1
|
Ajithdoss DK, Liao Y, Reddy SM, Lupiani B. Marek's Disease Virus (MDV) Meq Oncoprotein Plays Distinct Roles in Tumor Incidence, Distribution, and Size. Viruses 2025; 17:259. [PMID: 40007015 PMCID: PMC11860637 DOI: 10.3390/v17020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Marek's disease (MD), characterized by the rapid onset of T-cell lymphomas in chickens, is caused by Mardivirus gallidalpha2, an oncogenic alphaherpesvirus commonly known as Marek's disease virus (MDV). MDV encodes a bZIP protein, Meq, which contains a bZIP domain (basic DNA-binding and leucine zipper dimerization domain) at the amino terminus and a transcriptional regulatory domain at the carboxyl end. Meq can transform murine and chicken fibroblasts in vitro and is essential for tumor formation in chickens. Meq homodimerization and heterodimerization through its bZIP domain are involved in Meq-mediated transformation. However, the role of Meq DNA-binding and transcriptional regulatory domains in transformation has not been investigated. In this study, we constructed recombinant Md5 (very virulent MDV) viruses expressing chimeric Meq proteins generated by swapping the DNA-binding and transcriptional regulatory domains of Meq of Md5 and vaccine (CVI988/Rispens) strains. Our results show that these recombinant viruses, rMd5-Md5/CVI-Meq (Md5 DNA-binding domain and CVI transcriptional regulatory domain) and rMd5-CVI/Md5-Meq (CVI DNA-binding domain and Md5 transcriptional regulatory domain), replicated at levels similar to parental rMd5 in cell culture and chickens and could transmit efficiently among chickens. Interestingly, parental rMd5 and chimeric viruses exhibited distinct pathogenic phenotypes in chickens: rMd5 caused 100% mortality, a moderate level of tumor incidence in visceral organs and small visceral tumors; rMd5-Md5/CVI-Meq caused 100% mortality, a high level of tumor incidence in visceral organs, and very large visceral tumors; while rMd5-CVI/Md5-Meq caused an average of 37% mortality, rarely induced tumors in visceral organs, and the visceral tumors were small. In conclusion, our study suggests that the DNA-binding domain of Meq plays an essential role in transformation (tumor incidence), while the transcriptional regulatory domain of Meq influences the distribution and size of MDV-induced tumors.
Collapse
Affiliation(s)
| | | | - Sanjay M. Reddy
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (D.K.A.); (Y.L.)
| | - Blanca Lupiani
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (D.K.A.); (Y.L.)
| |
Collapse
|
2
|
Bao C, Chu J, Gao Q, Yang S, Gao X, Chen W, Yang F, Jiang F, Tong C, Lei M, Jiao L, Li J, Wei K, Lian X, Li K, Tikoo SK, Osterrieder N, Babiuk LA, Li Y, Jung YS, Qian Y. Marek's disease virus-1 unique gene LORF1 is involved in viral replication and MDV-1/Md5-induced atrophy of the bursa of Fabricius. PLoS Pathog 2025; 21:e1012891. [PMID: 39899476 PMCID: PMC11790089 DOI: 10.1371/journal.ppat.1012891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025] Open
Abstract
Marek's disease virus (MDV), an alphaherpesvirus, causes severe immunosuppression and T cell lymphomas in chickens, known as Marek's disease (MD), an economically important poultry disease primarily controlled by vaccination. Importantly, it also serves as a comparative model for studying herpesvirus-induced tumor formation in humans. MDV encodes more than 100 genes, most of which have unknown functions. MDV LORF1 is unique to serotype I MDV (MDV-1), lacking homologs in other herpesviruses, and has not been explored yet. To this end, an infectious bacterial artificial chromosome (BAC) harboring the complete genome of the MDV-1 very virulent strain Md5 was generated, and the rescued rMd5 maintained biological properties similar to the parental virus both in vitro and in vivo. Subsequently, rMd5ΔLORF1, a recombinant Md5 virus deficient in pLORF1 expression, was generated by a frameshift mutation in the LORF1 gene. Chickens infected with rMd5ΔLORF1 exhibited a lower mortality rate and delayed bursal atrophy than those infected with the parental rMd5 and the revertant virus (rMd5-reLORF1). Consistently, viral loads of rMd5ΔLORF1 were obviously lower than those of rMd5 or rMd5-reLORF1 in the bursa, but not in the spleen. Importantly, we found that pLORF1 deficiency impairs viral replication in bursal B cells. Furthermore, we showed that pLORF1 associated with the cellular membrane, interacted with MDV structural proteins, and exhibited punctate colocalization with tegument or capsid proteins in the cytoplasm. Taken together, this study demonstrates for the first time that the MDV-1 unique gene LORF1 is involved in MDV-induced bursal atrophy but not in tumor formation.
Collapse
Affiliation(s)
- Chenyi Bao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jun Chu
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Gao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shasha Yang
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Gao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenwen Chen
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fuchun Yang
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fei Jiang
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenxi Tong
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Lei
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou, China
| | - Linlin Jiao
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou, China
| | - Jitong Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Kexin Wei
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Xue Lian
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Kai Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Suresh Kumar Tikoo
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Nikolaus Osterrieder
- Tierärztliche Hochschule Hannover, Hannover, Germany
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Lorne A. Babiuk
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, Canada
| | - Yufeng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Yong-Sam Jung
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjuan Qian
- The Sanya Institute of Nanjing Agricultural University, Laboratory of Emerging Animal Diseases and One Health, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou, China
| |
Collapse
|
3
|
Chen Y, Yu Q, Fan W, Zeng X, Zhang Z, Tian G, Liu C, Bao H, Wu L, Zhang Y, Liu Y, Wang S, Cui H, Duan Y, Chen H, Gao Y. Recombinant Marek's disease virus type 1 provides full protection against H9N2 influenza A virus in chickens. Vet Microbiol 2024; 298:110242. [PMID: 39243669 DOI: 10.1016/j.vetmic.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The H9N2 subtype of the avian influenza virus (AIV) poses a significant threat to the poultry industry and human health. Recombinant vaccines are the preferred method of controlling H9N2 AIV, and Marek's disease virus (MDV) is the ideal vector for recombinant vaccines. During this study, we constructed two recombinant MDV type 1 strains that carry the hemagglutinin (HA) gene of AIV to provide dual protection against both AIV and MDV. To assess the effects of different MDV insertion sites on the protective efficacy of H9N2 AIV, the HA gene of H9N2 AIV was inserted in UL41 and US2 of the MDV type 1 vector backbone to obtain recombinant viruses rMDV-UL41/HA and rMDV-US2/HA, respectively. An indirect immunofluorescence assay showed sustained expression of HA protein in both recombinant viruses. Additionally, the insertion of the HA gene in UL41 and US2 did not affect MDV replication in cell cultures. After immunization of specific pathogen-free chickens, although both the rMDV-UL41/HA and rMDV-US2/HA groups exhibited similar levels of hemagglutination inhibition antibody titers, only the rMDV-UL41/HA group provided complete protection against the H9N2 AIV challenge, and also offered complete protection against challenge with MDV. These results demonstrated that rMDV-UL41/HA could be used as a promising bivalent vaccine strain against both H9N2 avian influenza and Marek's disease in chickens.
Collapse
Affiliation(s)
- Yuntong Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qingqing Yu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Wenrui Fan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zibo Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Changjun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongmei Bao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Longbo Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yongzhen Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Suyan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulu Duan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Yulong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
4
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
5
|
Birhan M, Gelaye E, Ibrahim SM, Berhane N, Abayneh T, Getachew B, Zemene A, Birie K, Deresse G, Adamu K, Dessalegn B, Gessese AT, Kinde MZ, Bitew M. Marek's disease in chicken farms from Northwest Ethiopia: gross pathology, virus isolation, and molecular characterization. Virol J 2023; 20:45. [PMID: 36890573 PMCID: PMC9997020 DOI: 10.1186/s12985-023-02003-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Marek's disease virus (MDV) is a highly contagious, immunosuppressive, and oncogenic chicken pathogen causing marek's disease (MD). In this outbreak-based study, 70 dual-purpose chickens that originated from poultry farms in Northwest Ethiopia and suspected of MD were sampled for pathological and virological study from January 2020 to June 2020. Clinically, affected chickens showed inappetence, dyspnea, depression, shrunken combs, and paralysis of legs, wings, and neck, and death. Pathologically, single or multiple greyish white to yellow tumor-like nodular lesions of various size were appreciated in visceral organs. In addition, splenomegaly, hepatomegaly, renomegaly, and sciatic nerve enlargement were observed. Twenty-seven (27) pooled clinical samples i.e. 7 pooled spleen samples and 20 pooled feathers samples were aseptically collected. Confluent monolayer of Chicken Embryo Fibroblast cells was inoculated with a suspension of pathological samples. Of this, MDV-suggestive cytopathic effects were recorded in 5 (71.42%) and 17 (85%) pooled spleen and feather samples respectively. Molecular confirmation of pathogenic MDV was conducted using conventional PCR amplifying 318 bp of ICP4 gene of MDV-1, of which, 40.9% (9/22) tested positive. In addition, 5 PCR-positive samples from various farms were sequenced further confirming the identity of MDV. The ICP4 partial gene sequences were submitted to GenBank with the following accession numbers: OP485106, OP485107, OP485108, OP485109, and OP485110. Comparative phylogenetics showed, two of the isolates from the same site, Metema, seem to be clonal complexes forming distinct cluster. The other three isolates, two from Merawi and one from Debretabor, appear to represent distinct genotypes although the isolate from Debretabor is closer to the Metema clonal complex. On the other hand, the isolates from Merawi appeared genetically far related to the rest of the 3 isolates and clustered with Indian MDV strains included in the analysis. This study presented the first molecular evidence of MDV in chicken farms from Northwest Ethiopia. Biosecurity measures should strictly be implemented to hinder the spread of the virus. Nationwide studies on molecular characteristics of MDV isolates, their pathotypes, and estimation of the economic impact associated with the disease may help justify production and use of MD vaccines within the country.
Collapse
Affiliation(s)
- Mastewal Birhan
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | | | | | - Nega Berhane
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | | | | | - Aragaw Zemene
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Kassahun Birie
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | | | | | - Bereket Dessalegn
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Tesfaye Gessese
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Molalegne Bitew
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Wang W, Zhang Y, Xiao S, Liu X, Yan P, Fu C, Yang Z. The brain-specific upregulation of CARD11 in response to avian brain-neurotropic virus infection serves as a potential biomarker. Poult Sci 2023; 102:102539. [PMID: 36805399 PMCID: PMC9969321 DOI: 10.1016/j.psj.2023.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Avian neurotropic viruses are critical problems in poultry industry causing severe central nervous system (CNS) damage with neuroinvasive and neurovirulence properties. Biomarker of neurotropic viral intracranial invasion is of great application value for the diagnosis, but that of avian neurotropic viruses remains elusive. Previously, we found that chicken caspase recruitment domain family, member 11 (CARD11) was only upregulated in virulent Newcastle disease virus-infected chickens and in chicken primary neuronal cells. In this study, CARD11 was systemically expressed in chickens and pigeons detected by absolute qPCR and immunohistochemical (IHC) assay. After virus challenging, only avian neurotropic viruses (avian encephalomyelitis virus [AEV] and pigeon paramyxovirus type 1 [PPMV-1]) except Marek's disease virus (MDV) can invade brain and cause pathological changes. The relative mRNA expression of CARD11 was brain-upregulated in AEV- or PPMV-1-infected animals, rather than MDV and non-neurotropic viruses (fowl adenovirus serotype 4 [FAdV-4] and infectious bronchitis virus [IBV]). Similarly, the protein expression of CARD11 was only upregulated in the cerebra and cerebella infected by avian brain-neurotropic virus using IHC assay. And there were no correlations between the change level of CARD11 and viral load. Our preliminary data suggested that avian CARD11 may be a potential brain biomarker for avian brain-neurotropic virus invasion.
Collapse
Affiliation(s)
- Wenbin Wang
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China.
| | - Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Peipei Yan
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Chunyan Fu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
7
|
Sun A, Zhao X, Zhu X, Kong Z, Liao Y, Teng M, Yao Y, Luo J, Nair V, Zhuang G, Zhang G. Fully Attenuated meq and pp38 Double Gene Deletion Mutant Virus Confers Superior Immunological Protection against Highly Virulent Marek's Disease Virus Infection. Microbiol Spectr 2022; 10:e0287122. [PMID: 36350141 PMCID: PMC9769808 DOI: 10.1128/spectrum.02871-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Marek's disease virus (MDV) induces immunosuppression and neoplastic disease in chickens. The virus is controllable via an attenuated meq deletion mutant virus, which has the disadvantage of retaining the ability to induce lymphoid organ atrophy. To overcome this deficiency and produce more vaccine candidates, a recombinant MDV was generated from the highly virulent Md5BAC strain, in which both meq and a cytolytic replication-related gene, pp38, were deleted. Replication of the double deletion virus, Md5BAC ΔmeqΔpp38, was comparable with that of the parental virus in vitro. The double deletion virus was shown to be fully attenuated and to reduce lymphoid organ atrophy in vivo. Crucially, Md5BAC ΔmeqΔpp38 confers superior protection against highly virulent virus compared with a commercial vaccine strain, CVI988/Rispens. Transcriptomic profiling indicated that Md5BAC ΔmeqΔpp38 induced a different host immune response from CVI988/Rispens. In summary, a novel, effective, and safe vaccine candidate for prevention and control of MD caused by highly virulent MDV is reported. IMPORTANCE MDV is a highly contagious immunosuppressive and neoplastic pathogen. The virus can be controlled through vaccination via an attenuated meq deletion mutant virus that retains the ability to induce lymphoid organ atrophy. In this study, we overcame the deficiency by generating meq and pp38 double deletion mutant virus. Indeed, the successfully generated meq and pp38 double deletion mutant virus had significantly reduced replication capacity in vivo but not in vitro. It was fully attenuated and conferred superior protection efficacy against very virulent MDV challenge. In addition, the possible immunological protective mechanism of the double deletion mutant virus was shown to be different from that of the gold standard MDV vaccine, CVI988/Rispens. Overall, we successfully generated an attenuated meq deletion mutant virus and widened the range of potential vaccine candidates. Importantly, this study provides for the first time the theoretical basis of vaccination induced by fully attenuated gene-deletion mutant virus.
Collapse
Affiliation(s)
- Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaojing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Zhengjie Kong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Yongxiu Yao
- Viral Oncogenesis Group,The Pirbright Institute, Pirbright, Surrey, United Kingdom
- UK-China Centre of Excellence for Research on Avian Diseases, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Venugopal Nair
- Viral Oncogenesis Group,The Pirbright Institute, Pirbright, Surrey, United Kingdom
- UK-China Centre of Excellence for Research on Avian Diseases, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
8
|
V5 and GFP Tagging of Viral Gene pp38 of Marek's Disease Vaccine Strain CVI988 Using CRISPR/Cas9 Editing. Viruses 2022; 14:v14020436. [PMID: 35216029 PMCID: PMC8879161 DOI: 10.3390/v14020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Marek's disease virus (MDV) is a member of alphaherpesviruses associated with Marek's disease, a highly contagious neoplastic disease in chickens. The availability of the complete sequence of the viral genome allowed for the identification of major genes associated with pathogenicity using different techniques, such as bacterial artificial chromosome (BAC) mutagenesis and the recent powerful clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based editing system. Thus far, most studies on MDV genome editing using the CRISPR/Cas9 system have focused on gene deletion. However, analysis of the expression and interactions of the viral proteins during virus replication in infected cells and tumor cells is also important for studying its role in MDV pathogenesis. The unavailability of antibodies against most of the MDV proteins has hindered the progress in such studies. This prompted us to develop pipelines to tag MDV genes as an alternative method for this purpose. Here we describe the application of CRISPR/Cas9 gene-editing approaches to tag the phosphoprotein 38 (pp38) gene of the MDV vaccine strain CVI988 with both V5 and green fluorescent protein (GFP). This rapid and efficient viral-gene-tagging technique can overcome the shortage of specific antibodies and speed up the MDV gene function studies significantly, leading to a better understanding of the molecular mechanisms of MDV pathogenesis.
Collapse
|
9
|
Hein R, Koopman R, García M, Armour N, Dunn JR, Barbosa T, Martinez A. Review of Poultry Recombinant Vector Vaccines. Avian Dis 2021; 65:438-452. [PMID: 34699141 DOI: 10.1637/0005-2086-65.3.438] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 11/05/2022]
Abstract
The control of poultry diseases has relied heavily on the use of many live and inactivated vaccines. However, over the last 30 yr, recombinant DNA technology has been used to generate many novel poultry vaccines. Fowlpox virus and turkey herpesvirus are the two main vectors currently used to construct recombinant vaccines for poultry. With the use of these two vectors, more than 15 recombinant viral vector vaccines against Newcastle disease, infectious laryngotracheitis, infectious bursal disease, avian influenza, and Mycoplasma gallisepticum have been developed and are commercially available. This review focuses on current knowledge about the safety and efficacy of recombinant viral vectored vaccines and the mechanisms by which they facilitate the control of multiple diseases. Additionally, the development of new recombinant vaccines with novel vectors will be briefly discussed.
Collapse
Affiliation(s)
- Ruud Hein
- Consultant Poultry Diseases Molecular Vaccine Technology Georgetown DE 19947,
| | - Rik Koopman
- MSD Animal Health/Intervet International BV, Boxmeer, 5831 AN Netherlands
| | - Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Natalie Armour
- Poultry Research and Diagnostic Laboratory, Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Pearl, MS 39208
| | - John R Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30602
| | | | - Algis Martinez
- Cobb-Vantress Global Veterinary Services, Siloam Springs, AR 72761
| |
Collapse
|
10
|
Marek's disease virus encoded miR-M6 and miR-M10 are dispensable for virus replication and pathogenesis in chickens. Vet Microbiol 2021; 262:109248. [PMID: 34628274 DOI: 10.1016/j.vetmic.2021.109248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/02/2021] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) are a class of approximately 22 nucleotides long non-coding RNAs, and virus-encoded miRNAs play an important role in pathogenesis. Marek's disease virus (MDV) is an oncogenic avian alphaherpesvirus that causes immunosuppression and tumors in its natural host, chicken. In the MDV genome, 14 miRNA precursors and 26 mature miRNAs were identified, thus MDV has been used as a model to study the function of viral miRNAs in vivo. Recently, a cluster of miRNAs encoded by MDV, Cluster 3 miRNAs (miR-M8-M10), has been shown to restrict early cytolytic replication and pathogenesis of MDV. In this study, we further analyzed the role of miR-M6 and miR-M10, members of cluster miR-M8-M10, in MDV replication and pathogenicity. We found that, compared to parental MDV, deletion of miR-M6-5p significantly enhanced the replication of MDV in cell culture, but not in chickens. The replication of miR-M6-5p deletion MDV was restored once the deleted sequences were re-inserted. Our results also showed that deletion of miR-M10-5p did not affect the replication of MDV in vitro and in vivo. In addition, our animal study results showed that deletion of miR-M6-5p or miR-M10-5p did not alter the pathogenesis of MDV. In conclusion, our study shows that both miR-M6 and miR-M10 are dispensable for MDV replication and pathogenesis in chickens, while also suggests a repressive role of miR-M6 in MDV replication in cell culture.
Collapse
|
11
|
Ellington C, Cortes AL, Faiz NM, Mays JK, Fadly A, Silva RF, Gimeno IM. Characterization of Md5-BAC-REV-LTR virus as Marek's disease vaccine in commercial meat-type chickens: protection and immunosuppression. Avian Pathol 2021; 50:490-499. [PMID: 34463588 DOI: 10.1080/03079457.2021.1970108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Md5-BAC-REV-LTR is a recombinant Marek's disease virus (MDV), with an insertion of the long terminal repeat (LTR) of reticuloendotheliosis virus (REV) into the genome of the highly virulent MDV strain rMd5. It has been shown that Md5-BAC-REV-LTR does not induce tumours and confers high protection against challenge with MDV in 15 × 7 chickens. The objective of the present study was to evaluate the protection and safety (in terms of oncogenicity and immunosuppression) of Md5-BAC-REV-LTR in commercial meat-type chickens bearing maternal antibodies against MDV. Our results show that sub-cutaneous administration of Md5-BAC-REV-LTR at 1 day of age conferred high protection (protection index PI = 84.2) against an early challenge (1 day) by contact exposure to shedder birds infected with the vv+ MDV 648A strain. In such stringent challenge conditions, Md5-BAC-REV-LTR was more protective than a commercial CVI988 (PI = 12.4) and similar to the experimental vaccine Md5-BACΔmeq (PI = 92.4). Furthermore, Md5-BAC-REV-LTR did not induce either tumours or immunosuppression in this study. Immunosuppression was evaluated by the relative lymphoid organ weights and also by the ability of the vaccine to induce late-MDV-induced immunosuppression associated with reactivation of the virus. This study shows that Md5-BAC-REV-LTR has the potential to be used as a MD vaccine and is highly protective against early challenge with vv+ MDV. RESEARCH HIGHLIGHTSMd5-BAC-REV-LTR is highly protective against early challenge with vv+ MDV in commercial meat-type chickens.Md5-BAC-REV-LTR does not cause early immunosuppression.Md5-BAC-REV-LTR does not cause late immunosuppression.Unlike other serotype 1 vaccines, Md5-BAC-REV-LTR is not detected in feather pulp at 7 days post vaccination.
Collapse
Affiliation(s)
- C Ellington
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| | - A L Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| | - N M Faiz
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - J K Mays
- USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Aly Fadly
- USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Robert F Silva
- USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - I M Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
12
|
Tang N, Zhang Y, Shen Z, Yao Y, Nair V. Application of CRISPR-Cas9 Editing for Virus Engineering and the Development of Recombinant Viral Vaccines. CRISPR J 2021; 4:477-490. [PMID: 34406035 DOI: 10.1089/crispr.2021.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technology, discovered originally as a bacterial defense system, has been extensively repurposed as a powerful tool for genome editing for multiple applications in biology. In the field of virology, CRISPR-Cas9 technology has been widely applied on genetic recombination and engineering of genomes of various viruses to ask some fundamental questions about virus-host interactions. Its high efficiency, specificity, versatility, and low cost have also provided great inspiration and hope in the field of vaccinology to solve a series of bottleneck problems in the development of recombinant viral vaccines. This review highlights the applications of CRISPR editing in the technological advances compared to the traditional approaches used for the construction of recombinant viral vaccines and vectors, the main factors affecting their application, and the challenges that need to be overcome for further streamlining their effective usage in the prevention and control of diseases. Factors affecting efficiency, target specificity, and fidelity of CRISPR-Cas editing in the context of viral genome editing and development of recombinant vaccines are also discussed.
Collapse
Affiliation(s)
- Na Tang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, P.R. China; University of Oxford, Oxford, United Kingdom
| | - Yaoyao Zhang
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom
| | - Zhiqiang Shen
- Shandong Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, P.R. China; University of Oxford, Oxford, United Kingdom
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom.,The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Kozdruń W, Samanta Niczyporuk J, Styś-Fijoł N. Marek’s Disease Is a Threat for Large Scale Poultry Production. Vet Med Sci 2021. [DOI: 10.5772/intechopen.98939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Marek’s disease (MD) is one of the widespread infectious diseases that causes huge losses in large-scale poultry production. This is due to weight loss, poorer feed conversion and an increased number of deaths among infected birds. The etiological agent is a Marek’s disease virus (MDV) belonging to the Herpesviridae family. It is mainly described in poultry, however, it is also found in geese. There are three MDV serotypes, and four patotypes within serotype 1. Currently, Marek’s disease is very rare in its classical form. There are non-specific clinical symptoms, and anatomopathological changes are mainly observed in the liver, spleen and the reproductive system. This may be due to the evolution in the pathogenicity of MDV field strains over the past several decades. The presence of MDV and number of molecular diagnostic tests based on the detection of viral nucleic acids and viral proteins is already found in birds that have several weeks old. Laboratory diagnostics are based mainly on molecular biology (mainly PCR) methods. The only relatively effective method instead of biosecurity measures, of preventing MD is prophylactic vaccination of 1-day-old chickens or in ovo vaccination. Nevertheless, Marek’s disease is still recorded in poultry flocks around the world, with estimated losses reaching several million dollars.
Collapse
|
14
|
Methods for the Manipulation of Herpesvirus Genome and the Application to Marek's Disease Virus Research. Microorganisms 2021; 9:microorganisms9061260. [PMID: 34200544 PMCID: PMC8228275 DOI: 10.3390/microorganisms9061260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Herpesviruses are a group of double-strand DNA viruses that infect a wide range of hosts, including humans and animals. In the past decades, numerous methods have been developed to manipulate herpesviruses genomes, from the introduction of random mutations to specific genome editing. The development of genome manipulation methods has largely advanced the study of viral genes function, contributing not only to the understanding of herpesvirus biology and pathogenesis, but also the generation of novel vaccines and therapies to control and treat diseases. In this review, we summarize the major methods of herpesvirus genome manipulation with emphasis in their application to Marek’s disease virus research.
Collapse
|
15
|
Latest Insights into Unique Open Reading Frames Encoded by Unique Long (UL) and Short (US) Regions of Marek's Disease Virus. Viruses 2021; 13:v13060974. [PMID: 34070255 PMCID: PMC8225041 DOI: 10.3390/v13060974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Marek’s disease virus (MDV) is an oncogenic avian alphaherpesvirus whose genome consists of unique long (UL) and short (US) regions that are flanked by inverted repeat regions. More than 100 open reading frames (ORFs) have been annotated in the MDV genome, and are involved in various aspects of MDV biology and pathogenesis. Within UL and US regions of MDV, there are several unique ORFs, some of which have recently been shown to be important for MDV replication and pathogenesis. In this review, we will summarize the current knowledge on these ORFs and compare their location in different MDV strains.
Collapse
|
16
|
Sun A, Liao Y, Liu Y, Yang S, Wang X, Zhu X, Teng M, Chai S, Luo J, Zhang G, Zhuang G. Virus-encoded microRNA-M7 restricts early cytolytic replication and pathogenesis of Marek's disease virus. Vet Microbiol 2021; 259:109082. [PMID: 34144834 DOI: 10.1016/j.vetmic.2021.109082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
MicroRNAs (miRNAs) are a class of ∼22 nucleotides non-coding RNAs that are encoded by a wide range of hosts. Viruses, especially herpesviruses, encode a variety of miRNAs that involved in disease progression. Recently, a cluster of virus-encoded miRNAs, miR-M8-M10, have been shown to restrict early cytolytic replication and pathogenesis of Marek's disease virus (MDV), an oncogenic avian alphaherpesvirus that causes lymphoproliferative disease in chickens. In this study, we specifically dissected the role of miR-M7, a member of cluster miR-M8-M10, in regulating MDV replication and pathogenesis. We found that deletion of miR-M7-5p did not affect the virus plaque size and growth in cell culture. However, compared to parental virus, infection of miR-M7-5p deletion virus significantly increased MDV genome copy number at 5 days post infection, suggesting that miR-M7 plays a role to restrict MDV replication during early cytolytic phase. In addition, our results showed that infection of miR-M7-5p deletion virus significantly enhanced the mortality of chickens, even it induced lymphoid organ atrophy similar to parental and revertant viruses. Taken together, our study revealed that the miR-M7 acts as a repressive factor of MDV replication and pathogenesis.
Collapse
Affiliation(s)
- Aijun Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yifei Liao
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Ying Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Shuaikang Yang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiangru Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaojing Zhu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Shujun Chai
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Guoqing Zhuang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
17
|
U S3 Serine/Threonine Protein Kinase from MDV-1, MDV-2, and HVT Differentially Regulate Viral Gene Expression and Replication. Microorganisms 2021; 9:microorganisms9040785. [PMID: 33918706 PMCID: PMC8069862 DOI: 10.3390/microorganisms9040785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Gallid alphaherpesvirus 2 (GaHV-2), commonly known as Marek's disease virus type 1 (MDV-1), is an oncogenic avian alphaherpesvirus, and along with its close relatives-Gallid alphaherpesvirus 3 (GaHV-3) or MDV-2 and Meleagrid alphaherpesvirus 1 (MeHV-1) or turkey herpesvirus (HVT)-belongs to the Mardivirus genus. We and others previously showed that MDV-1 US3 protein kinase plays an important role in viral replication and pathogenesis, which could be partially compensated by MDV-2 and HVT US3. In this study, we further studied the differential roles of MDV-1, MDV-2 and HVT US3 in regulating viral gene expression and replication. Our results showed that MDV-2 and HVT US3 could differentially compensate MDV-1 US3 regulation of viral gene expression in vitro. MDV-2 and HVT US3 could also partially rescue the replication deficiency of MDV-1 US3 null virus in the spleen and thymus, as determined by immunohistochemistry analysis of MDV-1 pp38 protein. Importantly, using immunohistochemistry and dual immunofluorescence assays, we found that MDV-2 US3, but not HVT US3, fully compensated MDV-1 US3 regulation of MDV-1 replication in bursal B lymphocytes. In conclusion, our study provides the first comparative analysis of US3 from MDV-1, MDV-2 and HVT in regulating viral gene expression in cell culture and MDV-1 replication in lymphocytes.
Collapse
|
18
|
Liao Y, Zhuang G, Sun A, Khan OA, Lupiani B, Reddy SM. Marek's Disease Virus Cluster 3 miRNAs Restrict Virus' Early Cytolytic Replication and Pathogenesis. Viruses 2020; 12:v12111317. [PMID: 33212952 PMCID: PMC7698348 DOI: 10.3390/v12111317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Herpesvirus-encoded microRNAs (miRNAs) have been discovered in infected cells; however, lack of a suitable animal model has hampered functional analyses of viral miRNAs in vivo. Marek’s disease virus (MDV) (Gallid alphaherpesvirus 2, GaHV-2) genome contains 14 miRNA precursors, which encode 26 mature miRNAs, grouped into three clusters. In this study, the role of MDV-encoded cluster 3 miRNAs, also known as mdv1-miR-M8-M10, in pathogenesis was evaluated in chickens, the natural host of MDV. Our results show that deletion of cluster 3 miRNAs did not affect virus replication and plaque size in cell culture, but increased early cytolytic replication of MDV in chickens. We also observed that deletion of cluster 3 miRNAs resulted in significantly higher virus reactivation from peripheral blood lymphocytes. In addition, pathogenesis studies showed that deletion of cluster 3 miRNAs resulted in more severe atrophy of lymphoid organs and reduced mean death time, but did not affect the incidence of MDV-associated visceral tumors. We confirmed these results by generating a cluster 3 miRNA revertant virus in which the parental MDV phenotype was restored. To the best of our knowledge, our study provides the first evidence that MDV cluster 3 miRNAs play an important role in modulating MDV pathogenesis.
Collapse
|
19
|
Liao Y, Sun A, Zhuang G, Lupiani B, Reddy SM. Deletion of LORF9 but not LORF10 attenuates Marek's disease virus pathogenesis. Vet Microbiol 2020; 251:108911. [PMID: 33212362 DOI: 10.1016/j.vetmic.2020.108911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
Marek's disease virus (MDV) genome contains a number of uncharacterized long open reading frames (LORF) and their role in viral pathogenesis has not been fully investigated. Among them, LORF9 (MDV069) and LORF10 (MDV071) are locate at the right terminus of the MDV genome unique long region (UL). To investigate their role in MDV pathogenesis, we generated LORF9 or LORF10 deletion and revertant viruses. In vitro growth kinetics results show that both LORF9 and LORF10 are not essential for virus growth in cell culture. However, LORF9, but not LORF10, is involved in MDV early cytolytic replication in vivo, as evidenced by limited viral antigen expression in lymphoid organs of LORF9 deletion virus inoculated chickens. MDV genome copy number data further confirmed that LORF9 is important for MDV replication in spleen during early cytolytic phase. Deletion of LORF9 also partially impairs the replication of MDV in feather follicle epithelium (FFE); however, it can still establish latency and transformation. In addition, pathogenesis studies show that deletion of LORF9, but not LORF10, result in significant reduction of MDV induced mortality and slightly reduce MDV associated tumors of inoculated chickens. Importantly, we confirmed these results with the generation of LORF9 and LORF10 revertant viruses that fully restore the phenotypes of parental MDV. In conclusion, our results show that deletion of LORF9, but not LORF10, significantly impair viral replication in lymphoid organs during early cytolytic phase and attenuate Marek's disease virus pathogenesis.
Collapse
Affiliation(s)
- Yifei Liao
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Aijun Sun
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Guoqing Zhuang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Blanca Lupiani
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sanjay M Reddy
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
20
|
Lachheb J, Mastour H, Nsiri J, Kaboudi K, Choura I, Ammouna F, Amara A, Ghram A. Newly detected mutations in the Meq oncogene and molecular pathotyping of very virulent Marek's disease herpesvirus in Tunisia. Arch Virol 2020; 165:2589-2597. [PMID: 32876794 PMCID: PMC7547972 DOI: 10.1007/s00705-020-04790-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
Marek's disease (MD) is a contagious avian viral disease that is responsible for large economic losses to farmers. The disease is caused by Marek's disease virus (species Gallid alphaherpesvirus 2), which causes neurological lesions, immune suppression, and tumor proliferation of lymphoid cells that invade a large number of organs and tissues. Despite widespread vaccination, Marek's disease virus (MDV), has shown a continuous increase in its virulence and has acquired the ability to overcome immune responses induced by vaccines. In the present study, the oncogenic serotype MDV-1 was detected by real-time PCR in DNA samples extracted from organs developing tumor infiltrations. Identification of the pathotype based on a 132-bp tandem repeat and sequencing and phylogenetic analysis of the Meq gene and its encoded protein allowed classification of the isolated viruses as "very virulent", with two new and unique mutations in the Meq gene resulting in amino acid substitutions. Sequencing of pp38, vIl-8, UL1 and UL44 genes did not reveal any new mutations that were characteristic of the Tunisian isolates or correlated with virulence. These results raised concerns about the ability of HVT and CVI988 vaccines, which are currently used in Tunisia and other countries, to protect chickens against highly virulent virus strains.
Collapse
Affiliation(s)
- Jihene Lachheb
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| | - Houssem Mastour
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Khaled Kaboudi
- Department of Poultry Farming and Pathology, National School of Veterinary Medicine, University of Carthage, Sidi Thabet, Tunis, Tunisia
| | - Imed Choura
- Society of Animal Nutrition (SNA), Tunis, Tunisia
| | - Faten Ammouna
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Abdelkader Amara
- Department of Poultry Farming and Pathology, National School of Veterinary Medicine, University of Carthage, Sidi Thabet, Tunis, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
21
|
Sun P, Cui N, Liu L, Su S, Cheng Z, Chen R, Li Y, Cui Z. Attenuation of a recombinant Marek's disease virus lacking the meq oncogene and evaluation on its immune efficacy against Marek's disease virus. Poult Sci 2020; 99:1939-1945. [PMID: 32241474 PMCID: PMC7587640 DOI: 10.1016/j.psj.2019.11.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/30/2022] Open
Abstract
SC9-2 is a recombinant Marek's disease virus (MDV) strain lacking the meq oncogene. Previous study demonstrated that SC9-2 virus provides good protection against challenge with a very virulent MDV rMd5, but it induces immunosuppressive effects in specific pathogen-free (SPF) chickens. In the present study, SC9-2 was serially passaged on chicken embryo fibroblast (CEF) cell cultures. The pathogenicity and immune efficacy of SC9-2/10th and SC9-2/40th against rMd5 were evaluated. Animal experimental results showed that SC9-2/10th and SC9-2/40th showed no lethality or tumorigenicity in SPF chickens. Body weight of chickens inoculated with SC9-2/40th were significantly higher than that of the chickens inoculated with SC9-2/10th but lower than that of the uninoculated controls. The severity of bursa and thymus atrophy (BTA) and spleen enlargement in SC9-2/40th-inoculated chickens were also weaker than the SC9-2/10th-inoculated ones but stronger than the uninoculated controls. Chickens inoculated with SC9-2/40th and SC9-2/10th showed similar antibody levels induced by H9N2 subtype avian influenza virus/Newcastle disease virus inactivated vaccines, both of which were lower than the uninoculated controls. Replication of SC9-2/40th was significantly lower than SC9-2/10th in feather follicle epithelium (FFE) of infected chickens. The immune protection index of SC9-2/40th was also lower than that of SC9-2/10th, but the difference was not significantly, and both of which were significant higher than that of the commercial MDV vaccine CVI988/Rispens. The results of our studies demonstrated that SC9-2/40th showed weaker severity of BTA, spleen enlargement, and body weight loss and lower replication level in FFE than SC9-2/10th in SPF chickens. However, SC9-2/40th was able to confer better immune protection as compared with CVI988/Rispens vaccination in SPF chickens. In conclusion, serially attenuation of SC9-2 in CEFs reduced the lymphoid organ atrophy and replication in SPF chickens, and the immune protective efficacy of attenuated viruses was still superior than CVI988/Rispens.
Collapse
Affiliation(s)
- Peng Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ning Cui
- Shandong Key Laboratory of Animal Disease Control & Breeding; Institute of Animal Husbandry and Veterinary, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Linqing Liu
- China Animal Disease Control Center, Beijing, 100125 China
| | - Shuai Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Ziqiang Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yanpeng Li
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong 526238, China
| | - Zhizhong Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
22
|
Zhang Y, Luo J, Tang N, Teng M, Reddy VRAP, Moffat K, Shen Z, Nair V, Yao Y. Targeted Editing of the pp38 Gene in Marek's Disease Virus-Transformed Cell Lines Using CRISPR/Cas9 System. Viruses 2019; 11:E391. [PMID: 31027375 PMCID: PMC6563304 DOI: 10.3390/v11050391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Marek's disease virus (MDV), a lymphotropic α-herpesvirus associated with T-cell lymphomas in chickens, is an excellent model for herpesvirus biology and virus-induced oncogenesis. Marek's disease (MD) is also one of the cancers against which a vaccine was first used. In the lymphomas and lymphoblastoid cell lines (LCLs) derived from them, MDV establishes latent infection with limited gene expression. Although LCLs are valuable for interrogating viral and host gene functions, molecular determinants associated with the maintenance of MDV latency and lytic switch remain largely unknown, mainly due to the lack of tools for in situ manipulation of the genomes in these cell lines. Here we describe the first application of CRISPR/Cas9 editing approach for precise editing of the viral gene phosphoprotein 38 (pp38), a biomarker for latent/lytic switch in MDV-transformed LCLs MDCC-MSB-1 (Marek's disease cell line MSB-1) and MDCC-HP8. Contradictory to the previous reports suggesting that pp38 is involved in the maintenance of transformation of LCL MSB-1 cells, we show that pp38-deleted cells proliferated at a significant higher rate, suggesting that pp38 is dispensable for the transformed state of these cell lines. Application of CRISPR/Cas9-based gene editing of MDV-transformed cell lines in situ opens up further opportunities towards a better understanding of MDV pathogenesis and virus-host interactions.
Collapse
Affiliation(s)
- Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK.
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Na Tang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK.
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, China.
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Vishwanatha R A P Reddy
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK.
| | - Katy Moffat
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK.
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, China.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK.
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK.
| |
Collapse
|
23
|
Bertzbach LD, Kheimar A, Ali FAZ, Kaufer BB. Viral Factors Involved in Marek’s Disease Virus (MDV) Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0104-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Zhang Y, Tang N, Sadigh Y, Baigent S, Shen Z, Nair V, Yao Y. Application of CRISPR/Cas9 Gene Editing System on MDV-1 Genome for the Study of Gene Function. Viruses 2018; 10:v10060279. [PMID: 29794970 PMCID: PMC6024840 DOI: 10.3390/v10060279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Marek’s disease virus (MDV) is a member of alphaherpesviruses associated with Marek’s disease, a highly contagious neoplastic disease in chickens. Complete sequencing of the viral genome and recombineering techniques using infectious bacterial artificial chromosome (BAC) clones of Marek’s disease virus genome have identified major genes that are associated with pathogenicity. Recent advances in CRISPR/Cas9-based gene editing have given opportunities for precise editing of the viral genome for identifying pathogenic determinants. Here we describe the application of CRISPR/Cas9 gene editing approaches to delete the Meq and pp38 genes from the CVI988 vaccine strain of MDV. This powerful technology will speed up the MDV gene function studies significantly, leading to a better understanding of the molecular mechanisms of MDV pathogenesis.
Collapse
Affiliation(s)
- Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Na Tang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, Shandong, China.
| | - Yashar Sadigh
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Susan Baigent
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, Shandong, China.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| |
Collapse
|
25
|
Yavuz O, Erer H. Immunohistochemical and immunocytochemical findings associated with Marek’s disease virus in naturally infected laying hens. Biotech Histochem 2017; 92:498-505. [DOI: 10.1080/10520295.2017.1359750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- O Yavuz
- Faculty of Veterinary Medicine, Department of Pathology, Aksaray University, Aksaray
| | - H Erer
- Faculty of Veterinary Medicine, Department of Pathology, Selçuk University, Konya, Turkey
| |
Collapse
|
26
|
Trimpert J, Groenke N, Jenckel M, He S, Kunec D, Szpara ML, Spatz SJ, Osterrieder N, McMahon DP. A phylogenomic analysis of Marek's disease virus reveals independent paths to virulence in Eurasia and North America. Evol Appl 2017; 10:1091-1101. [PMID: 29151863 PMCID: PMC5680632 DOI: 10.1111/eva.12515] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/01/2017] [Indexed: 12/28/2022] Open
Abstract
Virulence determines the impact a pathogen has on the fitness of its host, yet current understanding of the evolutionary origins and causes of virulence of many pathogens is surprisingly incomplete. Here, we explore the evolution of Marek's disease virus (MDV), a herpesvirus commonly afflicting chickens and rarely other avian species. The history of MDV in the 20th century represents an important case study in the evolution of virulence. The severity of MDV infection in chickens has been rising steadily since the adoption of intensive farming techniques and vaccination programs in the 1950s and 1970s, respectively. It has remained uncertain, however, which of these factors is causally more responsible for the observed increase in virulence of circulating viruses. We conducted a phylogenomic study to understand the evolution of MDV in the context of dramatic changes to poultry farming and disease control. Our analysis reveals evidence of geographical structuring of MDV strains, with reconstructions supporting the emergence of virulent viruses independently in North America and Eurasia. Of note, the emergence of virulent viruses appears to coincide approximately with the introduction of comprehensive vaccination on both continents. The time‐dated phylogeny also indicated that MDV has a mean evolutionary rate of ~1.6 × 10−5 substitutions per site per year. An examination of gene‐linked mutations did not identify a strong association between mutational variation and virulence phenotypes, indicating that MDV may evolve readily and rapidly under strong selective pressures and that multiple genotypic pathways may underlie virulence adaptation in MDV.
Collapse
Affiliation(s)
- Jakob Trimpert
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Nicole Groenke
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Maria Jenckel
- Institute of Diagnostic Virology Friedrich-Loeffler-Institut Greifswald-Insel Riems Germany
| | - Shulin He
- Institut für Biologie Freie Universität Berlin Berlin Germany.,Department for Materials and Environment BAM Federal Institute for Materials Research and Testing Berlin Germany
| | - Dusan Kunec
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences Pennsylvania State University University Park PA USA
| | - Stephen J Spatz
- United States Department of Agriculture US National Poultry Research Center Athens GA USA
| | | | - Dino P McMahon
- Institut für Biologie Freie Universität Berlin Berlin Germany.,Department for Materials and Environment BAM Federal Institute for Materials Research and Testing Berlin Germany
| |
Collapse
|
27
|
Sun GR, Zhang YP, Zhou LY, Lv HC, Zhang F, Li K, Gao YL, Qi XL, Cui HY, Wang YQ, Gao L, Pan Q, Wang XM, Liu CJ. Co-Infection with Marek's Disease Virus and Reticuloendotheliosis Virus Increases Illness Severity and Reduces Marek's Disease Vaccine Efficacy. Viruses 2017; 9:E158. [PMID: 28635675 PMCID: PMC5490833 DOI: 10.3390/v9060158] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
Marek's disease virus (MDV) and reticuloendotheliosis virus (REV) cause Marek's disease (MD) and reticuloendotheliosis (RE), respectively. Co-infection with MDV and REV is common in chickens, causing serious losses to the poultry industry. However, experimental studies of such co-infection are lacking. In this study, Chinese field strains of MDV (ZW/15) and REV (JLR1501) were used as challenge viruses to evaluate the pathogenicity of co-infection and the influence of MD vaccination in chickens. Compared to the MDV-challenged group, the mortality and tumor rates increased significantly by 20.0% (76.7 to 96.7%) and 26.7% (53.3 to 80.0%), in the co-challenged group, respectively. The protective index of the MD vaccines CVI988 and 814 decreased by 33.3 (80.0 to 47.7) and 13.3 (90.0 to 76.7), respectively. These results indicated that MDV and REV co-infection significantly increased disease severity and reduced the vaccine efficacy. The MDV genome load showed no difference in the feather pulps and spleen, and pathogenicity-related MDV gene expression (meq, pp38, vIL-8, and ICP4) in the spleen significantly increased at some time points in the co-challenged group. Clearly, synergistic pathogenicity occurred between MDV and REV, and the protective efficacy of existing MD vaccines was attenuated by co-infection with Chinese field MDV and REV strains.
Collapse
Affiliation(s)
- Guo-Rong Sun
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Yan-Ping Zhang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Lin-Yi Zhou
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Hong-Chao Lv
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Feng Zhang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Kai Li
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Yu-Long Gao
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Xiao-Le Qi
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Hong-Yu Cui
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Yong-Qiang Wang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Li Gao
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Qing Pan
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Xiao-Mei Wang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Chang-Jun Liu
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
28
|
Dunn JR, Reddy SM, Niikura M, Nair V, Fulton JE, Cheng HH. Evaluation and Identification of Marek's Disease Virus BAC Clones as Standardized Reagents for Research. Avian Dis 2017; 61:107-114. [DOI: 10.1637/0005-2086-61.1.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- John R. Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - Sanjay M. Reddy
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | | | - Venugopal Nair
- Pirbright Institute, Pirbright, Surrey, GU24 0NF, United Kingdom
| | | | - Hans H. Cheng
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| |
Collapse
|
29
|
Li K, Liu Y, Liu C, Gao L, Zhang Y, Cui H, Gao Y, Qi X, Zhong L, Wang X. Recombinant Marek's disease virus type 1 provides full protection against very virulent Marek's and infectious bursal disease viruses in chickens. Sci Rep 2016; 6:39263. [PMID: 27982090 PMCID: PMC5159867 DOI: 10.1038/srep39263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/22/2016] [Indexed: 11/24/2022] Open
Abstract
Marek’s disease virus (MDV) is a preferred vector in the construction of recombinant vaccines. However, bivalent vaccine based on MDV that confers full protection against both very virulent Marek’s and infectious bursal disease virus (IBDV) infections in chickens has not been produced. Here we developed a system utilizing overlapping fosmid DNAs transfection that rescues an MDV type 1 (MDV1) vaccine strain. Using this system, we inserted the IBDV VP2 gene at MDV1 genome sites UL41, US10 and US2. The VP2 protein was stably expressed in the recombinant MDV-infected cells and self-assembled into IBDV subviral particles. Insertion of the VP2 gene did not affect the replication phenotype of MDV in cell cultures, nor did it increase the virulence of the MDV vaccine strain in chickens. After challenge with very virulent IBDV, r814US2VP2 conferred full protection, whereas r814UL41VP2 and r814US10VP2 provided partial or no protection. All the three recombinant vaccines provided full protection against very virulent MDV challenge in chickens. These results demonstrated that r814US2VP2 could be used as a promising bivalent vaccine against both Marek’s and infectious bursal diseases in chickens.
Collapse
Affiliation(s)
- Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Li Zhong
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| |
Collapse
|
30
|
Boodhoo N, Gurung A, Sharif S, Behboudi S. Marek's disease in chickens: a review with focus on immunology. Vet Res 2016; 47:119. [PMID: 27894330 PMCID: PMC5127044 DOI: 10.1186/s13567-016-0404-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), is a commercially important neoplastic disease of poultry which is only controlled by mass vaccination. Importantly, vaccines that can provide sterile immunity and inhibit virus transmission are lacking; such that vaccines are only capable of preventing neuropathy, oncogenic disease and immunosuppression, but are unable to prevent MDV transmission or infection, leading to emergence of increasingly virulent pathotypes. Hence, to address these issues, developing more efficacious vaccines that induce sterile immunity have become one of the important research goals for avian immunologists today. MDV shares very close genomic functional and structural characteristics to most mammalian herpes viruses such as herpes simplex virus (HSV). MD also provides an excellent T cell lymphoma model for gaining insights into other herpesvirus-induced oncogenesis in mammals and birds. For these reasons, we need to develop an in-depth knowledge and understanding of the host-viral interaction and host immunity against MD. Similarly, the underlying genetic variation within different chicken lines has a major impact on the outcome of infection. In this review article, we aim to investigate the pathogenesis of MDV infection, host immunity to MD and discuss areas of research that need to be further explored.
Collapse
Affiliation(s)
- Nitish Boodhoo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Angila Gurung
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| |
Collapse
|
31
|
Marek's disease vaccines: Current status, and strategies for improvement and development of vector vaccines. Vet Microbiol 2016; 206:113-120. [PMID: 28038868 DOI: 10.1016/j.vetmic.2016.11.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/19/2016] [Accepted: 11/23/2016] [Indexed: 11/24/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative viral disease of chickens, which has been controlled through vaccination since 1969. MD vaccines protect against tumors but do not provide sterilizing immunity, and thus it is generally believed that their use has contributed to increase virulence of field strains with the ability to cause MD in vaccinated chickens. Traditional methods of developing vaccines, like cell culture attenuation, have proved unsuccessful for the development of improved vaccines to protect against highly virulent MD virus (MDV) field strains. With the advent of recombinant DNA technology, it is now possible to study MDV gene function and develop rational vaccines that protect against highly pathogenic strains. In addition, the long term protection conferred by MD vaccines, their excellent safety profile, their efficacy when administered early (at hatch or in ovo), and their ability to overcome maternal antibodies, has made MDV an excellent candidate vector to protect not only against MD but also against other important viral poultry diseases. In this review we will discuss the current status of MD vaccines and their use as vector vaccines to control important viral poultry diseases.
Collapse
|
32
|
Kumar MA, Barathidasan R, Palanivelu M, Singh S, Wani MY, Malik YS, Singh R, Dhama K. A novel recombinant Meq protein based dot-ELISA for rapid and confirmatory diagnosis of Marek’s disease induced lymphoma in poultry. J Virol Methods 2016; 236:271-280. [DOI: 10.1016/j.jviromet.2016.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/03/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
33
|
Cui N, Su S, Sun P, Zhang Y, Han N, Cui Z. Isolation and pathogenic analysis of virulent Marek's disease virus field strain in China. Poult Sci 2016; 95:1521-1528. [PMID: 26976907 DOI: 10.3382/ps/pew073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022] Open
Abstract
Marek's disease (MD) has become increasingly common in China, resulting in considerable economic loss. The etiological agent is unclear. In this study, we isolated a field MD virus (MDV) strain, designated SX1301, from CVI988/Rispens-vaccinated chickens with tumors. Co-infection of avian leukosis virus, reticuloendotheliosis virus, and chicken infectious anemia virus was excluded by polymerase chain reaction, enzyme-linked immunosorbant assay, DNA blotting hybridization, and indirect immunofluorescence assay. As with most strains isolated in China, SX1301 had the same amino acid mutation of meq protein at positions 77(E), 80(Y), and 115(A) Animal experimental results showed development of lethal MD in 57% and MD tumor in 23% of the specific pathogen-free chickens inoculated with SX1301, with tumors mainly distributed in spleen, liver, and kidney. CVI988/Rispens protected 83% of chickens upon challenge with SX1301, with a mortality rate and tumor incidence of 10% and 7%, respectively. These results implicated SX1301 as a virulent MDV strain, with commercial MDV vaccine CVI988/Rispens unable to confer adequate protection against SX1301. There have been no reports of very virulent (vv) plus MDV in China, but frequently occurring virulent MDV may account for the repeated outbreaks of MD. Vaccines with greater efficacy are needed to protect against MDV.
Collapse
Affiliation(s)
- Ning Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shuai Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Peng Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yankun Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ni Han
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
34
|
Su S, Cui N, Li J, Sun P, Li H, Li Y, Cui Z. Deletion of the BAC sequences from recombinant meq-null Marek's disease (MD) virus increases immunosuppression while maintaining protective efficacy against MD. Poult Sci 2016; 95:1504-1512. [PMID: 26957626 DOI: 10.3382/ps/pew067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022] Open
Abstract
Marek's disease virus (MDV) GX0101 is a field strain of MDV with a naturally occurring insertion of the reticuloendotheliosis virus (REV) long terminal repeat (LTR) fragment. Both copies of the meq gene were knocked out in the GX0101 bacterial artificial chromosome (BAC) clone to construct the recombinant virus SC9-1, resulting in a complete lack of pathogenicity and providing better protection against MD than CVI988/Rispens. In the present study, the BAC sequences in SC9-1 were removed using a cre-loxP system, and the virus termed SC9-2. SC9-2 showed a significant increase in replication in vitro and in vivo. There was a significant decrease in chicken weight, immune organ index, and antibody levels compared with those of SC9-1-inoculated chickens. The immune protection index of SC9-2 was similar to that of SC9-1, and the difference was not significant. The results of our studies demonstrate that the SC9-2 virus provides protection in specific pathogen free (SPF) chickens when challenged with a very virulent MDV rMd5, but it induces immunosuppressive effects in SPF chickens.
Collapse
Affiliation(s)
- S Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - N Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - J Li
- Tengzhou Animal Husbandry and Veterinary Bureau, Tengzhou, Shandong, 277500, China
| | - P Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - H Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Y Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Z Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
35
|
Zhang YP, Lv HC, Bao KY, Gao YL, Gao HL, le Qi X, Cui HY, Wang YQ, Li K, Gao L, Wang XM, Liu CJ. Molecular and pathogenicity characterization of Gallid herpesvirus 2 newly isolated in China from 2009 to 2013. Virus Genes 2015; 52:51-60. [PMID: 26611441 DOI: 10.1007/s11262-015-1264-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
During the course of our continuous surveillance of Gallid herpesvirus 2 (GaHV-2), 44 isolates were obtained from GaHV-2-positive chickens of different flocks in China from 2009 to 2013. The meq gene, considered as a major GaHV-2 oncogene, was sequenced and was found to contain an open reading frame of 1020 nucleotides encoding a 339 amino acid (aa) polypeptide in all isolates. Compared with the GaHV-2 GA strain, the meq genes in 15.9 % (7/44) of the isolates analyzed in this study contained an aa substitution mutation at position 88 (A to T) of which is the first report. The main characteristics of Chinese GaHV-2 isolates meq genes included the substitutions K77E, D80Y, V115A, T139A, P176R, and P217A, and the aa substitution frequency at positions 139 and 176 showed an increase. To test the pathogenicity of the isolates, a pathogenicity study and a vaccination-challenge test were performed on three selected isolates (ZY/1203, WC/1203, and WC/1110) and reference strain GA. The results showed that the three isolates induced gross Marek's disease (MD) lesions in 95.0-100 % cases, which was a higher rate than that obtained for strain GA (82.4 %). Three isolates induced mortality in 10-21.1 % of specific-pathogen-free chickens, which was similar to results with strain GA (23.5 %). The commercially available CVI988 vaccine induced lower protective indices (PIs) against ZY/1203 (82.4) and WC/1110 (83.3) as compared to those against WC/1203 (100) and GA (100). These results showed an evolving trend in the meq genes of the isolates; three isolates exhibited higher morbidity as compared to the reference strain and the vaccine induced lower PIs against two isolates as compared to that against the reference strain.
Collapse
Affiliation(s)
- Yan-Ping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Hong-Chao Lv
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Ke-Yan Bao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Yu-Long Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Hong-Lei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Xiao- le Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Hong-Yu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Yong-Qiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Xiao-Mei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Chang-Jun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| |
Collapse
|
36
|
Understanding the molecular basis of disease is crucial to improving the design and construction of herpesviral vectors for veterinary vaccines. Vaccine 2015; 33:5897-904. [PMID: 26387436 DOI: 10.1016/j.vaccine.2015.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/13/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022]
Abstract
Viral infections are associated with production losses in many animal production industries. Important examples of this are Marek's disease (MD) and bovine respiratory disease (BRD) which are significant issues in the chicken and cattle industries, respectively. Viruses play key roles in MD and BRD development and consequently have also been utilised in vaccination strategies to control these diseases. Despite the widespread availability and use of vaccines to control these diseases both are still major issues for their respective industries. Here the dual role of members of viruses from the family Herpesviridae in causation and control of MD and BRD will be discussed. The technologies that may lead to the development of improved vaccines to provide more sustainable control of MD and BRD will also be identified.
Collapse
|
37
|
Woźniakowski G, Niczyporuk JS. Detection of specific UL49 sequences of Marek's disease virus CVI988/Rispens strain using loop-mediated isothermal amplification. J Virol Methods 2015; 221:22-8. [DOI: 10.1016/j.jviromet.2015.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
|
38
|
Hunt HD, Dunn JR. The Influence of Major Histocompatibility Complex and Vaccination with Turkey Herpesvirus on Marek's Disease Virus Evolution. Avian Dis 2015; 59:122-9. [DOI: 10.1637/10677-092413-reg] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
A recombinant field strain of Marek's disease (MD) virus with reticuloendotheliosis virus long terminal repeat insert lacking the meq gene as a vaccine against MD. Vaccine 2015; 33:596-603. [DOI: 10.1016/j.vaccine.2014.12.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/11/2014] [Accepted: 12/17/2014] [Indexed: 11/19/2022]
|
40
|
Zhang Z, Chen W, Ma C, Zhao P, Duan L, Zhang F, Sun A, Li Y, Su H, Li S, Cui H, Cui Z. Construction of recombinant Marek's disease virus (MDV) lacking the meq oncogene and co-expressing AIV-H9N2 HA and NA genes under control of exogenous promoters. J Biotechnol 2014; 181:45-54. [DOI: 10.1016/j.jbiotec.2014.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 11/30/2022]
|
41
|
Gimeno IM, Dunn JR, Cortes AL, El-Gohary AEG, Silva RF. Detection and Differentiation of CVI988 (Rispens Vaccine) from Other Serotype 1 Marek's Disease Viruses. Avian Dis 2014; 58:232-43. [DOI: 10.1637/10666-091713-reg.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Zhang Z, Ma C, Zhao P, Duan L, Chen W, Zhang F, Cui Z. Construction of recombinant Marek's disease virus (rMDV) co-expressing AIV-H9N2-NA and NDV-F genes under control of MDV's own bi-directional promoter. PLoS One 2014; 9:e90677. [PMID: 24599338 PMCID: PMC3944216 DOI: 10.1371/journal.pone.0090677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/03/2014] [Indexed: 11/29/2022] Open
Abstract
To qualitatively analyze and evaluate a bi-directional promoter transcriptional function in both transient and transgenic systems, several different plasmids were constructed and recombinant MDV type 1 strain GX0101 was developed to co-express a Neuraminidase (NA) gene from Avian Influenza Virus H9N2 strain and a Fusion (F) gene from the Newcastle disease virus (NDV). The two foreign genes, NDV-F gene and AIV-NA gene, were inserted in the plasmid driven in each direction by the bi-directional promoter. To test whether the expression of pp38/pp24 heterodimers are the required activators for the expression of the foreign genes, the recombinant plasmid pPpp38-NA/1.8kb-F containing expression cassette for the two foreign genes was co-transfected with a pp38/pp24 expression plasmid, pBud-pp38-pp24, in chicken embryo fibroblast (CEF) cells. Alternatively, plasmid pPpp38-NA/1.8kb-F was transfected in GX0101-infected CEFs where the viral endogenous pp38/pp24 were expressed via virus infection. The expression of both foreign genes was activated by pp38/pp24 dimers either via virus infection, or co-expression. The CEFs transfected with pPpp38-NA/1.8kb-F alone had no expression. We chose to insert the expression cassette of Ppp38-NA/1.8kb-F in the non-essential region of GX0101ΔMeq US2 gene, and formed a new rMDV named MZC13NA/F through homologous recombination. Indirect fluorescence antibody (IFA) test, ELISA and Western blot analyses indicated that F and NA genes were expressed simultaneously under control of the bi-directional promoter, but in opposite directions. The data also indicated the activity of the promoter in the 1.8-kb mRNA transcript direction was higher than that in the direction for the pp38 gene. The expression of pp38/pp24 dimers either via co-tranfection of the pBud-pp38-pp24 plasmid, or by GX0101 virus infection were critical to activate the bi-directional promoter for expression of two foreign genes in both directions. Therefore, the confirmed function of the bi-directional promoter provides better feasibilities to insert multiple foreign genes in MDV genome based vectors.
Collapse
Affiliation(s)
- Zhenjie Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Chengtai Ma
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Luntao Duan
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Wenqing Chen
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Fushou Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
- * E-mail:
| |
Collapse
|
43
|
Davison F, Nair V. Use of Marek’s disease vaccines: could they be driving the virus to increasing virulence? Expert Rev Vaccines 2014; 4:77-88. [PMID: 15757475 DOI: 10.1586/14760584.4.1.77] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marek's disease (MD) is an economically important neoplastic disease of poultry. MD almost devastated the poultry industry in the 1960s but the disease was brought under control after Marek's disease herpesvirus (MDV) was identified and vaccines were developed. This is the first effective use of an antiviral vaccination to prevent a naturally occurring cancer in any species. MDV infection has many effects. Initially causing a cytolytic infection in B-lymphocytes, MDV infects activated T-lymphocytes where it becomes latent. In susceptible chicken genotypes MDV transforms CD4+ lymphocytes, causing visceral lymphomas and/or neural lesions and paralysis. Fully productive infection and shedding of infectious virus only occurs in the feather-follicle epithelium. Vaccination of newly-hatched chicks with live vaccines has been widely used to successfully control MD since the early 1970s. However, vaccinated chickens still become infected and shed MDV. Vaccine breaks have occurred with regularity and there is evidence that the use of MD vaccines could be driving MDV to greater virulence. MD continues to be a threat and a number of strategies have been adopted such as the use of more potent vaccines and vaccination of the embryonic stage to provide earlier protection. Recombinant MD vaccines are useful vectors and are being exploited to carry both viral and host genes to enhance protective immune responses. The future aim must be to develop a sustainable vaccine strategy that does not drive MDV to increased virulence.
Collapse
Affiliation(s)
- Fred Davison
- Head and Avian Immunology Group, Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK.
| | | |
Collapse
|
44
|
Abstract
Since the first report of a polyneuritis in chickens by Joseph Marek in 1907, the clinical nature of the disease has changed. Over the last five decades, the pathogenicity of the Marek's disease virus (MDV) has continued to evolve from the relatively mild strains observed in the 1960s to the more severe strains labeled very virulent plus currently observed in today's outbreaks. To understand the influence of host genetics, specifically the major histocompatibility complex (MHC), on virus evolution, a bacterial artificial chromosome-derived MDV (Md5B40BAC) was passed in vivo through resistant (MHC-B21) and susceptible (MHC-B13) Line 0 chickens. Criteria for selecting virus isolates for in vivo passage were based on virus replication in white blood cells 21 days after challenge and evaluation of MD pathology at necropsy. In the MHC-B13-susceptible line the Md5B40BAC virulence consistently increased from 18% Marek's disease (MD) after in vivo passage 1 (B13-IVP1 Md5B40BAC) to 94% MD after B13-IVP5 Md5B40BAC challenge. In the MHC-B21-resistant line MD virulence fluctuated from 28% at B21-IVP1 Md5B40BAC to a high of 65% in B21-IVP2 Md5B40BAC back to a low of 23% in B21-IVP5 Md5B40BAC-challenged chicks. Although the B21-IVP5 Md5B40BAC isolates were relatively mild in the MHC-B21 chicken line (56% MDV), they were highly virulent in the MHC-B13 line (100% MDV). From this series of experiments it would appear that MDV evolution toward greater virulence occurs in both susceptible and resistant MHC haplotypes, but the resulting increase in pathogenicity is constrained by the resistant MHC haplotype.
Collapse
Affiliation(s)
- Henry D Hunt
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, 3606 E. Mount Hope Road, East Lansing, MI 48823, USA.
| | | |
Collapse
|
45
|
Abstract
Despite the remarkable progress in our understanding of Marek's disease (MD) and the causative Marek's disease virus (MDV) biology, a number of major features of this complex viral disease remain unknown. Significant information on critical aspects of virus latency in lymphoid cells, and the virus-host interaction in MDV-induced lymphoma, remains to be identified. Moreover, the nature of the unique milieu of the feather follicle epithelial cell that allows cytolytic infection to continue, despite maintaining the latent infection in the lymphoid cells, is not fully understood. Although there has been significant progress in our understanding of the functions of a number of viral genes in the pathogenesis of the disease, the characteristics of the latent infection, how it differs from tumor phase, and whether latency is a prerequisite for the tumor phase are all important questions still to be answered. Reticuloendotheliosis virus-transformed cell lines have been shown to support MDV latency in a manner almost identical to that seen in MDV-transformed cell lines. There are increasing data on the role of epigenetic regulation, including DNA methylation and histone modifications, in maintaining viral latency. Onset of MD tumor is relatively rapid, and recent studies based on chromosomal integration and T-cell repertoire analysis demonstrated the clonal nature of MD lymphomas. Among the viral determinants of oncogenicity, the basic leucine zipper protein Meq is considered to be the most important and the most extensively studied. Deleting the Meq proteins or abolishing some of the important interactions does affect the oncogenicity of the virus. In addition, the noncoding sequences in the viral genome, such as the viral telomerase RNA and the virus-encoded microRNAs, also have significant influence on MDV-encoded oncogenesis.
Collapse
Affiliation(s)
- Venugopal Nair
- Avian Viral Diseases Programme, The Pirbright Institute, Compton Laboratory, Compton, Berkshire RG20 7NN, United Kingdom.
| |
Collapse
|
46
|
Lee LF, Kreager K, Heidari M, Zhang H, Lupiani B, Reddy SM, Fadly A. Properties of a meq-deleted rmd5 Marek's disease vaccine: protection against virulent MDV challenge and induction of lymphoid organ atrophy are simultaneously attenuated by serial passage in vitro. Avian Dis 2013; 57:491-7. [PMID: 23901766 DOI: 10.1637/10388-092612-reg.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have previously shown that deletion of the meq gene from the genome of Cosmid-cloned rMd5 strain of Marek's disease virus (MDV-1) resulted in loss of transformation and oncogenic capacity of the virus. The rMd5deltaMeq (Meq null) virus has been shown to be an excellent vaccine in maternal antibody positive (MAb+) chickens challenged with a very virulent plus (vv+) strain of MDV, 648A. The only drawback was that it retained its ability to induce bursa and thymus atrophy (BTA) like that of the parental rMd5 in maternal antibody negative (MAb-) chickens. We recently reported that the attenuated Meq null virus did not induce BTA at the 40th cell culture passage onward. Its protective ability against challenge with vv+ MDV, strain 686 was similar to the original virus at the 19th passage in MAb- chickens. In this study, we compared the same series of attenuated meq null viruses in commercial chickens. In commercial chickens with MAb, the attenuated viruses quickly lost protection with increasing cell culture attenuation. These data suggest that although attenuation of these meq null viruses eliminated BTA, it had no influence on their protective efficacy in MAb- chickens. However, in commercial chickens (MAb+), the best protection was provided by the original 19th passage; the attenuated 40th passage was as good as one of the currently commercial CVI988/Rispens vaccine, and it did not induce BTA. Therefore, protection against virulent MDV challenge and induction of lymphoid organ atrophy are simultaneously attenuated by serial passage in vitro.
Collapse
Affiliation(s)
- Lucy F Lee
- United States Department of Agriculture-Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lupiani B, Lee LF, Kreager KS, Witter RL, Reddy SM. Insertion of reticuloendotheliosis virus long terminal repeat into the genome of CVI988 strain of Marek's disease virus results in enhanced growth and protection. Avian Dis 2013; 57:427-31. [PMID: 23901756 DOI: 10.1637/10445-110412-resnote.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative disease of chickens caused by serotype 1 MD virus (MDV). Vaccination of commercial poultry has drastically reduced losses from MD, and the poultry industry cannot be sustained without the use of vaccines. Retrovirus insertion into herpesvirus genomes is an efficient process that alters the biological properties of herpesviruses. RM1, a virus derived from the virulent JM strain of MDV, by insertion of the reticuloendotheliosis (REV) long terminal repeat (LTR), was attenuated for oncogenicity but retains properties of the parental virus, such as lymphoid organ atrophy. Here we show that insertion of the REV LTR into the genome of vaccine strain CVI988 resulted in a virus (CVRM) that replicated to higher levels than parental CVI988 in cell culture and that remained apathogenic for chickens. In addition, CVRM showed protection indices similar or superior to those afforded by CVI988 virus in laboratory and field protection trials, indicating that it could be developed as a safe and efficacious vaccine to protect against very virulent plus MDV.
Collapse
Affiliation(s)
- Blanca Lupiani
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
48
|
Sun A, Lee LF, Khan OA, Heidari M, Zhang H, Lupiani B, Reddy SM. Deletion of Marek's disease virus large subunit of ribonucleotide reductase impairs virus growth in vitro and in vivo. Avian Dis 2013; 57:464-8. [PMID: 23901762 DOI: 10.1637/10443-110412-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Marek's disease virus (MDV), a highly cell-associated lymphotropic alphaherpesvirus, is the causative agent of a neoplastic disease in domestic chickens called Marek's disease (MD). In the unique long (UL) region of the MDV genome, open reading frames UL39 and UL40 encode the large and small subunits of the ribonucleotide reductase (RR) enzyme, named RR1 and RR2, respectively. MDV RR is distinguishable from that present in chicken and duck cells by monoclonal antibody T81. Using recombinant DNA technology we have generated a mutant MDV (Md5deltaRR1) in which RR1 was deleted. PCR amplification of the RR gene in Md5deltaRR1-infected duck embryo fibroblasts (DEF) confirmed the deletion of the 2.4 kb RR1 gene with a resultant amplicon of a 640-bp fragment. Restriction enzyme digests with SalI confirmed a UL39 deletion and the absence of gross rearrangement. The biologic characteristics of Md5deltaRR1 virus were studied in vitro and in vivo. The Md5deltaRR1 replicated in DEF, but significantly slower than parental Md5-BAC, suggesting that RR is important but not essential for replication in fibroblasts. In vivo studies, however, showed that the RR1 deletion virus was impaired for its ability to replicate in chickens. Inoculation of specific-pathogen-free (SPF) chickens with Md5deltaRR1 showed the mutant virus is nonpathogenic and does not induce MD in birds. A revertant virus, Md5deltaRR1/R, was generated with the restored phenotype of the parental Md5-BAC in vivo, indicating that RR is essential for replication of the virus in chickens. Protection studies in SPF chickens indicated that the Md5deltaRR1 virus is not a candidate vaccine against MD.
Collapse
Affiliation(s)
- Aijun Sun
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Reddy SM, Sun A, Khan OA, Lee LF, Lupiani B. Cloning of a very virulent plus, 686 strain of Marek's disease virus as a bacterial artificial chromosome. Avian Dis 2013; 57:469-73. [PMID: 23901763 DOI: 10.1637/10444-110412-resnote.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate propagation and manipulation of large DNA fragments. This technology was later used to clone full-length genomes of large DNA viruses to study viral gene function. Marek's disease virus (MDV) is a highly oncogenic herpesvirus that causes rapid induction of T-cell lymphomas in chickens. Based on the virus's ability to cause disease in vaccinated chickens, MDV strains are classified into pathotypes, with the most virulent strains belonging to the very virulent plus (vv+) pathotype. Here we report the construction of BAC clones of 686 (686-BAC), a vv+ strain of MDV. Transfection of DNA isolated from two independent clones into duck embryo fibroblasts resulted in recovery of infectious virus. Pathogenesis studies showed that the BAC-derived 686 viruses were more virulent than Md5, a vv strain of MDV. With the use of a two-step red-mediated mutagenesis process, both copies of viral interleukin 8 (vIL-8) were deleted from the MDV genome, showing that 686-BACs were amenable to mutagenesis techniques. The generation of BAC clones from a vv+ strain of MDV is a significant step toward understanding molecular basis of MDV pathogenesis.
Collapse
Affiliation(s)
- Sanjay M Reddy
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
50
|
A DNA vaccine expressing ENV and GAG offers partial protection against reticuloendotheliosis virus in the prairie chicken (Tympanicus cupido). J Zoo Wildl Med 2013; 44:251-61. [PMID: 23805542 DOI: 10.1638/2011-0229r1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recurring infection of reticuloendotheliosis virus (REV), an avian oncogenic gammaretrovirus, has been a major obstacle in attempts to breed and release the endangered Attwater's prairie chicken (Tympanicus cupido attwateri). The aim of this study was to develop a DNA vaccine that protects the birds against REV infection. A plasmid was constructed expressing fusion proteins of REV envelope (env) and VP22 of Gallid herpesvirus 2 or REV gag and VP22. Birds vaccinated with these recombinant plasmids developed neutralizing antibodies; showed delayed replication of virus; and had significantly less infection of lymphocytes, specifically CD4+ lymphocytes. Although the vaccine did not prevent infection, it offered partial protection. Birds in field conditions and breeding facilities could potentially benefit from increased immunity when vaccinated.
Collapse
|