1
|
Bougnères P, Le Stunff C. Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy. Genes (Basel) 2025; 16:590. [PMID: 40428412 PMCID: PMC12111468 DOI: 10.3390/genes16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND X-ALD is a white matter (WM) disease caused by mutations in the ABCD1 gene encoding the transporter of very-long-chain fatty acids (VLCFAs) into peroxisomes. Strikingly, the same ABCD1 mutation causes either devastating brain inflammatory demyelination during childhood or, more often, progressive spinal cord axonopathy starting in middle-aged adults. The accumulation of undegraded VLCFA in glial cell membranes and myelin has long been thought to be the central mechanism of X-ALD. METHODS This review discusses studies in mouse and drosophila models that have modified our views of X-ALD pathogenesis. RESULTS In the Abcd1 knockout (KO) mouse that mimics the spinal cord disease, the late manifestations of axonopathy are rapidly reversed by ABCD1 gene transfer into spinal cord oligodendrocytes (OLs). In a peroxin-5 KO mouse model, the selective impairment of peroxisomal biogenesis in OLs achieves an almost perfect phenocopy of cerebral ALD. A drosophila knockout model revealed that VLCFA accumulation in glial myelinating cells causes the production of a toxic lipid able to poison axons and activate inflammatory cells. Other mouse models showed the critical role of OLs in providing energy substrates to axons. In addition, studies on microglial changing substates have improved our understanding of neuroinflammation. CONCLUSIONS Animal models supporting a primary role of OLs and axonal pathology and a secondary role of microglia allow us to revisit of X-ALD mechanisms. Beyond ABCD1 mutations, pathogenesis depends on unidentified contributors, such as genetic background, cell-specific epigenomics, potential environmental triggers, and stochasticity of crosstalk between multiple cell types among billions of glial cells and neurons.
Collapse
Affiliation(s)
- Pierre Bougnères
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| | - Catherine Le Stunff
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm, University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Hiranuma T, Sassa T, Kihara A. Relationship between time-dependent epidermal ceramide composition changes and skin barrier function in adult mice. Mol Biol Cell 2025; 36:ar57. [PMID: 40072511 PMCID: PMC12086569 DOI: 10.1091/mbc.e24-12-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Ceramides, especially acylceramides and protein-bound ceramides, are important for skin barrier formation. However, due to the neonatal lethality of knockout (KO) of the genes involved in the production of these ceramides, the effects of their KO in adult mice have been unclear. To investigate these effects, we created mice with tamoxifen-inducible conditional KO of the fatty acid elongase Elovl1. Following tamoxifen administration, acylceramide levels began to decrease from day 5. On day 10, impaired formation of lipid lamellae and thickening of the epidermis were observed. On day 15, protein-bound ceramide levels were substantially reduced and transepidermal water loss was increased. Changes in quantities of ceramides other than acylceramides and protein-bound ceramides and shortening of their fatty acid moieties were also observed, but time courses differed among ceramide classes. RNA sequencing revealed changes in the expression levels of genes involved in ceramide metabolism and keratinocyte proliferation and differentiation in Elovl1 conditional-KO mice. In summary, this study reveals that acylceramides and protein-bound ceramides are important for maintaining the skin barrier in adults, although they are not essential for survival. We also observed compensatory responses toward reduced skin barrier function, such as changes in gene expression, epidermal morphology, and ceramide composition.
Collapse
Affiliation(s)
- Taiga Hiranuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
3
|
Theisen EK, Rivas-Serna IM, Lee RJ, Jay TR, Kunduri G, Nguyen TT, Mazurak V, Clandinin MT, Clandinin TR, Vaughen JP. Glia phagocytose neuronal sphingolipids to infiltrate developing synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.14.648777. [PMID: 40313927 PMCID: PMC12045345 DOI: 10.1101/2025.04.14.648777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The complex morphologies of mature neurons and glia emerge through profound rearrangements of cell membranes during development. Despite being integral components of these membranes, it is unclear whether lipids might actively sculpt these morphogenic processes. By analyzing lipid levels in the developing fruit fly brain, we discover dramatic increases in specific sphingolipids coinciding with neural circuit establishment. Disrupting this sphingolipid bolus via genetic perturbations of sphingolipid biosynthesis and catabolism leads to impaired glial autophagy. Remarkably, glia can obtain sphingolipid precursors needed for autophagy by phagocytosing neurons. These precursors are then converted into specific long-chain ceramide phosphoethanolamines (CPEs), invertebrate analogs of sphingomyelin. These lipids are essential for glia to arborize and infiltrate the brain, a critical step in circuit maturation that when disrupted leads to reduced synapse numbers. Taken together, our results demonstrate how spatiotemporal tuning of sphingolipid metabolism during development plays an instructive role in programming brain architecture. Highlights Brain sphingolipids (SLs) remodel to very long-chain species during circuit maturation Glial autophagy requires de novo SL biosynthesis coordinated across neurons and glia Glia evade a biosynthetic blockade by phagolysosomal salvage of neuronal SLsCeramide Phosphoethanolamine is critical for glial infiltration and synapse density.
Collapse
|
4
|
Xi Y, Mokry RL, Armas ND, Kline I, Wegner M, Purdy JG. Human Cytomegalovirus Infection Reduces an Endogenous Antiviral Fatty Acid by Promoting Host Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646481. [PMID: 40235993 PMCID: PMC11996439 DOI: 10.1101/2025.03.31.646481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Some viruses, including human cytomegalovirus (HCMV), induce the synthesis of fatty acids and lipids to ensure that the lipid environment of infected cells supports virus replication. HCMV infection broadly reprograms metabolism to ensure central carbon metabolism provides the metabolites required for anabolic synthesis of nucleotides, proteins, and lipids while also meeting the energy demands placed on the infected cells. While HCMV infection increases the levels of most very long chain fatty acids (VLCFA), we found that the levels of erucic acid (EA), a C22:1 monounsaturated VLCFA, are reduced. Treating infected cells with EA disrupted a late step in virus replication, resulting in the release of virions with reduced infectivity. Moreover, we used lipidomics to determine that EA-treated cells had elevated levels of lipids containing a combination of a C22:1 tail and a VLC polyunsaturated fatty acid tail (VLC-PUFA). We demonstrate that fatty acid elongase 5 (ELOVL5) mediated production of VLC-PUFAs is stimulated by HCMV infection. ELOVL5 aided the increase in lipids with C22:1 plus VLC-PUFA tails following EA treatment and reduced the overall level of C22:1 in HCMV-infected cells. Moreover, we found that ELOVL5 mollified EA inhibition of HCMV replication, suggesting ELOVL5 plays a critical role in reducing the level of an endogenous FA with antiviral properties. Our study provides insight into how infection may increase the synthesis of an antiviral metabolite or FA and how the virus may evade their antiviral effect by promoting their metabolism.
Collapse
|
5
|
Ferrero E, Vaz FM, Cheillan D, Brusco A, Marelli C. The ELOVL proteins: Very and ultra long-chain fatty acids at the crossroads between metabolic and neurodegenerative disorders. Mol Genet Metab 2025; 144:109050. [PMID: 39946831 DOI: 10.1016/j.ymgme.2025.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
In lipid metabolism, the fatty acid (FA) elongation system synthesises a wide array of FAs, crucial for various biological functions. The role of this system is to lengthen FA carbon chains to produce FAs with ≥C16, and notably, very long-chain FAs (VLCFAs, C24-C26) and ultra long-chain FAs (ULCFAs, C28 to ≥C36). Elongation occurs in the endoplasmic reticulum (ER) through the actions of a complex of four ER-embedded enzymes, which includes the ELOVL proteins. Together with desaturases that introduce double bonds, these processes significantly increase the variety of FAs. VLCFAs and ULCFAs are required for the biosynthesis of complex lipids, notably glycero(phospho)lipids, ether(phospho)lipids and sphingolipids. The FA elongation system is therefore fundamental for membrane biogenesis and lipid homeostasis, and also for signalling pathways associated with inflammation and cell proliferation. This review focuses on the elongase enzymes, encoded by the ELOVL genes, which catalyze the first and rate-limiting step of the FA elongation cycle. We summarize the physiological roles of the elongase system, with emphasis on the less-characterized ULCFAs, their biological functions, and the functional tools, biomarkers and lipidomic studies used to study them. Additionally, we discuss how ELOVL enzyme defects contribute to disorders at the intersection of metabolic and neurodegenerative conditions, driven by disrupted lipid metabolism and misfolded enzymes in the ER and Golgi.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands; Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands.
| | - David Cheillan
- Unité Pathologies Métaboliques, Érythrocytaires et Dépistage Périnatal, Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire Carmen INSERM INRAE, Centre Hospitalier Lyon Sud, 69310 Pierre Bénite, France
| | - Alfredo Brusco
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
| | - Cecilia Marelli
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; Expert Center for Neurogenetic Diseases, CHU of Montpellier, 34095 Montpellier, France.
| |
Collapse
|
6
|
Wu J, Li L, Zhang T, Lu J, Tai Z, Zhu Q, Chen Z. The epidermal lipid-microbiome loop and immunity: Important players in atopic dermatitis. J Adv Res 2025; 68:359-374. [PMID: 38460775 PMCID: PMC11785582 DOI: 10.1016/j.jare.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The promotion of epidermal barrier dysfunction is attributed to abnormalities in the lipid-microbiome positive feedback loop which significantly influences the imbalance of the epithelial immune microenvironment (EIME) in atopic dermatitis (AD). This imbalance encompasses impaired lamellar membrane integrity, heightened exposure to epidermal pathogens, and the regulation of innate and adaptive immunity. The lipid-microbiome loop is substantially influenced by intense adaptive immunity which is triggered by abnormal loop activity and affects the loop's integrity through the induction of atypical lipid composition and responses to dysregulated epidermal microbes. Immune responses participate in lipid abnormalities within the EIME by downregulating barrier gene expression and are further cascade-amplified by microbial dysregulation which is instigated by barrier impairment. AIM OF REVIEW This review examines the relationship between abnormal lipid composition, microbiome disturbances, and immune responses in AD while progressively substantiating the crosstalk mechanism among these factors. Based on this analysis, the "lipid-microbiome" positive feedback loop, regulated by immune responses, is proposed. KEY SCIENTIFIC CONCEPTS OF REVIEW The review delves into the impact of adaptive immune responses that regulate the EIME, driving AD, and investigates potential mechanisms by which lipid supplementation and probiotics may alleviate AD through the up-regulation of the epidermal barrier and modulation of immune signaling. This exploration offers support for targeting the EIME to attenuate AD.
Collapse
Affiliation(s)
- Junchao Wu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Tingrui Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| |
Collapse
|
7
|
Schneider A, Won S, Armstrong EA, Cooper AJ, Suresh A, Rivera R, Barrett‐Wilt G, Denu JM, Simcox JA, Svaren J. The role of ATP citrate lyase in myelin formation and maintenance. Glia 2025; 73:105-121. [PMID: 39318247 PMCID: PMC11660526 DOI: 10.1002/glia.24620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Formation of myelin by Schwann cells is tightly coupled to peripheral nervous system development and is important for neuronal function and long-term maintenance. Perturbation of myelin causes a number of specific disorders that are among the most prevalent diseases affecting the nervous system. Schwann cells synthesize myelin lipids de novo rather than relying on uptake of circulating lipids, yet one unresolved matter is how acetyl CoA, a central metabolite in lipid formation is generated during myelin formation and maintenance. Recent studies have shown that glucose-derived acetyl CoA itself is not required for myelination. However, the importance of mitochondrially-derived acetyl CoA has never been tested for myelination in vivo. Therefore, we have developed a Schwann cell-specific knockout of the ATP citrate lyase (Acly) gene to determine the importance of mitochondrial metabolism to supply acetyl CoA in nerve development. Intriguingly, the ACLY pathway is important for myelin maintenance rather than myelin formation. In addition, ACLY is required to maintain expression of a myelin-associated gene program and to inhibit activation of the latent Schwann cell injury program.
Collapse
Affiliation(s)
- Andrew Schneider
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Seongsik Won
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Eric A. Armstrong
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Aaron J. Cooper
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Amulya Suresh
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rachell Rivera
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - John M. Denu
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Judith A. Simcox
- Howard Hughes Medical Institute, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John Svaren
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
8
|
Vaz FM, Ferdinandusse S, Salomons GS, Wanders RJA. Disorders of fatty acid homeostasis. J Inherit Metab Dis 2025; 48:e12734. [PMID: 38693715 PMCID: PMC11730842 DOI: 10.1002/jimd.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Humans derive fatty acids (FA) from exogenous dietary sources and/or endogenous synthesis from acetyl-CoA, although some FA are solely derived from exogenous sources ("essential FA"). Once inside cells, FA may undergo a wide variety of different modifications, which include their activation to their corresponding CoA ester, the introduction of double bonds, the 2- and ω-hydroxylation and chain elongation, thereby generating a cellular FA pool which can be used for the synthesis of more complex lipids. The biological properties of complex lipids are very much determined by their molecular composition in terms of the FA incorporated into these lipid species. This immediately explains the existence of a range of genetic diseases in man, often with severe clinical consequences caused by variants in one of the many genes coding for enzymes responsible for these FA modifications. It is the purpose of this review to describe the current state of knowledge about FA homeostasis and the genetic diseases involved. This includes the disorders of FA activation, desaturation, 2- and ω-hydroxylation, and chain elongation, but also the disorders of FA breakdown, including disorders of peroxisomal and mitochondrial α- and β-oxidation.
Collapse
Affiliation(s)
- Frédéric M. Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
| | - Gajja S. Salomons
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Ronald J. A. Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
| |
Collapse
|
9
|
Peng Y, Haga Y, Kabeya N. Enzymes enabling the biosynthesis of various C 20 polyunsaturated fatty acids in a sea urchin Hemicentrotus pulcherrimus. Open Biol 2025; 15:240170. [PMID: 39837499 PMCID: PMC11750391 DOI: 10.1098/rsob.240170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Sea urchins, integral to marine ecosystems and valued as a delicacy in Asia and Europe, contain physiologically important long-chain (>C20) polyunsaturated fatty acids (PUFA) in their gonads, including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and unusual non-methylene-interrupted fatty acids (NMI-FA) such as 20:2Δ5,11. Although these fatty acids may partially be derived from their diet, such as macroalgae, the present study on Hemicentrotus pulcherrimus has uncovered multiple genes encoding enzymes involved in long-chain PUFA biosynthesis. Specifically, 3 fatty acid desaturases (FadsA, FadsC1 and FadsC2) and 13 elongation of very-long-chain fatty acids proteins (Elovl-like, Elovl1/7-like, Elovl2/5-like, Elovl4-like, Elovl8-like and Elovl6-like A-H) were identified in their genome and transcriptomes. Functional analysis showed that FadsA and FadsC2 function as a Δ5 desaturase and a Δ8 desaturase, respectively, enabling the conversion of 18:2n-6 and 18:3n-3 into ARA and EPA, respectively, along with Elovl, particularly Elovl6-like C. Elovl6-like C demonstrates elongase activity towards both C18 PUFA and monounsaturated fatty acids. Consequently, FadsA and Elovl6-like C enable the synthesis of several NMI-FA, including 20:2Δ5,11 and 20:3Δ5,11,14, from C18 precursors. This indicates that H. pulcherrimus can endogenously synthesize a wide variety of C20 PUFA and NMI-FA, highlighting active biosynthesis pathways within sea urchins.
Collapse
Affiliation(s)
- Yingying Peng
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo108-8477, Japan
| | - Yutaka Haga
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo108-8477, Japan
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo108-8477, Japan
| |
Collapse
|
10
|
Wang C, Jiang Z, Du M, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. Novel Ser74 of NF-κB/IκBα phosphorylated by MAPK/ERK regulates temperature adaptation in oysters. Cell Commun Signal 2024; 22:539. [PMID: 39529137 PMCID: PMC11552224 DOI: 10.1186/s12964-024-01923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Phosphorylation of Ser32 and Ser36 controls the degradation of IκBα is the conserved cascade mechanisms of immune core signaling pathway, NF-κB pathway in metazoans, but it's response to abiotic stress and the presence of novel phosphorylation mechanisms in other species remain unclear. Herein, we reported a novel heat-induced phosphorylation site (Ser74) at oysters' major IκBα, which independently regulated ubiquitination-proteasome degradation without the requirement of phosphorylation at S32 and S36. And this site was phosphorylated by ERK/MAPK pathway, which then promoted REL nuclear translocation to activate cell survival related genes to defend heat-stress. The MAPK-NF-κB cascade exhibited divergent thermal responses and adaptation patterns between two congeneric oyster species with differential habitat temperatures, indicating its involvement in shaping temperature adaptation. This study demonstrated that the existence of complex and unique phosphorylation-mediated signaling transduction mechanism in marine invertebrates, and expanded our understanding of the evolution and function of established classical pathway crosstalk mechanisms.
Collapse
Affiliation(s)
- Chaogang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Du
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Taiping Zhang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
11
|
Jaspers YRJ, Yska HAF, Bergner CG, Dijkstra IME, Huffnagel IC, Voermans MMC, Wever E, Salomons GS, Vaz FM, Jongejan A, Hermans J, Tryon RK, Lund TC, Köhler W, Engelen M, Kemp S. Lipidomic biomarkers in plasma correlate with disease severity in adrenoleukodystrophy. COMMUNICATIONS MEDICINE 2024; 4:175. [PMID: 39256476 PMCID: PMC11387402 DOI: 10.1038/s43856-024-00605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (ALD) is a neurometabolic disorder caused by pathogenic variants in ABCD1 resulting very long-chain fatty acids (VLCFA) accumulation in plasma and tissues. Males can present with various clinical manifestations, including adrenal insufficiency, spinal cord disease, and leukodystrophy. Female patients typically develop spinal cord disease and peripheral neuropathy. Predicting the clinical outcome of an individual patient remains impossible due to the lack of genotype-phenotype correlation and predictive biomarkers. METHODS The availability of a large prospective cohort of well-characterized patients and associated biobank samples allowed us to investigate the relationship between lipidome and disease severity in ALD. We performed a lipidomic analysis of plasma samples from 24 healthy controls, 92 male and 65 female ALD patients. RESULTS Here we show that VLCFA are incorporated into different lipid classes, including lysophosphatidylcholines, phosphatidylcholines, triglycerides, and sphingomyelins. Our results show a strong association between higher levels of VLCFA-containing lipids and the presence of leukodystrophy, adrenal insufficiency, and severe spinal cord disease in male ALD patients. In female ALD patients, VLCFA-lipid levels correlate with X-inactivation patterns in blood mononuclear cells, and higher levels are associated with more severe disease manifestations. Finally, hematopoietic stem cell transplantation significantly reduces, but does not normalize, plasma C26:0-lysophosphatidylcholine levels in male ALD patients. Our findings are supported by the concordance of C26:0-lysophosphatidylcholine and total VLCFA analysis with the lipidomics results. CONCLUSIONS This study reveals the profound impact of ALD on the lipidome and provides potential biomarkers for predicting clinical outcomes in ALD patients.
Collapse
Affiliation(s)
- Yorrick R J Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Hemmo A F Yska
- Department of Pediatric Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Caroline G Bergner
- Department of Neurology, Leukodystrophy Outpatient Clinic, Leipzig University Medical Center, Leipzig, Germany
| | - Inge M E Dijkstra
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Irene C Huffnagel
- Department of Pediatric Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marije M C Voermans
- Department of Pediatric Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eric Wever
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jill Hermans
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Rebecca K Tryon
- Department of Pediatrics, Division of Bone Marrow Transplantation, University of Minnesota Children's Hospital, Minneapolis, MN, USA
| | - Troy C Lund
- Department of Pediatrics, Division of Bone Marrow Transplantation, University of Minnesota Children's Hospital, Minneapolis, MN, USA
| | - Wolfgang Köhler
- Department of Neurology, Leukodystrophy Outpatient Clinic, Leipzig University Medical Center, Leipzig, Germany
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Blaess M, Csuk R, Schätzl T, Deigner HP. Elongation of Very Long-Chain Fatty Acids (ELOVL) in Atopic Dermatitis and the Cutaneous Adverse Effect AGEP of Drugs. Int J Mol Sci 2024; 25:9344. [PMID: 39273293 PMCID: PMC11395647 DOI: 10.3390/ijms25179344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease, in particular among infants, and is characterized, among other things, by a modification in fatty acid and ceramide composition of the skin's stratum corneum. Palmitic acid and stearic acid, along with C16-ceramide and 2-hydroxy C16-ceramide, occur strikingly in AD. They coincide with a simultaneous decrease in very long-chain ceramides and ultra-long-chain ceramides, which form the outermost lipid barrier. Ceramides originate from cellular sphingolipid/ceramide metabolism, comprising a well-orchestrated network of enzymes involving various ELOVLs and CerSs in the de novo ceramide synthesis and neutral and acid CERase in degradation. Contrasting changes in long-chain ceramides and very long-chain ceramides in AD can be more clearly explained by the compartmentalization of ceramide synthesis. According to our hypothesis, the origin of increased C16-ceramide and 2-hydroxy C16-ceramide is located in the lysosome. Conversely, the decreased ultra-long-chain and very long-chain ceramides are the result of impaired ELOVL fatty acid elongation. The suggested model's key elements include the lysosomal aCERase, which has pH-dependent long-chain C16-ceramide synthase activity (revaCERase); the NADPH-activated step-in enzyme ELOVL6 for fatty acid elongation; and the coincidence of impaired ELOVL fatty acid elongation and an elevated lysosomal pH, which is considered to be the trigger for the altered ceramide biosynthesis in the lysosome. To maintain the ELOVL6 fatty acid elongation and the supply of NADPH and ATP to the cell, the polyunsaturated PPARG activator linoleic acid is considered to be one of the most suitable compounds. In the event that the increase in lysosomal pH is triggered by lysosomotropic compounds, compounds that disrupt the transmembrane proton gradient or force the breakdown of lysosomal proton pumps, non-HLA-classified AGEP may result.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, D-18057 Rostock, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| |
Collapse
|
13
|
Velazquez FN, Luberto C, Canals D, Hannun YA. Enzymes of sphingolipid metabolism as transducers of metabolic inputs. Biochem Soc Trans 2024; 52:1795-1808. [PMID: 39101614 PMCID: PMC11783705 DOI: 10.1042/bst20231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Sphingolipids (SLs) constitute a discrete subdomain of metabolism, and they display both structural and signaling functions. Accumulating evidence also points to intimate connections between intermediary metabolism and SL metabolism. Given that many SLs exhibit bioactive properties (i.e. transduce signals), these raise the possibility that an important function of SLs is to relay information on metabolic changes into specific cell responses. This could occur at various levels. Some metabolites are incorporated into SLs, whereas others may initiate regulatory or signaling events that, in turn, modulate SL metabolism. In this review, we elaborate on the former as it represents a poorly appreciated aspect of SL metabolism, and we develop the hypothesis that the SL network is highly sensitive to several specific metabolic changes, focusing on amino acids (serine and alanine), various fatty acids, choline (and ethanolamine), and glucose.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Chiara Luberto
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794
| | - Daniel Canals
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A. Hannun
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
14
|
Fu C, Yang T, Liao H, Huang Y, Wang H, Long W, Jiang N, Yang Y. Genome-wide identification and molecular evolution of elongation family of very long chain fatty acids proteins in Cyrtotrachelus buqueti. BMC Genomics 2024; 25:758. [PMID: 39095734 PMCID: PMC11297609 DOI: 10.1186/s12864-024-10658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
To reveal the molecular function of elongation family of very long chain fatty acids(ELO) protein in Cyrtotrachelus buqueti, we have identified 15 ELO proteins from C.buqueti genome. 15 CbuELO proteins were located on four chromosomes. Their isoelectric points ranged from 9.22 to 9.68, and they were alkaline. These CbuELO proteins were stable and hydrophobic. CbuELO proteins had transmembrane movement, and had multiple phosphorylation sites. The secondary structure of CbuELO proteins was mainly α-helix. A total of 10 conserved motifs were identified in CbuELO protein family. Phylogenetic analysis showed that molecular evolutionary relationships of ELO protein family between C. buqueti and Tribolium castaneum was the closest. Developmental transcriptome analysis indicated that CbuELO10, CbuELO13 and CbuELO02 genes were key enzyme genes that determine the synthesis of very long chain fatty acids in pupae and eggs, CbuELO6 and CbuELO7 were that in the male, and CbuELO8 and CbuELO11 were that in the larva. Transcriptome analysis under different temperature conditions indicated that CbuELO1, CbuELO5, CbuELO12 and CbuELO14 participated in regulating temperature stress responses. Transcriptome analysis at different feeding times showed CbuELO12 gene expression level in all feeding time periods was significant downregulation. The qRT-PCR experiment verified expression level changes of CbuELO gene family under different temperature and feeding time conditions. Protein-protein interaction analysis showed that 9 CbuELO proteins were related to each other, CbuELO1, CbuELO4 and CbuELO12 had more than one interaction relationship. These results lay a theoretical foundation for further studying its molecular function during growth and development of C. buqueti.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| | - Ting Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Hong Liao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YuLing Huang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - HanYu Wang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - WenCong Long
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| |
Collapse
|
15
|
Zhao B, Peng Y, Itakura Y, Lizanda M, Haga Y, Satoh S, Navarro JC, Monroig Ó, Kabeya N. A complete biosynthetic pathway of the long-chain polyunsaturated fatty acids in an amphidromous fish, ayu sweetfish Plecoglossus altivelis (Stomiati; Osmeriformes). Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159498. [PMID: 38703945 DOI: 10.1016/j.bbalip.2024.159498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The biosynthetic capability of the long-chain polyunsaturated fatty acids (LC-PUFA) in teleosts are highly diversified due to evolutionary events such as gene loss and subsequent neo- and/or sub-functionalisation of enzymes encoded by existing genes. In the present study, we have comprehensively characterised genes potentially involved in LC-PUFA biosynthesis, namely one front-end desaturase (fads2) and eight fatty acid elongases (elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl7, elovl8a and elovl8b) from an amphidromous teleost, Ayu sweetfish, Plecoglossus altivelis. Functional analysis confirmed Fads2 with Δ6, Δ5 and Δ8 desaturase activities towards multiple PUFA substrates and several Elovl enzymes exhibited elongation capacities towards C18-20 or C18-22 PUFA substrates. Consequently, P. altivelis possesses a complete enzymatic capability to synthesise physiologically important LC-PUFA including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) from their C18 precursors. Interestingly, the loss of elovl2 gene in P. altivelis was corroborated by genomic and phylogenetic analyses. However, this constraint would possibly be overcome by the function of alternative Elovl enzymes, such as Elovl1b, which has not hitherto been functionally characterised in teleosts. The present study contributes novel insights into LC-PUFA biosynthesis in the relatively understudied teleost group, Osmeriformes (Stomiati), thereby enhancing our understanding of the complement of LC-PUFA biosynthetic genes within teleosts.
Collapse
Affiliation(s)
- Bo Zhao
- College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan 316022, Zhejiang Province, China
| | - Yingying Peng
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yuki Itakura
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Myriam Lizanda
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Yutaka Haga
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Shuichi Satoh
- Department of Advanced Aquaculture Science, Fukui Prefectural University, Katsumi, 49-8-2 Obama, Fukui 917-0116, Japan
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
16
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
17
|
Akiyama F, Takahashi N, Ueda Y, Tada S, Takeuchi N, Ohno Y, Kihara A. Correlations between Skin Condition Parameters and Ceramide Profiles in the Stratum Corneum of Healthy Individuals. Int J Mol Sci 2024; 25:8291. [PMID: 39125861 PMCID: PMC11311646 DOI: 10.3390/ijms25158291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Ceramides are essential lipids for skin barrier function, and various classes and species exist in the human stratum corneum (SC). To date, the relationship between skin conditions and ceramide composition in healthy individuals has remained largely unclear. In the present study, we measured six skin condition parameters (capacitance, transepidermal water loss, scaliness, roughness, multilayer exfoliation, and corneocyte cell size) for the SC of the cheeks and upper arms of 26 healthy individuals and performed correlation analyses with their SC ceramide profiles, which we measured via liquid chromatography-tandem mass spectrometry. In the cheeks, high levels and/or ratios of two free ceramide classes containing an extra hydroxyl group in the long-chain moiety and a protein-bound ceramide class containing 6-hydroxysphingosine correlated with healthy skin conditions. In contrast, the ratios of two other free ceramide classes, both containing sphingosine, and a protein-bound ceramide class containing 4,14-sphingadiene correlated with unhealthy skin conditions, as did shortening of the carbon chain of the fatty acid portion of two ceramide classes containing non-hydroxy fatty acids. Thus, our findings help to elucidate the relationship between skin conditions and ceramide composition.
Collapse
Affiliation(s)
- Fuminari Akiyama
- Taisho Pharmaceutical Co., Ltd., 3-24-1 Takada, Toshima-ku, Tokyo 170-8633, Japan
| | - Natsumi Takahashi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yuto Ueda
- Taisho Pharmaceutical Co., Ltd., 3-24-1 Takada, Toshima-ku, Tokyo 170-8633, Japan
| | - Shizuno Tada
- Taisho Pharmaceutical Co., Ltd., 3-24-1 Takada, Toshima-ku, Tokyo 170-8633, Japan
| | - Nobuyuki Takeuchi
- Taisho Pharmaceutical Co., Ltd., 3-24-1 Takada, Toshima-ku, Tokyo 170-8633, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
18
|
Loukil I, Mutch DM, Plourde M. Genetic association between FADS and ELOVL polymorphisms and the circulating levels of EPA/DHA in humans: a scoping review. GENES & NUTRITION 2024; 19:11. [PMID: 38844860 PMCID: PMC11157910 DOI: 10.1186/s12263-024-00747-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two omega-3 fatty acids that can be synthesized out of their precursor alpha-linolenic acid (ALA). FADS and ELOVL genes encode the desaturase and elongase enzymes required for EPA and DHA synthesis from ALA; however, single nucleotide polymorphisms (SNPs) in FADS and ELOVL genes could modify the levels of EPA and DHA synthesized from ALA although there is no consensus in this area. This review aims to investigate EPA and DHA circulating levels in human blood and their association with FADS or ELOVL. METHODS PubMed, Cochrane, and Scopus databases were used to identify research articles. They were subsequently reviewed by two independent investigators. RESULTS Initially, 353 papers were identified. After removing duplicates and articles not meeting inclusion criteria, 98 full text papers were screened. Finally, this review included 40 studies investigating FADS and/or ELOVL polymorphisms. A total of 47 different SNPs in FADS genes were reported. FADS1 rs174537, rs174547, rs174556 and rs174561 were the most studied SNPs, with minor allele carriers having lower levels of EPA and DHA. SNPs in the FADS genes were in high linkage disequilibrium. SNPs in FADS were correlated with levels of EPA and DHA. No conclusion could be drawn with the ELOVL polymorphisms since the number of studies was too low. CONCLUSION Specific SNPs in FADS gene, such as rs174537, have strong associations with circulating levels of EPA and DHA. Continued investigation regarding the impact of genetic variants related to EPA and DHA synthesis is warranted.
Collapse
Affiliation(s)
- Insaf Loukil
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, Guelph, ON, N1G 2W1, Canada
| | - Mélanie Plourde
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada.
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
19
|
Zheng Q, Liu L, Guo X, Zhu F, Huang Y, Qin Q, Huang X. Fish ELOVL7a is involved in virus replication via lipid metabolic reprogramming. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109530. [PMID: 38570120 DOI: 10.1016/j.fsi.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.
Collapse
Affiliation(s)
- Qi Zheng
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lin Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xixi Guo
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fengyi Zhu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
20
|
Yamaji M, Ohno Y, Shimada M, Kihara A. Alteration of epidermal lipid composition as a result of deficiency in the magnesium transporter Nipal4. J Lipid Res 2024; 65:100550. [PMID: 38692573 PMCID: PMC11153242 DOI: 10.1016/j.jlr.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Lipids in the stratum corneum play an important role in the formation of the skin permeability barrier. The causative gene for congenital ichthyosis, NIPAL4, encodes a Mg2+ transporter and is involved in increases in intracellular Mg2+ concentrations that depend on keratinocyte differentiation. However, the role of this increased Mg2+ concentration in skin barrier formation and its effect on the lipid composition of the stratum corneum has remained largely unknown. Therefore, in the present study, we performed a detailed analysis of epidermal lipids in Nipal4 KO mice via TLC and MS. Compared with WT mice, the Nipal4 KO mice showed compositional changes in many ceramide classes (including decreases in ω-O-acylceramides and increases in ω-hydroxy ceramides), together with increases in ω-hydroxy glucosylceramides, triglycerides, and free fatty acids and decreases in ω-O-acyl hydroxy fatty acids containing a linoleic acid. We also found increases in unusual ω-O-acylceramides containing oleic acid or palmitic acid in the KO mice. However, there was little change in levels of cholesterol or protein-bound ceramides. The TLC analysis showed that some unidentified lipids were increased, and the MS analysis showed that these were special ceramides called 1-O-acylceramides. These results suggest that elevated Mg2+ concentrations in differentiated keratinocytes affect the production of various lipids, resulting in the lipid composition necessary for skin barrier formation.
Collapse
Affiliation(s)
- Marino Yamaji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Madoka Shimada
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
21
|
Zhou Y, Lv R, Ye RD, Ren R, Yu L. The 3-hydroxyacyl-CoA dehydratase 1/2 form complex with trans-2-enoyl-CoA reductase involved in substrates transfer in very long chain fatty acid elongation. Biochem Biophys Res Commun 2024; 704:149588. [PMID: 38422897 DOI: 10.1016/j.bbrc.2024.149588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Very long-chain fatty acids (VLCFAs) are fatty acids with a carbon chain length greater than 18 carbons (>C18) and exhibit various functions, such as in skin barrier formation, liver homeostasis, myelin maintenance, spermatogenesis, retinal function, and anti-inflammation. VLCFAs are absorbed by dietary or elongated from endogenous hexadecanoyl acids (C16). Similar to long-chain fatty acid synthesis, VLCFAs elongation begins with acyl-CoA and malonyl-CoA as sources, and the length of the acyl chain is extended by two carbon units in each cycle. However, the VLCFAs elongation machinery is located in ER membrane and consists of four components, FA elongase (ELOVL), 3-ketoacyl-CoA reductase (KAR), 3-hydroxyacyl-CoA dehydratase (HACD), and trans-2-enoyl-CoA reductase (TECR), which is different with the long-chain fatty acid machinery fatty acid synthase (FAS) complex. Although the critical components in the elongation cycle are identified, the detailed catalytic and regulation mechanisms are still poorly understood. Here, we focused on the structural and biochemical analysis of TECR-associated VLCFA elongation reactions. Firstly, we identified a stable complex of human HACD2-TECR based on extensive in vitro characterizations. Combining computational modeling and biochemical analysis, we confirmed the critical interactions between TECR and HACD1/2. Then, we proposed the putative substrate binding sites and catalytic residues for TECR and HACD2. Besides, we revealed the structural similarities of HACD with ELOVLs and proposed the possible competition mechanism of TECR-associated complex formation.
Collapse
Affiliation(s)
- Youli Zhou
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Rui Lv
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Leiye Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Taborda Ribas H, Sogayar MC, Dolga AM, Winnischofer SMB, Trombetta-Lima M. Lipid profile in breast cancer: From signaling pathways to treatment strategies. Biochimie 2024; 219:118-129. [PMID: 37993054 DOI: 10.1016/j.biochi.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Breast cancer is the most prevalent cancer in women. Metabolic abnormalities, particularly increased lipid synthesis and uptake, impact the onset and progression of the disease. However, the influence of lipid metabolism in breast cancer varies according to the disease stage and patient's hormone status. In postmenopausal patients, obesity is associated with a higher risk and poor prognosis of luminal tumors, while in premenopausal individuals, it is correlated to BRCA mutated tumors. In fact, the tumor's lipid profile may be used to distinguish between HER2+, luminal and BRCA-mutated tumors. Moreover, drug resistance was associated with increased fatty acid synthesis and alterations in membrane composition, impacting its fluidity and spatial subdomains such as lipid rafts. Here, we discuss the subtype-specific lipid metabolism alterations found in breast cancer and the potentiality of its modulation in a clinical setting.
Collapse
Affiliation(s)
- Hennrique Taborda Ribas
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, Netherlands; Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, Netherlands
| | - Sheila M B Winnischofer
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, Brazil; Biochemistry and Molecular Biology Department, Federal University of Paraná, Curitiba, Brazil; Postgraduate Program in Cellular and Molecular Biology, Biological Sciences Sector, UFPR, Curitiba, Brazil.
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Pharmaceutical Technology and Biopharmacy, Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, Netherlands.
| |
Collapse
|
23
|
Fujitani N, Akashi T, Saito M, Morita M, So T, Oka K. Increased neurotoxicity of high-density lipoprotein secreted from murine reactive astrocytes deficient in a peroxisomal very-long-chain fatty acid transporter Abcd1. J Inherit Metab Dis 2024; 47:289-301. [PMID: 38146202 DOI: 10.1002/jimd.12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a genetic neurodegenerative disorder caused by pathogenic variants in ABCD1, resulting in the accumulation of very-long-chain fatty acids (VLCFAs) in tissues. The etiology of X-ALD is unclear. Activated astrocytes play a pathological role in X-ALD. Recently, reactive astrocytes have been shown to induce neuronal cell death via saturated lipids in high-density lipoprotein (HDL), although how HDL from reactive astrocytes exhibits neurotoxic effects has yet to be determined. In this study, we obtained astrocytes from wild-type and Abcd1-deficient mice. HDL was purified from the culture supernatant of astrocytes, and the effect of HDL on neurons was evaluated in vitro. To our knowledge, this study shows for the first time that HDL obtained from Abcd1-deficient reactive astrocytes induces a significantly higher level of lactate dehydrogenase (LDH) release, a marker of cell damage, from mouse primary cortical neurons as compared to HDL from wild-type reactive astrocytes. Notably, HDL from Abcd1-deficient astrocytes contained significantly high amounts of VLCFA-containing phosphatidylcholine (PC) and LysoPC. Activation of Abcd1-deficient astrocytes led to the production of HDL containing decreased amounts of PC with arachidonic acid in sn-2 acyl moieties and increased amounts of LysoPC, presumably through cytosolic phospholipase A2 α upregulation. These results suggest that compositional changes in PC and LysoPC in HDL, due to Abcd1 deficiency and astrocyte activation, may contribute to neuronal damage. Our findings provide novel insights into central nervous system pathology in X-ALD.
Collapse
Affiliation(s)
- Naoki Fujitani
- Sohyaku, Innovative Research Division, Research Unit/Neuroscience, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomoya Akashi
- Sohyaku, Innovative Research Division, DMPK Research Laboratories (Drug Metabolism and Pharmacokinetics), Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan
| | - Masayoshi Saito
- Sohyaku, Innovative Research Division, DMPK Research Laboratories (Drug Metabolism and Pharmacokinetics), Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan
| | - Masashi Morita
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takanori So
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kozo Oka
- Sohyaku, Innovative Research Division, Research Unit/Neuroscience, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan
| |
Collapse
|
24
|
Mu J, Lam SM, Shui G. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology: emphasis on fatty acyl heterogeneity. J Genet Genomics 2024; 51:268-278. [PMID: 37364711 DOI: 10.1016/j.jgg.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Sphingolipids not only exert structural roles in cellular membranes, but also act as signaling molecules in various physiological and pathological processes. A myriad of studies have shown that abnormal levels of sphingolipids and their metabolic enzymes are associated with a variety of human diseases. Moreover, blood sphingolipids can also be used as biomarkers for disease diagnosis. This review summarizes the biosynthesis, metabolism, and pathological roles of sphingolipids, with emphasis on the biosynthesis of ceramide, the precursor for the biosynthesis of complex sphingolipids with different fatty acyl chains. The possibility of using sphingolipids for disease prediction, diagnosis, and treatment is also discussed. Targeting endogenous ceramides and complex sphingolipids along with their specific fatty acyl chain to promote future drug development will also be discussed.
Collapse
Affiliation(s)
- Jinming Mu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
25
|
Wang Y, Jin J, Wu G, Wei W, Jin Q, Wang X. Omega-9 monounsaturated fatty acids: a review of current scientific evidence of sources, metabolism, benefits, recommended intake, and edible safety. Crit Rev Food Sci Nutr 2024; 65:1857-1877. [PMID: 38343184 DOI: 10.1080/10408398.2024.2313181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Omega-9 monounsaturated fatty acids (ω-9 MUFAs) are a group of unsaturated fatty acids with a unique double bond in the 9th position at the end of the methyl group terminal, having the same double bond location but different carbon chain lengths. Although knowledge about ω-9 MUFAs is constantly being updated, problems with its integration remain in the field. The review summarizes the natural sources, biosynthesis, and catabolic properties of ω-9 MUFAs, emphasizing their positive effects on health functions as well as the active intermediates produced during their metabolic processes. Subsequently, the gap between the actual consumption and recommended intake of ω-9 MUFAs in our daily diet was calculated, and their food safety and potential challenges were discussed. Finally, the outlook of potential future applications and possible research trends are presented. The review aims to promote the rational consumption of ω-9 MUFAs, provide references for their application as functional foods and clinical auxiliary special medical foods, and propose more ideas and possibilities for future scientific research.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
26
|
Kato R, Takenaka Y, Ohno Y, Kihara A. Catalytic mechanism of trans-2-enoyl-CoA reductases in the fatty acid elongation cycle and its cooperative action with fatty acid elongases. J Biol Chem 2024; 300:105656. [PMID: 38224948 PMCID: PMC10864336 DOI: 10.1016/j.jbc.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
The fatty acid (FA) elongation cycle produces very-long-chain FAs with ≥C21, which have unique physiological functions. Trans-2-enoyl-CoA reductases (yeast, Tsc13; mammals, TECR) catalyze the reduction reactions in the fourth step of the FA elongation cycle and in the sphingosine degradation pathway. However, their catalytic residues and coordinated action in the FA elongation cycle complex are unknown. To reveal these, we generated and analyzed Ala-substituted mutants of 15 residues of Tsc13. An in vitro FA elongation assay showed that nine of these mutants were less active than WT protein, with E91A and Y256A being the least active. Growth complementation analysis, measurement of ceramide levels, and deuterium-sphingosine labeling revealed that the function of the E91A mutant was substantially impaired in vivo. In addition, we found that the activity of FA elongases, which catalyze the first step of the FA elongation cycle, were reduced in the absence of Tsc13. Similar results were observed in Tsc13 E91A-expressing cells, which is attributable to reduced interaction between the Tsc13 E91A mutant and the FA elongases Elo2/Elo3. Finally, we found that E94A and Y248A mutants of human TECR, which correspond to E91A and Y256A mutants of Tsc13, showed reduced and almost no activity, respectively. Based on these results and the predicted three-dimensional structure of Tsc13, we speculate that Tyr256/Tyr248 of Tsc13/TECR is the catalytic residue that supplies a proton to trans-2-enoyl-CoAs. Our findings provide a clue concerning the catalytic mechanism of Tsc13/TECR and the coordinated action in the FA elongation cycle complex.
Collapse
Affiliation(s)
- Ryoya Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuka Takenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
27
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
28
|
Yamamoto Y, Sassa T, Kihara A. Comparison of skin barrier abnormalities and epidermal ceramide profiles among three ω-O-acylceramide synthesis-deficient mouse strains. J Dermatol Sci 2024; 113:10-17. [PMID: 38158274 DOI: 10.1016/j.jdermsci.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The epidermis contains many structurally diverse ceramides, which form the skin permeability barrier (skin barrier). Mutations in genes involved in the synthesis of ω-O-acylceramides (acylceramides) and protein-bound ceramides cause ichthyosis. OBJECTIVE We aimed to elucidate the relationship between the degree of skin barrier impairment and changes in epidermal ceramide profiles caused by mutations in acylceramide synthesis genes. METHODS Knockout (KO) mice of three genes-fatty acid (FA) ω-hydroxylase Cyp4f39 (human CYP4F22 ortholog), FA elongase Elovl1, and acyl-CoA synthetase Fatp4-were subjected to transepidermal water loss measurement, toluidine blue staining, and epidermal ceramide profiling via liquid chromatography coupled with tandem mass spectrometry. RESULTS Transepidermal water loss was highest in Cyp4f39 KO mice, followed by Elovl1 KO and Fatp4 KO mice, and Cyp4f39 KO mice also showed the strongest degree of toluidine blue staining. In Cyp4f39 KO, Elovl1 KO, and Fatp4 KO mice, acylceramide levels were 0.6%, 1.6%, and 12%, respectively, of those in wild-type mice. Protein-bound ceramide levels were 0.2%, 30%, and 33%, respectively, of those in wild-type mice. We also observed a near-complete absence of ω-hydroxy ceramides in Cyp4f39 KO mice, reduced total ceramide levels and shortened FA moieties in Elovl1 KO mice, and increased hydroxylated ceramide levels and slightly shortened FA moieties in Fatp4 KO mice. CONCLUSIONS The degree of reduction in protein-bound ceramide levels is probably related to the severity of skin barrier defects in these three strains. However, reduced acylceramide levels and other changes in ceramide composition unique to each KO strain are also involved.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
29
|
Yin ZT, Li XQ, Sun YX, Smith J, Hincke M, Yang N, Hou ZC. Selection on the promoter regions plays an important role in complex traits during duck domestication. BMC Biol 2023; 21:303. [PMID: 38129834 PMCID: PMC10740227 DOI: 10.1186/s12915-023-01801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Identifying the key factors that underlie complex traits during domestication is a great challenge for evolutionary and biological studies. In addition to the protein-coding region differences caused by variants, a large number of variants are located in the noncoding regions containing multiple types of regulatory elements. However, the roles of accumulated variants in gene regulatory elements during duck domestication and economic trait improvement are poorly understood. RESULTS We constructed a genomics, transcriptomics, and epigenomics map of the duck genome and assessed the evolutionary forces that have been in play across the whole genome during domestication. In total, 304 (42.94%) gene promoters have been specifically selected in Pekin duck among all selected genes. Joint multi-omics analysis reveals that 218 genes (72.01%) with selected promoters are located in open and active chromatin, and 267 genes (87.83%) with selected promoters were highly and differentially expressed in domestic trait-related tissues. One important candidate gene ELOVL3, with a strong signature of differentiation on the core promoter region, is known to regulate fatty acid elongation. Functional experiments showed that the nearly fixed variants in the top selected ELOVL3 promoter in Pekin duck decreased binding ability with HLF and increased gene expression, with the overexpression of ELOVL3 able to increase lipid deposition and unsaturated fatty acid enrichment. CONCLUSIONS This study presents genome resequencing, RNA-Seq, Hi-C, and ATAC-Seq data of mallard and Pekin duck, showing that selection of the gene promoter region plays an important role in gene expression and phenotypic changes during domestication and highlights that the variants of the ELOVL3 promoter may have multiple effects on fat and long-chain fatty acid content in ducks.
Collapse
Affiliation(s)
- Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yun-Xiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Maxwell Hincke
- Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
30
|
Sinturel F, Chera S, Brulhart-Meynet MC, Montoya JP, Stenvers DJ, Bisschop PH, Kalsbeek A, Guessous I, Jornayvaz FR, Philippe J, Brown SA, D'Angelo G, Riezman H, Dibner C. Circadian organization of lipid landscape is perturbed in type 2 diabetic patients. Cell Rep Med 2023; 4:101299. [PMID: 38016481 PMCID: PMC10772323 DOI: 10.1016/j.xcrm.2023.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/26/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Lipid homeostasis in humans follows a diurnal pattern in muscle and pancreatic islets, altered upon metabolic dysregulation. We employ tandem and liquid-chromatography mass spectrometry to investigate daily regulation of lipid metabolism in subcutaneous white adipose tissue (SAT) and serum of type 2 diabetic (T2D) and non-diabetic (ND) human volunteers (n = 12). Around 8% of ≈440 lipid metabolites exhibit diurnal rhythmicity in serum and SAT from ND and T2D subjects. The spectrum of rhythmic lipids differs between ND and T2D individuals, with the most substantial changes observed early morning, as confirmed by lipidomics in an independent cohort of ND and T2D subjects (n = 32) conducted at a single morning time point. Strikingly, metabolites identified as daily rhythmic in both serum and SAT from T2D subjects exhibit phase differences. Our study reveals massive temporal and tissue-specific alterations of human lipid homeostasis in T2D, providing essential clues for the development of lipid biomarkers in a temporal manner.
Collapse
Affiliation(s)
- Flore Sinturel
- Division of Thoracic and Endocrine Surgery, Department of Surgery, University Hospitals of Geneva, 1211 Geneva, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| | - Simona Chera
- Division of Thoracic and Endocrine Surgery, Department of Surgery, University Hospitals of Geneva, 1211 Geneva, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland; Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Marie-Claude Brulhart-Meynet
- Division of Thoracic and Endocrine Surgery, Department of Surgery, University Hospitals of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Jonathan Paz Montoya
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, 1105 AZ, the Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, 1105 AZ, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, 1105 AZ, the Netherlands; Laboratory for Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, the Netherlands; Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, 1105 BA, the Netherlands
| | - Idris Guessous
- Department and Division of Primary Care Medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - François R Jornayvaz
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Division of Endocrinology, Diabetes, Nutrition, and Therapeutic Patient Education, Department of Medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - Jacques Philippe
- Division of Endocrinology, Diabetes, Nutrition, and Therapeutic Patient Education, Department of Medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Giovanni D'Angelo
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Howard Riezman
- Department of Biochemistry, Faculty of Science, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Charna Dibner
- Division of Thoracic and Endocrine Surgery, Department of Surgery, University Hospitals of Geneva, 1211 Geneva, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland.
| |
Collapse
|
31
|
Gabrielle M, Rohacs T. TMEM120A/TACAN: A putative regulator of ion channels, mechanosensation, and lipid metabolism. Channels (Austin) 2023; 17:2237306. [PMID: 37523628 PMCID: PMC10392765 DOI: 10.1080/19336950.2023.2237306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023] Open
Abstract
TMEM120A (TACAN) is an enigmatic protein with several seemingly unconnected functions. It was proposed to be an ion channel involved in sensing mechanical stimuli, and knockdown/knockout experiments have implicated that TMEM120A may be necessary for sensing mechanical pain. TMEM120A's ion channel function has subsequently been challenged, as attempts to replicate electrophysiological experiments have largely been unsuccessful. Several cryo-EM structures revealed TMEM120A is structurally homologous to a lipid modifying enzyme called Elongation of Very Long Chain Fatty Acids 7 (ELOVL7). Although TMEM120A's channel function is debated, it still seems to affect mechanosensation by inhibiting PIEZO2 channels and by modifying tactile pain responses in animal models. TMEM120A was also shown to inhibit polycystin-2 (PKD2) channels through direct physical interaction. Additionally, TMEM120A has been implicated in adipocyte regulation and in innate immune response against Zika virus. The way TMEM120A is proposed to alter each of these processes ranges from regulating gene expression, acting as a lipid modifying enzyme, and controlling subcellular localization of other proteins through direct binding. Here, we examine TMEM120A's structure and proposed functions in diverse physiological contexts.
Collapse
Affiliation(s)
- Matthew Gabrielle
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
32
|
Wang X, Yu H, Gao R, Liu M, Xie W. A comprehensive review of the family of very-long-chain fatty acid elongases: structure, function, and implications in physiology and pathology. Eur J Med Res 2023; 28:532. [PMID: 37981715 PMCID: PMC10659008 DOI: 10.1186/s40001-023-01523-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The very-long-chain fatty acid elongase (ELOVL) family plays essential roles in lipid metabolism and cellular functions. This comprehensive review explores the structural characteristics, functional properties, and physiological significance of individual ELOVL isoforms, providing insights into lipid biosynthesis, cell membrane dynamics, and signaling pathways. AIM OF REVIEW This review aims to highlight the significance of the ELOVL family in normal physiology and disease development. By synthesizing current knowledge, we underscore the relevance of ELOVLs as potential therapeutic targets. KEY SCIENTIFIC CONCEPTS OF REVIEW We emphasize the association between dysregulated ELOVL expression and diseases, including metabolic disorders, skin diseases, neurodegenerative conditions, and cancer. The intricate involvement of ELOVLs in cancer biology, from tumor initiation to metastasis, highlights their potential as targets for anticancer therapies. Additionally, we discuss the prospects of using isoform-specific inhibitors and activators for metabolic disorders and cancer treatment. The identification of ELOVL-based biomarkers may advance diagnostics and personalized medicine. CONCLUSION The ELOVL family's multifaceted roles in lipid metabolism and cellular physiology underscore its importance in health and disease. Understanding their functions offers potential therapeutic avenues and personalized treatments.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Hao Yu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Rong Gao
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Ming Liu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Wenli Xie
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China.
| |
Collapse
|
33
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
34
|
Sun Z, Wu K, Feng C, Lei XG. Selenium-dependent glutathione peroxidase 1 regulates transcription of elongase 3 in murine tissues. Free Radic Biol Med 2023; 208:708-717. [PMID: 37726091 DOI: 10.1016/j.freeradbiomed.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
We have previously shown dysregulated lipid metabolism in tissues of glutathione peroxidase 1 (GPX1) overexpressing (OE) or deficient (KO) mice. This study explored underlying mechanisms of GPX1 in regulating tissue fatty acid (FA) biosynthesis. GPX1 OE, KO, and wild-type (WT) mice (n = 5, male, 3-6 months old) were fed a Se-adequate diet (0.3 mg/kg) and assayed for liver and adipose tissue FA profiles and mRNA levels of key enzymes of FA biosynthesis and redox-responsive transcriptional factors (TFs). These three genotypes of mice (n = 5) were injected intraperitoneally with diquat, ebselen, and N-acetylcysteine (NAC) at 10, 50, and 50 mg/kg of body weight, respectively, and killed at 0 and 12 h after the injections to detect mRNA levels of FA elongases and desaturases and the TFs in the liver and adipose tissue. A luciferase reporter assay with targeted deletions of mouse Elovl3 promoter was performed to determine transcriptional regulations of the gene by GPX1 mimic ebselen in HEK293T cells. Compared with WT, GPX1 OE and KO mice had 9-42% lower (p < 0.05) and 36-161% higher (p < 0.05) concentrations of C20:0, C22:0, and C24:0 in these two tissues, respectively, along with reciprocal increases and decreases (p < 0.05) of Elovl3 transcripts. Ebselen and NAC decreased (p < 0.05), whereas diquat decreased (p < 0.05), Elovl3 transcripts in the two tissues. Overexpression and knockout of GPX1 decreased (p < 0.05) and increased (p < 0.05) ELOVL3 levels in the two tissues, respectively. Three TFs (GABP, SP1, and DBP) were identified to bind the Elovl3 promoter (-1164/+33 base pairs). Deletion of DBP (-98/-86 base pairs) binding domain in the promoter attenuated (13%, p < 0.05) inhibition of ebselen on Elovl3 promoter activation. In summary, GPX1 overexpression down-regulated very long-chain FA biosynthesis via transcriptional inhibition of the Elovl3 promoter activation.
Collapse
Affiliation(s)
- Ziqiao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Kun Wu
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Chenhan Feng
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
35
|
Shiota T, Li Z, Chen GY, McKnight KL, Shirasaki T, Yonish B, Kim H, Fritch EJ, Sheahan TP, Muramatsu M, Kapustina M, Cameron CE, Li Y, Zhang Q, Lemon SM. Hepatoviruses promote very-long-chain fatty acid and sphingolipid synthesis for viral RNA replication and quasi-enveloped virus release. SCIENCE ADVANCES 2023; 9:eadj4198. [PMID: 37862421 PMCID: PMC10588952 DOI: 10.1126/sciadv.adj4198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Virus-induced changes in host lipid metabolism are an important but poorly understood aspect of viral pathogenesis. By combining nontargeted lipidomics analyses of infected cells and purified extracellular quasi-enveloped virions with high-throughput RNA sequencing and genetic depletion studies, we show that hepatitis A virus, an hepatotropic picornavirus, broadly manipulates the host cell lipid environment, enhancing synthesis of ceramides and other sphingolipids and transcriptionally activating acyl-coenzyme A synthetases and fatty acid elongases to import and activate long-chain fatty acids for entry into the fatty acid elongation cycle. Phospholipids with very-long-chain acyl tails (>C22) are essential for genome replication, whereas increases in sphingolipids support assembly and release of quasi-enveloped virions wrapped in membranes highly enriched for sphingomyelin and very-long-chain ceramides. Our data provide insight into how a pathogenic virus alters lipid flux in infected hepatocytes and demonstrate a distinction between lipid species required for viral RNA synthesis versus nonlytic quasi-enveloped virus release.
Collapse
Affiliation(s)
- Tomoyuki Shiota
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhucui Li
- Center for Translational Biomedical Research, The University of North Carolina at Greensboro, Kannapolis, NC, USA
| | - Guan-Yuan Chen
- Center for Translational Biomedical Research, The University of North Carolina at Greensboro, Kannapolis, NC, USA
| | - Kevin L. McKnight
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan Yonish
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heyjeong Kim
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ethan J. Fritch
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masamichi Muramatsu
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Maryna Kapustina
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig E. Cameron
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - You Li
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, The University of North Carolina at Greensboro, Kannapolis, NC, USA
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Pinto GDA, Murgia A, Lai C, Ferreira CS, Goes VA, Guimarães DDAB, Ranquine LG, Reis DL, Struchiner CJ, Griffin JL, Burton GJ, Torres AG, El-Bacha T. Sphingolipids and acylcarnitines are altered in placentas from women with gestational diabetes mellitus. Br J Nutr 2023; 130:921-932. [PMID: 36539977 DOI: 10.1017/s000711452200397x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gestational diabetes mellitus (GDM) is the most common medical complication of pregnancy and a severe threat to pregnant people and offspring health. The molecular origins of GDM, and in particular the placental responses, are not fully known. The present study aimed to perform a comprehensive characterisation of the lipid species in placentas from pregnancies complicated with GDM using high-resolution MS lipidomics, with a particular focus on sphingolipids and acylcarnitines in a semi-targeted approach. The results indicated that despite no major disruption in lipid metabolism, placentas from GDM pregnancies showed significant alterations in sphingolipids, mostly lower abundance of total ceramides. Additionally, very long-chain ceramides and sphingomyelins with twenty-four carbons were lower, and glucosylceramides with sixteen carbons were higher in placentas from GDM pregnancies. Semi-targeted lipidomics revealed the strong impact of GDM on the placental acylcarnitine profile, particularly lower contents of medium and long-chain fatty-acyl carnitine species. The lower contents of sphingolipids may affect the secretory function of the placenta, and lower contents of long-chain fatty acylcarnitines is suggestive of mitochondrial dysfunction. These alterations in placental lipid metabolism may have consequences for fetal growth and development.
Collapse
Affiliation(s)
- Gabriela D A Pinto
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | | | - Carla Lai
- University of Cagliari, Department of Life and Environmental Science, Cagliari Via Ospedale, Cagliari, Italy
| | - Carolina S Ferreira
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Vanessa A Goes
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Deborah de A B Guimarães
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Layla G Ranquine
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Desirée L Reis
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Claudio J Struchiner
- School of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
- Institute of Social Medicine, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julian L Griffin
- Department of Biochemistry, Cambridge, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alexandre G Torres
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Wang L, Zhu J, Xie P, Gong D. Pigeon during the Breeding Cycle: Behaviors, Composition and Formation of Crop Milk, and Physiological Adaptation. Life (Basel) 2023; 13:1866. [PMID: 37763270 PMCID: PMC10533064 DOI: 10.3390/life13091866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Pigeon is an important economic poultry species in many countries. As an altricial bird, its growth and development are largely reliant on pigeon milk produced by the crop tissue in the first week. During the breeding cycle, pigeons undergo a series of behavioral changes. Pigeon milk is generally characterized by having high concentrations of proteins and lipids, and a complicated regulatory network is involved in the milk formation. Hormones, especially prolactin, could promote the proliferation of crop epidermal cells and nutrient accumulation. The expression of target genes associated with these important biological processes in the crop epidermis is affected by non-coding RNAs. Meanwhile, signaling pathways, such as target of rapamycin (TOR), Janus kinase/signal transducer and activator of transcription proteins (JAK/STAT), protein kinase B (Akt), etc., influence the production of crop milk by either enhancing protein synthesis in crop cells or inducing apoptosis of crop epidermal cells. In order to adapt to the different breeding periods, pigeons are physiologically changed in their intestinal morphology and function and liver metabolism. This paper reviews the behaviors and physiological adaptations of pigeon during the breeding cycle, the composition of pigeon crop milk, and the mechanism of its formation, which is important for a better understanding of the physiology of altricial birds and the development of artificial crop milk.
Collapse
Affiliation(s)
- Liuxiong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Jianguo Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
| |
Collapse
|
38
|
Ferrero E, Di Gregorio E, Ferrero M, Ortolan E, Moon YA, Di Campli A, Pavinato L, Mancini C, Tripathy D, Manes M, Hoxha E, Costanzi C, Pozzi E, Rossi Sebastiano M, Mitro N, Tempia F, Caruso D, Borroni B, Basso M, Sallese M, Brusco A. Spinocerebellar ataxia 38: structure-function analysis shows ELOVL5 G230V is proteotoxic, conformationally altered and a mutational hotspot. Hum Genet 2023; 142:1055-1076. [PMID: 37199746 PMCID: PMC10449689 DOI: 10.1007/s00439-023-02572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Eleonora Di Gregorio
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy
| | - Marta Ferrero
- Experimental Zooprophylactic Institute of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Erika Ortolan
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Antonella Di Campli
- Institute of Protein Biochemistry, Italian National Research Council, Naples, Italy
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Marta Manes
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | | | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Matteo Rossi Sebastiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Sallese
- Centre for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy.
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy.
| |
Collapse
|
39
|
Jojima K, Kihara A. Metabolism of sphingadiene and characterization of the sphingadiene-producing enzyme FADS3. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159335. [PMID: 37209771 DOI: 10.1016/j.bbalip.2023.159335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Of the long-chain bases (LCBs) that comprise the ceramides (CERs) present in mammals, only 4,14-sphingadiene (sphingadiene; SPD) has a cis double bond (at C14). Because of this unique structure, the metabolism of SPD may differ from that of other LCBs, but whether this is the case remains unclear. FADS3 is responsible for introducing the cis double bond in SPD. However, the substrate specificity of FADS3 and cofactors involved in the FADS3-catalyzed reaction are also unknown. In the present study, a cell-based assay using a ceramide synthase inhibitor and an in vitro experiment showed that FADS3 is active toward sphingosine (SPH)-containing CERs (SPH-CERs) but not toward free SPH. FADS3 exhibits specificity with respect to the chain length of the SPH moiety of SPH-CERs (active toward C16-20), but not that of the fatty acid moiety. Furthermore, FADS3 is active toward straight-chain and isobranched-chain SPH-containing CERs but not toward anteiso-branched forms. In addition to SPH-CERs, FADS3 also shows activity toward dihydrosphingosine-containing CERs, but this activity is approximately half of that toward SPH-CERs. It uses either NADH or NADPH as an electron donor, and the electron transfer is facilitated by cytochrome b5. The metabolic flow of SPD to sphingomyelin is predominant over that to glycosphingolipids. In the metabolic pathway from SPD to fatty acids, the chain length of the SPD is reduced by two carbons and the trans double bond at C4 is saturated. This study thus elucidates the enzymatic properties of FADS3 and the metabolism of SPD.
Collapse
Affiliation(s)
- Keisuke Jojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
40
|
Chung HL, Ye Q, Park YJ, Zuo Z, Mok JW, Kanca O, Tattikota SG, Lu S, Perrimon N, Lee HK, Bellen HJ. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab 2023; 35:855-874.e5. [PMID: 37084732 PMCID: PMC10160010 DOI: 10.1016/j.cmet.2023.03.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qi Ye
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nobert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hyun Kyoung Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Kasano-Camones CI, Takizawa M, Ohshima N, Saito C, Iwasaki W, Nakagawa Y, Fujitani Y, Yoshida R, Saito Y, Izumi T, Terawaki SI, Sakaguchi M, Gonzalez FJ, Inoue Y. PPARα activation partially drives NAFLD development in liver-specific Hnf4a-null mice. J Biochem 2023; 173:393-411. [PMID: 36779417 PMCID: PMC10433406 DOI: 10.1093/jb/mvad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
HNF4α regulates various genes to maintain liver function. There have been reports linking HNF4α expression to the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis. In this study, liver-specific Hnf4a-deficient mice (Hnf4aΔHep mice) developed hepatosteatosis and liver fibrosis, and they were found to have difficulty utilizing glucose. In Hnf4aΔHep mice, the expression of fatty acid oxidation-related genes, which are PPARα target genes, was increased in contrast to the decreased expression of PPARα, suggesting that Hnf4aΔHep mice take up more lipids in the liver instead of glucose. Furthermore, Hnf4aΔHep/Ppara-/- mice, which are simultaneously deficient in HNF4α and PPARα, showed improved hepatosteatosis and fibrosis. Increased C18:1 and C18:1/C18:0 ratio was observed in the livers of Hnf4aΔHep mice, and the transactivation of PPARα target gene was induced by C18:1. When the C18:1/C18:0 ratio was close to that of Hnf4aΔHep mouse liver, a significant increase in transactivation was observed. In addition, the expression of Pgc1a, a coactivator of PPARs, was increased, suggesting that elevated C18:1 and Pgc1a expression could contribute to PPARα activation in Hnf4aΔHep mice. These insights may contribute to the development of new diagnostic and therapeutic approaches for NAFLD by focusing on the HNF4α and PPARα signaling cascade.
Collapse
Affiliation(s)
- Carlos Ichiro Kasano-Camones
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masayuki Takizawa
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Chinatsu Saito
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Wakana Iwasaki
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ryo Yoshida
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Yoshifumi Saito
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Takashi Izumi
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
- Faculty of Health Care, Teikyo Heisei University, Tokyo 170-8445, Japan
| | - Shin-Ichi Terawaki
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | - Yusuke Inoue
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
42
|
Sassa T, Kihara A. Involvement of ω-O-acylceramides and protein-bound ceramides in oral permeability barrier formation. Cell Rep 2023; 42:112363. [PMID: 37054712 DOI: 10.1016/j.celrep.2023.112363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
The permeability barrier present in the oral cavity is critical for protection from infection. Although lipids have properties suitable for permeability barrier formation, little is known about their role in oral barrier formation. Here, we show the presence of ω-O-acylceramides (acylceramides) and protein-bound ceramides, which are essential for the formation of permeability barriers in the epidermis, in the oral mucosae (buccal and tongue mucosae), esophagus, and stomach in mice. Conditional knockout of the fatty acid elongase Elovl1, which is involved in the synthesis of ≥C24 ceramides including acylceramides and protein-bound ceramides, in the oral mucosae and esophagus causes increased pigment penetration into the mucosal epithelium of the tongue and enhanced aversive responses to capsaicin-containing water. We find acylceramides in the buccal and gingival mucosae and protein-bound ceramides in the gingival mucosa in humans. These results indicate that acylceramides and protein-bound ceramides are important for oral permeability barrier formation.
Collapse
Affiliation(s)
- Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
43
|
Korbecki J, Bosiacki M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis. Cancers (Basel) 2023; 15:cancers15072183. [PMID: 37046844 PMCID: PMC10093493 DOI: 10.3390/cancers15072183] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR).
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
44
|
Tibbo AJ, Hartley A, Vasan R, Shaw R, Galbraith L, Mui E, Leung HY, Ahmad I. MBTPS2 acts as a regulator of lipogenesis and cholesterol synthesis through SREBP signalling in prostate cancer. Br J Cancer 2023; 128:1991-1999. [PMID: 36991255 DOI: 10.1038/s41416-023-02237-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Prostate cancer is the most common cancer in men in the developed world, with most deaths caused by advanced and metastatic disease which has no curative options. Here, we identified Mbtps2 alteration to be associated with metastatic disease in an unbiased in vivo screen and demonstrated its regulation of fatty acid and cholesterol metabolism. METHODS The Sleeping Beauty transposon system was used to randomly alter gene expression in the PtenNull murine prostate. MBTPS2 was knocked down by siRNA in LNCaP, DU145 and PC3 cell lines, which were then phenotypically investigated. RNA-Seq was performed on LNCaP cells lacking MBTPS2, and pathways validated by qPCR. Cholesterol metabolism was investigated by Filipin III staining. RESULTS Mbtps2 was identified in our transposon-mediated in vivo screen to be associated with metastatic prostate cancer. Silencing of MBTPS2 expression in LNCaP, DU145 and PC3 human prostate cancer cells reduced proliferation and colony forming growth in vitro. Knockdown of MBTPS2 expression in LNCaP cells impaired cholesterol synthesis and uptake along with reduced expression of key regulators of fatty acid synthesis, namely FASN and ACACA. CONCLUSION MBTPS2 is implicated in progressive prostate cancer and may mechanistically involve its effects on fatty acid and cholesterol metabolism.
Collapse
Affiliation(s)
- Amy J Tibbo
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Andrew Hartley
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Richa Vasan
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Robin Shaw
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Laura Galbraith
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Ernest Mui
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Hing Y Leung
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Imran Ahmad
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
45
|
Siddiqui AJ, Jahan S, Chaturvedi S, Siddiqui MA, Alshahrani MM, Abdelgadir A, Hamadou WS, Saxena J, Sundararaj BK, Snoussi M, Badraoui R, Adnan M. Therapeutic Role of ELOVL in Neurological Diseases. ACS OMEGA 2023; 8:9764-9774. [PMID: 36969404 PMCID: PMC10034982 DOI: 10.1021/acsomega.3c00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Fatty acids play an important role in controlling the energy balance of mammals. De novo lipogenesis also generates a significant amount of lipids that are endogenously produced in addition to their ingestion. Fatty acid elongation beyond 16 carbons (palmitic acid), which can lead to the production of very long chain fatty acids (VLCFA), can be caused by the rate-limiting condensation process. Seven elongases, ELOVL1-7, have been identified in mammals and each has a unique substrate specificity. Researchers have recently developed a keen interest in the elongation of very long chain fatty acids protein 1 (ELOVL1) enzyme as a potential treatment for a variety of diseases. A number of neurological disorders directly or indirectly related to ELOVL1 involve the elongation of monounsaturated (C20:1 and C22:1) and saturated (C18:0-C26:0) acyl-CoAs. VLCFAs and ELOVL1 have a direct impact on the neurological disease. Other neurological symptoms such as ichthyotic keratoderma, spasticity, and hypomyelination have also been linked to the major enzyme (ELOVL1). Recently, ELOVL1 has also been heavily used to treat a number of diseases. The current review focuses on in-depth unique insights regarding the role of ELOVL1 as a therapeutic target and associated neurological disorders.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Sadaf Jahan
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Swati Chaturvedi
- Department
of Pharmaceutics and Pharmacokinetics, Pre-Clinical North, Lab-106, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Maqsood Ahmed Siddiqui
- Department
of Zoology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department
of Clinical Laboratory Sciences, Faculty of Applied Medial Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdelmushin Abdelgadir
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Walid Sabri Hamadou
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Juhi Saxena
- Department
of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Chandigarh State Hwy, Ludhiana, Punjab 140413, India
| | - Bharath K. Sundararaj
- School
of Dental Medicine, Department of Cellular and Molecular Biology, Boston University, Medical Campus Boston, Boston, Massachusetts 02215, United States
| | - Mejdi Snoussi
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Riadh Badraoui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
46
|
Khadhraoui N, Prola A, Vandestienne A, Blondelle J, Guillaud L, Courtin G, Bodak M, Prost B, Huet H, Wintrebert M, Péchoux C, Solgadi A, Relaix F, Tiret L, Pilot-Storck F. Hacd2 deficiency in mice leads to an early and lethal mitochondrial disease. Mol Metab 2023; 69:101677. [PMID: 36693621 PMCID: PMC9986742 DOI: 10.1016/j.molmet.2023.101677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Mitochondria fuel most animal cells with ATP, ensuring proper energetic metabolism of organs. Early and extensive mitochondrial dysfunction often leads to severe disorders through multiorgan failure. Hacd2 gene encodes an enzyme involved in very long chain fatty acid (C ≥ 18) synthesis, yet its roles in vivo remain poorly understood. Since mitochondria function relies on specific properties of their membranes conferred by a particular phospholipid composition, we investigated if Hacd2 gene participates to mitochondrial integrity. METHODS We generated two mouse models, the first one leading to a partial knockdown of Hacd2 expression and the second one, to a complete knockout of Hacd2 expression. We performed an in-depth analysis of the associated phenotypes, from whole organism to molecular scale. RESULTS Thanks to these models, we show that Hacd2 displays an early and broad expression, and that its deficiency in mice is lethal. Specifically, partial knockdown of Hacd2 expression leads to death within one to four weeks after birth, from a sudden growth arrest followed by cachexia and lethargy. The total knockout of Hacd2 is even more severe, characterized by embryonic lethality around E9.5 following developmental arrest and pronounced cardiovascular malformations. In-depth mechanistic analysis revealed that Hacd2 deficiency causes altered mitochondrial efficiency and ultrastructure, as well as accumulation of oxidized cardiolipin. CONCLUSIONS Altogether, these data indicate that the Hacd2 gene is essential for energetic metabolism during embryonic and postnatal development, acting through the control of proper mitochondrial organization and function.
Collapse
Affiliation(s)
- Nahed Khadhraoui
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Alexandre Prola
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Aymeline Vandestienne
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Jordan Blondelle
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Laurent Guillaud
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Guillaume Courtin
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Maxime Bodak
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Bastien Prost
- UMS IPSIT, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Hélène Huet
- Biopôle, École nationale vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Mélody Wintrebert
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Audrey Solgadi
- UMS IPSIT, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Frédéric Relaix
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Laurent Tiret
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France.
| | - Fanny Pilot-Storck
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France.
| |
Collapse
|
47
|
Korsmo HW, Kadam I, Reaz A, Bretter R, Saxena A, Johnson CH, Caviglia JM, Jiang X. Prenatal Choline Supplement in a Maternal Obesity Model Modulates Offspring Hepatic Lipidomes. Nutrients 2023; 15:965. [PMID: 36839327 PMCID: PMC9963284 DOI: 10.3390/nu15040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Maternal obesity during pregnancy adversely impacts offspring health, predisposing them to chronic metabolic diseases characterized by insulin resistance, dysregulated macronutrient metabolism, and lipid overload, such as metabolic-associated fatty liver disease (MAFLD). Choline is a semi-essential nutrient involved in lipid and one-carbon metabolism that is compromised during MAFLD progression. Here, we investigated under high-fat (HF) obesogenic feeding how maternal choline supplementation (CS) influenced the hepatic lipidome of mouse offspring. Our results demonstrate that maternal HF+CS increased relative abundance of a subclass of phospholipids called plasmalogens in the offspring liver at both embryonic day 17.5 and after 6 weeks of postnatal HF feeding. Consistent with the role of plasmalogens as sacrificial antioxidants, HF+CS embryos were presumably protected with lower oxidative stress. After postnatal HF feeding, the maternal HF+CS male offspring also had higher relative abundance of both sphingomyelin d42:2 and its side chain, nervonic acid (FA 24:1). Nervonic acid is exclusively metabolized in the peroxisome and is tied to plasmalogen synthesis. Altogether, this study demonstrates that under the influence of obesogenic diet, maternal CS modulates the fetal and postnatal hepatic lipidome of male offspring, favoring plasmalogen synthesis, an antioxidative response that may protect the mouse liver from damages due to HF feeding.
Collapse
Affiliation(s)
- Hunter W. Korsmo
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Isma’il Kadam
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Aziza Reaz
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Rachel Bretter
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Anjana Saxena
- Department of Biology, Brooklyn College of the City University of New York, New York, NY 11210, USA
| | | | - Jorge Matias Caviglia
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Xinyin Jiang
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|
48
|
Tamura Y, Sassa T, Nishizawa T, Kihara A. Incomplete Elongation of Ultra-long-chain Polyunsaturated Acyl-CoAs by the Fatty Acid Elongase ELOVL4 in Spinocerebellar Ataxia Type 34. Mol Cell Biol 2023; 43:1-17. [PMID: 36748939 PMCID: PMC9980445 DOI: 10.1080/10985549.2023.2169563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) are autosomal dominant diseases characterized by cerebellar atrophy and ataxia. The SCA subtype SCA34 is caused by specific mutations in the gene ELOVL4, which encodes a fatty acid (FA) elongase that synthesizes ultra-long-chain (ULC; ≥C26) FAs. However, the pathogenesis and molecular mechanism that confers dominant inheritance remains unknown. Here, a cell-based assay demonstrated that each of the five known SCA34 mutants produced shorter ULC polyunsaturated FA-containing phosphatidylcholines (ULC-PCs) than wild-type protein, in the following order of severity: Q180P and T233M > W246G > I171T and L168F. Next, we generated knock-in mouse embryonic stem cells that contained heterozygous Q180P, heterozygous W246G, or homozygous W246G mutations. Neuronal differentiation-dependent production of ULC-PCs was reduced in heterozygous Q180P and homozygous W246G cells relative to control cells, and we observed shortening of the FA moiety in all mutant cells. This FA shortening was consistent with our prediction that amino acid residues substituted by SCA34 mutations are located in the transmembrane helices that interact with the ω-end region of the FA moiety of the substrate acyl-CoA. Hence, reduced levels and shortening of ULC-PCs in neurons may cause SCA34, and incomplete elongation of ULC polyunsaturated acyl-CoAs by mutated ELOVL4 may induce dominant inheritance.
Collapse
Affiliation(s)
- Yuka Tamura
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takumi Nishizawa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
49
|
Dysregulated ceramide metabolism in mouse progressive dermatitis resulting from constitutive activation of Jak1. J Lipid Res 2023; 64:100329. [PMID: 36639058 PMCID: PMC9932461 DOI: 10.1016/j.jlr.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023] Open
Abstract
Coordinated lipid metabolism contributes to maintaining skin homeostasis by regulating skin barrier formation, immune reactions, thermogenesis, and perception. Several reports have documented the changes in lipid composition in dermatitis, including in atopic dermatitis (AD); however, the specific mechanism by which these lipid profiles are altered during AD pathogenesis remains unknown. Here, we performed untargeted and targeted lipidomic analyses of an AD-like dermatitis model resulting from constitutive activation of Janus kinase 1 (Spade mice) to capture the comprehensive lipidome profile during dermatitis onset and progression. We successfully annotated over 700 skin lipids, including glycerophospholipids, ceramides, neutral lipids, and fatty acids, many of which were found to be present at significantly changed levels after dermatitis onset, as determined by the pruritus and erythema. Among them, we found the levels of ceramides composed of nonhydroxy fatty acid and dihydrosphingosine containing very long-chain (C22 or more) fatty acids were significantly downregulated before AD onset. Furthermore, in vitro enzyme assays using the skin of Spade mice demonstrated the enhancement of ceramide desaturation. Finally, we revealed topical application of ceramides composed of nonhydroxy fatty acid and dihydrosphingosine before AD onset effectively ameliorated the progression of AD symptoms in Spade mice. Our results suggest that the disruption in epidermal ceramide composition is caused by boosting ceramide desaturation in the initiation phase of AD, which regulates AD pathogenesis.
Collapse
|
50
|
Kleuser B, Bäumer W. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:ijms24021456. [PMID: 36674974 PMCID: PMC9863039 DOI: 10.3390/ijms24021456] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids are crucial molecules of the mammalian epidermis. The formation of skin-specific ceramides contributes to the formation of lipid lamellae, which are important for the protection of the epidermis from excessive water loss and protect the skin from the invasion of pathogens and the penetration of xenobiotics. In addition to being structural constituents of the epidermal layer, sphingolipids are also key signaling molecules that participate in the regulation of epidermal cells and the immune cells of the skin. While the importance of ceramides with regard to the proliferation and differentiation of skin cells has been known for a long time, it has emerged in recent years that the sphingolipid sphingosine 1-phosphate (S1P) is also involved in processes such as the proliferation and differentiation of keratinocytes. In addition, the immunomodulatory role of this sphingolipid species is becoming increasingly apparent. This is significant as S1P mediates a variety of its actions via G-protein coupled receptors. It is, therefore, not surprising that dysregulation in the signaling pathways of S1P is involved in the pathophysiological conditions of skin diseases. In the present review, the importance of S1P in skin cells, as well as the immune cells of the skin, is elaborated. In particular, the role of the molecule in inflammatory skin diseases will be discussed. This is important because interfering with S1P signaling pathways may represent an innovative option for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2+4, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| | - Wolfgang Bäumer
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| |
Collapse
|