1
|
Poehlein A, Zeldes B, Flaiz M, Böer T, Lüschen A, Höfele F, Baur KS, Molitor B, Kröly C, Wang M, Zhang Q, Fan Y, Chao W, Daniel R, Li F, Basen M, Müller V, Angenent LT, Sousa DZ, Bengelsdorf FR. Advanced aspects of acetogens. BIORESOURCE TECHNOLOGY 2025; 427:131913. [PMID: 39626805 DOI: 10.1016/j.biortech.2024.131913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 03/21/2025]
Abstract
Acetogens are a diverse group of anaerobic bacteria that are capable of carbon dioxide reduction and have for long fascinated scientists due to their unique metabolic prowess. Historically, acetogens have been recognized for their remarkable ability to grow and to produce acetate from different one-carbon sources, including carbon dioxide, carbon monoxide, formate, methanol, and methylated organic compounds. The key metabolic pathway in acetogens responsible for converting these one-carbon sources is the Wood-Ljungdahl pathway. This review offers a comprehensive overview of the latest discoveries that are related to acetogens. It delves into a variety of topics, including newly isolated acetogens, their taxonomy and physiology and highlights novel metabolic properties. Additionally, it explores metabolic engineering strategies that are designed to expand the product range of acetogens or to understand specific traits of their metabolism. Lastly, the review presents innovative gas fermentation techniques within the context of industrial applications.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Benjamin Zeldes
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Maximilian Flaiz
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Tim Böer
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Franziska Höfele
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Kira S Baur
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72074, Germany
| | - Christian Kröly
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands; Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Meng Wang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China
| | - Quan Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China.
| | - Yixuan Fan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Wei Chao
- Beijing Shougang LanzaTech Technology Co. Ltd, Tianshunzhuang North Road, Shijingshan District, Beijing, China
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Frank R Bengelsdorf
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany.
| |
Collapse
|
2
|
Britton TA, Lee JH, Chang C, Bhat AH, Chen YW, Mohammed Ali R, Wu C, Das A, Ton-That H. Inactivation of the Fusobacterium nucleatum Rnf complex reduces FadA-mediated amyloid formation and tumor development. mBio 2025:e0103225. [PMID: 40401912 DOI: 10.1128/mbio.01032-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/28/2025] [Indexed: 05/23/2025] Open
Abstract
The Gram-negative anaerobe Fusobacterium nucleatum is an oral oncobacterium that promotes colorectal cancer (CRC) development with the amyloid-forming cell surface adhesin FadA integral to CRC tumorigenesis. We describe here molecular genetic studies uncovering a novel mode of metabolic regulation of FadA-mediated tumor formation by a highly conserved respiratory enzyme known as the Rnf complex. First, we show that genetic disruption of Rnf, via rnfC deletion, significantly reduces the level of fadA transcript, accompanied by a near-complete abolishment of the precursor form of FadA (pFadA), reduced assembly of FadA at the mature cell pole, and severe defects in the osmotic stress-induced formation of FadA amyloids. We show further that the Rnf complex regulates three response regulators (CarR, ArlR, and S1), which modulate the expression of pFadA, without affecting fadA transcript. Consistent with our hypothesis that these response regulators control factors that process FadA, deletion of rnfC, carR, arlR, or s1 each impairs expression of the signal peptidase gene lepB, and FadA production is nearly abolished by CRISPR-induced depletion of lepB. Importantly, while rnfC deletion does not affect the ability of the mutant cells to adhere to CRC cells, rnfC deficiency significantly diminishes the fusobacterial invasion of CRC cells and formation of spheroid tumors in vitro. Evidently, the Rnf complex modulates the expression of the FadA adhesin and tumorigenesis through a gene regulatory network consisting of multiple response regulators, each controlling a signal peptidase that is critical for the post-translational processing of FadA and surface assembly of FadA amyloids.IMPORTANCEThe Rhodobacter nitrogen-fixation (Rnf) complex of Fusobacterium nucleatum plays an important role in the pathophysiology of this oral pathobiont since genetic disruption of this conserved respiratory enzyme negatively impacts a wide range of metabolic pathways, as well as bacterial virulence in mice. Nonetheless, how Rnf deficiency weakens the virulence potential of F. nucleatum is not well understood. Here, we show that genetic disruption of the Rnf complex reduces surface assembly of adhesin FadA and FadA-mediated amyloid formation, via regulation of signal peptidase LepB by multiple response regulators. As FadA is critical in the carcinogenesis of colorectal cancer (CRC), the ability to invade CRC cells and promote spheroid tumor growth is strongly diminished in an Rnf-deficient mutant. Thus, this work uncovers a molecular linkage between the Rnf complex and LepB-regulated processing of FadA-likely via metabolic signaling-that maintains the virulence potential of this oncobacterium in various cellular niches.
Collapse
Affiliation(s)
- Timmie A Britton
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Ju Huck Lee
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Chungyu Chang
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Aadil H Bhat
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Yi-Wei Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Rusul Mohammed Ali
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Britton TA, Lee JH, Chang C, Bhat AH, Chen YW, Ali RM, Wu C, Das A, Ton-That H. Inactivation of the Fusobacterium nucleatum Rnf complex reduces FadA-mediated amyloid formation and tumor development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647037. [PMID: 40291721 PMCID: PMC12026584 DOI: 10.1101/2025.04.03.647037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The Gram-negative anaerobe Fusobacterium nucleatum is an oral oncobacterium that promotes colorectal cancer (CRC) development with the amyloid-forming cell surface adhesin FadA integral to CRC tumorigenesis. We describe here molecular genetic studies uncovering a novel mode of metabolic regulation of FadA-mediated tumor formation by a highly conserved respiratory enzyme known as the Rnf complex. First, we show that genetic disruption of Rnf, via rnfC deletion, significantly reduces the level of fadA transcript, accompanied by a near-complete abolishment of the precursor form of FadA (pFadA), reduced assembly of FadA at the mature cell pole, and severe defects in the osmotic stress-induced formation of FadA amyloids. We show further that the Rnf complex regulates three response regulators (CarR, ArlR, and S1), which modulate the expression of pFadA, without affecting fadA transcript. Consistent with our hypothesis that these response regulators control factors that process FadA, deletion of rnfC , carR , arlR , or s1 each impairs expression of the signal peptidase gene lepB , and FadA production is nearly abolished by CRISPR-induced depletion of lepB . Importantly, while rnfC deletion does not affect the ability of the mutant cells to adhere to CRC cells, rnfC deficiency significantly diminishes the fusobacterial invasion of CRC cells and formation of spheroid tumors in vitro . Evidently, the Rnf complex modulates the expression of the FadA adhesin and tumorigenesis through a gene regulatory network consisting of multiple response regulators, each controlling a signal peptidase that is critical for the post-translational processing of FadA and surface assembly of FadA amyloids. IMPORTANCE The R hodobacter n itrogen-fixation (Rnf) complex of Fusobacterium nucleatum plays an important role in the pathophysiology of this oral pathobiont, since genetic disruption of this conserved respiratory enzyme negatively impacts a wide range of metabolic pathways, as well as bacterial virulence in mice. Nonetheless, how Rnf deficiency weakens the virulence potential of F. nucleatum is not well understood. Here, we show that genetic disruption of the Rnf complex reduces surface assembly of adhesin FadA and FadA-mediated amyloid formation, via regulation of signal peptidase LepB by multiple response regulators. As FadA is critical in the carcinogenesis of colorectal cancer (CRC), the ability to invade CRC cells and promote spheroid tumor growth is strongly diminished in an Rnf-deficient mutant. Thus, this work uncovers a molecular linkage between the Rnf complex and LepB-regulated processing of FadA - likely via metabolic signaling - that maintains the virulence potential of this oncobacterium in various cellular niches.
Collapse
|
4
|
Vecchini Santaella NA, Stams AJM, Sousa DZ. Methanol and Carbon Monoxide Metabolism of the Thermophile Moorella caeni. Environ Microbiol 2025; 27:e70096. [PMID: 40228503 PMCID: PMC11996240 DOI: 10.1111/1462-2920.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025]
Abstract
Moorella species are thermophilic acetogens that primarily produce acetate from one-carbon (C1) compounds including CO, CO2 (+H2), methanol and formate. Notably, Moorella caeni DSM 21394T displays a hydrogenogenic metabolism on CO and an acetogenic metabolism on methanol. Furthermore, M. caeni is unable to use CO2 (+H2) and grows only on formate in the presence of a methanogen or when thiosulfate is added as an electron acceptor. Presently, all theoretical frameworks for C1 metabolism in Moorella species are derived from experimental and genomic analyses of Moorella thermoacetica, which exhibits an acetogenic metabolism with all C1 substrates. In this study, we applied a transcriptomics approach to elucidate the mechanisms underlying the C1 metabolism of Moorella caeni during growth on methanol and CO. Our results indicate that respiratory Complex 1, a proton-translocating (ubi)quinone oxidoreductase, is the primary respiratory enzyme in methanol-grown cells of M. caeni. Conversely, in CO-grown cells, an energy-conserving hydrogenase complex (Ech) appears to be the primary respiratory complex, alongside respiratory Complex 1. This study provides insight into the C1 metabolism of M. caeni and reveals variations in gene syntenies related to C1 metabolism among the Moorella genus.
Collapse
Affiliation(s)
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & ResearchWageningenthe Netherlands
| | - Diana Z. Sousa
- Laboratory of MicrobiologyWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
5
|
Steuber J, Fritz G. The Na +-translocating NADH:quinone oxidoreductase (Na +-NQR): Physiological role, structure and function of a redox-driven, molecular machine. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149485. [PMID: 38955304 DOI: 10.1016/j.bbabio.2024.149485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Many bacterial processes are powered by the sodium motive force (smf) and in case of pathogens, the smf contributes to virulence. Vibrio cholerae, the causative agent of Cholera disease, possesses a Na+-translocating NADH:quinone oxidoreductase (NQR), a six-subunit membrane protein assembly. The 3D structure of NQR revealed the arrangement of the six subunits NqrABCDEF, the position of all redox cofactors (four flavins, two [2Fe-2S] centers) and the binding sites for the substrates NADH (in NqrF) and ubiquinone (in NqrB). Upon oxidation of NADH, electrons are shuttled twice across the membrane, starting with cytoplasmic FADNqrF and electron transfer to the [2Fe2S] clusterNqrF and from there to an intra-membranous [2Fe-2S] clusterNqrDE, periplasmic FMNNqrC, FMNNqrB and from there to riboflavinNqrB. This riboflavin is located at the cytoplasmic entry site of the sodium channel in NqrB, and it donates electrons to ubiquinone-8 positioned at the cytoplasmic side of NqrB. Targeting the substrate binding sites of NQR is a promising strategy to identify new inhibitors against many bacterial pathogens. Detailed structural information on the binding mode of natural inhibitors and small molecules in the active sites of NQR is now available, paving the way for the development of new antibiotics. The NQR shows different conformations as revealed in recent cryo-EM and crystallographic studies combined with spectroscopic analyses. These conformations represent distinct steps in the catalytic cycle. Considering the structural and functional data available, we propose a mechanism of Na+-NQR based on conformational coupling of electron transfer and Na+ translocation reaction steps.
Collapse
Affiliation(s)
- Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| |
Collapse
|
6
|
Zhang L, Einsle O. Architecture of the RNF1 complex that drives biological nitrogen fixation. Nat Chem Biol 2024; 20:1078-1085. [PMID: 38890433 DOI: 10.1038/s41589-024-01641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
Biological nitrogen fixation requires substantial metabolic energy in form of ATP as well as low-potential electrons that must derive from central metabolism. During aerobic growth, the free-living soil diazotroph Azotobacter vinelandii transfers electrons from the key metabolite NADH to the low-potential ferredoxin FdxA that serves as a direct electron donor to the dinitrogenase reductases. This process is mediated by the RNF complex that exploits the proton motive force over the cytoplasmic membrane to lower the midpoint potential of the transferred electron. Here we report the cryogenic electron microscopy structure of the nitrogenase-associated RNF complex of A. vinelandii, a seven-subunit membrane protein assembly that contains four flavin cofactors and six iron-sulfur centers. Its function requires the strict coupling of electron and proton transfer but also involves major conformational changes within the assembly that can be traced with a combination of electron microscopy and modeling.
Collapse
Affiliation(s)
- Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J, Müller V, Schönheit P, Siebers B, Vorgias K. Extremophiles in a changing world. Extremophiles 2024; 28:26. [PMID: 38683238 PMCID: PMC11058618 DOI: 10.1007/s00792-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - S V Albers
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - G Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - H Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - B Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - M Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - A J M Driessen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - M Jebbar
- Univ. Brest, CNRS, Ifremer, Laboratoire de Biologie Et d'Écologie Des Écosystèmes Marins Profonds (BEEP), IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Z Kelman
- Institute for Bioscience and Biotechnology Research and the National Institute of Standards and Technology, Rockville, MD, USA
| | - M Kerou
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - J Littlechild
- Henry Wellcome Building for Biocatalysis, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - V Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - P Schönheit
- Institute of General Microbiology, Christian Albrechts University, Kiel, Germany
| | - B Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, 45117, Essen, Germany
| | - K Vorgias
- Biology Department and RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Baum C, Zeldes B, Poehlein A, Daniel R, Müller V, Basen M. The energy-converting hydrogenase Ech2 is important for the growth of the thermophilic acetogen Thermoanaerobacter kivui on ferredoxin-dependent substrates. Microbiol Spectr 2024; 12:e0338023. [PMID: 38385688 PMCID: PMC10986591 DOI: 10.1128/spectrum.03380-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Thermoanaerobacter kivui is the thermophilic acetogenic bacterium with the highest temperature optimum (66°C) and with high growth rates on hydrogen (H2) plus carbon dioxide (CO2). The bioenergetic model suggests that its redox and energy metabolism depends on energy-converting hydrogenases (Ech). Its genome encodes two Echs, Ech1 and Ech2, as sole coupling sites for energy conservation during growth on H2 + CO2. During growth on other substrates, its redox activity, the (proton-gradient-coupled) oxidation of H2 may be essential to provide reduced ferredoxin (Fd) to the cell. While Ech activity has been demonstrated biochemically, the physiological function of both Ech's is unclear. Toward that, we deleted the complete gene cluster encoding Ech2. Surprisingly, the ech2 mutant grew as fast as the wild type on sugar substrates and H2 + CO2. Hence, Ech1 may be the essential enzyme for energy conservation, and either Ech1 or another enzyme may substitute for H2-dependent Fd reduction during growth on sugar substrates, putatively the H2-dependent CO2 reductase (HDCR). Growth on pyruvate and CO, substrates that are oxidized by Fd-dependent enzymes, was significantly impaired, but to a different extent. While ∆ech2 grew well on pyruvate after four transfers, ∆ech2 did not adapt to CO. Cell suspensions of ∆ech2 converted pyruvate to acetate, but no acetate was produced from CO. We analyzed the genome of five T. kivui strains adapted to CO. Strikingly, all strains carried mutations in the hycB3 subunit of HDCR. These mutations are obviously essential for the growth on CO but may inhibit its ability to utilize Fd as substrate. IMPORTANCE Acetogens thrive by converting H2+CO2 to acetate. Under environmental conditions, this allows for only very little energy to be conserved (∆G'<-20 kJ mol-1). CO2 serves as a terminal electron acceptor in the ancient Wood-Ljungdahl pathway (WLP). Since the WLP is ATP neutral, energy conservation during growth on H2 + CO2 is dependent on the redox metabolism. Two types of acetogens can be distinguished, Rnf- and Ech-type. The function of both membrane-bound enzyme complexes is twofold-energy conversion and redox balancing. Ech couples the Fd-dependent reduction of protons to H2 to the formation of a proton gradient in the thermophilic bacterium Thermoanaerobacter kivui. This bacterium may be utilized in gas fermentation at high temperatures, due to very high conversion rates and the availability of genetic tools. The physiological function of an Ech hydrogenase in T. kivui was studied to contribute an understanding of its energy and redox metabolism, a prerequisite for future industrial applications.
Collapse
Affiliation(s)
- Christoph Baum
- Microbiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Benjamin Zeldes
- Microbiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Mirko Basen
- Microbiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Britton TA, Wu C, Chen YW, Franklin D, Chen Y, Camacho MI, Luong TT, Das A, Ton-That H. The respiratory enzyme complex Rnf is vital for metabolic adaptation and virulence in Fusobacterium nucleatum. mBio 2024; 15:e0175123. [PMID: 38059640 PMCID: PMC10790702 DOI: 10.1128/mbio.01751-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE This paper illuminates the significant question of how the oral commensal Fusobacterium nucleatum adapts to the metabolically changing environments of several extra-oral sites such as placenta and colon to promote various diseases as an opportunistic pathogen. We demonstrate here that the highly conserved Rhodobacter nitrogen-fixation complex, commonly known as Rnf complex, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of this Rnf complex causes global defects in polymicrobial interaction, biofilm formation, cell growth and morphology, hydrogen sulfide production, and ATP synthesis. Targeted metabolomic profiling demonstrates that the loss of this respiratory enzyme significantly diminishes catabolism of numerous amino acids, which negatively impacts fusobacterial virulence as tested in a preterm birth model in mice.
Collapse
Affiliation(s)
- Timmie A. Britton
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Yi-Wei Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Dana Franklin
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Yimin Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Martha I. Camacho
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Truc T. Luong
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
10
|
Bährle R, Böhnke S, Englhard J, Bachmann J, Perner M. Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications. BIORESOUR BIOPROCESS 2023; 10:84. [PMID: 38647803 PMCID: PMC10992861 DOI: 10.1186/s40643-023-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/16/2023] [Indexed: 04/25/2024] Open
Abstract
Anthropogenic carbon dioxide (CO2) levels are rising to alarming concentrations in earth's atmosphere, causing adverse effects and global climate changes. In the last century, innovative research on CO2 reduction using chemical, photochemical, electrochemical and enzymatic approaches has been addressed. In particular, natural CO2 conversion serves as a model for many processes and extensive studies on microbes and enzymes regarding redox reactions involving CO2 have already been conducted. In this review we focus on the enzymatic conversion of CO2 to carbon monoxide (CO) as the chemical conversion downstream of CO production render CO particularly attractive as a key intermediate. We briefly discuss the different currently known natural autotrophic CO2 fixation pathways, focusing on the reversible reaction of CO2, two electrons and protons to CO and water, catalyzed by carbon monoxide dehydrogenases (CODHs). We then move on to classify the different type of CODHs, involved catalyzed chemical reactions and coupled metabolisms. Finally, we discuss applications of CODH enzymes in photochemical and electrochemical cells to harness CO2 from the environment transforming it into commodity chemicals.
Collapse
Affiliation(s)
- Rebecca Bährle
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Stefanie Böhnke
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Jonas Englhard
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Julien Bachmann
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Mirjam Perner
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany.
| |
Collapse
|
11
|
Zhang B, Lingga C, De Groot H, Hackmann TJ. The oxidoreductase activity of Rnf balances redox cofactors during fermentation of glucose to propionate in Prevotella. Sci Rep 2023; 13:16429. [PMID: 37777597 PMCID: PMC10542786 DOI: 10.1038/s41598-023-43282-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
Propionate is a microbial metabolite formed in the gastrointestinal tract, and it affects host physiology as a source of energy and signaling molecule. Despite the importance of propionate, the biochemical pathways responsible for its formation are not clear in all microbes. For the succinate pathway used during fermentation, a key enzyme appears to be missing-one that oxidizes ferredoxin and reduces NAD. Here we show that Rnf [ferredoxin-NAD+ oxidoreductase (Na+-transporting)] is this key enzyme in two abundant bacteria of the rumen (Prevotella brevis and Prevotella ruminicola). We found these bacteria form propionate, succinate, and acetate with the classic succinate pathway. Without ferredoxin:NAD+ oxidoreductase, redox cofactors would be unbalanced; it would produce almost equal excess amounts of reduced ferredoxin and oxidized NAD. By combining growth experiments, genomics, proteomics, and enzyme assays, we point to the possibility that these bacteria solve this problem by oxidizing ferredoxin and reducing NAD with Rnf [ferredoxin-NAD+ oxidoreductase (Na+-transporting)]. Genomic and phenotypic data suggest many bacteria may use Rnf similarly. This work shows the ferredoxin:NAD+ oxidoreductase activity of Rnf is important to propionate formation in Prevotella species and other bacteria from the environment, and it provides fundamental knowledge for manipulating fermentative propionate production.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Hannah De Groot
- Department of Animal Science, University of California, Davis, CA, USA
| | | |
Collapse
|
12
|
Katsyv A, Essig M, Bedendi G, Sahin S, Milton RD, Müller V. Characterization of ferredoxins from the thermophilic, acetogenic bacterium Thermoanaerobacter kivui. FEBS J 2023; 290:4107-4125. [PMID: 37074156 DOI: 10.1111/febs.16801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
A major electron carrier involved in energy and carbon metabolism in the acetogenic model organism Thermoanaerobacter kivui is ferredoxin, an iron-sulfur-containing, electron-transferring protein. Here, we show that the genome of T. kivui encodes four putative ferredoxin-like proteins (TKV_c09620, TKV_c16450, TKV_c10420 and TKV_c19530). All four genes were cloned, a His-tag encoding sequence was added and the proteins were produced from a plasmid in T. kivui. The purified proteins had an absorption peak at 430 nm typical for ferredoxins. The determined iron-sulfur content is consistent with the presence of two predicted [4Fe4S] clusters in TKV_c09620 and TKV_c19530 or one predicted [4Fe4S] cluster in TKV_c16450 and TKV_c10420 respectively. The reduction potential (Em ) for TKV_c09620, TKV_c16450, TKV_c10420 and TKV_c19530 was determined to be -386 ± 4 mV, -386 ± 2 mV, -559 ± 10 mV and -557 ± 3 mV, respectively. TKV_c09620 and TKV_c16450 served as electron carriers for different oxidoreductases from T. kivui. Deletion of the ferredoxin genes led to only a slight reduction of growth on pyruvate or autotrophically on H2 + CO2 . Transcriptional analysis revealed that TKV_c09620 was upregulated in a ΔTKV_c16450 mutant and vice versa TKV_c16450 in a ΔTKV_c09620 mutant, indicating that TKV_c09620 and TKV_c16450 can replace each other. In sum, our data are consistent with the hypothesis that TKV_c09620 and TKV_c16450 are ferredoxins involved in autotrophic and heterotrophic metabolism of T. kivui.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Melanie Essig
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Giada Bedendi
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Selmihan Sahin
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Britton TA, Wu C, Chen YW, Franklin D, Chen Y, Camacho MI, Luong TT, Das A, Ton-That H. The respiratory enzyme complex Rnf is vital for metabolic adaptation and virulence in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544113. [PMID: 37398403 PMCID: PMC10312631 DOI: 10.1101/2023.06.13.544113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A prominent oral commensal and opportunistic pathogen, Fusobacterium nucleatum can traverse to extra-oral sites such as placenta and colon, promoting adverse pregnancy outcomes and colorectal cancer, respectively. How this anaerobe sustains many metabolically changing environments enabling its virulence potential remains unclear. Informed by our genome-wide transposon mutagenesis, we report here that the highly conserved Rnf complex, encoded by the rnfCDGEAB gene cluster, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of the Rnf complex via non-polar, in-frame deletion of rnfC (Δ rnfC ) abrogates polymicrobial interaction (or coaggregation) associated with adhesin RadD and biofilm formation. The defect in coaggregation is not due to reduced cell surface of RadD, but rather an increased level of extracellular lysine, which binds RadD and inhibits coaggregation. Indeed, removal of extracellular lysine via washing Δ rnfC cells restores coaggregation, while addition of lysine inhibits this process. These phenotypes mirror that of a mutant (Δ kamAΔ ) that fails to metabolize extracellular lysine. Strikingly, the Δ rnfC mutant is defective in ATP production, cell growth, cell morphology, and expression of the enzyme MegL that produces hydrogen sulfide from cysteine. Targeted metabolic profiling demonstrated that catabolism of many amino acids, including histidine and lysine, is altered in Δ rnfC cells, thereby reducing production of ATP and metabolites including H2S and butyrate. Most importantly, we show that the Δ rnfC mutant is severely attenuated in a mouse model of preterm birth. The indispensable function of Rnf complex in fusobacterial pathogenesis via modulation of bacterial metabolism makes it an attractive target for developing therapeutic intervention.
Collapse
|
14
|
Herzog J, Mook A, Utesch T, Bengelsdorf FR, Zeng AP. Lactate based caproate production with Clostridium drakei and process control of Acetobacterium woodii via lactate dependent in situ electrolysis. Front Bioeng Biotechnol 2023; 11:1212044. [PMID: 37425355 PMCID: PMC10327822 DOI: 10.3389/fbioe.2023.1212044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Syngas fermentation processes with acetogens represent a promising process for the reduction of CO2 emissions alongside bulk chemical production. However, to fully realize this potential the thermodynamic limits of acetogens need to be considered when designing a fermentation process. An adjustable supply of H2 as electron donor plays a key role in autotrophic product formation. In this study an anaerobic laboratory scale continuously stirred tank reactor was equipped with an All-in-One electrode allowing for in-situ H2 generation via electrolysis. Furthermore, this system was coupled to online lactate measurements to control the co-culture of a recombinant lactate-producing Acetobacterium woodii strain and a lactate-consuming Clostridium drakei strain to produce caproate. When C. drakei was grown in batch cultivations with lactate as substrate, 1.6 g·L-1 caproate were produced. Furthermore, lactate production of the A. woodii mutant strain could manually be stopped and reinitiated by controlling the electrolysis. Applying this automated process control, lactate production of the A. woodii mutant strain could be halted to achieve a steady lactate concentration. In a co-culture experiment with the A. woodii mutant strain and the C. drakei strain, the automated process control was able to dynamically react to changing lactate concentrations and adjust H2 formation respectively. This study confirms the potential of C. drakei as medium chain fatty acid producer in a lactate-mediated, autotrophic co-cultivation with an engineered A. woodii strain. Moreover, the monitoring and control strategy presented in this study reinforces the case for autotrophically produced lactate as a transfer metabolite in defined co-cultivations for value-added chemical production.
Collapse
Affiliation(s)
- Jan Herzog
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Alexander Mook
- Institute of Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Ulm, Germany
| | - Tyll Utesch
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Frank R. Bengelsdorf
- Institute of Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Ulm, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
- Synthetic Biology and Bioengineering Lab, School of Science, Westlake University, Hangzhou, China
| |
Collapse
|
15
|
Campbell A, Gdanetz K, Schmidt AW, Schmidt TM. H 2 generated by fermentation in the human gut microbiome influences metabolism and competitive fitness of gut butyrate producers. MICROBIOME 2023; 11:133. [PMID: 37322527 PMCID: PMC10268494 DOI: 10.1186/s40168-023-01565-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hydrogen gas (H2) is a common product of carbohydrate fermentation in the human gut microbiome and its accumulation can modulate fermentation. Concentrations of colonic H2 vary between individuals, raising the possibility that H2 concentration may be an important factor differentiating individual microbiomes and their metabolites. Butyrate-producing bacteria (butyrogens) in the human gut usually produce some combination of butyrate, lactate, formate, acetate, and H2 in branched fermentation pathways to manage reducing power generated during the oxidation of glucose to acetate and carbon dioxide. We predicted that a high concentration of intestinal H2 would favor the production of butyrate, lactate, and formate by the butyrogens at the expense of acetate, H2, and CO2. Regulation of butyrate production in the human gut is of particular interest due to its role as a mediator of colonic health through anti-inflammatory and anti-carcinogenic properties. RESULTS For butyrogens that contained a hydrogenase, growth under a high H2 atmosphere or in the presence of the hydrogenase inhibitor CO stimulated production of organic fermentation products that accommodate reducing power generated during glycolysis, specifically butyrate, lactate, and formate. Also as expected, production of fermentation products in cultures of Faecalibacterium prausnitzii strain A2-165, which does not contain a hydrogenase, was unaffected by H2 or CO. In a synthetic gut microbial community, addition of the H2-consuming human gut methanogen Methanobrevibacter smithii decreased butyrate production alongside H2 concentration. Consistent with this observation, M. smithii metabolic activity in a large human cohort was associated with decreased fecal butyrate, but only during consumption of a resistant starch dietary supplement, suggesting the effect may be most prominent when H2 production in the gut is especially high. Addition of M. smithii to the synthetic communities also facilitated the growth of E. rectale, resulting in decreased relative competitive fitness of F. prausnitzii. CONCLUSIONS H2 is a regulator of fermentation in the human gut microbiome. In particular, high H2 concentration stimulates production of the anti-inflammatory metabolite butyrate. By consuming H2, gut methanogenesis can decrease butyrate production. These shifts in butyrate production may also impact the competitive fitness of butyrate producers in the gut microbiome. Video Abstract.
Collapse
Affiliation(s)
- Austin Campbell
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kristi Gdanetz
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexander W Schmidt
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, MI, 48109, Ann Arbor, USA
| | - Thomas M Schmidt
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Ecology & Evolutionary Biology, University of Michigan, MI, 48109, Ann Arbor, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, MI, 48109, Ann Arbor, USA.
| |
Collapse
|
16
|
Alleman AB, Peters JW. Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2023; 89:e0037823. [PMID: 37154716 PMCID: PMC10231201 DOI: 10.1128/aem.00378-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The availability of fixed nitrogen is a limiting factor in the net primary production of all ecosystems. Diazotrophs overcome this limit through the conversion of atmospheric dinitrogen to ammonia. Diazotrophs are phylogenetically diverse bacteria and archaea that exhibit a wide range of lifestyles and metabolisms, including obligate anaerobes and aerobes that generate energy through heterotrophic or autotrophic metabolisms. Despite the diversity of metabolisms, all diazotrophs use the same enzyme, nitrogenase, to reduce N2. Nitrogenase is an O2-sensitive enzyme that requires a high amount of energy in the form of ATP and low potential electrons carried by ferredoxin (Fd) or flavodoxin (Fld). This review summarizes how the diverse metabolisms of diazotrophs utilize different enzymes to generate low potential reducing equivalents for nitrogenase catalysis. These enzymes include substrate-level Fd oxidoreductases, hydrogenases, photosystem I or other light-driven reaction centers, electron bifurcating Fix complexes, proton motive force-driven Rnf complexes, and Fd:NAD(P)H oxidoreductases. Each of these enzymes is critical for generating low potential electrons while simultaneously integrating the native metabolism to balance nitrogenase's overall energy needs. Understanding the diversity of electron transport systems to nitrogenase in various diazotrophs will be essential to guide future engineering strategies aimed at expanding the contributions of biological nitrogen fixation in agriculture.
Collapse
Affiliation(s)
- Alexander B. Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - John W. Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
17
|
Frolov EN, Elcheninov AG, Gololobova AV, Toshchakov SV, Novikov AA, Lebedinsky AV, Kublanov IV. Obligate autotrophy at the thermodynamic limit of life in a new acetogenic bacterium. Front Microbiol 2023; 14:1185739. [PMID: 37250036 PMCID: PMC10213532 DOI: 10.3389/fmicb.2023.1185739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
One of the important current issues of bioenergetics is the establishment of the thermodynamic limits of life. There is still no final understanding of what is the minimum value of the energy yield of a reaction that is sufficient to be used by an organism (the so-called "biological quantum of energy"). A reasonable model for determination of the minimal energy yield would be microorganisms capable of living on low-energy substrates, such as acetogenic prokaryotes. The most prominent metabolic feature of acetogens is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates, which is hardly competitive in environments. Most probably, that is why only facultative autotrophic acetogens have been known so far. Here, we describe the first obligately autotrophic acetogenic bacterium Aceticella autotrophica gen. nov., sp. nov., strain 3443-3AcT. Phylogenetically, the new genus falls into a monophyletic group of heterotrophic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, and Caldanaerobacter (hereinafter referred to as TTC group), where the sole acetogenic representative has so far been the facultatively autotrophic Thermoanaerobacter kivui. A. autotrophica and T. kivui both are acetogens employing energy-converting hydrogenase (Ech-acetogens) that are likely to have inherited the acetogenesis capacity vertically from common ancestor. However, their acetogenic machineries have undergone different adjustments by gene replacements due to horizontal gene transfers from different donors. Obligate autotrophy of A. autotrophica is associated with the lack of many sugar transport systems and carbohydrate catabolism enzymes that are present in other TTC group representatives, including T. kivui.
Collapse
Affiliation(s)
- Evgenii N. Frolov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Elcheninov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra V. Gololobova
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V. Toshchakov
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Andrei A. Novikov
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Alexander V. Lebedinsky
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kublanov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Schwanbeck J, Oehmig I, Groß U, Bohne W. Clostridioides difficile minimal nutrient requirements for flagellar motility. Front Microbiol 2023; 14:1172707. [PMID: 37065145 PMCID: PMC10098170 DOI: 10.3389/fmicb.2023.1172707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
As many gastro-intestinal pathogens, the majority of Clostridioides difficile strains express flagella together with a complete chemotaxis system. The resulting swimming motility is likely contributing to the colonization success of this important pathogen. In contrast to the well investigated general energy metabolism of C. difficile, little is known about the metabolic requirements for maintaining the ion motive force across the membrane, which in turn powers the flagellar motor. We studied here systematically the effect of various amino acids and carbohydrates on the swimming velocity of C. difficile using video microscopy in conjunction with a software based quantification of the swimming speed. Removal of individual amino acids from the medium identified proline and cysteine as the most important amino acids that power swimming motility. Glycine, which is as proline one of the few amino acids that are reduced in Stickland reactions, was not critical for swimming motility. This suggests that the ion motive force that powers the flagellar motor, is critically depending on proline reduction. A maximal and stable swimming motility was achieved with only four compounds, including the amino acids proline, cysteine and isoleucine together with a single, but interchangeable carbohydrate source such as glucose, succinate, mannose, ribose, pyruvate, trehalose, or ethanolamine. We expect that the identified "minimal motility medium" will be useful in future investigations on the flagellar motility and chemotactic behavior in C. difficile, particularly for the unambiguous identification of chemoattractants.
Collapse
Affiliation(s)
- Julian Schwanbeck
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Ines Oehmig
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- Uwe Groß,
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- *Correspondence: Wolfgang Bohne,
| |
Collapse
|
19
|
Chen L, Zhernakova DV, Kurilshikov A, Andreu-Sánchez S, Wang D, Augustijn HE, Vich Vila A, Weersma RK, Medema MH, Netea MG, Kuipers F, Wijmenga C, Zhernakova A, Fu J. Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat Med 2022; 28:2333-2343. [PMID: 36216932 PMCID: PMC9671809 DOI: 10.1038/s41591-022-02014-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/15/2022] [Indexed: 01/14/2023]
Abstract
The levels of the thousands of metabolites in the human plasma metabolome are strongly influenced by an individual's genetics and the composition of their diet and gut microbiome. Here, by assessing 1,183 plasma metabolites in 1,368 extensively phenotyped individuals from the Lifelines DEEP and Genome of the Netherlands cohorts, we quantified the proportion of inter-individual variation in the plasma metabolome explained by different factors, characterizing 610, 85 and 38 metabolites as dominantly associated with diet, the gut microbiome and genetics, respectively. Moreover, a diet quality score derived from metabolite levels was significantly associated with diet quality, as assessed by a detailed food frequency questionnaire. Through Mendelian randomization and mediation analyses, we revealed putative causal relationships between diet, the gut microbiome and metabolites. For example, Mendelian randomization analyses support a potential causal effect of Eubacterium rectale in decreasing plasma levels of hydrogen sulfite-a toxin that affects cardiovascular function. Lastly, based on analysis of the plasma metabolome of 311 individuals at two time points separated by 4 years, we observed a positive correlation between the stability of metabolite levels and the amount of variance in the levels of that metabolite that could be explained in our analysis. Altogether, characterization of factors that explain inter-individual variation in the plasma metabolome can help design approaches for modulating diet or the gut microbiome to shape a healthy metabolome.
Collapse
Affiliation(s)
- Lianmin Chen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hannah E Augustijn
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
20
|
Purification and structural characterization of the Na +-translocating ferredoxin: NAD + reductase (Rnf) complex of Clostridium tetanomorphum. Nat Commun 2022; 13:6315. [PMID: 36274063 PMCID: PMC9588780 DOI: 10.1038/s41467-022-34007-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Various microbial metabolisms use H+/Na+-translocating ferredoxin:NAD+ reductase (Rnf) either to exergonically oxidize reduced ferredoxin by NAD+ for generating a transmembrane electrochemical potential or reversely to exploit the latter for producing reduced ferredoxin. For cryo-EM structural analysis, we elaborated a quick four-step purification protocol for the Rnf complex from Clostridium tetanomorphum and integrated the homogeneous and active enzyme into a nanodisc. The obtained 4.27 Å density map largely allows chain tracing and redox cofactor identification complemented by biochemical data from entire Rnf and single subunits RnfB, RnfC and RnfG. On this basis, we postulated an electron transfer route between ferredoxin and NAD via eight [4Fe-4S] clusters, one Fe ion and four flavins crossing the cell membrane twice related to the pathway of NADH:ubiquinone reductase. Redox-coupled Na+ translocation is provided by orchestrating Na+ uptake/release, electrostatic effects of the assumed membrane-integrated FMN semiquinone anion and accompanied polypeptide rearrangements mediated by different redox steps.
Collapse
|
21
|
Keller-Costa T, Kozma L, Silva SG, Toscan R, Gonçalves J, Lago-Lestón A, Kyrpides NC, Nunes da Rocha U, Costa R. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. MICROBIOME 2022; 10:151. [PMID: 36138466 PMCID: PMC9502895 DOI: 10.1186/s40168-022-01343-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND The role of bacterial symbionts that populate octocorals (Cnidaria, Octocorallia) is still poorly understood. To shed light on their metabolic capacities, we examined 66 high-quality metagenome-assembled genomes (MAGs) spanning 30 prokaryotic species, retrieved from microbial metagenomes of three octocoral species and seawater. RESULTS Symbionts of healthy octocorals were affiliated with the taxa Endozoicomonadaceae, Candidatus Thioglobaceae, Metamycoplasmataceae, unclassified Pseudomonadales, Rhodobacteraceae, unclassified Alphaproteobacteria and Ca. Rhabdochlamydiaceae. Phylogenomics inference revealed that the Endozoicomonadaceae symbionts uncovered here represent two species of a novel genus unique to temperate octocorals, here denoted Ca. Gorgonimonas eunicellae and Ca. Gorgonimonas leptogorgiae. Their genomes revealed metabolic capacities to thrive under suboxic conditions and high gene copy numbers of serine-threonine protein kinases, type 3-secretion system, type-4 pili, and ankyrin-repeat proteins, suggesting excellent capabilities to colonize, aggregate, and persist inside their host. Contrarily, MAGs obtained from seawater frequently lacked symbiosis-related genes. All Endozoicomonadaceae symbionts harbored endo-chitinase and chitin-binging protein-encoding genes, indicating that they can hydrolyze the most abundant polysaccharide in the oceans. Other symbionts, including Metamycoplasmataceae and Ca. Thioglobaceae, may assimilate the smaller chitin oligosaccharides resulting from chitin breakdown and engage in chitin deacetylation, respectively, suggesting possibilities for substrate cross-feeding and a role for the coral microbiome in overall chitin turnover. We also observed sharp differences in secondary metabolite production potential between symbiotic lineages. Specific Proteobacteria taxa may specialize in chemical defense and guard other symbionts, including Endozoicomonadaceae, which lack such capacity. CONCLUSION This is the first study to recover MAGs from dominant symbionts of octocorals, including those of so-far unculturable Endozoicomonadaceae, Ca. Thioglobaceae and Metamycoplasmataceae symbionts. We identify a thus-far unanticipated, global role for Endozoicomonadaceae symbionts of corals in the processing of chitin, the most abundant natural polysaccharide in the oceans and major component of the natural zoo- and phytoplankton feed of octocorals. We conclude that niche partitioning, metabolic specialization, and adaptation to low oxygen conditions among prokaryotic symbionts likely contribute to the plasticity and adaptability of the octocoral holobiont in changing marine environments. These findings bear implications not only for our understanding of symbiotic relationships in the marine realm but also for the functioning of benthic ecosystems at large. Video Abstract.
Collapse
Affiliation(s)
- Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Lydia Kozma
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- École Polytechnique Fédérale de Lausanne, Écublens, Switzerland
| | - Sandra G. Silva
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Rodolfo Toscan
- Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jorge Gonçalves
- Centro de Ciências Do Mar, Universidade Do Algarve, Faro, Portugal
| | - Asunción Lago-Lestón
- Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Centro de Ciências Do Mar, Universidade Do Algarve, Faro, Portugal
| |
Collapse
|
22
|
Genome-Scale Mining of Acetogens of the Genus Clostridium Unveils Distinctive Traits in [FeFe]- and [NiFe]-Hydrogenase Content and Maturation. Microbiol Spectr 2022; 10:e0101922. [PMID: 35735976 PMCID: PMC9431212 DOI: 10.1128/spectrum.01019-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the organizational and functional properties of hydrogen metabolism is pivotal to the construction of a framework supportive of a hydrogen-fueled low-carbon economy. Hydrogen metabolism relies on the mechanism of action of hydrogenases. In this study, we investigated the genomes of several industrially relevant acetogens of the genus Clostridium (C. autoethanogenum, C. ljungdahlii, C. carboxidivorans, C. drakei, C. scatologenes, C. coskatii, C. ragsdalei, C. sp. AWRP) to systematically identify their intriguingly diversified hydrogenases’ repertoire. An entirely computational annotation pipeline unveiled common and strain-specific traits in the functional content of [NiFe]- and [FeFe]-hydrogenases. Hydrogenases were identified and categorized into functionally distinct classes by the combination of sequence homology, with respect to a database of curated nonredundant hydrogenases, with the analysis of sequence patterns characteristic of the mode of action of [FeFe]- and [NiFe]-hydrogenases. The inspection of the genes in the neighborhood of the catalytic subunits unveiled a wide agreement between their genomic arrangement and the gene organization templates previously developed for the predicted hydrogenase classes. Subunits’ characterization of the identified hydrogenases allowed us to glean some insights on the redox cofactor-binding determinants in the diaphorase subunits of the electron-bifurcating [FeFe]-hydrogenases. Finally, the reliability of the inferred hydrogenases was corroborated by the punctual analysis of the maturation proteins necessary for the biosynthesis of [NiFe]- and [FeFe]-hydrogenases. IMPORTANCE Mastering hydrogen metabolism can support a sustainable carbon-neutral economy. Of the many microorganisms metabolizing hydrogen, acetogens of the genus Clostridium are appealing, with some of them already in usage as industrial workhorses. Having provided detailed information on the hydrogenase content of an unprecedented number of clostridial acetogens at the gene level, our study represents a valuable knowledge base to deepen our understanding of hydrogenases’ functional specificity and/or redundancy and to develop a large array of biotechnological processes. We also believe our study could serve as a basis for future strain-engineering approaches, acting at the hydrogenases’ level or at the level of their maturation proteins. On the other side, the wealth of functional elements discussed in relation to the identified hydrogenases is worthy of further investigation by biochemical and structural studies to ultimately lead to the usage of these enzymes as valuable catalysts.
Collapse
|
23
|
Abstract
Acetogenic bacteria are a group of strictly anaerobic bacteria that make a living from acetate formation from two molecules of CO2 via the Wood-Ljungdahl pathway (WLP). The free energy change of this reaction is very small and allows the synthesis of only a fraction of an ATP. How this pathway is coupled to energy conservation has been an enigma since its discovery ~90 years ago. Here, we describe an electron transport chain in the cytochrome- and quinone-containing acetogen Sporomusa ovata that leads from molecular hydrogen as an electron donor to an intermediate of the WLP, methylenetetrahydrofolate (methylene-tetrahydrofolate [THF]), as an electron acceptor. The catalytic site of the hydrogenase is periplasmic and likely linked cytochrome b to the membrane. We provide evidence that the MetVF-type methylenetetrahydrofolate reductase is linked proteins MvhD and HdrCBA to the cytoplasmic membrane. Membrane preparations catalyzed the H2-dependent reduction of methylene-THF to methyl-THF. In our model, a transmembrane electrochemical H+ gradient is established by both scalar and vectorial protons that leads to the synthesis of 0.5 mol ATP/mol methylene-THF by a H+-F1Fo ATP synthase. This H2- and methylene-THF-dependent electron transport chain may be present in other cytochrome-containing acetogens as well and represents a third way of chemiosmotic energy conservation in acetogens, but only in addition to the well-established respiratory enzymes Rnf and Ech. IMPORTANCE Acetogenic bacteria grow by making acetate from CO2 and are considered the first life forms on Earth since they couple CO2 reduction to the conservation of energy. How this is achieved has been an enigma ever since. Recently, two respiratory enzymes, a ferredoxin:NAD+ oxidoreductase (Rnf) and a ferredoxin:H+ oxidoreductase (Ech), have been found in cytochrome-free acetogenic model bacteria. However, some acetogens contain cytochromes in addition, and there has been a long-standing assumption of a cytochrome-containing electron transport chain in those acetogens. Here, we provide evidence for a respiratory chain in Sporomusa ovata that has a cytochrome-containing hydrogenase as the electron donor and a methylenetetrahydrofolate reductase as the terminal electron acceptor. This is the third way of chemiosmotic energy conservation found in acetogens.
Collapse
|
24
|
Lee H, Bae J, Jin S, Kang S, Cho BK. Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization. Front Microbiol 2022; 13:865168. [PMID: 35615514 PMCID: PMC9124964 DOI: 10.3389/fmicb.2022.865168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
C1 gases, including carbon dioxide (CO2) and carbon monoxide (CO), are major contributors to climate crisis. Numerous studies have been conducted to fix and recycle C1 gases in order to solve this problem. Among them, the use of microorganisms as biocatalysts to convert C1 gases to value-added chemicals is a promising solution. Acetogenic bacteria (acetogens) have received attention as high-potential biocatalysts owing to their conserved Wood–Ljungdahl (WL) pathway, which fixes not only CO2 but also CO. Although some metabolites have been produced via C1 gas fermentation on an industrial scale, the conversion of C1 gases to produce various biochemicals by engineering acetogens has been limited. The energy limitation of acetogens is one of the challenges to overcome, as their metabolism operates at a thermodynamic limit, and the low solubility of gaseous substrates results in a limited supply of cellular energy. This review provides strategies for developing efficient platform strains for C1 gas conversion, focusing on engineering the WL pathway. Supplying liquid C1 substrates, which can be obtained from CO2, or electricity is introduced as a strategy to overcome the energy limitation. Future prospective approaches on engineering acetogens based on systems and synthetic biology approaches are also discussed.
Collapse
Affiliation(s)
- Hyeonsik Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seulgi Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Byung-Kwan Cho,
| |
Collapse
|
25
|
Klask CM, Jäger B, Casini I, Angenent LT, Molitor B. Genetic Evidence Reveals the Indispensable Role of the rseC Gene for Autotrophy and the Importance of a Functional Electron Balance for Nitrate Reduction in Clostridium ljungdahlii. Front Microbiol 2022; 13:887578. [PMID: 35615511 PMCID: PMC9124969 DOI: 10.3389/fmicb.2022.887578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
For Clostridium ljungdahlii, the RNF complex plays a key role for energy conversion from gaseous substrates such as hydrogen and carbon dioxide. In a previous study, a disruption of RNF-complex genes led to the loss of autotrophy, while heterotrophy was still possible via glycolysis. Furthermore, it was shown that the energy limitation during autotrophy could be lifted by nitrate supplementation, which resulted in an elevated cellular growth and ATP yield. Here, we used CRISPR-Cas12a to delete: (1) the RNF complex-encoding gene cluster rnfCDGEAB; (2) the putative RNF regulator gene rseC; and (3) a gene cluster that encodes for a putative nitrate reductase. The deletion of either rnfCDGEAB or rseC resulted in a complete loss of autotrophy, which could be restored by plasmid-based complementation of the deleted genes. We observed a transcriptional repression of the RNF-gene cluster in the rseC-deletion strain during autotrophy and investigated the distribution of the rseC gene among acetogenic bacteria. To examine nitrate reduction and its connection to the RNF complex, we compared autotrophic and heterotrophic growth of our three deletion strains with either ammonium or nitrate. The rnfCDGEAB- and rseC-deletion strains failed to reduce nitrate as a metabolic activity in non-growing cultures during autotrophy but not during heterotrophy. In contrast, the nitrate reductase deletion strain was able to grow in all tested conditions but lost the ability to reduce nitrate. Our findings highlight the important role of the rseC gene for autotrophy, and in addition, contribute to understand the connection of nitrate reduction to energy metabolism.
Collapse
Affiliation(s)
- Christian-Marco Klask
- Environmental Biotechnology Group, Geo- and Environmental Science Center, University of Tübingen, Tübingen, Germany
| | - Benedikt Jäger
- Environmental Biotechnology Group, Geo- and Environmental Science Center, University of Tübingen, Tübingen, Germany
| | - Isabella Casini
- Environmental Biotechnology Group, Geo- and Environmental Science Center, University of Tübingen, Tübingen, Germany
| | - Largus T. Angenent
- Environmental Biotechnology Group, Geo- and Environmental Science Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Geo- and Environmental Science Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- *Correspondence: Bastian Molitor,
| |
Collapse
|
26
|
Trischler R, Roth J, Sorbara MT, Schlegel X, Müller V. A functional Wood-Ljungdahl pathway devoid of a formate dehydrogenase in the gut acetogens Blautia wexlerae, Blautia luti and beyond. Environ Microbiol 2022; 24:3111-3123. [PMID: 35466558 DOI: 10.1111/1462-2920.16029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Species of the genus Blautia are typical inhabitants of the human gut and considered as beneficial gut microbes. However, their role in the gut microbiome and their metabolic features are poorly understood. Blautia schinkii was described as an acetogenic bacterium, characterized by a functional Wood-Ljungdahl pathway (WLP) of acetogenesis from H2 + CO2 . Here we report that two relatives, Blautia luti and Blautia wexlerae do not grow on H2 + CO2 . Inspection of the genome sequence revealed all genes of the WLP except genes encoding a formate dehydrogenase and an electron-bifurcating hydrogenase. Enzyme assays confirmed this prediction. Accordingly, resting cells neither converted H2 + CO2 nor H2 + HCOOH + CO2 to acetate. Carbon monoxide is an intermediate of the WLP and substrate for many acetogens. B. luti and B. wexlerae had an active CO dehydrogenase and resting cells performed acetogenesis from HCOOH + CO2 + CO, demonstrating a functional WLP. Bioinformatic analyses revealed that many Blautia strains as well as other gut acetogens lack formate dehydrogenases and hydrogenases. Thus, the use of formate instead of H2 + CO2 as an interspecies hydrogen and electron carrier seems to be more common in the gut microbiome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Raphael Trischler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Jennifer Roth
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Matthew T Sorbara
- Department Molecular and Cellular Biology, University of Guelph, Ontario, N1G 2W1, Canada
| | - Xenia Schlegel
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| |
Collapse
|
27
|
Litty D, Kremp F, Müller V. One substrate, many fates: different ways of methanol utilization in the acetogen Acetobacterium woodii. Environ Microbiol 2022; 24:3124-3133. [PMID: 35416389 DOI: 10.1111/1462-2920.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
Abstract
Acetogenic bacteria such as Acetobacterium woodii use the Wood-Ljungdahl pathway (WLP) for fixation of CO2 and energy conservation. This pathway enables conversion of diverse substrates to the main product of acetogenesis, acetate. Methyl group containing substrates such as methanol or methylated compounds, derived from pectin, are abundant in the environment and a source for CO2 . Methyl groups enter the WLP at the level of methyltetrahydrofolic acid (methyl-THF). For methyl transfer from methanol to THF a substrate specific methyltransferase system is required. In this study, we used genetic methods to identify mtaBC2A (Awo_c22760- Awo_c22740) as the methanol specific methyltransferase system of A. woodii. After methyl transfer, methyl-THF serves as carbon and/or electron- source and the respiratory Rnf complex is required for redox homeostasis if methanol+CO2 is the substrate. Resting cells fed with methanol+CO2 , indeed converted methanol to acetate in a 4:3 stoichiometry. When methanol was fed in combination with other electron sources such as H2 + CO2 or CO, methanol was converted Rnf-independently and the methyl group was condensed with CO to build acetate. When fed in combination with alternative electron sinks such as caffeate methanol was oxidized only and resulting electrons were used for non-acetogenic growth. These different pathways for the conversion of methyl-group containing substrates enable acetogens to adapt to various ecological niches and to syntrophic communities. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dennis Litty
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Florian Kremp
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| |
Collapse
|
28
|
Characterization of components of a reducing system for SoxR in the cytoplasmic membrane of Escherichia coli. J Microbiol 2022; 60:387-394. [DOI: 10.1007/s12275-022-1667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
|
29
|
Rosenbaum FP, Poehlein A, Daniel R, Müller V. Energy‐conserving dimethyl sulfoxide reduction in the acetogenic bacterium
Moorella thermoacetica. Environ Microbiol 2022; 24:2000-2012. [DOI: 10.1111/1462-2920.15971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Florian P. Rosenbaum
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences Johann Wolfgang Goethe University Frankfurt Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics Georg‐August University Göttingen Göttingen 37077 Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics Georg‐August University Göttingen Göttingen 37077 Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences Johann Wolfgang Goethe University Frankfurt Germany
| |
Collapse
|
30
|
Systems Biology on Acetogenic Bacteria for Utilizing C1 Feedstocks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:57-90. [DOI: 10.1007/10_2021_199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Hong Y, Zeng AP. Biosynthesis Based on One-Carbon Mixotrophy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:351-371. [DOI: 10.1007/10_2021_198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Yi J, Huang H, Liang J, Wang R, Liu Z, Li F, Wang S. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii. Microbiol Spectr 2021; 9:e0095821. [PMID: 34643446 PMCID: PMC8515935 DOI: 10.1128/spectrum.00958-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
The strict anaerobe Clostridium ljungdahlii can ferment CO or H2/CO2 via the Wood-Ljungdahl pathway to acetate, ethanol, and 2,3-butanediol. This ability has attracted considerable interest, since it can be used for syngas fermentation to produce biofuels and biochemicals. However, the key enzyme methylenetetrahydrofolate reductase (MTHFR) in the Wood-Ljungdahl pathway of the strain has not been characterized, and its physiological electron donor is unclear. In this study, we purified the enzyme 46-fold with a benzyl viologen reduction activity of 41.2 U/mg from C. ljungdahlii cells grown on CO. It is composed of two subunits, MetF (31.5 kDa) and MetV (23.5 kDa), and has an apparent molecular mass of 62.2 kDa. The brownish yellow protein contains 0.73 flavin mononucleotide (FMN) and 7.4 Fe, in agreement with the prediction that MetF binds one flavin and MetV binds two [4Fe4S] clusters. It cannot use NAD(P)H as its electron donor or catalyze an electron-bifurcating reaction in combination with ferredoxin as an electron acceptor. The reduced recombinant ferredoxin, flavodoxin, and thioredoxin of C. ljungdahlii can serve as electron donors with specific activities of 91.2, 22.1, and 7.4 U/mg, respectively. The apparent Km values for reduced ferredoxin and flavodoxin were around 1.46 μM and 0.73 μM, respectively. Subunit composition and phylogenetic analysis showed that the enzyme from C. ljungdahlii belongs to MetFV-type MTHFR, which is a heterodimer, and uses reduced ferredoxin as its electron donor. Based on these results, we discuss the energy metabolism of C. ljungdahlii when it grows on CO or H2 plus CO2. IMPORTANCE Syngas, a mixture of CO, CO2, and H2, is the main component of steel mill waste gas and also can be generated by the gasification of biomass and urban domestic waste. Its fermentation to biofuels and biocommodities has attracted attention due to the economic and environmental benefits of this process. Clostridium ljungdahlii is one of the superior acetogens used in the technology. However, the biochemical mechanism of its gas fermentation via the Wood-Ljungdahl pathway is not completely clear. In this study, the key enzyme, methylenetetrahydrofolate reductase (MTHFR), was characterized and found to be a non-electron-bifurcating heterodimer with reduced ferredoxin as its electron donor, representing another example of MetFV-type MTHFR. The findings will form the basis for a deeper understanding of the energy metabolism of syngas fermentation by C. ljungdahlii, which is valuable for developing metabolic engineering strains and efficient syngas fermentation technologies.
Collapse
Affiliation(s)
- Jihong Yi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Haiyan Huang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Jiyu Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Rufei Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Ziyong Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People’s Republic of China
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People’s Republic of China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
33
|
Electron carriers involved in autotrophic and heterotrophic acetogenesis in the thermophilic bacterium Thermoanaerobacter kivui. Extremophiles 2021; 25:513-526. [PMID: 34647163 PMCID: PMC8578170 DOI: 10.1007/s00792-021-01247-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022]
Abstract
Thermoanaerobacter kivui is an acetogenic model organism that reduces CO2 with electrons derived from H2 or CO, or from organic substrates in the Wood–Ljugdahl pathway (WLP). For the calculation of ATP yields, it is necessary to know the electron carriers involved in coupling of the oxidative and reductive parts of metabolism. Analyses of key catabolic oxidoreductases in cell-free extract (CFE) or with purified enzymes revealed the physiological electron carriers involved. The glyceraldehyde-3-phosphate dehydrogenase (GA3P-DH) assayed in CFE was NAD+-specific, NADP+ was used with less than 4% and ferredoxin (Fd) was not used. The methylene-THF dehydrogenase was NADP+-specific, NAD+ or Fd were not used. A Nfn-type transhydrogenase that catalyzes reduced Fd-dependent reduction of NADP+ with NADH as electron donor was also identified in CFE. The electron carriers used by the potential electron-bifurcating hydrogenase (HydABC) could not be unambiguously determined in CFE for technical reasons. Therefore, the enzyme was produced homologously in T. kivui and purified by affinity chromatography. HydABC contained 33.9 ± 4.5 mol Fe/mol of protein and FMN; it reduced NADP+ but not NAD+. The methylene-THF reductase (MetFV) was also produced homologously in T. kivui and purified by affinity chromatography. MetFV contained 7.2 ± 0.4 mol Fe/mol of protein and FMN; the complex did neither use NADPH nor NADH as reductant but only reduced Fd. In sum, these analysis allowed us to propose a scheme for entire electron flow and bioenergetics in T. kivui.
Collapse
|
34
|
Buckel W. Energy Conservation in Fermentations of Anaerobic Bacteria. Front Microbiol 2021; 12:703525. [PMID: 34589068 PMCID: PMC8473912 DOI: 10.3389/fmicb.2021.703525] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 02/04/2023] Open
Abstract
Anaerobic bacteria ferment carbohydrates and amino acids to obtain energy for growth. Due to the absence of oxygen and other inorganic electron acceptors, the substrate of a fermentation has to serve as electron donor as well as acceptor, which results in low free energies as compared to that of aerobic oxidations. Until about 10 years ago, anaerobes were thought to exclusively use substrate level phosphorylation (SLP), by which only part of the available energy could be conserved. Therefore, anaerobes were regarded as unproductive and inefficient energy conservers. The discovery of electrochemical Na+ gradients generated by biotin-dependent decarboxylations or by reduction of NAD+ with ferredoxin changed this view. Reduced ferredoxin is provided by oxidative decarboxylation of 2-oxoacids and the recently discovered flavin based electron bifurcation (FBEB). In this review, the two different fermentation pathways of glutamate to ammonia, CO2, acetate, butyrate and H2 via 3-methylaspartate or via 2-hydroxyglutarate by members of the Firmicutes are discussed as prototypical examples in which all processes characteristic for fermentations occur. Though the fermentations proceed on two entirely different pathways, the maximum theoretical amount of ATP is conserved in each pathway. The occurrence of the 3-methylaspartate pathway in clostridia from soil and the 2-hydroxyglutarate pathway in the human microbiome of the large intestine is traced back to the oxygen-sensitivity of the radical enzymes. The coenzyme B12-dependent glutamate mutase in the 3-methylaspartate pathway tolerates oxygen, whereas 2-hydroxyglutaryl-CoA dehydratase is extremely oxygen-sensitive and can only survive in the gut, where the combustion of butyrate produced by the microbiome consumes the oxygen and provides a strict anaerobic environment. Examples of coenzyme B12-dependent eliminases are given, which in the gut are replaced by simpler extremely oxygen sensitive glycyl radical enzymes.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
35
|
Energy conservation under extreme energy limitation: the role of cytochromes and quinones in acetogenic bacteria. Extremophiles 2021; 25:413-424. [PMID: 34480656 PMCID: PMC8578096 DOI: 10.1007/s00792-021-01241-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Acetogenic bacteria are a polyphyletic group of organisms that fix carbon dioxide under anaerobic, non-phototrophic conditions by reduction of two mol of CO2 to acetyl-CoA via the Wood–Ljungdahl pathway. This pathway also allows for lithotrophic growth with H2 as electron donor and this pathway is considered to be one of the oldest, if not the oldest metabolic pathway on Earth for CO2 reduction, since it is coupled to the synthesis of ATP. How ATP is synthesized has been an enigma for decades, but in the last decade two ferredoxin-dependent respiratory chains were discovered. Those respiratory chains comprise of a cytochrome-free, ferredoxin-dependent respiratory enzyme complex, which is either the Rnf or Ech complex. However, it was discovered already 50 years ago that some acetogens contain cytochromes and quinones, but their role had only a shadowy existence. Here, we review the literature on the characterization of cytochromes and quinones in acetogens and present a hypothesis that they may function in electron transport chains in addition to Rnf and Ech.
Collapse
|
36
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
37
|
Rosenbaum FP, Poehlein A, Egelkamp R, Daniel R, Harder S, Schlüter H, Schoelmerich MC. Lactate metabolism in strictly anaerobic microorganisms with a soluble NAD + -dependent l-lactate dehydrogenase. Environ Microbiol 2021; 23:4661-4672. [PMID: 34190373 DOI: 10.1111/1462-2920.15657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Lactate is a universal metabolite and energy source, yet the mode of lactate metabolism in many strictly anaerobic microorganisms is still enigmatic. This sparked us to investigate the biochemistry and bioenergetics of lactate metabolism in the model acetogenic bacterium Moorella thermoacetica. Growth and metabolism were dependent on CO2 and the chemiosmotic gradient. We discovered a l-lactate:NAD+ oxidoreductase (LDH) in cell-free extracts, exhibiting an average specific activity of 362.8 ± 22.9 mU mg-1 . The enzyme was reversible, most active at 65°C and pH 9, with Km values of 23.1 ± 3.7 mM for l-lactate and 273.3 ± 39.1 μM for NAD+ . In-gel activity assays and mass spectrometric proteomics revealed that the ldh gene encoded the characterized LDH. Transcriptomic and genomic analyses showed that ldh expression was induced by lactate and there was a single nucleotide polymorphism near the predicted NAD+ binding site. Genes encoding central redox and energy metabolism complexes, such as, the energetic coupling site Ech2, menaquinone, and the electron bifurcating EtfABCX and MTHFR were also upregulated in cells grown on lactate. These findings ultimately lead to a redox-balanced metabolic model that shows how growth on lactate can proceed in a microorganism that only has a conventional NAD+ -reducing LDH.
Collapse
Affiliation(s)
- Florian P Rosenbaum
- Microbiology & Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Sönke Harder
- Mass Spectrometric Proteomics Group, Department of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Group, Department of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| | - Marie Charlotte Schoelmerich
- Microbiology & Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| |
Collapse
|
38
|
Öppinger C, Kremp F, Müller V. Is reduced ferredoxin the physiological electron donor for MetVF-type methylenetetrahydrofolate reductases in acetogenesis? A hypothesis. Int Microbiol 2021; 25:75-88. [PMID: 34255221 PMCID: PMC8760232 DOI: 10.1007/s10123-021-00190-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/22/2023]
Abstract
The methylene-tetrahydrofolate reductase (MTHFR) is a key enzyme in acetogenic CO2 fixation. The MetVF-type enzyme has been purified from four different species and the physiological electron donor was hypothesized to be reduced ferredoxin. We have purified the MTHFR from Clostridium ljungdahlii to apparent homogeneity. It is a dimer consisting of two of MetVF heterodimers, has 14.9 ± 0.2 mol iron per mol enzyme, 16.2 ± 1.0 mol acid-labile sulfur per mol enzyme, and contains 1.87 mol FMN per mol dimeric heterodimer. NADH and NADPH were not used as electron donor, but reduced ferredoxin was. Based on the published electron carrier specificities for Clostridium formicoaceticum, Thermoanaerobacter kivui, Eubacterium callanderi, and Clostridium aceticum, we provide evidence using metabolic models that reduced ferredoxin cannot be the physiological electron donor in vivo, since growth by acetogenesis from H2 + CO2 has a negative ATP yield. We discuss the possible basis for the discrepancy between in vitro and in vivo functions and present a model how the MetVF-type MTHFR can be incorporated into the metabolism, leading to a positive ATP yield. This model is also applicable to acetogenesis from other substrates and proves to be feasible also to the Ech-containing acetogen T. kivui as well as to methanol metabolism in E. callanderi.
Collapse
Affiliation(s)
- Christian Öppinger
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt, Germany
| | - Florian Kremp
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
39
|
Katsyv A, Schoelmerich MC, Basen M, Müller V. The pyruvate:ferredoxin oxidoreductase of the thermophilic acetogen, Thermoanaerobacter kivui. FEBS Open Bio 2021; 11:1332-1342. [PMID: 33660937 PMCID: PMC8091585 DOI: 10.1002/2211-5463.13136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
Pyruvate:ferredoxin oxidoreductase (PFOR) is a key enzyme in bacterial anaerobic metabolism. Since a low‐potential ferredoxin (Fd2−) is used as electron carrier, PFOR allows for hydrogen evolution during heterotrophic growth as well as pyruvate synthesis during lithoautotrophic growth. The thermophilic acetogenic model bacterium Thermoanaerobacter kivui can use both modes of lifestyle, but the nature of the PFOR in this organism was previously unestablished. Here, we have isolated PFOR to apparent homogeneity from cells grown on glucose. Peptide mass fingerprinting revealed that it is encoded by pfor1. PFOR uses pyruvate as an electron donor and methylene blue (1.8 U·mg−1) and ferredoxin (Fd; 27.2 U·mg−1) as electron acceptors, and the reaction is dependent on thiamine pyrophosphate, pyruvate, coenzyme A, and Fd. The pH and temperature optima were 7.5 and 66 °C, respectively. We detected 13.6 mol of iron·mol of protein−1, consistent with the presence of three predicted [4Fe–4S] clusters. The ability to provide reduced Fd makes PFOR an interesting auxiliary enzyme for enzyme assays. To simplify and speed up the purification procedure, we established a protocol for homologous protein production in T. kivui. Therefore, pfor1 was cloned and expressed in T. kivui and the encoded protein containing a genetically engineered His‐tag was purified in only two steps to apparent homogeneity. The homologously produced PFOR1 had the same properties as the enzyme from T. kivui. The enzyme can be used as auxiliary enzyme in enzymatic assays that require reduced Fd as electron donor, such as electron‐bifurcating enzymes, to keep a constant level of reduced Fd.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Marie Charlotte Schoelmerich
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Mirko Basen
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Agne M, Appel L, Seelmann C, Boll M. Enoyl-Coenzyme A Respiration via Formate Cycling in Syntrophic Bacteria. mBio 2021; 13:e0374021. [PMID: 35100874 PMCID: PMC8805022 DOI: 10.1128/mbio.03740-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Syntrophic bacteria play a key role in the anaerobic conversion of biological matter to methane. They convert short-chain fatty acids or alcohols to H2, formate, and acetate that serve as substrates for methanogenic archaea. Many syntrophic bacteria can also grow with unsaturated fatty acids such as crotonate without a syntrophic partner, and the reducing equivalents derived from the oxidation of one crotonate to two acetate are regenerated by the reduction of a second crotonate. However, it has remained unresolved how the oxidative and reductive catabolic branches are interconnected and how energy may be conserved in the reductive branch. Here, we provide evidence that during axenic growth of the syntrophic model organism Syntrophus aciditrophicus with crotonate, the NAD+-dependent oxidation of 3-hydroxybutyryl-CoA to acetoacetyl-CoA is coupled to the reduction of crotonyl-CoA via formate cycling. In this process, the intracellular formate generated by a NAD+-regenerating CO2 reductase is taken up by a periplasmic, membrane-bound formate dehydrogenase that in concert with a membrane-bound electron-transferring flavoprotein (ETF):methylmenaquinone oxidoreductase, ETF, and an acyl-CoA dehydrogenase reduces intracellular enoyl-CoA to acyl-CoA. This novel type of energy metabolism, referred to as enoyl-CoA respiration, generates a proton motive force via a methylmenaquinone-dependent redox-loop. As a result, the beneficial syntrophic cooperation of fermenting bacteria and methanogenic archaea during growth with saturated fatty acids appears to turn into a competition for formate and/or H2 during growth with unsaturated fatty acids. IMPORTANCE The syntrophic interaction of fermenting bacteria and methanogenic archaea is important for the global carbon cycle. As an example, it accomplishes the conversion of biomass-derived saturated fatty acid fermentation intermediates into methane. In contrast, unsaturated fatty acid intermediates such as crotonate may serve as growth substrate for the fermenting partner alone. Thereby, the reducing equivalents generated during the oxidation of one crotonate to two acetate are regenerated by reduction of a second crotonate to butyrate. Here, we show that the oxidative and reductive branches of this pathway are connected via formate cycling involving an energy-conserving redox-loop. We refer to this previously unknown type of energy metabolism as to enoyl-CoA respiration with acyl-CoA dehydrogenases serving as cytoplasmic terminal reductases.
Collapse
Affiliation(s)
- Michael Agne
- Faculty of Biology–Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lena Appel
- Faculty of Biology–Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Carola Seelmann
- Faculty of Biology–Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Matthias Boll
- Faculty of Biology–Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
41
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
42
|
Energy Conservation in the Acetogenic Bacterium Clostridium aceticum. Microorganisms 2021; 9:microorganisms9020258. [PMID: 33513854 PMCID: PMC7911925 DOI: 10.3390/microorganisms9020258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
In times of global warming caused by the extensive use of fossil fuels, the need to capture gaseous carbon compounds is growing bigger. Several groups of microorganisms can fix the greenhouse gas CO2. Out of these, acetogenic bacteria are role models in their ability to reduce CO2 with hydrogen to acetate, which makes acetogens prime candidates for genetic modification towards biotechnological production of value-added compounds from CO2, such as biofuels. However, growth of acetogens on gaseous substrates is strongly energy-limited, and successful metabolic engineering requires a detailed knowledge of the bioenergetics. In 1939, Clostridium aceticum was the first acetogen to be described. A recent genomic study revealed that this organism contains cytochromes and therefore may use a proton gradient in its respiratory chain. We have followed up these studies and will present data that C. aceticum does not use a H+ but a Na+ gradient for ATP synthesis, established by a Na+-Rnf. Experimental data and in silico analyses enabled us to propose the biochemistry and bioenergetics of acetogenesis from H2 + CO2 in C. aceticum.
Collapse
|
43
|
Göbbels L, Poehlein A, Dumnitch A, Egelkamp R, Kröger C, Haerdter J, Hackl T, Feld A, Weller H, Daniel R, Streit WR, Schoelmerich MC. Cysteine: an overlooked energy and carbon source. Sci Rep 2021; 11:2139. [PMID: 33495538 PMCID: PMC7835215 DOI: 10.1038/s41598-021-81103-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
Abstract
Biohybrids composed of microorganisms and nanoparticles have emerged as potential systems for bioenergy and high-value compound production from CO2 and light energy, yet the cellular and metabolic processes within the biological component of this system are still elusive. Here we dissect the biohybrid composed of the anaerobic acetogenic bacterium Moorella thermoacetica and cadmium sulphide nanoparticles (CdS) in terms of physiology, metabolism, enzymatics and transcriptomic profiling. Our analyses show that while the organism does not grow on l-cysteine, it is metabolized to acetate in the biohybrid system and this metabolism is independent of CdS or light. CdS cells have higher metabolic activity, despite an inhibitory effect of Cd2+ on key enzymes, because of an intracellular storage compound linked to arginine metabolism. We identify different routes how cysteine and its oxidized form can be innately metabolized by the model acetogen and what intracellular mechanisms are triggered by cysteine, cadmium or blue light.
Collapse
Affiliation(s)
- Luise Göbbels
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Albert Dumnitch
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Cathrin Kröger
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Johanna Haerdter
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Thomas Hackl
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Artur Feld
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Horst Weller
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Wolfgang R Streit
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Marie Charlotte Schoelmerich
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany.
| |
Collapse
|
44
|
Zhang JW, Dong HP, Hou LJ, Liu Y, Ou YF, Zheng YL, Han P, Liang X, Yin GY, Wu DM, Liu M, Li M. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME JOURNAL 2021; 15:1826-1843. [PMID: 33452484 PMCID: PMC8163825 DOI: 10.1038/s41396-020-00890-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Asgard archaea are widely distributed in anaerobic environments. Previous studies revealed the potential capability of Asgard archaea to utilize various organic substrates including proteins, carbohydrates, fatty acids, amino acids and hydrocarbons, suggesting that Asgard archaea play an important role in sediment carbon cycling. Here, we describe a previously unrecognized archaeal phylum, Hermodarchaeota, affiliated with the Asgard superphylum. The genomes of these archaea were recovered from metagenomes generated from mangrove sediments, and were found to encode alkyl/benzyl-succinate synthases and their activating enzymes that are similar to those identified in alkane-degrading sulfate-reducing bacteria. Hermodarchaeota also encode enzymes potentially involved in alkyl-coenzyme A and benzoyl-coenzyme A oxidation, the Wood–Ljungdahl pathway and nitrate reduction. These results indicate that members of this phylum have the potential to strictly anaerobically degrade alkanes and aromatic compounds, coupling the reduction of nitrate. By screening Sequence Read Archive, additional genes encoding 16S rRNA and alkyl/benzyl-succinate synthases analogous to those in Hermodarchaeota were identified in metagenomic datasets from a wide range of marine and freshwater sediments. These findings suggest that Asgard archaea capable of degrading alkanes and aromatics via formation of alkyl/benzyl-substituted succinates are ubiquitous in sediments.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.,School of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Ya-Fei Ou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yan-Ling Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Ping Han
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Guo-Yu Yin
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Dian-Ming Wu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
45
|
Katsyv A, Müller V. Overcoming Energetic Barriers in Acetogenic C1 Conversion. Front Bioeng Biotechnol 2020; 8:621166. [PMID: 33425882 PMCID: PMC7793690 DOI: 10.3389/fbioe.2020.621166] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Currently one of the biggest challenges for society is to combat global warming. A solution to this global threat is the implementation of a CO2-based bioeconomy and a H2-based bioenergy economy. Anaerobic lithotrophic bacteria such as the acetogenic bacteria are key players in the global carbon and H2 cycle and thus prime candidates as driving forces in a H2- and CO2-bioeconomy. Naturally, they convert two molecules of CO2via the Wood-Ljungdahl pathway (WLP) to one molecule of acetyl-CoA which can be converted to different C2-products (acetate or ethanol) or elongated to C4 (butyrate) or C5-products (caproate). Since there is no net ATP generation from acetate formation, an electron-transport phosphorylation (ETP) module is hooked up to the WLP. ETP provides the cell with additional ATP, but the ATP gain is very low, only a fraction of an ATP per mol of acetate. Since acetogens live at the thermodynamic edge of life, metabolic engineering to obtain high-value products is currently limited by the low energy status of the cells that allows for the production of only a few compounds with rather low specificity. To set the stage for acetogens as production platforms for a wide range of bioproducts from CO2, the energetic barriers have to be overcome. This review summarizes the pathway, the energetics of the pathway and describes ways to overcome energetic barriers in acetogenic C1 conversion.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Wiechmann A, Trifunović D, Klein S, Müller V. Homologous production, one-step purification, and proof of Na + transport by the Rnf complex from Acetobacterium woodii, a model for acetogenic conversion of C1 substrates to biofuels. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:208. [PMID: 33342435 PMCID: PMC7751120 DOI: 10.1186/s13068-020-01851-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/04/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Capture and storage of the energy carrier hydrogen as well as of the greenhouse gas carbon dioxide are two major problems that mankind faces currently. Chemical catalysts have been developed, but only recently a group of anaerobic bacteria that convert hydrogen and carbon dioxide to acetate, formate, or biofuels such as ethanol has come into focus, the acetogenic bacteria. These biocatalysts produce the liquid organic hydrogen carrier formic acid from H2 + CO2 or even carbon monoxide with highest rates ever reported. The autotrophic, hydrogen-oxidizing, and CO2-reducing acetogens have in common a specialized metabolism to catalyze CO2 reduction, the Wood-Ljungdahl pathway (WLP). The WLP does not yield net ATP, but is hooked up to a membrane-bound respiratory chain that enables ATP synthesis coupled to CO2 fixation. The nature of the respiratory enzyme has been an enigma since the discovery of these bacteria and has been unraveled in this study. RESULTS We have produced a His-tagged variant of the ferredoxin:NAD oxidoreductase (Rnf complex) from the model acetogen Acetobacterium woodii, solubilized the enzyme from the cytoplasmic membrane, and purified it by Ni2+-NTA affinity chromatography. The enzyme was incorporated into artificial liposomes and catalyzed Na+ transport coupled to ferredoxin-dependent NAD reduction. Our results using the purified enzyme do not only verify that the Rnf complex from A. woodii is Na+-dependent, they also demonstrate for the first time that this membrane-embedded molecular engine creates a Na+ gradient across the membrane of A. woodii which can be used for ATP synthesis. DISCUSSION We present a protocol for homologous production and purification for an Rnf complex. The enzyme catalyzed electron-transfer driven Na+ export and, thus, our studies provided the long-awaited biochemical proof that the Rnf complex is a respiratory enzyme.
Collapse
Affiliation(s)
- Anja Wiechmann
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Dragan Trifunović
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Sophie Klein
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Volker Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
47
|
Schwarz FM, Ciurus S, Jain S, Baum C, Wiechmann A, Basen M, Müller V. Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui. Microb Biotechnol 2020; 13:2044-2056. [PMID: 32959527 PMCID: PMC7533326 DOI: 10.1111/1751-7915.13663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
Acetogenic bacteria have gained much attraction in recent years as they can produce different biofuels and biochemicals from H2 plus CO2 or even CO alone, therefore opening a promising alternative route for the production of biofuels from renewable sources compared to existing sugar-based routes. However, CO metabolism still raises questions concerning the biochemistry and bioenergetics in many acetogens. In this study, we focused on the two acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui which, so far, are the only identified acetogens harbouring a H2 -dependent CO2 reductase and furthermore belong to different classes of 'Rnf'- and 'Ech-acetogens'. Both strains catalysed the conversion of CO into the bulk chemical acetate and formate. Formate production was stimulated by uncoupling the energy metabolism from the Wood-Ljungdahl pathway, and specific rates of 1.44 and 1.34 mmol g-1 h-1 for A. woodii ∆rnf and T. kivui wild type were reached. The demonstrated CO-based formate production rates are, to the best of our knowledge, among the highest rates ever reported. Using mutants of ∆hdcr, ∆cooS, ∆hydBA, ∆rnf and ∆ech2 with deficiencies in key enzyme activities of the central metabolism enabled us to postulate two different CO utilization pathways in these two model organisms.
Collapse
Affiliation(s)
- Fabian M. Schwarz
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Sarah Ciurus
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Surbhi Jain
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Christoph Baum
- MicrobiologyInstitute of Biological SciencesUniversity RostockRostockGermany
| | - Anja Wiechmann
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Mirko Basen
- MicrobiologyInstitute of Biological SciencesUniversity RostockRostockGermany
| | - Volker Müller
- Molecular Microbiology and BioenergeticsInstitute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| |
Collapse
|
48
|
Abstract
Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks. Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl coenzyme A (acetyl-CoA) and ultimately acetate using the Wood-Ljungdahl pathway (WLP). Acetobacterium woodii is the type strain of the Acetobacterium genus and has been critical for understanding the biochemistry and energy conservation in acetogens. Members of the Acetobacterium genus have been isolated from a variety of environments or have had genomes recovered from metagenome data, but no systematic investigation has been done on the unique and various metabolisms of the genus. To gain a better appreciation for the metabolic breadth of the genus, we sequenced the genomes of 4 isolates (A. fimetarium, A. malicum, A. paludosum, and A. tundrae) and conducted a comparative genome analysis (pan-genome) of 11 different Acetobacterium genomes. A unifying feature of the Acetobacterium genus is the carbon-fixing WLP. The methyl (cluster II) and carbonyl (cluster III) branches of the Wood-Ljungdahl pathway are highly conserved across all sequenced Acetobacterium genomes, but cluster I encoding the formate dehydrogenase is not. In contrast to A. woodii, all but four strains encode two distinct Rnf clusters, Rnf being the primary respiratory enzyme complex. Metabolism of fructose, lactate, and H2:CO2 was conserved across the genus, but metabolism of ethanol, methanol, caffeate, and 2,3-butanediol varied. Additionally, clade-specific metabolic potential was observed, such as amino acid transport and metabolism in the psychrophilic species, and biofilm formation in the A. wieringae clade, which may afford these groups an advantage in low-temperature growth or attachment to solid surfaces, respectively. IMPORTANCE Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks.
Collapse
|
49
|
Kremp F, Roth J, Müller V. The Sporomusa type Nfn is a novel type of electron-bifurcating transhydrogenase that links the redox pools in acetogenic bacteria. Sci Rep 2020; 10:14872. [PMID: 32913242 PMCID: PMC7483475 DOI: 10.1038/s41598-020-71038-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/07/2020] [Indexed: 11/15/2022] Open
Abstract
Flavin-based electron bifurcation is a long hidden mechanism of energetic coupling present mainly in anaerobic bacteria and archaea that suffer from energy limitations in their environment. Electron bifurcation saves precious cellular ATP and enables lithotrophic life of acetate-forming (acetogenic) bacteria that grow on H2 + CO2 by the only pathway that combines CO2 fixation with ATP synthesis, the Wood–Ljungdahl pathway. The energy barrier for the endergonic reduction of NADP+, an electron carrier in the Wood–Ljungdahl pathway, with NADH as reductant is overcome by an electron-bifurcating, ferredoxin-dependent transhydrogenase (Nfn) but many acetogens lack nfn genes. We have purified a ferredoxin-dependent NADH:NADP+ oxidoreductase from Sporomusa ovata, characterized the enzyme biochemically and identified the encoding genes. These studies led to the identification of a novel, Sporomusa type Nfn (Stn), built from existing modules of enzymes such as the soluble [Fe–Fe] hydrogenase, that is widespread in acetogens and other anaerobic bacteria.
Collapse
Affiliation(s)
- Florian Kremp
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt, Germany
| | - Jennifer Roth
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
50
|
The Rnf complex is a Na + coupled respiratory enzyme in a fermenting bacterium, Thermotoga maritima. Commun Biol 2020; 3:431. [PMID: 32770029 PMCID: PMC7414866 DOI: 10.1038/s42003-020-01158-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
rnf genes are widespread in bacteria and biochemical and genetic data are in line with the hypothesis that they encode a membrane-bound enzyme that oxidizes reduced ferredoxin and reduces NAD and vice versa, coupled to ion transport across the cytoplasmic membrane. The Rnf complex is of critical importance in many bacteria for energy conservation but also for reverse electron transport to drive ferredoxin reduction. However, the enzyme has never been purified and thus, ion transport could not be demonstrated yet. Here, we have purified the Rnf complex from the anaerobic, fermenting thermophilic bacterium Thermotoga maritima and show that is a primary Na+ pump. These studies provide the proof that the Rnf complex is indeed an ion (Na+) translocating, respiratory enzyme. Together with a Na+-F1FO ATP synthase it builds a simple, two-limb respiratory chain in T. maritima. The physiological role of electron transport phosphorylation in a fermenting bacterium is discussed. From a fermenting bacterium, Thermotoga maritima, Kuhns, Trifunovi ć et al. purify a complex that includes a respiratory enzyme, Rnf. They find that the Rnf complex requires Na+ for activity and that it catalyzes Na+ transport in liposomes. This study shows that the Rnf complex is indeed an ion translocating, respiratory enzyme.
Collapse
|