB-1 acts in amphid neurons, interacting with EFN-1 expressed on surrounding cells. Unexpectedly, left-hand neurons are more strongly affected than right-hand neurons by loss of Eph signaling, indicating a previously undetected left-right asymmetry in the requirement for Eph signaling. By screening candidate genes involved in Eph signaling, we find that the Eph kinase-independent pathway involves the ABL-1 nonreceptor tyrosine kinase and possibly the phosphatidylinositol 3-kinase pathway. Overexpression of ABL-1 is sufficient to rescue EFN-1 ventral guidance defects cell autonomously. Our results reveal new aspects of Eph signaling in a single axon guidance decision in vivo.
Collapse
Affiliation(s)
- Emily N. Grossman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093
| | - Claudiu A. Giurumescu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093
| | - Andrew D. Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
49
|
Wu Y, Wawrzusin P, Senseney J, Fischer RS, Christensen R, Santella A, York AG, Winter PW, Waterman CM, Bao Z, Colón-Ramos DA, McAuliffe M, Shroff H. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol 2013; 31:1032-8. [PMID: 24108093 DOI: 10.1038/nbt.2713] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 09/10/2013] [Indexed: 01/23/2023]
Abstract
Optimal four-dimensional imaging requires high spatial resolution in all dimensions, high speed and minimal photobleaching and damage. We developed a dual-view, plane illumination microscope with improved spatiotemporal resolution by switching illumination and detection between two perpendicular objectives in an alternating duty cycle. Computationally fusing the resulting volumetric views provides an isotropic resolution of 330 nm. As the sample is stationary and only two views are required, we achieve an imaging speed of 200 images/s (i.e., 0.5 s for a 50-plane volume). Unlike spinning-disk confocal or Bessel beam methods, which illuminate the sample outside the focal plane, we maintain high spatiotemporal resolution over hundreds of volumes with negligible photobleaching. To illustrate the ability of our method to study biological systems that require high-speed volumetric visualization and/or low photobleaching, we describe microtubule tracking in live cells, nuclear imaging over 14 h during nematode embryogenesis and imaging of neural wiring during Caenorhabditis elegans brain development over 5 h.
Collapse
Affiliation(s)
- Yicong Wu
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Di Schiavi E, Andrenacci D. Invertebrate models of kallmann syndrome: molecular pathogenesis and new disease genes. Curr Genomics 2013; 14:2-10. [PMID: 23997646 PMCID: PMC3580776 DOI: 10.2174/138920213804999174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/23/2022] Open
Abstract
Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene.
Collapse
Affiliation(s)
- Elia Di Schiavi
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | | |
Collapse
|