1
|
Królikowska K, Kurman N, Błaszczak K, Ławicki S, Gudowska-Sawczuk M, Zajkowska M. The Significance of Neuropilins in Gastrointestinal Cancers. Int J Mol Sci 2025; 26:4937. [PMID: 40430075 PMCID: PMC12112013 DOI: 10.3390/ijms26104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Cancers represent a significant global health concern, being among the most prevalent malignancies and contributing substantially to morbidity and mortality rates. Notably, colorectal, gastric, pancreatic, and liver cancers are the most frequently diagnosed among these malignancies. The pathogenesis of gastrointestinal (GI) cancers is multifactorial, encompassing a complex interplay of genetic predispositions, environmental exposures, and lifestyle choices. Despite advances in diagnostic approaches and therapeutic strategies, existing treatment modalities, particularly in the advanced stages of these cancers, remain ineffective. Recent research efforts have increasingly focused on the identification and characterization of novel biomarkers that could enhance both the detection and treatment of gastrointestinal cancers. One particularly promising area of investigation involves neuropilins (NRPs). NRPs are involved in essential biological processes such as angiogenesis, cellular migration, and tumor cell-microenvironment interactions, all of which promote tumor progression and contribute to the development of treatment resistance. Overexpression of neuropilins has been linked to poor prognosis in patients, implying that they could be useful in diagnosis and serve as targets for molecular treatment. Recent research also suggests that inhibiting neuropilin activity may slow tumor growth and inhibit angiogenic processes, opening up new possibilities for targeted therapeutic techniques in the treatment of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Kinga Królikowska
- Department of Population Medicine and Lifestyle Diseases Prevention, The Faculty of Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland (S.Ł.)
| | - Natalia Kurman
- Department of Population Medicine and Lifestyle Diseases Prevention, The Faculty of Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland (S.Ł.)
| | - Katarzyna Błaszczak
- Department of Population Medicine and Lifestyle Diseases Prevention, The Faculty of Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland (S.Ł.)
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, The Faculty of Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland (S.Ł.)
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
| |
Collapse
|
2
|
Lu Y, Man XY. Diversity and function of regulatory T cells in health and autoimmune diseases. J Autoimmun 2025; 151:103357. [PMID: 39805189 DOI: 10.1016/j.jaut.2025.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status. This heterogeneity is crucial for understanding Treg roles in various pathological conditions. Dysfunctional Tregs are closely linked to the pathogenesis of autoimmune diseases, although the precise mechanisms remain unclear. The phenotypic and functional heterogeneity of Tregs is particularly significant in diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis and autoimmune liver diseases. This review explores Treg origins, classifications, and heterogeneity in these conditions, aiming to provide new perspectives and strategies for diagnosis and treatment. Understanding Treg heterogeneity and plasticity promises to reveal novel therapeutic targets and advance precision immunotherapy development.
Collapse
Affiliation(s)
- Yi Lu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
3
|
Failla CM, Carbone ML, Ramondino C, Bruni E, Orecchia A. Vascular Endothelial Growth Factor (VEGF) Family and the Immune System: Activators or Inhibitors? Biomedicines 2024; 13:6. [PMID: 39857591 PMCID: PMC11763294 DOI: 10.3390/biomedicines13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The vascular endothelial growth factor (VEGF) family includes key mediators of vasculogenesis and angiogenesis. VEGFs are secreted by various cells of epithelial and mesenchymal origin and by some immune cells in response to physiological and pathological stimuli. In addition, immune cells express VEGF receptors and/or co-receptors and can respond to VEGFs in an autocrine or paracrine manner. This immunological role of VEGFs has opened the possibility of using the VEGF inhibitors already developed to inhibit tumor angiogenesis also in combination approaches with different immunotherapies to enhance the action of effector T lymphocytes against tumor cells. This review pursues to examine the current understanding of the interplay between VEGFs and the immune system, while identifying key areas that require further evaluation.
Collapse
Affiliation(s)
- Cristina Maria Failla
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (C.M.F.); (C.R.)
| | - Maria Luigia Carbone
- Clinical Trial Center, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| | - Carmela Ramondino
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (C.M.F.); (C.R.)
| | - Emanuele Bruni
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | | |
Collapse
|
4
|
Wang Y, Wang E, Anany M, Füllsack S, Huo YH, Dutta S, Ji B, Hoeppner LH, Kilari S, Misra S, Caulfield T, Vander Kooi CW, Wajant H, Mukhopadhyay D. The crosstalk between neuropilin-1 and tumor necrosis factor-α in endothelial cells. Front Cell Dev Biol 2024; 12:1210944. [PMID: 38994453 PMCID: PMC11236538 DOI: 10.3389/fcell.2024.1210944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Tumor necrosis factor-α (TNFα) is a master cytokine which induces expression of chemokines and adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in endothelial cells to initiate the vascular inflammatory response. In this study, we identified neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, as a modulator of TNFα-induced inflammatory response of endothelial cells. NRP1 shRNA expression suppressed TNFα-stimulated leukocyte adhesion and expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVECs). Likewise, it reduced TNFα-induced phosphorylation of MAPK p38 but did not significantly affect other TNF-induced signaling pathways, such as the classical NFκB and the AKT pathway. Immunofluorescent staining demonstrated co-localization of NRP1 with the two receptors of TNF, TNFR1 and TNFR2. Co-immunoprecipitation further confirmed that NRP1 was in the same protein complex or membrane compartment as TNFR1 and TNFR2, respectively. Modulation of NRP1 expression, however, neither affected TNFR levels in the cell membrane nor the receptor binding affinities of TNFα. Although a direct interface between NRP1 and TNFα/TNFR1 appeared possible from a protein docking model, a direct interaction was not supported by binding assays in cell-free microplates and cultured cells. Furthermore, TNFα was shown to downregulate NRP1 in a time-dependent manner through TNFR1-NFκB pathway in HUVECs. Taken together, our study reveals a novel reciprocal crosstalk between NRP1 and TNFα in vascular endothelial cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiovascular Medicine, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Centre, Giza, Egypt
| | - Simone Füllsack
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Yu Henry Huo
- Department of Cardiovascular Medicine, Rochester, MN, United States
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Baoan Ji
- Department of Cancer Biology, Jacksonville, FL, United States
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | | - Sanjay Misra
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
5
|
Wu Z, Wang Y, Liu W, Lu M, Shi J. The role of neuropilin in bone/cartilage diseases. Life Sci 2024; 346:122630. [PMID: 38614296 DOI: 10.1016/j.lfs.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Bone remodeling is the balance between osteoblasts and osteoclasts. Bone diseases such as osteoporosis and osteoarthritis are associated with imbalanced bone remodeling. Skeletal injury leads to limited motor function and pain. Neurophilin was initially identified in axons, and its various ligands and roles in bone remodeling, angiogenesis, neuropathic pain and immune regulation were later discovered. Neurophilin promotes osteoblast mineralization and inhibits osteoclast differentiation and its function. Neuropolin-1 provides channels for immune cell chemotaxis and cytokine diffusion and leads to pain. Neuropolin-1 regulates the proportion of T helper type 17 (Th17) and regulatory T cells (Treg cells), and affects bone immunity. Vascular endothelial growth factors (VEGF) combine with neuropilin and promote angiogenesis. Class 3 semaphorins (Sema3a) compete with VEGF to bind neuropilin, which reduces angiogenesis and rejects sympathetic nerves. This review elaborates on the structure and general physiological functions of neuropilin and summarizes the role of neuropilin and its ligands in bone and cartilage diseases. Finally, treatment strategies and future research directions based on neuropilin are proposed.
Collapse
Affiliation(s)
- Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Wei Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Mingcheng Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
6
|
Al-Temaimi R, Alshammari N, Alroughani R. Analysis of potential microRNA biomarkers for multiple sclerosis. Exp Mol Pathol 2024; 137:104903. [PMID: 38772208 DOI: 10.1016/j.yexmp.2024.104903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating autoimmune neurodegenerative disorder for which no specific blood biomarker is available. MicroRNAs (miRNAs) have been investigated for their diagnostic potential in MS. However, MS-associated miRNAs are rarely replicated in different MS populations, thus impeding their use in clinical testing. Here, we evaluated the fold expression of seven reported MS miRNAs associated with MS incidence and clinical characteristics in 76 MS patients and 75 healthy control plasma samples. We found miR-23a-3p to be upregulated in relapsing-remitting MS (RRMS), while miR-326 was downregulated. MiR-150-5p and -320a-3p were significantly downregulated in secondary progressive MS (SPMS) patients compared to RRMS. High disability was associated with low miR-320a-3p, whereas low BDNF levels were associated with upregulation of miR-150-5p and downregulation of miR-326 expression in the total cohort. MiR-23a-3p and miR-326 showed significant diagnostic sensitivity, specificity, and accuracy for RRMS diagnosis. In addition, miR-150-5p and miR-320a-3p had comparable significant diagnostic test performance metrics distinguishing SPMS from RRMS. Therefore, there is potential for including miR-23a-3p and miR-326 in an RRMS diagnostic miRNA panel. Moreover, we have shown that miR-150-5p and miR-320a-3p could be novel RRMS conversion to SPMS biomarkers. The use of these miRNAs in MS diagnosis and prognosis warrants further investigation.
Collapse
Affiliation(s)
- Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait.
| | - Nashmeiah Alshammari
- Molecular Biology joint Master program, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | | |
Collapse
|
7
|
Saleki K, Alijanizadeh P, Azadmehr A. Is neuropilin-1 the neuroimmune initiator of multi-system hyperinflammation in COVID-19? Biomed Pharmacother 2023; 167:115558. [PMID: 37748412 DOI: 10.1016/j.biopha.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
A major immunopathological feature of Coronavirus disease-2019 (COVID-19) is excessive inflammation in the form of "cytokine storm". The storm is characterized by injurious levels of cytokines which form a complicated network damaging different organs, including the lungs and the brain. The main starter of "cytokine network" hyperactivation in COVID-19 has not been discovered yet. Neuropilins (NRPs) are transmembrane proteins that act as neuronal guidance and angiogenesis modulators. The crucial function of NRPs in forming the nervous and vascular systems has been well-studied. NRP1 and NRP2 are the two identified homologs of NRP. NRP1 has been shown as a viral entry pathway for SARS-CoV2, which facilitates neuroinvasion by the virus within the central or peripheral nervous systems. These molecules directly interact with various COVID-19-related molecules, such as specific regions of the spike protein (major immune element of SARS-CoV2), vascular endothelial growth factor (VEGF) receptors, VEGFR1/2, and ANGPTL4 (regulator of vessel permeability and integrity). NRPs mainly play a role in hyperinflammatory injury of the CNS and lungs, and also the liver, kidney, pancreas, and heart in COVID-19 patients. New findings have suggested NRPs good candidates for pharmacotherapy of COVID-19. However, therapeutic targeting of NRP1 in COVID-19 is still in the preclinical phase. This review presents the implications of NRP1 in multi-organ inflammation-induced injury by SARS-CoV2 and provides insights for NRP1-targeting treatments for COVID-19 patients.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
8
|
Abberger H, Hose M, Ninnemann A, Menne C, Eilbrecht M, Lang KS, Matuschewski K, Geffers R, Herz J, Buer J, Westendorf AM, Hansen W. Neuropilin-1 identifies a subset of highly activated CD8+ T cells during parasitic and viral infections. PLoS Pathog 2023; 19:e1011837. [PMID: 38019895 PMCID: PMC10718454 DOI: 10.1371/journal.ppat.1011837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Neuropilin-1 (Nrp-1) expression on CD8+ T cells has been identified in tumor-infiltrating lymphocytes and in persistent murine gamma-herpes virus infections, where it interferes with the development of long-lived memory T cell responses. In parasitic and acute viral infections, the role of Nrp-1 expression on CD8+ T cells remains unclear. Here, we demonstrate a strong induction of Nrp-1 expression on CD8+ T cells in Plasmodium berghei ANKA (PbA)-infected mice that correlated with neurological deficits of experimental cerebral malaria (ECM). Likewise, the frequency of Nrp-1+CD8+ T cells was significantly elevated and correlated with liver damage in the acute phase of lymphocytic choriomeningitis virus (LCMV) infection. Transcriptomic and flow cytometric analyses revealed a highly activated phenotype of Nrp-1+CD8+ T cells from infected mice. Correspondingly, in vitro experiments showed rapid induction of Nrp-1 expression on CD8+ T cells after stimulation in conjunction with increased expression of activation-associated molecules. Strikingly, T cell-specific Nrp-1 ablation resulted in reduced numbers of activated T cells in the brain of PbA-infected mice as well as in spleen and liver of LCMV-infected mice and alleviated the severity of ECM and LCMV-induced liver pathology. Mechanistically, we identified reduced blood-brain barrier leakage associated with reduced parasite sequestration in the brain of PbA-infected mice with T cell-specific Nrp-1 deficiency. In conclusion, Nrp-1 expression on CD8+ T cells represents a very early activation marker that exacerbates deleterious CD8+ T cell responses during both, parasitic PbA and acute LCMV infections.
Collapse
Affiliation(s)
- Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Hose
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Anne Ninnemann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Christopher Menne
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Mareike Eilbrecht
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Karl S. Lang
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Josephine Herz
- Department of Pediatrics 1, Neonatology & Experimental perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Germany
- Centre for Translational Neuro- and Behavioral Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| |
Collapse
|
9
|
Eberhardt N, Noval MG, Kaur R, Amadori L, Gildea M, Sajja S, Das D, Cilhoroz B, Stewart O, Fernandez DM, Shamailova R, Guillen AV, Jangra S, Schotsaert M, Newman JD, Faries P, Maldonado T, Rockman C, Rapkiewicz A, Stapleford KA, Narula N, Moore KJ, Giannarelli C. SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels. NATURE CARDIOVASCULAR RESEARCH 2023; 2:899-916. [PMID: 38076343 PMCID: PMC10702930 DOI: 10.1038/s44161-023-00336-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023]
Abstract
Patients with coronavirus disease 2019 (COVID-19) present increased risk for ischemic cardiovascular complications up to 1 year after infection. Although the systemic inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely contributes to this increased cardiovascular risk, whether SARS-CoV-2 directly infects the coronary vasculature and attendant atherosclerotic plaques remains unknown. Here we report that SARS-CoV-2 viral RNA is detectable and replicates in coronary lesions taken at autopsy from severe COVID-19 cases. SARS-CoV-2 targeted plaque macrophages and exhibited a stronger tropism for arterial lesions than adjacent perivascular fat, correlating with macrophage infiltration levels. SARS-CoV-2 entry was increased in cholesterol-loaded primary macrophages and dependent, in part, on neuropilin-1. SARS-CoV-2 induced a robust inflammatory response in cultured macrophages and human atherosclerotic vascular explants with secretion of cytokines known to trigger cardiovascular events. Our data establish that SARS-CoV-2 infects coronary vessels, inducing plaque inflammation that could trigger acute cardiovascular complications and increase the long-term cardiovascular risk.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Maria Gabriela Noval
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ravneet Kaur
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Letizia Amadori
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Michael Gildea
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Swathy Sajja
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Dayasagar Das
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Burak Cilhoroz
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - O’Jay Stewart
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dawn M. Fernandez
- Department of Medicine, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roza Shamailova
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Andrea Vasquez Guillen
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan D. Newman
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Peter Faries
- Department of Surgery, Vascular Division, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Maldonado
- Department of Surgery, Vascular Division, New York University Langone Health, New York, NY, USA
| | - Caron Rockman
- Department of Surgery, Vascular Division, New York University Langone Health, New York, NY, USA
| | - Amy Rapkiewicz
- Department of Pathology, NYU Winthrop Hospital, Long Island School of Medicine, New York, NY, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Kathryn J. Moore
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Chiara Giannarelli
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
11
|
Huang Y, Wu X, Tang S, Wu H, Nasri U, Qin Q, Song Q, Wang B, Tao H, Chong AS, Riggs AD, Zeng D. Donor programmed cell death 1 ligand 1 is required for organ transplant tolerance in major histocompatibility complex-mismatched mixed chimeras although programmed cell death 1 ligand 1 and major histocompatibility complex class II are not required for inducing chimerism. Am J Transplant 2023; 23:1116-1129. [PMID: 37105316 DOI: 10.1016/j.ajt.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Induction of major histocompatibility complex (MHC) human leukocyte antigen (HLA)-mismatched mixed chimerism is a promising approach for organ transplantation tolerance; however, human leukocyte antigen-mismatched stable mixed chimerism has not been achieved in the clinic. Tolerogenic dendritic cell (DC) expression of MHC class II (MHC II) and programmed cell death 1 ligand 1 (PD-L1) is important for immune tolerance, but whether donor-MHC II or PD-L1 is required for the induction of stable MHC-mismatched mixed chimerism and transplant tolerance is unclear. Here, we show that a clinically applicable radiation-free regimen can establish stable MHC-mismatched mixed chimerism and organ transplant tolerance in murine models. Induction of MHC-mismatched mixed chimerism does not require donor cell expression of MHC II or PD-L1, but donor-type organ transplant tolerance in the mixed chimeras (MC) requires the donor hematopoietic cells and the organ transplants to express PD-L1. The PD-L1 expressed by donor hematopoietic cells and the programmed cell death 1 expressed by host cells augment host-type donor-reactive CD4+ and CD8+ T cell anergy/exhaustion and differentiation into peripheral regulatory T (pTreg) cells in association with the organ transplant tolerance in the MC. Conversely, host-type Treg cells augment the expansion of donor-type tolerogenic CD8+ DCs that express PD-L1. These results indicate that PD-L1 expressed by donor-type tolerogenic DCs and expansion of host-type pTreg cells in MHC-mismatched MCs play critical roles in mediating organ transplant tolerance.
Collapse
Affiliation(s)
- Yaxun Huang
- Department of Liver Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Shanshan Tang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Huiqing Wu
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Ubaydah Nasri
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Qi Qin
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingxiao Song
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Bixin Wang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Fujian Medical University Center of Translational Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hansen Tao
- Arthur Riggs Diabetes and Metabolism Research Institute, Summer Student Academy of City of Hope, Duarte, California, USA
| | - Anita S Chong
- The section of Transplantation, Department of Surgery, the University of Chicago, Chicago, Illinois, USA
| | - Arthur D Riggs
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Defu Zeng
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
12
|
Lu H, Wei J, Liu K, Li Z, Xu T, Yang D, Gao Q, Xiang H, Li G, Chen Y. Radical-Scavenging and Subchondral Bone-Regenerating Nanomedicine for Osteoarthritis Treatment. ACS NANO 2023; 17:6131-6146. [PMID: 36920036 DOI: 10.1021/acsnano.3c01789] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Osteoarthritis (OA) is characterized by cartilage degradation and subchondral bone remodeling. However, most available studies focus on either cartilage degradation or subchondral bone lesion, alone, and rarely pay attention to the synergy of these two pathological changes. Herein, a dual-functional medication is developed to simultaneously protect cartilage and achieve subchondral bone repair. Black phosphorus nanosheets (BPNSs), with a strong reactive oxygen species (ROS)-scavenging capability and high biocompatibility, also present a notable promoting effect in osteogenesis. BPNSs efficiently eliminate the intracellular ROS and, thus, protect the inherent homeostasis between cartilage matrix anabolism and catabolism. RNA sequencing results of BPNSs-treated OA chondrocytes further reveal the restoration of chondrocyte function, activation of antioxidant enzymes, and regulation of inflammation. Additional in vivo assessments solidly confirm that BPNSs inhibit cartilage degradation and prevent OA progression. Meanwhile, histological evaluation and microcomputed tomography (micro-CT) scanning analysis verify the satisfying disease-modifying effects of BPNSs on OA. Additionally, the excellent biocompatibility of BPNSs enables them as a competitive candidate for OA treatment. This distinct disease-modifying treatment of OA on the basis of BPNSs provides an insight and paradigm on the dual-functional treatment strategy focusing on both cartilage degradation and subchondral bone lesion in OA and explores a broader biomedical application of BPNS nanomedicine in orthopedics.
Collapse
Affiliation(s)
- Hengli Lu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Jihu Wei
- Department of Orthopaedics, Bengbu First People's Hospital, Bengbu, Anhui 233000, P. R. China
| | - Kaiyuan Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Zihua Li
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Tianyang Xu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Dong Yang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Qiuming Gao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Guodong Li
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China
| |
Collapse
|
13
|
Sezer O, Nursal AF, Kuruca N, Yigit S. The effect of a 18 bp deletion/insertion variant of VEGF gene on the FMF development. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:296-307. [PMID: 36215175 DOI: 10.1080/15257770.2022.2127766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Objective: Familial Mediterranean fever (FMF) is one of the most common inherited autoinflammatory diseases. Angiogenesis is a feature of inflammatory activation and part of pathogenic processes in autoimmune diseases. Therefore, this study aimed to investigate the role of the Vascular endothelial growth factor (VEGF) gene insertion/deletion (I/D) functional variant in FMF Turkish patients. Methods: MEFV gene mutations were detected in all patients. The FMF patients (N:105) and the healthy controls (N:100) were genotyped for the VEGF I/D variant using PCR followed by agarose gel electrophoresis. The results were statistically analyzed by calculating the odds ratios (OR) and their 95% confidence intervals (95% CI) using the χ2-tests. Results: The mean age of patients was 25.46 ± 10.09. Fifty-nine patients (56.2%) had two or more MEFV gene mutations. The most common MEFV mutation was M694V/M694V. The VEGF I/D variant genotype distribution exhibited a statistically significant difference between the patients and the controls. VEGF I/D genotype was higher in controls compared to patients, while D/D genotype was higher in patients compared to the controls (p = 0.003, p = 0.013, respectively). When we examined the clinical findings, joint pain was more common in patients with VEGF D/D and I/D genotypes compared to I/I genotype (p = 0.043). Although not statistically significant, the most common genotype in patients with two or more MEFV mutations was VEGF D/D (28.6%). Conclusion: The results provided evidence supporting that the D/D genotype of the VEGF I/D variant is associated with an increased risk of FMF in a group of Turkish populations.
Collapse
Affiliation(s)
- Ozlem Sezer
- Department of Medical Genetics, Samsun Education and Research Hospital, University of Health Sciences, Samsun, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Hitit University, Faculty of Medicine, Corum, Turkey
| | - Nilufer Kuruca
- Department of Pathology, Ondokuz Mayis University, Faculty of Veterinary, Samsun, Turkey
| | - Serbulent Yigit
- Department of Genetics, Ondokuz Mayis University, Faculty of Veterinary, Samsun, Turkey
| |
Collapse
|
14
|
Talotta R. Impaired VEGF-A-Mediated Neurovascular Crosstalk Induced by SARS-CoV-2 Spike Protein: A Potential Hypothesis Explaining Long COVID-19 Symptoms and COVID-19 Vaccine Side Effects? Microorganisms 2022; 10:2452. [PMID: 36557705 PMCID: PMC9784975 DOI: 10.3390/microorganisms10122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Long coronavirus disease-19 (COVID-19) is a newly discovered syndrome characterized by multiple organ manifestations that persist for weeks to months, following the recovery from acute disease. Occasionally, neurological and cardiovascular side effects mimicking long COVID-19 have been reported in recipients of COVID-19 vaccines. Hypothetically, the clinical similarity could be due to a shared pathogenic role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike (S) protein produced by the virus or used for immunization. The S protein can bind to neuropilin (NRP)-1, which normally functions as a coreceptor for the vascular endothelial growth factor (VEGF)-A. By antagonizing the docking of VEGF-A to NRP-1, the S protein could disrupt physiological pathways involved in angiogenesis and nociception. One consequence could be the increase in unbound forms of VEGF-A that could bind to other receptors. SARS-CoV-2-infected individuals may exhibit increased plasma levels of VEGF-A during both acute illness and convalescence, which could be responsible for diffuse microvascular and neurological damage. A few studies suggest that serum VEGF-A may also be a potential biomarker for long COVID-19, whereas evidence for COVID-19 vaccines is lacking and merits further investigation.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|
15
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
Raveney BJE, El‐Darawish Y, Sato W, Arinuma Y, Yamaoka K, Hori S, Yamamura T, Oki S. Neuropilin-1 (NRP1) expression distinguishes self-reactive helper T cells in systemic autoimmune disease. EMBO Mol Med 2022; 14:e15864. [PMID: 36069030 PMCID: PMC9549730 DOI: 10.15252/emmm.202215864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
Pathogenic T helper cells (Th cells) that respond to self-antigen cannot be easily distinguished from beneficial Th cells. These cells can generate systemic autoimmune disease in response to widely expressed self-antigens. In this study, we have identified neuropilin-1 (NRP1) as a cell surface marker of self-reactive Th cells. NRP1+ Th cells, absent in non-regulatory T cell subsets in normal mice, appeared in models of systemic autoimmune disease and strongly correlated with disease symptoms. NRP1+ Th cells were greatly reduced in Nr4a2 cKO mice, which have reduced self-reactive responses but showed normal responses against exogenous antigens. Transfer of NRP1+ Th cells was sufficient to initiate or accelerate systemic autoimmune disease, and targeting NRP1-expressing Th cells therapeutically ameliorated SLE-like autoimmune symptoms in BXSB-Yaa mice. Peripheral NRP1+ Th cells were significantly increased in human SLE patients. Our data suggest that self-reactive Th cells can be phenotypically distinguished within the Th cell pool. These findings offer a novel approach to identify self-reactive Th cells and target them to treat systemic autoimmune disease.
Collapse
Affiliation(s)
- Ben JE Raveney
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Yosif El‐Darawish
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Wakiro Sato
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Yoshiyuki Arinuma
- Department of Rheumatology and Infectious DiseasesKitasato University School of MedicineSagamiharaJapan
| | - Kunihiro Yamaoka
- Department of Rheumatology and Infectious DiseasesKitasato University School of MedicineSagamiharaJapan
| | - Shohei Hori
- Laboratory for Immunology and MicrobiologyGraduate School of Pharmaceutical Sciences, The University of TokyoTokyoJapan
| | - Takashi Yamamura
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Shinji Oki
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| |
Collapse
|
17
|
Al-Thomali AW, Al-kuraishy HM, Al-Gareeb AI, K. Al-buhadiliy A, De Waard M, Sabatier JM, Khan Khalil AA, Saad HM, Batiha GES. Role of Neuropilin 1 in COVID-19 Patients with Acute Ischemic Stroke. Biomedicines 2022; 10:2032. [PMID: 36009579 PMCID: PMC9405641 DOI: 10.3390/biomedicines10082032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection can trigger the adaptive and innate immune responses, leading to uncontrolled inflammatory reactions and associated local and systematic tissue damage, along with thromboembolic disorders that may increase the risk of acute ischemic stroke (AIS) in COVID-19 patients. The neuropilin (NRP-1) which is a co-receptor for the vascular endothelial growth factor (VEGF), integrins, and plexins, is involved in the pathogenesis of AIS. NRP-1 is also regarded as a co-receptor for the entry of SARS-CoV-2 and facilitates its entry into the brain through the olfactory epithelium. NRP-1 is regarded as a cofactor for binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2), since the absence of ACE2 reduces SARS-CoV-2 infectivity even in presence of NRP-1. Therefore, the aim of the present study was to clarify the potential role of NRP-1 in COVID-19 patients with AIS. SARS-CoV-2 may transmit to the brain through NRP-1 in the olfactory epithelium of the nasal cavity, leading to different neurological disorders, and therefore about 45% of COVID-19 patients had neurological manifestations. NRP-1 has the potential capability to attenuate neuroinflammation, blood-brain barrier (BBB) permeability, cerebral endothelial dysfunction (ED), and neuronal dysfunction that are uncommon in COVID-19 with neurological involvement, including AIS. Similarly, high NRP-1 serum level is linked with ED, oxidative stress, and the risk of pulmonary thrombosis in patients with severe COVID-19, suggesting a compensatory mechanism to overcome immuno-inflammatory disorders. In conclusion, NRP-1 has an important role in the pathogenesis of COVID-19 and AIS, and could be the potential biomarker linking the development of AIS in COVID-19. The present findings cannot provide a final conclusion, and thus in silico, experimental, in vitro, in vivo, preclinical, and clinical studies are recommended to confirm the potential role of NRP-1 in COVID-19, and to elucidate the pharmacological role of NRP-1 receptor agonists and antagonists in COVID-19.
Collapse
Affiliation(s)
- Asma W. Al-Thomali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, MBChB, MRCP, FRCP, Baghdad P.O. Box 14132, Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, Baghdad P.O. Box 14132, Iraq
| | - Ali K. Al-buhadiliy
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of Medicine, Al-Mustansiriyah University, Baghdad P.O. Box 14132, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université, CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
18
|
Abstract
Semaphorin 3A is a secreted glycoprotein, which was originally identified as axon guidance factor in the neuronal system, but it also possesses immunoregulatory properties. Here, the effect of semaphorin 3A on T-lymphocytes, myeloid dendritic cells and macrophages is systematically analyzed on the bases of all publications available in the literature for 20 years. Expression of semaphorin 3A receptors – neuropilin-1 and plexins A – in these cells is described in details. The data obtained on human and murine cells is described comparatively. A comprehensive overview of the interaction of semaphorin 3A with mononuclear phagocyte system is presented for the first time. Semaphorin 3A signaling mostly results in changes of the cytoskeletal machinery and cellular morphology that regulate pathways involved in migration, adhesion, and cell–cell cooperation of immune cells. Accumulating evidence indicates that this factor is crucially involved in various phases of immune responses, including initiation phase, antigen presentation, effector T cell function, inflammation phase, macrophage activation, and polarization. In recent years, interest in this field has increased significantly because semaphorin 3A is associated with many human diseases and therefore can be used as a target for their treatment. Its involvement in the immune responses is important to study, because semaphorin 3A and its receptors turn to be a promising new therapeutic tools to be applied in many autoimmune, allergic, and oncology diseases.
Collapse
Affiliation(s)
- Ekaterina P Kiseleva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
- Mechnikov North-Western State Medical University, St. Petersburg, 195067, Russia
| | - Kristina V Rutto
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
| |
Collapse
|
19
|
Campos‐Mora M, De Solminihac J, Rojas C, Padilla C, Kurte M, Pacheco R, Kaehne T, Wyneken Ú, Pino‐Lagos K. Neuropilin-1 is present on Foxp3+ T regulatory cell-derived small extracellular vesicles and mediates immunity against skin transplantation. J Extracell Vesicles 2022; 11:e12237. [PMID: 35676234 PMCID: PMC9177693 DOI: 10.1002/jev2.12237] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Among the mechanisms of suppression that T regulatory (Treg) cells exert to control the immune responses, the secretion of small extracellular vesicles (sEV) has been recently proposed as a novel contact-independent immunomodulatory mechanism. Previous studies have demonstrated that Treg cells produce sEV, including exosomes, able to modulate the effector function of CD4+ T cells, and antigen presenting cells (APCs) such as dendritic cells (DCs) through the transfer of microRNA, cytokines, the production of adenosine, among others. Previously, we have demonstrated that Neuropilin-1 (Nrp1) is required for Tregs-mediated immunosuppression mainly by impacting on the phenotype and function of effector CD4+ T cells. Here, we show that Foxp3+ Treg cells secrete sEV, which bear Nrp1 in their membrane. These sEV modulate effector CD4+ T cell phenotype and proliferation in vitro in a Nrp1-dependent manner. Proteomic analysis indicated that sEV obtained from wild type (wt) and Nrp1KO Treg cells differed in proteins related to immune tolerance, finding less representation of CD73 and Granzyme B in sEV obtained from Nrp1KO Treg cells. Likewise, we show that Nrp1 is required in Treg cell-derived sEV for inducing skin transplantation tolerance, since a reduction in graft survival and an increase on M1/M2 ratio were found in animals treated with Nrp1KO Treg cell-derived sEV. Altogether, this study describes for the first time that Treg cells secrete sEV containing Nrp1 and that this protein, among others, is necessary to promote transplantation tolerance in vivo via sEV local administration.
Collapse
Affiliation(s)
- Mauricio Campos‐Mora
- Centro de Investigación e Innovación BiomédicaFacultad de MedicinaUniversidad de los AndesSantiagoChile
| | - Javiera De Solminihac
- Centro de Investigación e Innovación BiomédicaFacultad de MedicinaUniversidad de los AndesSantiagoChile
| | - Carolina Rojas
- Periodontal Biology LaboratoryFaculty of DentistryUniversidad de ChileSantiagoChile
| | - Cristina Padilla
- Centro de Investigación e Innovación BiomédicaFacultad de MedicinaUniversidad de los AndesSantiagoChile
| | - Mónica Kurte
- Centro de Investigación e Innovación BiomédicaFacultad de MedicinaUniversidad de los AndesSantiagoChile
| | - Rodrigo Pacheco
- Laboratorio de NeuroinmunologíaCentro Ciencia & VidaFundación Ciencia & VidaSantiagoChile
| | - Thilo Kaehne
- Institute of Experimental MedicineMedical FacultyOtto von Guericke UniversityMagdeburgGermany
| | - Úrsula Wyneken
- Centro de Investigación e Innovación BiomédicaFacultad de MedicinaUniversidad de los AndesSantiagoChile
| | - Karina Pino‐Lagos
- Centro de Investigación e Innovación BiomédicaFacultad de MedicinaUniversidad de los AndesSantiagoChile
| |
Collapse
|
20
|
Stefanou MI, Karachaliou E, Chondrogianni M, Moschovos C, Bakola E, Foska A, Melanis K, Andreadou E, Voumvourakis K, Papathanasiou M, Boutati E, Tsivgoulis G. Guillain-Barré syndrome and fulminant encephalomyelitis following Ad26.COV2.S vaccination: double jeopardy. Neurol Res Pract 2022; 4:6. [PMID: 35130960 PMCID: PMC8821852 DOI: 10.1186/s42466-022-00172-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractThis correspondence comments on a published article presenting a case of rhombencephalitis following SARS-CoV-2-vaccination with the mRNA vaccine BNT162b2 (Pfizer/BioNTech). We also present the case of a 47-year-old man who developed Guillain-Barré-syndrome and a fulminant encephalomyelitis 28 days after immunization with Ad26.COV2.S (Janssen/Johnson & Johnson). Based on the presented cases, we underscore the importance of clinical awareness for early recognition of overlapping neuroimmunological syndromes following vaccination against SARS-CoV-2. Additionally, we propose that that role of autoantibodies against angiotensin-converting enzyme 2 (ACE2) and the cell-surface receptor neuropilin-1, which mediate neurological manifestations of SARS-CoV-2, merit further investigation in patients presenting with neurological disorders following vaccination against SARS-CoV-2.
Collapse
|
21
|
Bellucci G, Rinaldi V, Buscarinu MC, Reniè R, Bigi R, Pellicciari G, Morena E, Romano C, Marrone A, Mechelli R, Salvetti M, Ristori G. Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started? Front Immunol 2021; 12:755333. [PMID: 34646278 PMCID: PMC8503550 DOI: 10.3389/fimmu.2021.755333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Current knowledge on Multiple Sclerosis (MS) etiopathogenesis encompasses complex interactions between the host's genetic background and several environmental factors that result in dysimmunity against the central nervous system. An old-aged association exists between MS and viral infections, capable of triggering and sustaining neuroinflammation through direct and indirect mechanisms. The novel Coronavirus, SARS-CoV-2, has a remarkable, and still not fully understood, impact on the immune system: the occurrence and severity of both acute COVID-19 and post-infectious chronic illness (long COVID-19) largely depends on the host's response to the infection, that echoes several aspects of MS pathobiology. Furthermore, other MS-associated viruses, such as the Epstein-Barr Virus (EBV) and Human Endogenous Retroviruses (HERVs), may enhance a mechanistic interplay with the novel Coronavirus, with the potential to interfere in MS natural history. Studies on COVID-19 in people with MS have helped clinicians in adjusting therapeutic strategies during the pandemic; similar efforts are being made for SARS-CoV-2 vaccination campaigns. In this Review, we look over 18 months of SARS-CoV-2 pandemic from the perspective of MS: we dissect neuroinflammatory and demyelinating mechanisms associated with COVID-19, summarize pathophysiological crossroads between MS and SARS-CoV-2 infection, and discuss present evidence on COVID-19 and its vaccination in people with MS.
Collapse
Affiliation(s)
- Gianmarco Bellucci
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Virginia Rinaldi
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Roberta Reniè
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Rachele Bigi
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Giulia Pellicciari
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Emanuele Morena
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carmela Romano
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Antonio Marrone
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Rosella Mechelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana, Rome, Italy
- San Raffaele Roma Open University, Rome, Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giovanni Ristori
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
22
|
Chuckran CA, Liu C, Bruno TC, Workman CJ, Vignali DA. Neuropilin-1: a checkpoint target with unique implications for cancer immunology and immunotherapy. J Immunother Cancer 2021; 8:jitc-2020-000967. [PMID: 32675311 PMCID: PMC7368550 DOI: 10.1136/jitc-2020-000967] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Checkpoint blockade immunotherapy established a new paradigm in cancer treatment: for certain patients curative treatment requires immune reinvigoration. Despite this monumental advance, only 20%–30% of patients achieve an objective response to standard of care immunotherapy, necessitating the consideration of alternative targets. Optimal strategies will not only stimulate CD8+ T cells, but concomitantly modulate immunosuppressive cells in the tumor microenvironment (TME), most notably regulatory T cells (Treg cells). In this context, the immunoregulatory receptor Neuropilin-1 (NRP1) is garnering renewed attention as it reinforces intratumoral Treg cell function amidst inflammation in the TME. Loss of NRP1 on Treg cells in mouse models restores antitumor immunity without sacrificing peripheral tolerance. Enrichment of NRP1+ Treg cells is observed in patients across multiple malignancies with cancer, both intratumorally and in peripheral sites. Thus, targeting NRP1 may safely undermine intratumoral Treg cell fitness, permitting enhanced inflammatory responses with existing immunotherapies. Furthermore, NRP1 has been recently found to modulate tumor-specific CD8+ T cell responses. Emerging data suggest that NRP1 restricts CD8+ T cell reinvigoration in response to checkpoint inhibitors, and more importantly, acts as a barrier to the long-term durability of CD8+ T cell-mediated tumor immunosurveillance. These novel and distinct regulatory mechanisms present an exciting therapeutic opportunity. This review will discuss the growing literature on NRP1-mediated immune modulation which provides a strong rationale for categorizing NRP1 as both a key checkpoint in the TME as well as an immunotherapeutic target with promise either alone or in combination with current standard of care therapeutic regimens.
Collapse
Affiliation(s)
- Christopher A Chuckran
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center and the Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chang Liu
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center and the Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center and the Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Creg J Workman
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center and the Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Dario Aa Vignali
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Abberger H, Barthel R, Bahr J, Thiel J, Luppus S, Buer J, Westendorf AM, Hansen W. Neuropilin-1 Is Expressed on Highly Activated CD4 + Effector T Cells and Dysfunctional CD4 + Conventional T Cells from Naive Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1288-1297. [PMID: 34341169 DOI: 10.4049/jimmunol.2100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Neuropilin-1 (Nrp-1) is a well described marker molecule for CD4+Foxp3+ thymus-derived regulatory T cells (Tregs). In addition, a small population of CD4+Foxp3- conventional (conv) T cells expresses Nrp-1 in naive mice, and Nrp-1 expression has been described to be upregulated on activated CD4+ T cells. However, the function of Nrp-1 expression on CD4+ non-Tregs still remains elusive. In this study, we demonstrate that Nrp-1 expression was induced upon stimulation of CD4+Foxp3- T cells in vitro and during an ongoing immune response in vivo. This activation-induced Nrp-1+CD4+ T cell subset (iNrp-1+) showed a highly activated phenotype in terms of elevated CD25 and CD44 expression, enhanced production of proinflammatory cytokines, and increased proliferation compared with the Nrp-1-CD4+ counterpart. In contrast, Nrp-1+CD4+Foxp3- conv T cells from naive mice (nNrp-1+) were dysfunctional. nNrp-1+CD4+ conv T cells upregulated activation-associated molecules to a lesser extent, exhibited impaired proliferation and produced fewer proinflammatory cytokines than Nrp-1-CD4+ conv T cells upon stimulation in vitro. Moreover, the expression of PD-1 and CTLA-4 was significantly higher on nNrp-1+CD4+Foxp3- T cells compared with iNrp-1+CD4+Foxp3- T cells and Nrp-1-CD4+Foxp3- T cells after stimulation and under homeostatic conditions. Strikingly, transfer of Ag-specific iNrp-1+CD4+ conv T cells aggravated diabetes development, whereas Ag-specific nNrp-1+CD4+ conv T cells failed to induce disease in a T cell transfer model of diabetes. Overall, our results indicate that Nrp-1 expression has opposite functions in recently activated CD4+ non-Tregs compared with CD4+ non-Tregs from naive mice.
Collapse
Affiliation(s)
- Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Romy Barthel
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jasmin Bahr
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jacqueline Thiel
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sina Luppus
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Douyère M, Chastagner P, Boura C. Neuropilin-1: A Key Protein to Consider in the Progression of Pediatric Brain Tumors. Front Oncol 2021; 11:665634. [PMID: 34277411 PMCID: PMC8281001 DOI: 10.3389/fonc.2021.665634] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropilins are transmembrane glycoproteins that play important roles in cardiovascular and neuronal development, as well as in immunological system regulations. NRP1 functions as a co-receptor, binding numerous ligands, such as SEMA 3 or VEGF and, by doing so, reinforcing their signaling pathways and can also interface with the cytoplasmic protein synectin. NRP1 is expressed in many cancers, such as brain cancers, and is associated with poor prognosis. The challenge today for patients with pediatric brain tumors is to improve their survival rate while minimizing the toxicity of current treatments. The aim of this review is to highlight the involvement of NRP1 in pediatric brain cancers, focusing essentially on the roles of NRP1 in cancer stem cells and in the regulation of the immune system. For this purpose, recent literature and tumor databases were analyzed to show correlations between NRP1 and CD15 (a stem cancer cells marker), and between NRP1 and PDL1, for various pediatric brain tumors, such as high- and low-grade gliomas, medulloblastomas, and ependymomas. Finally, this review suggests a relevant role for NRP1 in pediatric brain tumors progression and identifies it as a potential diagnostic or therapeutic target to improve survival and life quality of these young patients.
Collapse
Affiliation(s)
| | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, Nancy, France
| |
Collapse
|
25
|
The role of immune semaphorins in the pathogenesis of multiple sclerosis: Potential therapeutic targets. Int Immunopharmacol 2021; 95:107556. [PMID: 33756227 DOI: 10.1016/j.intimp.2021.107556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
The immune and nervous systems possess a highly intricate network of synaptic connections, shared messenger molecules, and exquisite communication ways, allowing intercellular signal transduction. The semaphorins (Semas) were initially identified as axonal guidance molecules in the development of the nervous system but later were found to be implicated also in regulating the immune system, known in this case as the "immune Semas" or "immunoregulatory Semas". Increasingly, these molecules are involved in multiple aspects of both physiological and pathological immune responses and were recently indicated to take part in various immunological disorders, encompassing allergy, cancer, and autoimmunity. Semas transduce signals by connecting to their cognate receptors, namely, plexins and neuropilins. Some of them, like Sema-3F, have been found to function as the inducer of the remyelination process whereas some others, like Sema-3A and Sema-4D, act to inhibit this process, either directly or indirectly. Besides, Sema-4A is crucial to the differentiation of T helper type 1 (Th1) and Th17 cells that are potentially involved in the pathogenesis of multiple sclerosis (MS), an autoimmune disease of the central nervous system. This review aims to reveal the role of immune Semas in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis, focusing on the therapeutic usages of these molecules to treat this neurodegenerative disease.
Collapse
|
26
|
Zhou H, Yang JY, Xu PP, Liu L, Ding BJ, Liu JP, Li MJ, Song YP. [The involvement of neuropilin-1 in primary immune thrombocytopenia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:146-150. [PMID: 33858046 PMCID: PMC8071663 DOI: 10.3760/cma.j.issn.0253-2727.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Objective: To explore the relationship between the expression of neuropilin-1 (NRP-1) on Treg cells and its ligands semaphorins-3A (Sema3A) , transforming growth factor-β(1) (TGF-β(1)) as well as the balance of type 1 helper T cells (Th(1)) and type 2 helper T cells (Th(2)) cells. Methods: This study enrolled 62 patients with immune thrombocytopenia (ITP; 33 and 29 newly diagnosed and chronic ITP, respectively) from March 2014 to May 2015. Consequently, 30 healthy people in the same period were selected as the normal control group. The expression of NRP-1 in Treg cells was detected via flow cytometry. The Sema3A, TGF-β(1), IFN-γ, and IL-4 levels in plasma were detected by enzyme-linked immunosorbent assay. The real-time polymerase chain reaction technique was used to detect the mRNA expression levels of NRP-1, Sema3A, and TGF-β(1). The one-way analysis of variance and independent sample t-test was used for comparison between three and two groups, respectively. Correlations among the mRNA expression levels of NRP-1, Sema3A, and TGF-β(1) were assessed via Spearman correlation coefficients. Results: Treg cells in the newly diagnosed ITP group significantly increased compared with those in the chronic ITP and normal control groups. The expression of NRP-1 decreased[ (0.15 ± 0.03) %, (0.33 ± 0.15) %, and (0.46 ± 0.06) %; P<0.01], the plasma Sema3A level increased[ (8.10 ± 1.32) μg/L, (7.41±1.30) μg/L, and (2.88±0.82) μg/L; P<0.01], and the plasma TGF-β(1) level decreased[ (16.50±3.36) μg/L, (35.17±10.26) μg/L, and (41.00±10.02) μg/L; P<0.01]. Moreover, the level of plasma IFN-γ increased[ (17.21+2.80) ng/L, (10.23+1.59) ng/L, and (8.18+3.27) ng/L; P<0.01], and the ratios of Th(1)/Th(2) (IFN-γ/IL-4) increased (1.29±0.30, 0.72±0.16, and 0.61±0.27; P<0.01) . The mRNA expressions of NRP-1 and Sema3A in the newly diagnosed ITP and chronic ITP groups were lower than that in the normal control group (P<0.01) . Consequently, the NRP-1 mRNA expression was positively correlated with Sema3A and TGF-β(1) mRNA expression in the newly diagnosed ITP group. Conclusion: NRP-1 played an essential role in the pathogenesis of ITP.
Collapse
Affiliation(s)
- H Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital) , Zhengzhou 450008, China
| | - J Y Yang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital) , Zhengzhou 450008, China
| | - P P Xu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital) , Zhengzhou 450008, China
| | - L Liu
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - B J Ding
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital) , Zhengzhou 450008, China
| | - J P Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital) , Zhengzhou 450008, China
| | - M J Li
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital) , Zhengzhou 450008, China
| | - Y P Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital) , Zhengzhou 450008, China
| |
Collapse
|
27
|
Bu-Shen-Yi-Sui Capsule, an Herbal Medicine Formula, Promotes Remyelination by Modulating the Molecular Signals via Exosomes in Mice with Experimental Autoimmune Encephalomyelitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7895293. [PMID: 32774683 PMCID: PMC7396036 DOI: 10.1155/2020/7895293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory demyelinating disorder of the central nervous system. Bu-shen-yi-sui capsule (BSYSC) could significantly reduce the relapse rate, prevent the progression of MS, and enhance remyelination following neurological injury in experimental autoimmune encephalomyelitis (EAE), an established model of MS; however, the mechanism underlying the effect of BSYSC on remyelination has not been well elucidated. This study showed that exosomes carrying biological information are involved in the pathological process of MS and that modified exosomes can promote remyelination by modulating related proteins and microRNAs (miRs). Here, the mechanism by which BSYSC promoted remyelination via exosome-mediated molecular signals was investigated in EAE mice and oligodendrocyte progenitor cells (OPCs) in vitro. The results showed that BSYSC treatment significantly improved the body weight and clinical scores of EAE mice, alleviated inflammatory infiltration and nerve fiber injury, protected the ultrastructural integrity of the myelin sheath, and significantly increased the expression of myelin basic protein (MBP) in EAE mice. In an in vitro OPC study, BSYSC-containing serum, especially 20% BSYSC, promoted the proliferation and migration of OPCs and induced OPCs to differentiate into mature oligodendrocytes that expressed MBP. Furthermore, BSYSC treatment regulated the expression of neuropilin- (NRP-) 1 and GTX, downregulated the expression of miR-16, let-7, miR-15, miR-98, miR-486, and miR-182, and upregulated the level of miR-146 in serum exosomes of EAE mice. In conclusion, these results suggested that BSYSC has a neuroprotective effect and facilitates remyelination and that the mechanism underlying the effect of BSYSC on remyelination probably involves regulation of the NRP-1 and GTX proteins and miRs in serum exosomes, which drive promyelination.
Collapse
|
28
|
Hoseini-Aghdam M, Sheikh V, Eftekharian MM, Rezaeepoor M, Behzad M. Enhanced expression of TIGIT but not neuropilin-1 in patients with type 2 diabetes mellitus. Immunol Lett 2020; 225:1-8. [PMID: 32540486 DOI: 10.1016/j.imlet.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The aggressive T helper cell responses and regulatory T (Treg) cells dysfunction exist in type 2 diabetes mellitus (T2DM). The co-inhibitory T cell immunoglobulin and ITIM-domain (TIGIT), neuropilin-1 (Nrp-1), and the co-stimulatory CD226 play a critical role in the inhibition or activation of immune responses. In this project, the expression of TIGIT, CD226, Nrp-1, and their ligands, CD155 and semaphorin 3A (Sema-3A) were investigated in T2DM. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from 30 patients with T2DM, and 30 healthy controls (HCs). The frequencies of TIGIT and Nrp-1 on CD4+CD25hi Treg cells, CD4+CD25- responder T cells, total CD4+ T cells, and non-CD4+ cells were assessed using flow cytometry. The mRNA levels of TIGIT, CD226, Nrp-1, CD155, and Sema-3A were assessed by real-time PCR. RESULTS The percentage and MFI of TIGIT on CD4+CD25hi T cells, CD4+CD25- T cells, total CD4+ T cells, and non-CD4+ cells were higher in patients versus HCs (p < 0.05 for all). The mRNA level of TIGIT was increased in patients compared with HCs (p = 0.003). No differences were observed in the expression of CD226, CD155, Nrp-1, and Sema-3A between the groups. CONCLUSIONS The expression of TIGIT was enhanced in T2DM and the TIGIT axis could be considered as a new therapeutic purpose for the T2DM.
Collapse
Affiliation(s)
- Mirhamed Hoseini-Aghdam
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vida Sheikh
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mahsa Rezaeepoor
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
29
|
Shapoori S, Mosayebi G, Ebrahimi Monfared M, Ghazavi A, Khansarinejad B, Farahani I, Ganji A. Gene expression of semaphorin-3A, semaphorin-7A, neuropilin-1, plexin-C1, and β1 integrin in treated-multiple sclerosis patients. Neurol Res 2020; 42:783-788. [PMID: 32497464 DOI: 10.1080/01616412.2020.1774211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Recently, members of the semaphorin family have received major attention in various medical fields, especially autoimmunity. In this study, we selected semaphorin-3A (Sema3A), semaphorin-7A (Sema7A), and their receptors to determine the possible relationship between these molecules and multiple sclerosis (MS). METHOD We measured the gene expression of Sema3A, Sema7A, neuropilin-1 (NP-1), plexin-C1, and β1 integrin in the blood samples of relapsing-remitting multiple sclerosis (RRMS) patients, treated with high-dose interferon-β1a (IFN-β1a), low-dose IFN-β1a, IFN-β1b, and glatiramer acetate (GA) via quantitative real-time polymerase chain reaction (qRT-PCR) assay, and then, compared the results of treatment-naive patients with the healthy controls. RESULTS The gene expression of Sema3A (P = 0.02), NP-1 (P < 0.001), and plexin-C1 (P < 0.01) significantly decreased in the treatment-naive group, compared to the healthy controls. Sema3A significantly increased in all treated patients, compared to the treatment-naive patients (P < 0.001). However, expression of NP-1 (P < 0.001), plexin-C1 (P < 0.001), and β1 integrin (P < 0.05) only increased in patients receiving high-dose IFN-β1a, IFN-β1b, and GA. Expression of Sema7A increased in only two groups of patients treated with IFN-β1b (P < 0.001) and GA (P = 0.018), without any significant decrease in the treatment-naive group, compared to the healthy controls (P > 0.05). CONCLUSION Our findings confirm that the presence of Sema3A, Sema7A, and their receptors can play critical roles in the treatment of MS patients. Therefore, they can be potential target molecules for MS treatment in the future.
Collapse
Affiliation(s)
- Shima Shapoori
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences , Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences , Arak, Iran.,Molecular and Medicine Research Center, Arak University of Medical Sciences , Arak, Iran
| | | | - Ali Ghazavi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences , Arak, Iran.,Traditional and Complementary Medicine Research Center (TCMRC), Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences , Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences , Arak, Iran.,Molecular and Medicine Research Center, Arak University of Medical Sciences , Arak, Iran
| | - Iman Farahani
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences , Arak, Iran
| | - Ali Ganji
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences , Arak, Iran.,Molecular and Medicine Research Center, Arak University of Medical Sciences , Arak, Iran
| |
Collapse
|
30
|
Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol 2020; 20:680-693. [PMID: 32269380 DOI: 10.1038/s41577-020-0296-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Regulatory T (Treg) cells constitute a dynamic population that is essential for controlling immune responses in health and disease. Defects in Treg cell function and decreases in Treg cell numbers have been observed in patients with autoimmunity and the opposite effects on Treg cells occur in cancer settings. Current research on new therapies for these diseases is focused on modulating Treg cell function to increase or decrease suppressive activity in autoimmunity and cancer, respectively. In this regard, several co-inhibitory receptors that are preferentially expressed by Treg cells under homeostatic conditions have recently been shown to control Treg cell function and stability in different disease settings. These receptors could be amenable to therapeutic targeting aimed at modulating Treg cell function and plasticity. This Review summarizes recent data regarding the role of co-inhibitory molecules in the control of Treg cell function and stability, with a focus on their roles and potential therapeutic use in autoimmunity and cancer.
Collapse
|
31
|
Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in Angiogenesis and Autoimmune Diseases: Therapeutic Targets? Front Immunol 2020; 11:346. [PMID: 32210960 PMCID: PMC7066498 DOI: 10.3389/fimmu.2020.00346] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The axonal guidance molecules, semaphorins, have been described to function both physiologically and pathologically outside of the nervous system. In this review, we focus on the vertebrate semaphorins found in classes 3 through 7 and their roles in vascular development and autoimmune diseases. Recent studies indicate that while some of these vertebrate semaphorins promote angiogenesis, others have an angiostatic function. Since some semaphorins are also expressed by different immune cells and are known to modulate immune responses, they have been implicated in autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. We conclude this review by addressing strategies targeting semaphorins as potential therapeutic agents for angiogenesis and autoimmune diseases.
Collapse
Affiliation(s)
| | - Ewa Wojcikiewicz
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Alexandra Urdaneta
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
32
|
Gaddis DE, Padgett LE, Wu R, Hedrick CC. Neuropilin-1 Expression on CD4 T Cells Is Atherogenic and Facilitates T Cell Migration to the Aorta in Atherosclerosis. THE JOURNAL OF IMMUNOLOGY 2019; 203:3237-3246. [PMID: 31740486 DOI: 10.4049/jimmunol.1900245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
Neuropilin 1 (Nrp1) is a type I transmembrane protein that plays important roles in axonal guidance, neuronal development, and angiogenesis. Nrp1 also helps migrate thymus-derived regulatory T cells to vascular endothelial growth factor (VEGF)-producing tumors. However, little is known about the role of Nrp1 on CD4 T cells in atherosclerosis. In ApoE-/- mice fed a Western diet for 15 wk, we found a 2-fold increase in Nrp1+Foxp3- CD4 T cells in their spleens, periaortic lymph nodes, and aortas, compared with chow-fed mice. Nrp1+Foxp3- CD4 T cells had higher proliferation potential, expressed higher levels of the memory marker CD44, and produced more IFN-γ when compared with Nrp1- CD4 T cells. Treatment of CD4 T cells with oxLDL increased Nrp1 expression. Furthermore, atherosclerosis-susceptible mice selectively deficient for Nrp1 expression on T cells developed less atherosclerosis than their Nrp1-sufficient counterparts. Mechanistically, we found that CD4 T cells that express Nrp1 have an increased capacity to migrate to the aorta and periaortic lymph nodes compared to Nrp1- T cells, suggesting that the expression of Nrp1 facilitates the recruitment of CD4 T cells into the aorta where they can be pathogenic. Thus, we have identified a novel role of Nrp1 on CD4 T cells in atherosclerosis. These results suggest that manipulation of Nrp1 expression on T cells can affect the outcome of atherosclerosis and lower disease incidence.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| |
Collapse
|
33
|
Yang ZG, Wen RT, Zhang YM, Wu GC, Chen WJ, Wang YF, Weng ZY, Wen SS, Zhang XJ, Guan MH. Thalidomide induce response in patients with corticosteroid-resistant or relapsed ITP by upregulating Neuropilin-1 expression. Int Immunopharmacol 2019; 72:437-444. [DOI: 10.1016/j.intimp.2019.04.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 11/26/2022]
|
34
|
Campos-Mora M, Contreras-Kallens P, Gálvez-Jirón F, Rojas M, Rojas C, Refisch A, Cerda O, Pino-Lagos K. CD4+Foxp3+T Regulatory Cells Promote Transplantation Tolerance by Modulating Effector CD4+ T Cells in a Neuropilin-1-Dependent Manner. Front Immunol 2019; 10:882. [PMID: 31068948 PMCID: PMC6491519 DOI: 10.3389/fimmu.2019.00882] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
Several mechanisms of immune suppression have been attributed to Foxp3+ T regulatory cells (Treg) including modulation of target cells via inhibition of cell proliferation, alteration of cytokine secretion, and modification of cell phenotype, among others. Neuropilin-1 (Nrp1), a co-receptor protein highly expressed on Treg cells has been involved in tolerance-mediated responses, driving tumor growth and transplant acceptance. Here, we extend our previous findings showing that, despite expressing Foxp3, Nrp1KO Treg cells have deficient suppressive function in vitro in a contact-independent manner. In vivo, the presence of Nrp1 on Treg cells is required for driving long-term transplant tolerance. Interestingly, Nrp1 expression on Treg cells was also necessary for conventional CD4+ T cells (convT) to become Nrp1+Eos+ T cells in vivo. Furthermore, adoptive transfer experiments showed that the disruption of Nrp1 expression on Treg cells not only reduced IL-10 production on Treg cells, but also increased the frequency of IFNγ+ Treg cells. Similarly, the presence of Nrp1KO Treg cells facilitated the occurrence of IFNγ+CD4+ T cells. Interestingly, we proved that Nrp1KO Treg cells are also defective in IL-10 production, which correlates with deficient Nrp1 upregulation by convT cells. Altogether, these findings demonstrate the direct role of Nrp1 on Treg cells during the induction of transplantation tolerance, impacting indirectly the phenotype and function of conventional CD4+ T cells.
Collapse
Affiliation(s)
- Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile
- Programa de Biología Celular y Molecular, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Pamina Contreras-Kallens
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile
| | - Felipe Gálvez-Jirón
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile
| | - Masyelly Rojas
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile
| | - Carolina Rojas
- Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Aarón Refisch
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile
| |
Collapse
|
35
|
Nakayama H, Kusumoto C, Nakahara M, Fujiwara A, Higashiyama S. Semaphorin 3F and Netrin-1: The Novel Function as a Regulator of Tumor Microenvironment. Front Physiol 2018; 9:1662. [PMID: 30532711 PMCID: PMC6265511 DOI: 10.3389/fphys.2018.01662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
Axon guidance molecules play an important role in regulating proper neuronal networking during neuronal development. They also have non-neuronal properties, which include angiogenesis, inflammation, and tumor development. Semaphorin 3F (SEMA3F), a member of the class 3 semaphorins, was initially identified as an axon guidance factor, that repels axons and collapses growth cones. However, SEMA3F has similar effects on endothelial cells (ECs) and tumor cells. In this review, we discuss the novel molecular mechanisms underlying SEMA3F activity in vascular and tumor biology. Recent evidence suggests that SEMA3F functions as a PI3K-Akt-mTOR inhibitor in mammalian cells, including T cells, ECs, and tumor cells. Therefore, SEMA3F may have broad therapeutic implications. We also discuss the key role of axon guidance molecules as regulators of the tumor microenvironment. Netrin-1, a chemoattractant factor in the neuronal system, promotes tumor progression by enhancing angiogenesis and metastasis. Moreover, our recent studies demonstrate that netrin-1/neogenin interactions augment CD4+ T cell chemokinesis and elicit pro-inflammatory responses, suggesting that netrin-1 plays a key role in modulating the function of a tumor and its surrounding cells in the tumor microenvironment. Overall, this review focuses on SEMA3F and netrin-1 signaling mechanisms to understand the diverse biological functions of axon guidance molecules.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Chiaki Kusumoto
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Masako Nakahara
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Akira Fujiwara
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
36
|
Iamsawat S, Daenthanasanmak A, Voss JH, Nguyen H, Bastian D, Liu C, Yu XZ. Stabilization of Foxp3 by Targeting JAK2 Enhances Efficacy of CD8 Induced Regulatory T Cells in the Prevention of Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2018; 201:2812-2823. [PMID: 30242073 DOI: 10.4049/jimmunol.1800793] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/31/2018] [Indexed: 02/02/2023]
Abstract
CD8+ induced regulatory T cells (iTregs) have been identified to suppress alloreactive immune responses and expressed regulatory T cell (Treg) ontological markers as similar as CD4+ iTregs. However, adoptive transfer of CD8+ iTreg-based therapy is hampered by the instability of Treg specific-transcription factor, Foxp3. As CD8+ iTregs were previously demonstrated to possess superior tumor-killing ability to CD4+ iTregs, adoptive transfer of stabilized CD8+ iTregs would be a potential therapy to prevent tumor relapse during graft-versus-leukemia disease (GVHD) treatment. In the current study, we generated alloantigen reactive CD8+ iTregs from JAK2-/- T cells and adoptively transferred them to MHC-mismatched and haploidentical murine models of allogeneic bone marrow transplantation. JAK2-/- CD8+ iTregs not only attenuated GVHD but also preserved graft-versus-leukemia effect. Mechanistic analysis revealed that JAK2-/- CD8+ iTregs upregulated natural Treg marker (neuropilin-1), and augmented DNA demethylation of CNS2 region within Foxp3 gene. These properties licensed JAK2-/- CD8+ iTregs to retain high Foxp3 expression resulting in less conversion to type 1 CTLs; as a result, JAK2-/- CD8+ iTregs were able to maintain their suppressive and cytolytic function. Thus, our findings provide a strong rationale and means to stabilize CD8+ iTregs by targeting JAK2, and the stabilized CD8+ iTregs exhibit therapeutic potential for alleviating GVHD and preserving the graft-versus-leukemia effect.
Collapse
Affiliation(s)
- Supinya Iamsawat
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Anusara Daenthanasanmak
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Jessica Heinrichs Voss
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901; and
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; .,Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
37
|
Regev K, Healy BC, Paul A, Diaz-Cruz C, Mazzola MA, Raheja R, Glanz BI, Kivisäkk P, Chitnis T, Jagodic M, Piehl F, Olsson T, Khademi M, Hauser S, Oksenberg J, Khoury SJ, Weiner HL, Gandhi R. Identification of MS-specific serum miRNAs in an international multicenter study. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e491. [PMID: 30175165 PMCID: PMC6117192 DOI: 10.1212/nxi.0000000000000491] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
Abstract
Objective To identify circulating microRNAs (miRNAs) linked to disease, disease stage, and disability in MS across cohorts. Methods Samples were obtained from the Comprehensive Longitudinal Investigation of Multiple Sclerosis (CLIMB, Boston, MA), EPIC (San Francisco, CA), AMIR (Beirut, Lebanon) as part of the SUMMIT consortium, and Stockholm Prospective Assessment of Multiple Sclerosis (Stockholm, Sweden) cohorts. Serum miRNA expression was measured using locked nucleic acid–based quantitative PCR. Four groups were compared: (1) MS vs healthy control (HC), (2) relapsing-remitting (RR) vs HC, (3) secondary progressive (SP) vs HC, and (4) RR vs SP. A Wilcoxon rank-sum test was used for the comparisons. The association between each miRNA and the Expanded Disability Status Scale (EDSS) score was assessed using the Spearman correlation coefficient. For each comparison, the p values were corrected for multiple comparisons using the approach of Benjamini and Hochberg to control the false discovery rate. Results In the CLIMB cohort, 5 miRNAs (hsa-miR-484, hsa-miR-140-5p, hsa-miR-320a, hsa-miR-486-5p, and hsa-miR-320c) showed a significant difference between patients with MS and healthy individuals; among these, miR-484 remained significant after accounting for multiple comparisons (p = 0.01). When comparing RRMS with HCs, hsa-miR-484 showed a significant difference (p = 0.004) between the groups after accounting for multiple group comparisons. When SP and HC were compared, 6 miRNAs (hsa-miR-484, hsa-miR-140-5p, hsa-miR-142-5p, hsa-miR-320a, hsa-miR-320b, and hsa-miR-320c) remained significantly different after accounting for multiple comparisons. Disability correlation analysis with miRNA provided 4 miRNAs (hsa-miR-320a, hsa-miR-337-3p, hsa-miR-199a-5p, and hsa-miR-142-5p) that correlated with the EDSS during the internal reproducibility phase. Among these, hsa-miR-337-3p was the most statistically significant miRNA that negatively correlated with the EDSS in three of the MS cohorts tested. Conclusions These findings further confirm the use of circulating serum miRNAs as biomarkers to diagnose and monitor disease status in MS. Classification of evidence This study provides Class III evidence that levels of circulating miRNAs identify patients with MS.
Collapse
Affiliation(s)
- Keren Regev
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Brian C Healy
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Anu Paul
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Camilo Diaz-Cruz
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Maria Antonietta Mazzola
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Radhika Raheja
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Bonnie I Glanz
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Pia Kivisäkk
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Tanuja Chitnis
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Maja Jagodic
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Fredrik Piehl
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Tomas Olsson
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Mohsen Khademi
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Stephen Hauser
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Jorge Oksenberg
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Samia J Khoury
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Howard L Weiner
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Roopali Gandhi
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| |
Collapse
|
38
|
Podojil JR, Chiang MY, Ifergan I, Copeland R, Liu LN, Maloveste S, Langermann S, Liebenson D, Balabanov R, Chi H, Chen L, Vignali DAA, Miller SD. B7-H4 Modulates Regulatory CD4 + T Cell Induction and Function via Ligation of a Semaphorin 3a/Plexin A4/Neuropilin-1 Complex. THE JOURNAL OF IMMUNOLOGY 2018; 201:897-907. [PMID: 29898965 DOI: 10.4049/jimmunol.1700811] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 05/21/2018] [Indexed: 11/19/2022]
Abstract
The potent immune regulatory function of an agonistic B7-H4-Ig fusion protein (B7-H4Ig) has been demonstrated in multiple experimental autoimmune models; however, the identity of a functional B7-H4 receptor remained unknown. The biological activity of B7-H4 is associated with decreased inflammatory CD4+ T cell responses as supported by a correlation between B7-H4-expressing tumor-associated macrophages and Foxp3+ T cells within the tumor microenvironment. Recent data indicate that members of the semaphorin (Sema)/plexin/neuropilin (Nrp) family of proteins both positively and negatively modulate immune cell function. In this study, we show that B7-H4 binds the soluble Sema family member Sema3a. Additionally, B7-H4Ig-induced inhibition of inflammatory CD4+ T cell responses is lost in both Sema3a functional mutant mice and mice lacking Nrp-1 expression in Foxp3+ T cells. These findings indicate that B7-H4Ig binds to Sema3a, which acts as a functional bridge to stimulate an Nrp-1/Plexin A4 heterodimer to form a functional immunoregulatory receptor complex resulting in increased levels of phosphorylated PTEN and enhanced regulatory CD4+ T cell number and function.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | | | | | | | | | | | | | - Hongbo Chi
- Immunology Department, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15262; and.,Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
| |
Collapse
|
39
|
Gotot J, Dhana E, Yagita H, Kaiser R, Ludwig-Portugall I, Kurts C. Antigen-specific Helios - , Neuropilin-1 - Tregs induce apoptosis of autoreactive B cells via PD-L1. Immunol Cell Biol 2018; 96:852-862. [PMID: 29617057 DOI: 10.1111/imcb.12053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Regulatory T cells (Tregs) maintain self-tolerance and prevent autoimmunity by controlling autoreactive T cells. We recently demonstrated in vivo that Tregs can directly suppress auto-reactive B cells via programmed death ligand 1 (PD-L1) that ligated PD-1 on B cells and caused them to undergo apoptosis. Here, we asked whether this mechanism is utilized by thymus-derived natural Tregs and/or by peripheral lymphoid tissue-induced Tregs. We first demonstrated that antigen-specific PD-L1-expressing Tregs were induced in the draining lymph node of autoantigen-expressing tissue and characterized them by their lack of the transcription factor Helios and of the surface marker Neuropilin-1 (Nrp-1). Next, we established an in vitro co-culture system to study the interaction between B cells and Treg subsets under controlled conditions. We found that Nrp- Treg, but not Nrp+ Treg suppressed autoreactive B cells, whereas both were able to suppress T-helper cells. Such suppression was antigen-specific and was facilitated by PD-L1/PD-1-induced apoptosis. Furthermore, it required physical cell contact and was MHC II-restricted, providing an explanation for the antigen-specificity of peripherally-induced Tregs. These findings identify a role for peripherally induced Helios- Nrp-1- inducible Treg in controlling peripheral B-cell tolerance against tissue auto-antigens.
Collapse
Affiliation(s)
- Janine Gotot
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Ermanila Dhana
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Romina Kaiser
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Isis Ludwig-Portugall
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| |
Collapse
|
40
|
Liu LN, Li XM, Ye DQ, Pan HF. Emerging role of semaphorin-3A in autoimmune diseases. Inflammopharmacology 2018; 26:655-665. [PMID: 29696565 DOI: 10.1007/s10787-018-0484-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/16/2018] [Indexed: 12/24/2022]
Abstract
Autoimmune diseases (ADs) are featured by the body's immune responses being directed against its own tissues, resulting in prolonged inflammation and subsequent tissue damage. Currently, the exact pathogenesis of ADs remains not fully elucidated. Semaphorin-3A (Sema3A), a secreted member of semaphorin family, is a potent immunoregulator during all immune response stages. Sema3A has wide expression, such as in bone, connective tissue, kidney, neurons, and cartilage. Sema3A can downregulate ADs by suppressing the over-activity of both T-cell and B-cell autoimmunity. Moreover, Sema3A shows the ability to enhance T-cell and B-cell regulatory properties that control ADs, including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and systemic sclerosis. However, it can also induce ADs when overexpressed. Together, these data strongly suggest that Sema3A plays a pivotal role in ADs, and it may be a promising treatment target for these diseases. In the present review, we focus on the immunological functions of Sema3A and summarize recent studies on the involvement of Sema3A in the pathogenesis of ADs; the discoveries obtained from recent findings may translate into novel therapeutic agent for ADs.
Collapse
Affiliation(s)
- Li-Na Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology, Anhui Provincial Hospital, 17 Lujiang Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
41
|
Safari F, Farajnia S, Arya M, Zarredar H, Nasrolahi A. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol Immunotoxicol 2018; 40:201-211. [DOI: 10.1080/08923973.2018.1437625] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Arya
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Nasrolahi
- Molecular Medicine Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Human airway smooth muscle cell proliferation from asthmatics is negatively regulated by semaphorin3A. Oncotarget 2018; 7:80238-80251. [PMID: 27791986 PMCID: PMC5348316 DOI: 10.18632/oncotarget.12884] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
Airway smooth muscle (ASM) hyperplasia is a key feature of airway remodeling in development of lung diseases such as asthma. Anomalous proliferation of ASM cells directly contributes to ASM hyperplasia. However, the molecular mechanisms controlling ASM cell proliferation are not completely understood. Semaphorins are versatile regulators of various cellular processes including cell growth and proliferation. The role of semaphorins in ASM cell proliferation has remained to be addressed. Here, we report that semaphorin 3A (Sema3A) receptor, neuropilin 1 (Nrp1), is expressed on human ASM cells (HASMC) isolated from healthy and asthmatic donors and treatment of these cells with exogenous Sema3A inhibits growth factor-induced proliferation. Sema3A inhibitory effect on HASMC proliferation is associated with decreased tyrosine phosphorylation of PDGFR, downregulation of Rac1 activation, STAT3 and GSK-3β phosphorylation. Bronchial sections from severe asthmatics displayed immunoreactivity of Nrp1, suggestive of functional contribution of Sema3A-Nrp1 axis in airway remodeling. Together, our data suggest Sema3A-Nrp1 signaling as a novel regulatory pathway of ASM hyperplasia.
Collapse
|
43
|
Vivekanandhan S, Mukhopadhyay D. Genetic status of KRAS influences Transforming Growth Factor-beta (TGF-β) signaling: An insight into Neuropilin-1 (NRP1) mediated tumorigenesis. Semin Cancer Biol 2018; 54:72-79. [PMID: 29409705 DOI: 10.1016/j.semcancer.2018.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Oncogenic RAS and deregulated transforming growth factor-beta (TGF)-β signaling have been implicated in several cancers. So far, attempts to target either one of them therapeutically have been futile as both of them are involved in multiple fundamental cellular processes and the normal forms are expressed by almost all cells. Hence, their inhibition would disrupt several physiological processes. Besides, their downregulation stimulates the tumor cells to develop adaptive mechanisms and would most likely be ineffective as therapeutic targets. Furthermore, growing literature suggests that both of these signaling pathways converge to enhance tumor development. Therefore, a lot of interest has been generated to explore the areas where these pathways interface that might identify new molecules that could potentially serve as novel therapeutic targets. In this review, we focus on such convergent signaling and cross-interaction that is mediated by neuropilin-1 (NRP1), a receptor that can interact with multiple growth factors including TGF-β for promoting tumorigenesis process.
Collapse
Affiliation(s)
- Sneha Vivekanandhan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States.
| |
Collapse
|
44
|
Caponegro MD, Miyauchi JT, Tsirka SE. Contributions of immune cell populations in the maintenance, progression, and therapeutic modalities of glioma. AIMS ALLERGY AND IMMUNOLOGY 2018; 2:24-44. [PMID: 32914058 PMCID: PMC7480949 DOI: 10.3934/allergy.2018.1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Immunotherapies are becoming a promising strategy for malignant disease. Selectively directing host immune responses to target cancerous tissue is a milestone of human health care. The roles of the innate and adaptive immune systems in both cancer progression and elimination are now being realized. Defining the immune cell environment and identifying the contributions of each sub-population of these cells has lead to an understanding of the immunotherapeutic processes, and demonstrated the potential of the immune system to drive cancer shrinkage and sustained immunity against disease. Poorly treated diseases, such as high-grade glioma, suffer from lack of therapeutic efficacy and rapid progression. Immunotherapeutic success in other solid malignancies, such as melanoma, now provides the principals for which this treatment paradigm can be adapted for primary brain cancers. The central nervous system is complex, and relative contributions of immune sub-populations to high grade glioma progression are not fully characterized. Here, we summarize recent research in both animal and humans which add to the knowledge base of how innate and adaptive immune cells contribute to glioma progression, and outline work which has demonstrated their potential to elicit anti-tumorigenic responses. Additionally, we highlight Neuropilin 1, a cell surface receptor protein, describe its signaling functions in the context of immunity, and point to its potential to slow glioma progression.
Collapse
Affiliation(s)
- Michael D Caponegro
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jeremy Tetsuo Miyauchi
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
45
|
Roy S, Bag AK, Singh RK, Talmadge JE, Batra SK, Datta K. Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Front Immunol 2017; 8:1228. [PMID: 29067024 PMCID: PMC5641316 DOI: 10.3389/fimmu.2017.01228] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
Neuropilins (NRPs) are non-tyrosine kinase cell surface glycoproteins expressed in all vertebrates and widely conserved across species. The two isoforms, such as neuropilin-1 (NRP1) and neuropilin-2 (NRP2), mainly act as coreceptors for class III Semaphorins and for members of the vascular endothelial growth factor family of molecules and are widely known for their role in a wide array of physiological processes, such as cardiovascular, neuronal development and patterning, angiogenesis, lymphangiogenesis, as well as various clinical disorders. Intriguingly, additional roles for NRPs occur with myeloid and lymphoid cells, in normal physiological as well as different pathological conditions, including cancer, immunological disorders, and bone diseases. However, little is known concerning the molecular pathways that govern these functions. In addition, NRP1 expression has been characterized in different immune cellular phenotypes including macrophages, dendritic cells, and T cell subsets, especially regulatory T cell populations. By contrast, the functions of NRP2 in immune cells are less well known. In this review, we briefly summarize the genomic organization, structure, and binding partners of the NRPs and extensively discuss the recent advances in their role and function in different immune cell subsets and their clinical implications.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arup K Bag
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh K Singh
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - James E Talmadge
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
46
|
Liao HT, Lin YF, Chou CT, Tsai CY. Semaphorin 3A in Ankylosing Spondylitis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 52:151-157. [PMID: 28736223 DOI: 10.1016/j.jmii.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/01/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND/PURPOSE To determine serum semaphorin 3A (Sema 3A) levels in ankylosing spondylitis (AS). METHODS Serum Sema 3A was measured in 46 AS patients and 30 healthy controls (HCs). For the patients, we recorded demographic data, disease activity, functional index & global assessment, detected human leukocyte antigen-B27 (HLA-B27), and measured erythrocyte sedimentation rate (ESR) & C-reactive protein (CRP). RESULTS Sema 3A was higher in AS patients than in HCs (3.98 ± 2.57 vs. 1.34 ± 0.48 ng/ml, p = 0.013). Area under the curve (AUC) of standard receiver operating characteristic (ROC) has suggested that Sema 3A > 2 ng/ml is better to predict the higher Bath Ankylosing Spondylitis Disease Activity Index (BASDAI, > 4) than ESR or CRP. There were good correlations between higher Sema 3A and uveitis, Schöber's test, as well as interstitial lung disease. AS patients undergoing anti-tumor necrosis factor therapies for 3 months exhibited a positive correlation of change in Sema 3A (ΔSema 3A) with disease activity fluctuation [ΔBASDAI, ΔBath Ankylosing Spondylitis Functional Index (BASFI) and ΔBath Ankylosing Spondylitis - Global score (BAS-G)]. CONCLUSION Serum Sema 3A level was increased in AS patients and was inversely correlated to Schöber's test. Serum Sema 3A is better as a bio-marker than ESR or CRP to correlate with high disease activity in AS patients, and it is also a good indicator for monitoring disease activity and functional status during anti-TNF treatment. Also, Sema 3A may be taken as a predictor for extra-articular presentations in AS, but this needs further study to elucidate.
Collapse
Affiliation(s)
- Hsien-Tzung Liao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chung-Tei Chou
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
47
|
Kessel A, Lin C, Vadasz Z, Peri R, Eiza N, Berkowitz D. The association between semaphorin 3A levels and gluten-free diet in patients with celiac disease. Clin Immunol 2017; 184:73-76. [PMID: 28502679 DOI: 10.1016/j.clim.2017.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 04/10/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
Celiac disease (CD) is an inflammatory disease affecting the small intestine. We aim to assess serum level and expression of semaphorin 3A (Sema3A) on T regulatory (Treg) cells in CD patients. Twenty-six newly diagnosed celiac patients, 13 celiac patients on a gluten-free diet and 16 healthy controls included in the study. Sema3A protein level in the serum of celiac patients was significantly higher compared to healthy group (7.17±1.8ng/ml vs. 5.67±1.5ng/ml, p=0.012). Sema3A expression on Treg cells was statistically lower in celiac patients compared to healthy subjects (p=0.009) and significantly lower in celiac patients compared to celiac patients on gluten free diet (p=0.04). Negative correlation was found between Sema3A on Teg cells and the level of IgA anti-tTG antibodies (r=-0.346, p<0.01) and anti-DGP (r=-0.448, p<0.01). This study suggests involvement of the Sema3A in the pathogenesis of CD.
Collapse
Affiliation(s)
- Aharon Kessel
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Technion Faculty of Medicine, Haifa, Israel.
| | - Chen Lin
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Technion Faculty of Medicine, Haifa, Israel
| | - Zahava Vadasz
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Technion Faculty of Medicine, Haifa, Israel
| | - Regina Peri
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Technion Faculty of Medicine, Haifa, Israel
| | - Nasren Eiza
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Technion Faculty of Medicine, Haifa, Israel
| | - Drora Berkowitz
- Division of Pediatric Gastroenterology, Bnai Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
48
|
Jones A, Hawiger D. Peripherally Induced Regulatory T Cells: Recruited Protectors of the Central Nervous System against Autoimmune Neuroinflammation. Front Immunol 2017; 8:532. [PMID: 28536579 PMCID: PMC5422564 DOI: 10.3389/fimmu.2017.00532] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022] Open
Abstract
Defects in regulatory T cells (Treg cells) aggravate multiple sclerosis (MS) after its onset and the absence of Treg cell functions can also exacerbate the course of disease in an animal model of MS. However, autoimmune neuroinflammation in many MS models can be acutely provoked in healthy animals leading to an activation of encephalitogenic T cells despite the induction of immune tolerance in the thymus including thymically produced (t)Treg cells. In contrast, neuroinflammation can be ameliorated or even completely prevented by the antigen-specific Treg cells formed extrathymically in the peripheral immune system (pTreg cells) during tolerogenic responses to relevant neuronal antigens. This review discusses the specific roles of Treg cells in blocking neuroinflammation, examines the impact of peripheral tolerance and dendritic cells on a relevant regulation of neuroinflammation, and explores some of the most recent advances in elucidation of specific mechanisms of the conversion and function of pTreg cells including the roles of CD5 and Hopx in these processes.
Collapse
Affiliation(s)
- Andrew Jones
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
49
|
Rezaeepoor M, Shapoori S, Ganjalikhani-Hakemi M, Etemadifar M, Alsahebfosoul F, Eskandari N, Mansourian M. Decreased expression of Sema3A, an immune modulator, in blood sample of multiple sclerosis patients. Gene 2017; 610:59-63. [PMID: 28188869 DOI: 10.1016/j.gene.2017.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/12/2017] [Accepted: 02/06/2017] [Indexed: 02/08/2023]
Abstract
Semaphorin 3A (Sema3A) as an immune modulator could participate in the pathogenesis of autoimmune diseases. In the current study, we aimed to investigate Sema3A expression in peripheral blood mononuclear cells (PBMCs) and its serum level in relapsing-remitting multiple sclerosis (RRMS) patients. Fifteen newly determined and untreated RRMS patients were chosen and assessed in relapsing and remitting phases in compare with fifteen healthy individuals. In consistent with previous findings in other autoimmune diseases, our results revealed that serum level of Sema3A and its expression in PBMCs of RRMS patients were significantly lower than in normal subjects. We also evaluated this down regulation predictive value with ROC analysis. According to our data, we suggest that Sema3A could be involved in pathogenesis of MS and might be a potential diagnostic biomarker for the disease.
Collapse
Affiliation(s)
- Mahsa Rezaeepoor
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Shapoori
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Masoud Etemadifar
- Multiple Sclerosis and Neuroimmunology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosoul
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Mansourian
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
50
|
Kalekar LA, Mueller DL. Relationship between CD4 Regulatory T Cells and Anergy In Vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2527-2533. [PMID: 28320913 PMCID: PMC5363282 DOI: 10.4049/jimmunol.1602031] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Selective suppression of effector CD4+ T cell functions is necessary to prevent immune cell-mediated damage to healthy tissues. This appears especially true during pregnancy or in individuals predisposed to autoimmunity. Foxp3+ regulatory T (Treg) cells and induction of anergy, an acquired state of T cell functional unresponsiveness in Foxp3- cells, have both been implicated as mechanisms to suppress dangerous immune responses to tissue-restricted self-Ags. Anergic CD4+ T cells and Treg cells share a number of phenotypic and mechanistic traits-including the expression of CD73 and folate receptor 4, and the epigenetic modification of Treg cell signature genes-and an interesting relationship between these two subsets has recently emerged. In this review, we will compare and contrast these two subsets, as well as explore the role of anergy in the generation of peripheral Treg cells.
Collapse
Affiliation(s)
- Lokesh A Kalekar
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455; and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Daniel L Mueller
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455; and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|