1
|
Wilson EJ, Barts N, Coffin JL, Johnson JB, Rodríguez Peña CM, Kelley JL, Tobler M, Greenway R. Gene expression signatures between Limia perugiae (Poeciliidae) populations from freshwater and hypersaline habitats, with comparisons to other teleosts. PLoS One 2024; 19:e0315014. [PMID: 39637050 PMCID: PMC11620662 DOI: 10.1371/journal.pone.0315014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Salinity gradients act as strong environmental barriers that limit the distribution of aquatic organisms. Changes in gene expression associated with transitions between freshwater and saltwater environments can provide insights into organismal responses to variation in salinity. We used RNA-sequencing (RNA-seq) to investigate genome-wide variation in gene expression between a hypersaline population and a freshwater population of the livebearing fish species Limia perugiae (Poeciliidae). Our analyses of gill gene expression revealed potential molecular mechanisms underlying salinity tolerance in this species, including the enrichment of genes involved in ion transport, maintenance of chemical homeostasis, and cell signaling in the hypersaline population. We also found differences in gene expression patterns associated with cell-cycle and protein-folding processes between the hypersaline and freshwater L. perugiae. Bidirectional freshwater-saltwater transitions have occurred repeatedly during the diversification of fishes, allowing for broad-scale examination of repeatable patterns in evolution. Therefore, we compared transcriptomic variation in L. perugiae with other teleosts that have made freshwater-saltwater transitions to test for convergence in gene expression. Among the four distantly related population pairs from high- and low-salinity environments that we included in our analysis, we found only ten shared differentially expressed genes, indicating little evidence for convergence. However, we found that differentially expressed genes shared among three or more lineages were functionally enriched for ion transport and immune functioning. Overall, our results-in conjunction with other recent studies-suggest that different genes are involved in salinity transitions across disparate lineages of teleost fishes.
Collapse
Affiliation(s)
- Elizabeth J. Wilson
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| | - Nick Barts
- Department of Biology, University of Central Missouri, Warrensburg, MO, United States of America
| | - John L. Coffin
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| | - James B. Johnson
- Divison of Marine Fisheries, North Carolina Department of Environmental Quality, Morehead City, NC, United States of America
| | - Carlos M. Rodríguez Peña
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Joanna L. Kelley
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Michael Tobler
- Department of Biology, University of Missouri—St. Louis, St. Louis, MO, United States of America
- Whitney R. Harris World Ecology Center, University of Missouri—St. Louis, St. Louis, MO, United States of America
- WildCare Institute, Saint Louis Zoo, St. Louis, MO, United States of America
| | - Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
2
|
danis BEG, Sardari P, Marlatt VL. Importance of water contaminant testing in amphibian reintroduction programs. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14347. [PMID: 39166830 PMCID: PMC11588977 DOI: 10.1111/cobi.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 08/23/2024]
Affiliation(s)
- blake e. g. danis
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Pourya Sardari
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Vicki L. Marlatt
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| |
Collapse
|
3
|
Tao YT, Breves JP. Hypersalinity tolerance of mummichogs (Fundulus heteroclitus): A branchial transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101338. [PMID: 39413658 DOI: 10.1016/j.cbd.2024.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Along the east coast of North America, mummichogs (Fundulus heteroclitus) are subjected to a broad range of salinities in their nearshore habitats. However, there is a paucity of information regarding the molecular and cellular processes that mummichogs (and other highly osmotolerant fishes) engage to survive environmental salinities greater than seawater (SW). To reveal branchial processes underlying their extraordinarily broad salinity tolerance, we performed an RNA-Seq analysis to identify differentially expressed genes (DEGs) in mummichogs residing in 3, 35, and 105 ppt conditions. We identified a series of DEGs previously associated with both freshwater (FW)- and SW-type ionocytes; however, the heightened expression of anoctamin 1a, a Ca2+-activated Cl- channel, in 35 and 105 ppt indicates that an undescribed Cl--secretion pathway may operate within the SW-type ionocytes of mummichogs. Concerning FW-adaptive branchial processes, we identified claudin 5a as a gene whose product may limit the diffusive loss of ions between cellular tight junctions. Further, in response to hypersaline conditions, we identified DEGs linked with myo-inositol synthesis and kinase signaling. This study provides new molecular targets for future physiological investigations that promise to reveal the mechanistic bases for how mummichogs and other euryhaline species tolerate hypersaline conditions.
Collapse
Affiliation(s)
- Yixuan T Tao
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
4
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
5
|
Mikucki EE, O’Leary TS, Lockwood BL. Heat tolerance, oxidative stress response tuning and robust gene activation in early-stage Drosophila melanogaster embryos. Proc Biol Sci 2024; 291:20240973. [PMID: 39163981 PMCID: PMC11335408 DOI: 10.1098/rspb.2024.0973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
In organisms with complex life cycles, life stages that are most susceptible to environmental stress may determine species persistence in the face of climate change. Early embryos of Drosophila melanogaster are particularly sensitive to acute heat stress, yet tropical embryos have higher heat tolerance than temperate embryos, suggesting adaptive variation in embryonic heat tolerance. We compared transcriptomic responses to heat stress among tropical and temperate embryos to elucidate the gene regulatory basis of divergence in embryonic heat tolerance. The transcriptomes of tropical and temperate embryos differed in both constitutive and heat-stress-induced responses of the expression of relatively few genes, including genes involved in oxidative stress. Most of the transcriptomic response to heat stress was shared among all embryos. Embryos shifted the expression of thousands of genes, including increases in the expression of heat shock genes, suggesting robust zygotic gene activation and demonstrating that, contrary to previous reports, early embryos are not transcriptionally silent. The involvement of oxidative stress genes corroborates recent reports on the critical role of redox homeostasis in coordinating developmental transitions. By characterizing adaptive variation in the transcriptomic basis of embryonic heat tolerance, this study is a novel contribution to the literature on developmental physiology and developmental genetics.
Collapse
Affiliation(s)
- Emily E. Mikucki
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
6
|
Oto Y, Kuroki M, Iida M, Ito R, Nomura S, Watanabe K. A key evolutionary step determining osmoregulatory ability for freshwater colonisation in early life stages of fish. J Exp Biol 2023; 226:jeb246110. [PMID: 37767765 DOI: 10.1242/jeb.246110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Colonisation of freshwater habitats by marine animals is a remarkable evolutionary event that has enriched biodiversity in freshwater ecosystems. The acquisition of tolerance to hypotonic stress during early life stages is presumed to be essential for their successful freshwater colonisation, but very little empirical evidence has been obtained to support this idea. This study aimed to comprehend the evolutionary changes in osmoregulatory mechanisms that enhance larval freshwater tolerance in amphidromous fishes, which typically spend their larval period in marine (ancestral) habitats and the rest of their life history stages in freshwater (derived) habitats. We compared the life history patterns and changes in larval survivorship and gene expression depending on salinity among three congeneric marine-originated amphidromous goby species (Gymnogobius), which had been suggested to differ in their larval dependence on freshwater habitats. An otolith microchemical analysis and laboratory-rearing experiment confirmed the presence of freshwater residents only in G. urotaenia and higher larval survivorship of this species in the freshwater condition than in the obligate amphidromous G. petschiliensis and G. opperiens. Larval whole-body transcriptome analysis revealed that G. urotaenia from both amphidromous and freshwater-resident populations exhibited the greatest differences in expression levels of several osmoregulatory genes, including aqp3, which is critical for water discharge from their body during early fish development. The present results consistently support the importance of enhanced freshwater tolerance and osmoregulatory plasticity in larval fish to establish freshwater forms, and further identified key candidate genes for larval freshwater adaptation and colonisation in the goby group.
Collapse
Affiliation(s)
- Yumeki Oto
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Mari Kuroki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo Metropolitan 113-8657, Japan
| | - Midori Iida
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado City, Niigata Prefecture 952-2135, Japan
| | - Ryosuke Ito
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Shota Nomura
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Katsutoshi Watanabe
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| |
Collapse
|
7
|
The Effect of Salinity Stress on Enzyme Activities, Histology, and Transcriptome of Silver Carp ( Hypophthalmichthys molitrix). BIOLOGY 2022; 11:biology11111580. [PMID: 36358281 PMCID: PMC9687411 DOI: 10.3390/biology11111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
A 56-day study was performed to examine the effect of freshwater (FW) and brackish water (BW 6‱ salinity) on the antioxidant ability, Na+/K+-ATPase (NKA) activities, histology, and transcriptome of the gill and kidney tissue in juvenile silver carp (Hypophthalmichthys molitrix). The results show that when juvenile silver carp were exposed to 6‱ salinity, the activities of superoxide dismutase (SOD) and catalase (CAT) were shown to be substantially increased (p < 0.05), while glutathione peroxidase (GSH-PX) activities in gill were not significantly affected (p < 0.05). In kidney tissue, SOD, CAT, and GSH-PX, enzyme activities peaked at 24, 8, and 4 h, respectively, but were not significantly different compared with the control group (p < 0.05). In addition, significant effects of salinity were observed for the NKA level in both the gills and kidney tissues (p < 0.05). The gill filaments of juvenile silver carp under the BW group all underwent adverse changes within 72 h, such as cracks and ruptures in the main part of the gill filaments, bending of the gill lamellae and enlargement of the gaps, and an increase in the number of mucus and chloride-secreting cells. Transcriptome sequencing showed 171 and 261 genes in the gill and kidney tissues of juvenile silver carp compared to the BW group, respectively. Based on their gene ontology annotations, transcripts were sorted into four functional gene groups, each of which may play a role in salt tolerance. Systems involved in these processes include metabolism, signal transduction, immunoinflammatory response, and ion transport. The above findings indicate that the regulation processes in juvenile silver carp under brackish water conditions are complex and multifaceted. These processes and mechanisms shed light on the regulatory mechanism of silver carp osmolarity and provide a theoretical foundation for future research into silver carp growth in brackish water aquaculture area.
Collapse
|
8
|
Gill transcriptome of the yellow peacock bass (Cichla ocellaris monoculus) exposed to contrasting physicochemical conditions. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Velotta JP, McCormick SD, Whitehead A, Durso CS, Schultz ET. Repeated Genetic Targets of Natural Selection Underlying Adaptation of Fishes to Changing Salinity. Integr Comp Biol 2022; 62:357-375. [PMID: 35661215 DOI: 10.1093/icb/icac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Stephen D McCormick
- USGS, Eastern Ecological Science Center, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA, 01003USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, USA
| | - Catherine S Durso
- Department of Computer Science, University of Denver, Denver, CO 80210, USA
| | - Eric T Schultz
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
10
|
Mauro AA, Shah AA, Martin PR, Ghalambor CK. An Integrative Perspective on the Mechanistic Basis of Context Dependent Species Interactions. Integr Comp Biol 2022; 62:164-178. [PMID: 35612972 DOI: 10.1093/icb/icac055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
It has long been known that the outcome of species interactions depends on the environmental context in which they occur. Climate change research has sparked a renewed interest in context dependent species interactions because rapidly changing abiotic environments will cause species interactions to occur in novel contexts and researchers must incorporate this in their predictions of species' responses to climate change. Here we argue that predicting how the environment will alter the outcome of species interactions requires an integrative biology approach that focuses on the traits, mechanisms, and processes that bridge disciplines such as physiology, biomechanics, ecology, and evolutionary biology. Specifically, we advocate for quantifying how species differ in their tolerance and performance to both environmental challenges independent of species interactions, and in interactions with other species as a function of the environment. Such an approach increases our understanding of the mechanisms underlying outcomes of species interactions across different environmental contexts. This understanding will in turn help determine how the outcome of species interactions affects the relative abundance and distribution of the interacting species in nature. A general theme that emerges from this perspective is that species are unable to maintain high levels of performance across different environmental contexts because of trade-offs between physiological tolerance to environmental challenges and performance in species interactions. Thus, an integrative biology paradigm that focuses on the trade-offs across environments, the physiological mechanisms involved, and how the ecological context impacts the outcome of species interactions provides a stronger framework to understand why species interactions are context dependent.
Collapse
Affiliation(s)
- Alexander A Mauro
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA 94720
| | - Alisha A Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA
| | - Paul R Martin
- Department of Biology, Queens University, Kingston, ON, Canada
| | - Cameron K Ghalambor
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,Department of Biology, Colorado State University, Fort Collins, CO 80523.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
11
|
Blewett TA, Binning SA, Weinrauch AM, Ivy CM, Rossi GS, Borowiec BG, Lau GY, Overduin SL, Aragao I, Norin T. Physiological and behavioural strategies of aquatic animals living in fluctuating environments. J Exp Biol 2022; 225:275292. [PMID: 35511083 DOI: 10.1242/jeb.242503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Shallow or near-shore environments, such as ponds, estuaries and intertidal zones, are among the most physiologically challenging of all aquatic settings. Animals inhabiting these environments experience conditions that fluctuate markedly over relatively short temporal and spatial scales. Living in these habitats requires the ability to tolerate the physiological disturbances incurred by these environmental fluctuations. This tolerance is achieved through a suite of physiological and behavioural responses that allow animals to maintain homeostasis, including the ability to dynamically modulate their physiology through reversible phenotypic plasticity. However, maintaining the plasticity to adjust to some stresses in a dynamic environment may trade off with the capacity to deal with other stressors. This paper will explore studies on select fishes and invertebrates exposed to fluctuations in dissolved oxygen, salinity and pH. We assess the physiological mechanisms these species employ to achieve homeostasis, with a focus on the plasticity of their responses, and consider the resulting physiological trade-offs in function. Finally, we discuss additional factors that may influence organismal responses to fluctuating environments, such as the presence of multiple stressors, including parasites. We echo recent calls from experimental biologists to consider physiological responses to life in naturally fluctuating environments, not only because they are interesting in their own right but also because they can reveal mechanisms that may be crucial for living with increasing environmental instability as a consequence of climate change.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - Catherine M Ivy
- Department of Biology, Western University, London, ON, Canada, N6A 5B7
| | - Giulia S Rossi
- Department of Biological Science, University of Toronto, Scarborough, ON, Canada, M1C 1A4
| | - Brittney G Borowiec
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Gigi Y Lau
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Sienna L Overduin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Isabel Aragao
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Transcriptomic and Proteomic Analysis of Marine Nematode Litoditis marina Acclimated to Different Salinities. Genes (Basel) 2022; 13:genes13040651. [PMID: 35456458 PMCID: PMC9025465 DOI: 10.3390/genes13040651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Salinity is a critical abiotic factor for all living organisms. The ability to adapt to different salinity environments determines an organism’s survival and ecological niches. Litoditis marina is a euryhaline marine nematode widely distributed in coastal ecosystems all over the world, although numerous genes involved in its salinity response have been reported, the adaptive mechanisms underlying its euryhalinity remain unexplored. Here, we utilized worms which have been acclimated to either low-salinity or high-salinity conditions and evaluated their basal gene expression at both transcriptomic and proteomic levels. We found that several conserved regulators, including osmolytes biosynthesis genes, transthyretin-like family genes, V-type H+-transporting ATPase and potassium channel genes, were involved in both short-term salinity stress response and long-term acclimation processes. In addition, we identified genes related to cell volume regulation, such as actin regulatory genes, Rho family small GTPases and diverse ion transporters, which might contribute to hyposaline acclimation, while the glycerol biosynthesis genes gpdh-1 and gpdh-2 accompanied hypersaline acclimation in L. marina. This study paves the way for further in-depth exploration of the adaptive mechanisms underlying euryhalinity and may also contribute to the study of healthy ecosystems in the context of global climate change.
Collapse
|
13
|
Uchiyama Y, Iwasa Y, Yamaguchi S. Optimal composition of chloride cells for osmoregulation in a randomly fluctuating environment. J Theor Biol 2022; 537:111016. [PMID: 35026211 DOI: 10.1016/j.jtbi.2022.111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022]
Abstract
Fish live in water with a different osmotic pressure from that in the body. Their gills have chloride cells that transport ions to maintain an appropriate level of osmotic pressure in the body. The direction of ion transport is different between seawater and freshwater. There are two types of chloride cells that specialize in unidirectional transport and generalist cells that can switch their function quickly in response to environmental salinity. In species that experience salinity changes throughout life (euryhaline species), individuals may replace some chloride cells with cells of different types upon a sudden change in environmental salinity. In this paper, we develop a dynamic optimization model for the chloride cell composition of an individual living in an environment with randomly fluctuating salinity. The optimal solution is to minimize the sum of the workload of chloride cells in coping with the difference in osmotic pressure, the maintenance cost, and the temporal cost due to environmental change. The optimal fraction of generalist chloride cells increases with the frequency of salinity changes and the time needed for new cells to be fully functional but decreases with excess maintenance cost.
Collapse
Affiliation(s)
- Yuka Uchiyama
- Division of Mathematical Sciences, Tokyo Woman's Christian University, 2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan
| | - Yoh Iwasa
- Department of Biology, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Institute of Freshwater Biology, Nagano University, 1088 Komaki, Ueda, Nagano 386-0031, Japan
| | - Sachi Yamaguchi
- Division of Mathematical Sciences, Tokyo Woman's Christian University, 2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan.
| |
Collapse
|
14
|
Bozinovic G, Feng Z, Shea D, Oleksiak MF. Cardiac physiology and metabolic gene expression during late organogenesis among F. heteroclitus embryo families from crosses between pollution-sensitive and -resistant parents. BMC Ecol Evol 2022; 22:3. [PMID: 34996355 PMCID: PMC8739662 DOI: 10.1186/s12862-022-01959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes. RESULTS Pollution-induced embryotoxicity manifested as morphological deformities, significant developmental delays, and altered cardiac physiology was evident among sensitive embryos resulting from crosses between females and males from relatively clean estuaries. Significantly different heart rates among several geographically unrelated populations of sensitive, resistant, and crossed embryo families during late organogenesis and pre-hatching suggest site-specific adaptive cardiac physiology phenotypes relative to pollution exposure. Metabolic gene expression patterns (32 genes, 17.9%, at p < 0.05; 11 genes, 6.1%, at p < 0.01) among the embryo families indicate maternal pollutant deposition in the eggs and parental effects on gene expression and metabolic alterations. CONCLUSION Heart rate differences among sensitive, resistant, and crossed embryos is a reliable phenotype for further explorations of adaptive mechanisms. While metabolic gene expression patterns among embryo families are suggestive of parental effects on several differentially expressed genes, a definitive adaptive signature and metabolic cost of resistant phenotypes is unclear and shows unexpected sensitive-resistant crossed embryo expression profiles. Our study highlights physiological and metabolic gene expression differences during a critical embryonic stage among pollution sensitive, resistant, and crossed embryo families, which may contribute to underlying resistance mechanisms observed in natural F. heteroclitus populations living in heavily contaminated estuaries.
Collapse
Affiliation(s)
- Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA.
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Marjorie F Oleksiak
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
15
|
Plumlee JD, Kenworthy MD, Gittman RK, Keller DA, Garnett EE, Vaca-Pita L, Carr LA, Fodrie FJ. Remarkable euryhalinity of a marine fish Lutjanus novemfasciatus in mangrove nurseries. Ecology 2021; 103:e03582. [PMID: 34767642 DOI: 10.1002/ecy.3582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/23/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Jeffrey D Plumlee
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, 28557, USA
| | - Matthew D Kenworthy
- Department of Marine and Environmental Sciences, Savannah State University, Savannah, Georgia, 31404, USA
| | - Rachel K Gittman
- Department of Biology and Coastal Studies Institute, East Carolina University, Greenville, North Carolina, 27858, USA
| | | | - Emma E Garnett
- Cambridge Institute for Sustainability Leadership and Department of Zoology, University of Cambridge, Cambridge, CB2 1QA, United Kingdom
| | - Leandro Vaca-Pita
- Galápagos Science Center, Universidad San Francisco de Quito, Isla San Cristóbal, Islas Galápagos, 200101, Ecuador
| | - Lindsey A Carr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - F Joel Fodrie
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, 28557, USA
| |
Collapse
|
16
|
Different transcriptomic architecture of the gill epithelia in Nile and Mozambique tilapia after salinity challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 41:100927. [PMID: 34794104 DOI: 10.1016/j.cbd.2021.100927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Tilapiine fishes of the genus Oreochromis vary in their euryhaline capabilities, therefore inhabiting aquatic environments of different salinities across the African continent. We analyzed the differential gene expression in the gills before and after 6 weeks salinity challenge between the highly tolerant Mozambique tilapia (Oreochromis mossambicus) and the less tolerant Nile tilapia (O. niloticus). The pathways triggered by salinity in both tilapia species reveal immune and cell stress responses as well as turnover of ionocytes. Nevertheless, the actual differential expressed genes vary between these two species, pointing at differential transcriptomic architecture, which likely contribute to the species osmoregulation capabilities in elevated salinities.
Collapse
|
17
|
Lee CE. Ion Transporter Gene Families as Physiological Targets of Natural Selection During Salinity Transitions in a Copepod. Physiology (Bethesda) 2021; 36:335-349. [PMID: 34704854 DOI: 10.1152/physiol.00009.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Salinity is a key factor that structures biodiversity on the planet. With anthropogenic change, such as climate change and species invasions, many populations are facing rapid and dramatic changes in salinity throughout the globe. Studies on the copepod Eurytemora affinis species complex have implicated ion transporter gene families as major loci contributing to salinity adaptation during freshwater invasions. Laboratory experiments and population genomic surveys of wild populations have revealed evolutionary shifts in genome-wide gene expression and parallel genomic signatures of natural selection during independent salinity transitions. Our results suggest that balancing selection in the native range and epistatic interactions among specific ion transporter paralogs could contribute to parallel freshwater adaptation. Overall, these studies provide unprecedented insights into evolutionary mechanisms underlying physiological adaptation during rapid salinity change.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
18
|
Liang P, Saqib HSA, Lin Z, Zheng R, Qiu Y, Xie Y, Ma D, Shen Y. RNA-seq analyses of Marine Medaka (Oryzias melastigma) reveals salinity responsive transcriptomes in the gills and livers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105970. [PMID: 34562875 DOI: 10.1016/j.aquatox.2021.105970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Increasing salinity levels in marine and estuarine ecosystems greatly influence developmental, physiological and molecular activities of inhabiting fauna. Marine medaka (Oryzias melastigma), a euryhaline research model, has extraordinary abilities to survive in a wide range of aquatic salinity. To elucidate how marine medaka copes with salinity differences, the responses of Oryzias melastigma after being transferred to different salt concentrations [0 practical salinity units (psu), 15 psu, 30 psu (control), 45 psu] were studied at developmental, histochemical and transcriptome levels in the gill and liver tissues. A greater number of gills differentially expressed genes (DEG) under 0 psu (609) than 15 psu (157) and 45 psu (312), indicating transcriptomic adjustments in gills were more sensitive to the extreme hypotonic environment. A greater number of livers DEGs were observed in 45 psu (1,664) than 0 psu (87) and L15 psu (512), suggesting that liver was more susceptible to hypertonic environment. Further functional analyses of DEGs showed that gills have a more immediate response, mainly in adjusting ion balance, immune and signal transduction. In contrast, DEGs in livers were involved in protein synthesis and processing. We also identified common DEGs in both gill and liver and found they were mostly involved in osmotic regulation of amino sugar and nucleotide sugar metabolism and steroid biosynthesis. Additionally, salinity stresses showed no significant effects on most developmental and histochemical parameters except increased heartbeat with increasing salinity and decreased glycogen after transferred from stable conditions (30 psu) to other salinity environments. These findings suggested that salinity-stress induced changes in gene expressions could reduce the effects on developmental and histochemical parameters. Overall, this study provides a useful resource for understanding the molecular mechanisms of fish responses to salinity stresses.
Collapse
Affiliation(s)
- Pingping Liang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou 515063, China
| | - Zeyang Lin
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ruping Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yuting Qiu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yuting Xie
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Dongna Ma
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yingjia Shen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
19
|
Campbell-Staton SC, Velotta JP, Winchell KM. Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands. Nat Commun 2021; 12:6195. [PMID: 34702827 PMCID: PMC8548502 DOI: 10.1038/s41467-021-26334-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Phenotypic plasticity enables a single genotype to produce multiple phenotypes in response to environmental variation. Plasticity may play a critical role in the colonization of novel environments, but its role in adaptive evolution is controversial. Here we suggest that rapid parallel regulatory adaptation of Anolis lizards to urban heat islands is due primarily to selection for reduced and/or reversed heat-induced plasticity that is maladaptive in urban thermal conditions. We identify evidence for polygenic selection across genes of the skeletal muscle transcriptome associated with heat tolerance. Forest lizards raised in common garden conditions exhibit heat-induced changes in expression of these genes that largely correlate with decreased heat tolerance, consistent with maladaptive regulatory response to high-temperature environments. In contrast, urban lizards display reduced gene expression plasticity after heat challenge in common garden and a significant increase in gene expression change that is congruent with greater heat tolerance, a putatively adaptive state in warmer urban environments. Genes displaying maladaptive heat-induced plasticity repeatedly show greater genetic divergence between urban and forest habitats than those displaying adaptive plasticity. These results highlight the role of selection against maladaptive regulatory plasticity during rapid adaptive modification of complex systems in the wild.
Collapse
Affiliation(s)
- Shane C Campbell-Staton
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08540, USA.
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
- Institute for Society and Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA
| | | |
Collapse
|
20
|
The time course of molecular acclimation to seawater in a euryhaline fish. Sci Rep 2021; 11:18127. [PMID: 34518569 PMCID: PMC8438076 DOI: 10.1038/s41598-021-97295-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
The Arabian pupfish, Aphanius dispar, is a euryhaline fish inhabiting both inland nearly-freshwater desert ponds and highly saline Red Sea coastal lagoons of the Arabian Peninsula. Desert ponds and coastal lagoons, located respectively upstream and at the mouths of dry riverbeds (“wadies”), have been found to potentially become connected during periods of intense rainfall, which could allow the fish to migrate between these different habitats. Flash floods would therefore flush Arabian pupfish out to sea, requiring a rapid acclimation to a greater than 40 ppt change in salinity. To investigate the molecular pathways of salinity acclimation during such events, a Red Sea coastal lagoon and a desert pond population were sampled, with the latter exposed to a rapid increase in water salinity. Changes in branchial gene expression were investigated via genome-wide transcriptome measurements over time from 6 h to 21 days. The two natural populations displayed basal differences in genes related to ion transport, osmoregulation and immune system functions. These mechanisms were also differentially regulated in seawater transferred fish, revealing their crucial role in long-term adaptation. Other processes were only transiently activated shortly after the salinity exposure, including cellular stress response mechanisms, such as molecular chaperone synthesis and apoptosis. Tissue remodelling processes were also identified as transient, but took place later in the timeline, suggesting their importance to long-term acclimation as they likely equip the fish with lasting adaptations to their new environment. The alterations in branchial functional pathways displayed by Arabian pupfish in response to salinity increases are diverse. These reveal a large toolkit of molecular processes important for adaptation to hyperosmolarity that allow for successful colonization to a wide variety of different habitats.
Collapse
|
21
|
Fossett TE, Hyman J. The effects of habituation on boldness of urban and rural song sparrows (Melospiza melodia). BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
As urbanization increases globally, wildlife species are changing their behaviour in many ways. Urban animals are often bolder, or less fearful of new stimuli, than rural animals. While adaptation can drive behavioural changes in urban animals, other factors, such as learning or habituation, can also lead to behavioural modifications. To determine how repeated exposure to a non-threatening human affects song sparrow (Melospiza melodia) behaviour in urban and rural habitat, we measured boldness as flight initiation distance (FID), for 5 consecutive days. We found that urban birds had consistently lower FID’s than their rural counterparts from days 1–4, yet there was no difference in rural and urban FID by trial 5. FID decreased over 5 days of repeated trials in the rural populations, but not the urban. These results suggest that habituation can occur quickly in rural birds and may account for the greater boldness we typically see in urban populations.
Collapse
Affiliation(s)
| | - Jeremy Hyman
- Western Carolina University, 1 University Way, Cullowhee, NC 28723, USA
| |
Collapse
|
22
|
Chen CC, Marshall WS, Robertson GN, Cozzi RRF, Kelly SP. Mummichog gill and operculum exhibit functionally consistent claudin-10 paralog profiles and Claudin-10c hypersaline response. Biol Open 2021; 10:271020. [PMID: 34308991 PMCID: PMC8351317 DOI: 10.1242/bio.058868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Claudin (Cldn)-10 tight junction (TJ) proteins are hypothesized to form the paracellular Na+ secretion pathway of hyposmoregulating mummichog (Fundulus heteroclitus) branchial epithelia. Organ-specific expression profiles showed that only branchial organs [the gill and opercular epithelium (OE)] exhibited abundant cldn-10 paralog transcripts, which typically increased following seawater (SW) to hypersaline (2SW) challenge. Post-translational properties, protein abundance, and ionocyte localization of Cldn-10c, were then examined in gill and OE. Western blot analysis revealed two Cldn-10c immunoreactive bands in the mummichog gill and OE at ∼29 kDa and ∼40 kDa. The heavier protein could be eliminated by glycosidase treatment, demonstrating the novel presence of a glycosylated Cldn-10c. Protein abundance of Cldn-10c increased in gill and OE of 2SW-exposed fish. Cldn-10c localized to the sides of gill and OE ionocyte apical crypts and partially colocalized with cystic fibrosis transmembrane conductance regulator and F-actin, consistent with TJ complex localization. Cldn-10c immunofluorescent intensity increased but localization was unaltered by 2SW conditions. In support of our hypothesis, cldn-10/Cldn-10 TJ protein dynamics in gill and OE of mummichogs and TJ localization are functionally consistent with the creation and maintenance of salinity-responsive, cation-selective pores that facilitate Na+ secretion in hyperosmotic environments. Summary: The role of claudin-10 tight junction proteins in paracellular salt secretion across fish branchial epithelia is indicated by organ-specific responses to hyperosmotic conditions and their association with salt secreting transcellular proteins
Collapse
Affiliation(s)
- Chun Chih Chen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - William S Marshall
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - George N Robertson
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Regina R F Cozzi
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
23
|
Transcriptome Profiling Reveals a Divergent Adaptive Response to Hyper- and Hypo-Salinity in the Yellow Drum, Nibea albiflora. Animals (Basel) 2021; 11:ani11082201. [PMID: 34438658 PMCID: PMC8388402 DOI: 10.3390/ani11082201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Global warming and certain climate disasters (typhoon, tsunami, etc.) can lead to fluctuation in seawater salinity that causes salinity stress in fish. The aim of this study was to investigate the functional genes and relevant pathways in response to salinity stress in the yellow drum. Genes and pathways related to signal transduction, osmoregulation, and metabolism may be involved in the adaptive regulation to salinity in the yellow drum. Additionally, the genes under salinity stress were mainly divided into three expression trends. Our results provided novel insights into further study of the salinity adaptability of euryhaline fishes. Abstract The yellow drum (Nibea albiflora) is an important marine economic fish that is widely distributed in the coastal waters of the Northwest Pacific. In order to understand the molecular regulatory mechanism of the yellow drum under salinity stress, in the present study, transcriptome analysis was performed under gradients with six salinities (10, 15, 20, 25, 30, and 35 psu). Compared to 25 psu, 907, 1109, 1309, 18, and 243 differentially expressed genes (DEGs) were obtained under 10, 15, 20, 30, and 35 psu salinities, respectively. The differential gene expression was further validated by quantitative real-time PCR (qPCR). The results of the tendency analysis showed that all DEGs of the yellow drum under salinity fluctuation were mainly divided into three expression trends. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the PI3K-Akt signaling pathway, Jak-STAT signaling pathway as well as the glutathione metabolism and steroid biosynthesis pathways may be the key pathways for the salinity adaptive regulation mechanism of the yellow drum. G protein-coupled receptors (GPCRs), the solute carrier family (SLC), the transient receptor potential cation channel subfamily V member 6 (TRPV6), isocitrate dehydrogenase (IDH1), and fructose-bisphosphate aldolase C-B (ALDOCB) may be the key genes in the response of the yellow drum to salinity stress. This study explored the transcriptional patterns of the yellow drum under salinity stress and provided fundamental information for the study of salinity adaptability in this species.
Collapse
|
24
|
Blakeslee AMH, Pochtar DL, Fowler AE, Moore CS, Lee TS, Barnard RB, Swanson KM, Lukas LC, Ruocchio M, Torchin ME, Miller AW, Ruiz GM, Tepolt CK. Invasion of the body snatchers: the role of parasite introduction in host distribution and response to salinity in invaded estuaries. Proc Biol Sci 2021; 288:20210703. [PMID: 34157870 DOI: 10.1098/rspb.2021.0703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In dynamic systems, organisms are faced with variable selective forces that may impose trade-offs. In estuaries, salinity is a strong driver of organismal diversity, while parasites shape species distributions and demography. We tested for trade-offs between low-salinity stress and parasitism in an invasive castrating parasite and its mud crab host along salinity gradients of two North Carolina rivers. We performed field surveys every six to eight weeks over 3 years to determine factors influencing parasite prevalence, host abundance, and associated taxa diversity. We also looked for signatures of low-salinity stress in the host by examining its response (time-to-right and gene expression) to salinity. We found salinity and temperature significantly affected parasite prevalence, with low-salinity sites (less than 10 practical salinity units (PSU)) lacking infection, and populations in moderate salinities at warmer temperatures reaching prevalence as high as 60%. Host abundance was negatively associated with parasite prevalence. Host gene expression was plastic to acclimation salinity, but several osmoregulatory and immune-related genes demonstrated source-dependent salinity response. We identified a genetic marker that was strongly associated with salinity against a backdrop of no neutral genetic structure, suggesting possible selection on standing variation. Our study illuminates how selective trade-offs in naturally dynamic systems may shape host evolutionary ecology.
Collapse
Affiliation(s)
| | - Darby L Pochtar
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA
| | - Amy E Fowler
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA
| | - Chris S Moore
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Timothy S Lee
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Rebecca B Barnard
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Kyle M Swanson
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Laura C Lukas
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Matthew Ruocchio
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Mark E Torchin
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - A Whitman Miller
- Invasion Ecology Lab, Smithsonian Environmental Research Lab, Edgewater, MD, USA
| | - Gregory M Ruiz
- Invasion Ecology Lab, Smithsonian Environmental Research Lab, Edgewater, MD, USA
| | - Carolyn K Tepolt
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
25
|
Philibert DA, Lyons DD, Tierney KB. Comparing the effects of unconventional and conventional crude oil exposures on zebrafish and their progeny using behavioral and genetic markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144745. [PMID: 33736363 DOI: 10.1016/j.scitotenv.2020.144745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Diluted bitumen, also known as dilbit, is transported by rail and pipeline across Canada and the United States. Due to the fewer number of studies characterizing the toxicity of dilbit, a dilbit spill poses an unknown risk to freshwater aquatic ecosystems. In the following study, we compared the impact of early-life exposure to conventional and unconventional crude oils on the optomotor behavior, reproductive success, and transgenerational differences in gene expression in zebrafish and their progeny. For exposures, water accommodated fractions (WAFs) of crude oil were generated using a 1:1000 oil to water ratio for 3 different crudes; mixed sweet blend (MSB), medium sour composite (MSC) and dilbit. All three oils generated unique volatile organic compound (VOC) and polycyclic aromatic compound (PAC) profiles. Of the WAFs tested, only dilbit decreased the eye size of 2 dpf larvae, and only MSB exposed larvae had an altered behavioral response to a visual simulation of a predator. Early-life exposure to crude oil had no lasting impact on reproductive success of adult fish; however, each oil had unique impacts on the basal gene expression of the somatically exposed offspring. In this study, the biological effects differed between each of the oils tested, which implied chemical composition plays a critical role in determining the sublethal toxicity of conventional and unconventional crude oils in freshwater ecosystems.
Collapse
Affiliation(s)
- Danielle A Philibert
- Huntsman Marine Science Centre, St. Andrews, New Brunswick E5B 2L7, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ketih B Tierney
- Huntsman Marine Science Centre, St. Andrews, New Brunswick E5B 2L7, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
26
|
Increased polyamine levels and maintenance of γ-aminobutyric acid (Gaba) homeostasis in the gills is indicative of osmotic plasticity in killifish. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110969. [PMID: 33915271 DOI: 10.1016/j.cbpa.2021.110969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022]
Abstract
The Fundulus genus of killifish includes species that inhabit marshes along the U.S. Atlantic coast and the Gulf of Mexico, but differ in their ability to adjust rapidly to fluctuations in salinity. Previous work suggests that euryhaline killifish stimulate polyamine biosynthesis and accumulate putrescine in the gills during acute hypoosmotic challenge. Despite evidence that polyamines have an osmoregulatory role in euryhaline killifish species, their function in marine species is unknown. Furthermore, the consequences of hypoosmotic-induced changes in polyamine synthesis on downstream pathways, such as ƴ-aminobutyric acid (Gaba) production, have yet to be explored. Here, we examined the effects of acute hypoosmotic exposure on polyamine, glutamate, and Gaba levels in the gills of a marine (F. majalis) and two euryhaline killifish species (F. heteroclitus and F. grandis). Fish acclimated to 32 ppt or 12 ppt water were transferred to fresh water, and concentrations of glutamate (Glu), Gaba, and the polyamines putrescine (Put), spermidine (Spd), and spermine (Spm) were measured in the gills using high-performance liquid chromatography. F. heteroclitus and F. grandis exhibited an increase in gill Put concentration, but showed no change in Glu or Gaba levels following freshwater transfer. F. heteroclitus also accumulated Spd in the gills, whereas F. grandis showed transient increases in Spd and Spm levels. In contrast, gill Put, Spm, Glu, and Gaba levels decreased in F. majalis following freshwater transfer. Together, these findings suggest that increasing polyamine levels and maintaining Glu and Gaba levels in the gills may enable euryhaline teleosts to acclimate to shifts in environmental salinity.
Collapse
|
27
|
RNA sequencing describes both population structure and plasticity-selection dynamics in a non-model fish. BMC Genomics 2021; 22:273. [PMID: 33858341 PMCID: PMC8048188 DOI: 10.1186/s12864-021-07592-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 01/03/2023] Open
Abstract
Background Messenger RNA sequencing is becoming more common in studies of non-model species and is most often used for gene expression-based investigations. However, the method holds potential for numerous other applications as well—including analyses of alternative splicing, population structure, and signatures of selection. To maximize the utility of mRNA data sets, distinct analyses may be combined such as by exploring dynamics between gene expression with signatures of selection in the context of population structure. Here, we compare two published data sets describing two populations of a minnow species endemic to the San Francisco Estuary (Sacramento splittail, Pogonichthys macrolepidotus): a microsatellite data set showing population structure, and an mRNA whole transcriptome data set obtained after the two populations were exposed to a salinity challenge. We compared measures of population structure and genetic variation using single nucleotide polymorphisms (SNPs) called from mRNA from the whole transcriptome sequencing study with those patterns determined from microsatellites. For investigating plasticity and evolution, intra- and inter-population transcriptome plasticity was investigated with differential gene expression, differential exon usage, and gene expression variation. Outlier SNP analysis was also performed on the mRNA data set and signatures of selection and phenotypic plasticity were investigated on an individual-gene basis. Results We found that mRNA sequencing revealed patterns of population structure consistent with those found with microsatellites, but with lower magnitudes of genetic variation and population differentiation consistent with widespread purifying selection expected when using mRNA. In addition, within individual genes, phenotypic plasticity or signatures of selection were found in almost mutual exclusion (except heatr6, nfu1, slc22a6, sya, and mmp13). Conclusions These results show that an mRNA sequencing data set may have multiple uses, including describing population structure and for investigating the mechanistic interplay of evolution and plasticity in adaptation. MRNA sequencing thus complements traditional sequencing methods used for population genetics, in addition to its utility for describing phenotypic plasticity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07592-4.
Collapse
|
28
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|
29
|
Bitter MC, Kapsenberg L, Silliman K, Gattuso JP, Pfister CA. Magnitude and Predictability of pH Fluctuations Shape Plastic Responses to Ocean Acidification. Am Nat 2021; 197:486-501. [PMID: 33755541 DOI: 10.1086/712930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPhenotypic plasticity is expected to facilitate the persistence of natural populations as global change progresses. The attributes of fluctuating environments that favor the evolution of plasticity have received extensive theoretical investigation, yet empirical validation of these findings is still in its infancy. Here, we combine high-resolution environmental data with a laboratory-based experiment to explore the influence of habitat pH fluctuation dynamics on the plasticity of gene expression in two populations of the Mediterranean mussel, Mytilus galloprovincialis. We linked differences in the magnitude and predictability of pH fluctuations in two habitats to population-specific gene expression profiles in ambient and stressful pH treatments. Our results demonstrate population-based differentiation in gene expression plasticity, whereby mussels native to a habitat exhibiting a large magnitude of pH fluctuations with low predictability display reduced phenotypic plasticity between experimentally imposed pH treatments. This work validates recent theoretical findings on evolution in fluctuating environments, suggesting that the predictability of fluctuating selection pressures may play a predominant role in shaping the phenotypic variation observed across natural populations.
Collapse
|
30
|
Albecker MA, Stuckert AMM, Balakrishnan CN, McCoy MW. Molecular mechanisms of local adaptation for salt-tolerance in a treefrog. Mol Ecol 2021; 30:2065-2086. [PMID: 33655636 DOI: 10.1111/mec.15867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
Salinization is a global phenomenon affecting ecosystems and forcing freshwater organisms to deal with increasing levels of ionic stress. However, our understanding of mechanisms that permit salt tolerance in amphibians is limited. This study investigates mechanisms of salt tolerance in locally adapted, coastal populations of a treefrog, Hyla cinerea. Using a common garden experiment, we (i) determine the extent that environment (i.e., embryonic and larval saltwater exposure) or genotype (i.e., coastal vs. inland) affects developmental benchmarks and transcriptome expression, and (ii) identify genes that may underpin differences in saltwater tolerance. Differences in gene expression, survival, and plasma osmolality were most strongly associated with genotype. Population genetic analyses on expressed genes also delineated coastal and inland groups based on genetic similarity. Coastal populations differentially expressed osmoregulatory genes including ion transporters (atp1b1, atp6V1g2, slc26a), cellular adhesion components (cdh26, cldn1, gjb3, ocln), and cytoskeletal components (odc1-a, tgm3). Several of these genes are the same genes expressed by euryhaline fish after exposure to freshwater, which is a novel finding for North American amphibians and suggests that these genes may be associated with local salinity adaptation. Coastal populations also highly expressed glycerol-3-phosphate dehydrogenase 1 (gpd1), which indicates they use glycerol as a compatible osmolyte to reduce water loss - another mechanism of saltwater tolerance previously unknown in frogs. These data signify that Hyla cinerea inhabiting coastal, brackish wetlands have evolved a salt-tolerant ecotype, and highlights novel candidate pathways that can lead to salt tolerance in freshwater organisms facing habitat salinization.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Adam M M Stuckert
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | | | - Michael W McCoy
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
31
|
Quintela M, Richter‐Boix À, Bekkevold D, Kvamme C, Berg F, Jansson E, Dahle G, Besnier F, Nash RDM, Glover KA. Genetic response to human-induced habitat changes in the marine environment: A century of evolution of European sprat in Landvikvannet, Norway. Ecol Evol 2021; 11:1691-1718. [PMID: 33613998 PMCID: PMC7882954 DOI: 10.1002/ece3.7160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
Habitat changes represent one of the five most pervasive threats to biodiversity. However, anthropogenic activities also have the capacity to create novel niche spaces to which species respond differently. In 1880, one such habitat alterations occurred in Landvikvannet, a freshwater lake on the Norwegian coast of Skagerrak, which became brackish after being artificially connected to the sea. This lake is now home to the European sprat, a pelagic marine fish that managed to develop a self-recruiting population in barely few decades. Landvikvannet sprat proved to be genetically isolated from the three main populations described for this species; that is, Norwegian fjords, Baltic Sea, and the combination of North Sea, Kattegat, and Skagerrak. This distinctness was depicted by an accuracy self-assignment of 89% and a highly significant F ST between the lake sprat and each of the remaining samples (average of ≈0.105). The correlation between genetic and environmental variation indicated that salinity could be an important environmental driver of selection (3.3% of the 91 SNPs showed strong associations). Likewise, Isolation by Environment was detected for salinity, although not for temperature, in samples not adhering to an Isolation by Distance pattern. Neighbor-joining tree analysis suggested that the source of the lake sprat is in the Norwegian fjords, rather than in the Baltic Sea despite a similar salinity profile. Strongly drifted allele frequencies and lower genetic diversity in Landvikvannet compared with the Norwegian fjords concur with a founder effect potentially associated with local adaptation to low salinity. Genetic differentiation (F ST) between marine and brackish sprat is larger in the comparison Norway-Landvikvannet than in Norway-Baltic, which suggests that the observed divergence was achieved in Landvikvannet in some 65 generations, that is, 132 years, rather than gradually over thousands of years (the age of the Baltic Sea), thus highlighting the pace at which human-driven evolution can happen.
Collapse
Affiliation(s)
| | - Àlex Richter‐Boix
- CREAFCampus de BellaterraAutonomous University of BarcelonaBarcelonaSpain
| | - Dorte Bekkevold
- DTU‐Aqua National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | | | | | - Geir Dahle
- Institute of Marine ResearchBergenNorway
| | | | - Richard D. M. Nash
- Centre for EnvironmentFisheries and Aquaculture Science (Cefas)LowestoftUK
| | - Kevin A. Glover
- Institute of Marine ResearchBergenNorway
- Institute of BiologyUniversity of BergenBergenNorway
| |
Collapse
|
32
|
Le TDH, Schreiner VC, Kattwinkel M, Schäfer RB. Invertebrate turnover along gradients of anthropogenic salinisation in rivers of two German regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141986. [PMID: 32911168 DOI: 10.1016/j.scitotenv.2020.141986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Rising salinity in freshwater ecosystems can affect community composition. Previous studies mainly focused on changes in freshwater communities along gradients of absolute levels of electrical conductivity (EC). However, both geogenic and anthropogenic drivers contribute to the EC level and taxa may regionally be adapted to geogenic EC levels. Therefore, we examined the turnover in freshwater invertebrates along gradients of anthropogenic EC change in two regions of Germany. The anthropogenic change of EC was estimated as the difference between the measured EC and the modeled background EC driven by geochemical and climate variables. Turnover in freshwater invertebrates (β-diversity) was estimated using the Jaccard index (JI). We found that invertebrate turnover between EC gradient categories is generally greater than 47%, with a maximum of approximately 70% in sites with a more than 0.4 mS cm-1 change compared to the baseline (i.e. no difference between predicted and measured EC). The invertebrates Amphinemura sp., Anomalopterygella chauviniana and Leuctra sp. were reliable indicators of low EC change, whereas Potamopyrgus antipodarum indicated sites with the highest EC change. Variability within categories of EC change was slightly lower than within categories of absolute EC. Elevated nutrient concentrations that are often linked to land use may have contributed to the observed change of the invertebrate richness and can exacerbate effects of EC on communities in water. Overall, our study suggests that the change in EC, quantified as the difference between measured EC and modeled background EC, can be used to examine the response of invertebrate communities to increasing anthropogenic salinity concentrations in rivers. However, due to the strong correlation between EC change and observed EC in our study regions, the response to these two variables was very similar. Further studies in areas where EC change and observed EC are less correlated are required. In addition, such studies should consider the change in specific ions.
Collapse
Affiliation(s)
- Trong Dieu Hien Le
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany; Faculty of Resources & Environment, University of Thu Dau Mot, 06 Tran Van On street, Thu Dau Mot City, Binh Duong, Viet Nam.
| | - Verena C Schreiner
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Mira Kattwinkel
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| |
Collapse
|
33
|
Allmon E, Serafin J, Chen S, Rodgers ML, Griffitt R, Bosker T, de Guise S, Sepúlveda MS. Effects of polycyclic aromatic hydrocarbons and abiotic stressors on Fundulus grandis cardiac transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142156. [PMID: 33207514 DOI: 10.1016/j.scitotenv.2020.142156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Following the 2010 Deepwater Horizon oil spill, extensive research has been conducted on the toxicity of oil and polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment. Many studies have identified the toxicological effects of PAHs in estuarine and marine fishes, however, only recently has work begun to identify the combinatorial effect of PAHs and abiotic environmental factors such as hypoxia, salinity, and temperature. This study aims to characterize the combined effects of abiotic stressors and PAH exposure on the cardiac transcriptomes of developing Fundulus grandis larvae. In this study, F. grandis larvae were exposed to varying environmental conditions (dissolved oxygen (DO) 2, 6 ppm; temperature 20, 30 °C; and salinity 3, 30 ppt) as well as to a single concentration of high energy water accommodated fraction (HEWAF) (∑PAHs 15 ppb). Whole larvae were sampled for RNA and transcriptional changes were quantified using RNA-Seq followed by qPCR for a set of target genes. Analysis revealed that exposure to oil and abiotic stressors impacts signaling pathways associated with cardiovascular function. Specifically, combined exposures appear to reduce development of the systemic vasculature as well as strongly impact the cardiac musculature through cardiomyocyte proliferation resulting in inhibited cardiac function and modulated blood pressure maintenance. Results of this study provide a holistic view of impacts of PAHs and common environmental stressors on the cardiac system in early life stage estuarine species. To our knowledge, this study is one of the first to simultaneously manipulate oil exposure with abiotic factors (DO, salinity, temperature) and the first to analyze cardiac transcriptional responses under these co-exposures.
Collapse
Affiliation(s)
- Elizabeth Allmon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Jennifer Serafin
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Shuai Chen
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Maria L Rodgers
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Robert Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Thijs Bosker
- Leiden University College and Institute of Environmental Sciences, Leiden University, Anna van Buerenplein 301, 2595 DG The Hague, the Netherlands
| | - Sylvain de Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, Point61 North Eagleville Road, Storrs, CT 06269, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
34
|
Ho P, Nguyen HQ, Kern EMA, Won Y. Locomotor responses to salt stress in native and invasive mud-tidal gastropod populations ( Batillaria). Ecol Evol 2021; 11:458-470. [PMID: 33437442 PMCID: PMC7790626 DOI: 10.1002/ece3.7065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022] Open
Abstract
Plasticity in salt tolerance can be crucial for successful biological invasions of novel habitats by marine gastropods. The intertidal snail Batillaria attramentaria, which is native to East Asia but invaded the western shores of North America from Japan 80 years ago, provides an opportunity to examine how environmental salinity may shape behavioral and morphological traits. In this study, we compared the movement distance of four B. attramentaria populations from native (Korea and Japan) and introduced (United States) habitats under various salinity levels (13, 23, 33, and 43 PSU) during 30 days of exposure in the lab. We sequenced a partial mitochondrial CO1 gene to infer phylogenetic relationships among populations and confirmed two divergent mitochondrial lineages constituting our sample sets. Using a statistical model-selection approach, we investigated the effects of geographic distribution and genetic composition on locomotor performance in response to salt stress. Snails exposed to acute low salinity (13 PSU) reduced their locomotion and were unable to perform at their normal level (the moving pace of snails exposed to 33 PSU). We did not detect any meaningful differences in locomotor response to salt stress between the two genetic lineages or between the native snails (Japan vs. Korea populations), but we found significant locomotor differences between the native and introduced groups (Japan or Korea vs. the United States). We suggest that the greater magnitude of tidal salinity fluctuation at the US location may have influenced locomotor responses to salt stress in introduced snails.
Collapse
Affiliation(s)
- Phuong‐Thao Ho
- Institute of Fundamental and Applied SciencesDuy Tan UniversityHo Chi Minh CityVietnam
- Faculty of Natural SciencesDuy Tan UniversityDanang CityVietnam
| | - Hoa Quynh Nguyen
- Interdisciplinary Program of EcoCreativeEwha Womans UniversitySeoulKorea
- Division of EcoScienceEwha Womans UniversitySeoulKorea
- Institute of ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
| | | | - Yong‐Jin Won
- Interdisciplinary Program of EcoCreativeEwha Womans UniversitySeoulKorea
- Division of EcoScienceEwha Womans UniversitySeoulKorea
| |
Collapse
|
35
|
Zhou K, Huang Y, Chen Z, Du X, Qin J, Wen L, Ma H, Pan X, Lin Y. Liver and spleen transcriptome reveals that Oreochromis aureus under long-term salinity stress may cause excessive energy consumption and immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 107:469-479. [PMID: 33181338 DOI: 10.1016/j.fsi.2020.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
To investigate the physiological responses of Oreochromis aureus to salinity fluctuations at the molecular level. We used RNA-seq to explore the differentially expressed genes (DEGs) in the liver and spleen of O. aureus at 0, 3, 7 and 11 ppt (parts per thousand) salinity levels. Herein, De novo assembly generated 71,009 O. aureus unigenes, of which 34,607 were successfully mapped to the four major databases. A total of 120 shared DEGs were identified in liver and spleen transcripts, of which 83 were up-regulated and 37 were down-regulated. GO and KEGG analysis found a total of 26 significant pathways, mainly including energy metabolism, immune response, ion transporters and signal transduction. The trend module category of DEGs showed that the genes (e.g., FASN, ODC1, CD22, MRC, TRAV and SLC7 family) involved in the change-stable-change (1) and the constant-change categories (2) were highly sensitive to salinity fluctuations, which were of great value for further study. Based on these results, it would help provide basic data for fish salinity acclimation, and provide new insights into evolutionary response of fish to various aquatic environments in the long-term stress adaptation mechanism.
Collapse
Affiliation(s)
- Kangqi Zhou
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yin Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Zhong Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xuesong Du
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Junqi Qin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Luting Wen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Huawei Ma
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xianhui Pan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
36
|
Berdan EL, Fuller RC, Kozak GM. Genomic landscape of reproductive isolation in Lucania killifish: The role of sex loci and salinity. J Evol Biol 2020; 34:157-174. [PMID: 33118222 PMCID: PMC7894299 DOI: 10.1111/jeb.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 01/24/2023]
Abstract
Adaptation to different environments can directly and indirectly generate reproductive isolation between species. Bluefin killifish (Lucania goodei) and rainwater killifish (L. parva) are sister species that have diverged across a salinity gradient and are reproductively isolated by habitat, behavioural, extrinsic and intrinsic post-zygotic isolation. We asked if salinity adaptation contributes indirectly to other forms of reproductive isolation via linked selection and hypothesized that low recombination regions, such as sex chromosomes or chromosomal rearrangements, might facilitate this process. We conducted QTL mapping in backcrosses between L. parva and L. goodei to explore the genetic architecture of salinity tolerance, behavioural isolation and intrinsic isolation. We mapped traits relative to a chromosome that has undergone a centric fusion in L. parva (relative to L. goodei). We found that the sex locus appears to be male determining (XX-XY), was located on the fused chromosome and was implicated in intrinsic isolation. QTL associated with salinity tolerance were spread across the genome and did not overly co-localize with regions associated with behavioural or intrinsic isolation. This preliminary analysis of the genetic architecture of reproductive isolation between Lucania species does not support the hypothesis that divergent natural selection for salinity tolerance led to behavioural and intrinsic isolation as a by-product. Combined with previous studies in this system, our work suggests that adaptation as a function of salinity contributes to habitat isolation and that reinforcement may have contributed to the evolution of behavioural isolation instead, possibly facilitated by linkage between behavioural isolation and intrinsic isolation loci on the fused chromosome.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Rebecca C Fuller
- Department of Animal Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts-Dartmouth, Dartmouth, MA, USA
| |
Collapse
|
37
|
Dalziel AC, Tirbhowan S, Drapeau HF, Power C, Jonah LS, Gbotsyo YA, Dion‐Côté A. Using asexual vertebrates to study genome evolution and animal physiology: Banded ( Fundulus diaphanus) x Common Killifish ( F. heteroclitus) hybrid lineages as a model system. Evol Appl 2020; 13:1214-1239. [PMID: 32684956 PMCID: PMC7359844 DOI: 10.1111/eva.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Wild, asexual, vertebrate hybrids have many characteristics that make them good model systems for studying how genomes evolve and epigenetic modifications influence animal physiology. In particular, the formation of asexual hybrid lineages is a form of reproductive incompatibility, but we know little about the genetic and genomic mechanisms by which this mode of reproductive isolation proceeds in animals. Asexual lineages also provide researchers with the ability to produce genetically identical individuals, enabling the study of autonomous epigenetic modifications without the confounds of genetic variation. Here, we briefly review the cellular and molecular mechanisms leading to asexual reproduction in vertebrates and the known genetic and epigenetic consequences of the loss of sex. We then specifically discuss what is known about asexual lineages of Fundulus diaphanus x F. heteroclitus to highlight gaps in our knowledge of the biology of these clones. Our preliminary studies of F. diaphanus and F. heteroclitus karyotypes from Porter's Lake (Nova Scotia, Canada) agree with data from other populations, suggesting a conserved interspecific chromosomal arrangement. In addition, genetic analyses suggest that: (a) the same major clonal lineage (Clone A) of F. diaphanus x F. heteroclitus has remained dominant over the past decade, (b) some minor clones have also persisted, (c) new clones may have recently formed, and iv) wild clones still mainly descend from F. diaphanus ♀ x F. heteroclitus ♂ crosses (96% in 2017-2018). These data suggest that clone formation may be a relatively rare, but continuous process, and there are persistent environmental or genetic factors causing a bias in cross direction. We end by describing our current research on the genomic causes and consequences of a transition to asexuality and the potential physiological consequences of epigenetic variation.
Collapse
Affiliation(s)
| | - Svetlana Tirbhowan
- Department of BiologySaint Mary's UniversityHalifaxNSCanada
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | - Claude Power
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | | | | |
Collapse
|
38
|
Ruhr IM, Wood CM, Schauer KL, Wang Y, Mager EM, Stanton B, Grosell M. Is aquaporin-3 involved in water-permeability changes in the killifish during hypoxia and normoxic recovery, in freshwater or seawater? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:511-525. [PMID: 32548921 DOI: 10.1002/jez.2393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023]
Abstract
Aquaporins are the predominant water-transporting proteins in vertebrates, but only a handful of studies have investigated aquaporin function in fish, particularly in mediating water permeability during salinity challenges. Even less is known about aquaporin function in hypoxia (low oxygen), which can profoundly affect gill function. Fish deprived of oxygen typically enlarge gill surface area and shrink the water-to-blood diffusion distance, to facilitate oxygen uptake into the bloodstream. However, these alterations to gill morphology can result in unfavorable water and ion fluxes. Thus, there exists an osmorespiratory compromise, whereby fish must try to balance high branchial gas exchange with low ion and water permeability. Furthermore, the gills of seawater and freshwater teleosts have substantially different functions with respect to osmotic and ion fluxes; consequently, hypoxia can have very different effects according to the salinity of the environment. The purpose of this study was to determine what role aquaporins play in water permeability in the hypoxia-tolerant euryhaline common killifish (Fundulus heteroclitus), in two important osmoregulatory organs-the gills and intestine. Using immunofluorescence, we localized aquaporin-3 (AQP3) protein to the basolateral and apical membranes of ionocytes and enterocytes, respectively. Although hypoxia increased branchial AQP3 messenger-RNA expression in seawater and freshwater, protein abundance did not correlate. Indeed, hypoxia did not alter AQP3 protein abundance in seawater and reduced it in the cell membranes of freshwater gills. Together, these observations suggest killifish AQP3 contributes to reduced diffusive water flux during hypoxia and normoxic recovery in freshwater and facilitates intestinal permeability in seawater and freshwater.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Chris M Wood
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Kevin L Schauer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Yadong Wang
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Edward M Mager
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Bruce Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| |
Collapse
|
39
|
Huang PC, Liu TY, Hu MY, Casties I, Tseng YC. Energy and nitrogenous waste from glutamate/glutamine catabolism facilitates acute osmotic adjustment in non-neuroectodermal branchial cells. Sci Rep 2020; 10:9460. [PMID: 32528019 PMCID: PMC7289822 DOI: 10.1038/s41598-020-65913-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Maintenance of homeostasis is one of the most important physiological responses for animals upon osmotic perturbations. Ionocytes of branchial epithelia are the major cell types responsible for active ion transport, which is mediated by energy-consuming ion pumps (e.g., Na+-K+-ATPase, NKA) and secondary active transporters. Consequently, in addition to osmolyte adjustments, sufficient and immediate energy replenishment is essenttableial for acclimation to osmotic changes. In this study, we propose that glutamate/glutamine catabolism and trans-epithelial transport of nitrogenous waste may aid euryhaline teleosts Japanese medaka (Oryzias latipes) during acclimation to osmotic changes. Glutamate family amino acid contents in gills were increased by hyperosmotic challenge along an acclimation period of 72 hours. This change in amino acids was accompanied by a stimulation of putative glutamate/glutamine transporters (Eaats, Sat) and synthesis enzymes (Gls, Glul) that participate in regulating glutamate/glutamine cycling in branchial epithelia during acclimation to hyperosmotic conditions. In situ hybridization of glutaminase and glutamine synthetase in combination with immunocytochemistry demonstrate a partial colocalization of olgls1a and olgls2 but not olglul with Na+/K+-ATPase-rich ionocytes. Also for the glutamate and glutamine transporters colocalization with ionocytes was found for oleaat1, oleaat3, and olslc38a4, but not oleaat2. Morpholino knock-down of Sat decreased Na+ flux from the larval epithelium, demonstrating the importance of glutamate/glutamine transport in osmotic regulation. In addition to its role as an energy substrate, glutamate deamination produces NH4+, which may contribute to osmolyte production; genes encoding components of the urea production cycle, including carbamoyl phosphate synthetase (CPS) and ornithine transcarbamylase (OTC), were upregulated under hyperosmotic challenges. Based on these findings the present work demonstrates that the glutamate/glutamine cycle and subsequent transepithelial transport of nitrogenous waste in branchial epithelia represents an essential component for the maintenance of ionic homeostasis under a hyperosmotic challenge.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC)
| | - Tzu-Yen Liu
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC)
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Isabel Casties
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC).
| |
Collapse
|
40
|
Crawford DL, Schulte PM, Whitehead A, Oleksiak MF. Evolutionary Physiology and Genomics in the Highly Adaptable Killifish (
Fundulus heteroclitus
). Compr Physiol 2020; 10:637-671. [DOI: 10.1002/cphy.c190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Collar DC, Thompson JS, Ralston TC, Hobbs TJ. Fast-start escape performance across temperature and salinity gradients in mummichog Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2020; 96:755-767. [PMID: 32010969 DOI: 10.1111/jfb.14273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Fast-start predator-escape performance of mummichogs Fundulus heteroclitus was tested across field-informed variation in temperature (24, 30 and 36°C) and salinity (2, 12 and 32 ppt). Performance was similar across temperatures and salinities when fish were allowed to acclimate to these conditions. However, when mummichogs experienced acute temperature changes, performance exhibited thermal dependence in two contrasting ways. Fast-start turning rates and linear speeds varied directly with the temperature at which the manoeuvre was executed, but these aspects of performance varied inversely with acclimation temperature, with cool-acclimated fish exhibiting faster starts across test temperatures. Temperature effects were consistent across salinities. These results suggest that while mummichogs increase performance with acute temperature increases, long-term rises in sea temperature may cause these fish to become more susceptible to predation during abrupt cooling events, such as when storm events flood shallow water estuaries with cool rainwater.
Collapse
Affiliation(s)
- David C Collar
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Jessica S Thompson
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Tyler C Ralston
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| | - Trevor J Hobbs
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| |
Collapse
|
42
|
Su H, Ma D, Zhu H, Liu Z, Gao F. Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female × O. urolepis hornorum male). BMC Genomics 2020; 21:110. [PMID: 32005144 PMCID: PMC6995152 DOI: 10.1186/s12864-020-6512-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Osmotic stress is a widespread phenomenon in aquatic animal. The ability to cope with salinity stress and alkaline stress is quite important for the survival of aquatic species under natural conditions. Tilapia is an important commercial euryhaline fish species. What’s more tilapia is a good experimental material for osmotic stress regulation research, but the molecular regulation mechanism underlying different osmotic pressure of tilapia is still unexplored. Results To elucidate the osmoregulation strategy behind its hyper salinity, alkalinity and salinity-alkalinity stress of tilapia, the transcriptomes of gills in hybrid tilapia (Oreochromis mossambicus ♀ × O. urolepis hornorum ♂) under salinity stress (S: 25‰), alkalinity stress(A: 4‰) and salinity-alkalinity stress (SA: S: 15‰, A: 4‰) were sequenced using deep-sequencing platform Illumina/HiSeq-2000 and differential expression genes (DEGs) were identified. A total of 1958, 1472 and 1315 upregulated and 1824, 1940 and 1735 downregulated genes (P-value < 0.05) were identified in the salt stress, alkali stress and saline-alkali stress groups, respectively, compared with those in the control group. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted in the significant different expression genes. In all significant DEGs, some of the typical genes involved in osmoregulation, including carbonic anhydrase (CA), calcium/calmodulin-dependent protein kinase (CaM kinase) II (CAMK2), aquaporin-1(AQP1), sodium bicarbonate cotransporter (SLC4A4/NBC1), chloride channel 2(CLCN2), sodium/potassium/chloride transporter (SLC12A2 / NKCC1) and other osmoregulation genes were also identified. RNA-seq results were validated with quantitative real-time PCR (qPCR), the 17 random selected genes showed a consistent direction in both RNA-Seq and qPCR analysis, demonstrated that the results of RNA-seq were reliable. Conclusions The present results would be helpful to elucidate the osmoregulation mechanism of aquatic animals adapting to saline-alkali challenge. This study provides a global overview of gene expression patterns and pathways that related to osmoregulation in hybrid tilapia, and could contribute to a better understanding of the molecular regulation mechanism in different osmotic stresses.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou City, 510380, China.,Shanghai Ocean University, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Dongmei Ma
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou City, 510380, China
| | - Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou City, 510380, China.
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou City, 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou City, 510380, China
| |
Collapse
|
43
|
Machado Monteiro CM, Li H, Bischof K, Bartsch I, Valentin KU, Corre E, Collén J, Harms L, Glöckner G, Heinrich S. Is geographical variation driving the transcriptomic responses to multiple stressors in the kelp Saccharina latissima? BMC PLANT BIOLOGY 2019; 19:513. [PMID: 31775614 PMCID: PMC6881991 DOI: 10.1186/s12870-019-2124-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Kelps (Laminariales, Phaeophyceae) are brown macroalgae of utmost ecological, and increasingly economic, importance on temperate to polar rocky shores. Omics approaches in brown algae are still scarce and knowledge of their acclimation mechanisms to the changing conditions experienced in coastal environments can benefit from the application of RNA-sequencing. Despite evidence of ecotypic differentiation, transcriptomic responses from distinct geographical locations have, to our knowledge, never been studied in the sugar kelp Saccharina latissima so far. RESULTS In this study we investigated gene expression responses using RNA-sequencing of S. latissima from environments with contrasting temperature and salinity conditions - Roscoff, in temperate eastern Atlantic, and Spitsbergen in the Arctic. Juvenile sporophytes derived from uniparental stock cultures from both locations were pre-cultivated at 8 °C and SA 30. Sporophytes acclimated to 0 °C, 8 °C and 15 °C were exposed to a low salinity treatment (SA 20) for 24 h. Hyposalinity had a greater impact at the transcriptomic level than the temperature alone, and its effects were modulated by temperature. Namely, photosynthesis and pigment synthesis were extensively repressed by low salinity at low temperatures. Although some responses were shared among sporophytes from the different sites, marked differences were revealed by principal component analysis, differential expression and GO enrichment. The interaction between low temperature and low salinity drove the largest changes in gene expression in sporophytes from Roscoff while specimens from Spitsbergen required more metabolic adjustment at higher temperatures. Moreover, genes related to cell wall adjustment were differentially expressed between Spitsbergen and Roscoff control samples. CONCLUSIONS Our study reveals interactive effects of temperature and salinity on transcriptomic profiles in S. latissima. Moreover, our data suggest that under identical culture conditions sporophytes from different locations diverge in their transcriptomic responses. This is probably connected to variations in temperature and salinity in their respective environment of origin. The current transcriptomic results support the plastic response pattern in sugar kelp which is a species with several reported ecotypes. Our data provide the baseline for a better understanding of the underlying processes of physiological plasticity and may help in the future to identify strains adapted to specific environments and its genetic control.
Collapse
Affiliation(s)
- Cátia Marina Machado Monteiro
- Marine Botany, Faculty Biology/Chemistry, University of Bremen, Bremen, Germany
- Station Biologique de Roscoff, plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), 29680 Roscoff, France
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Huiru Li
- Marine Botany, Faculty Biology/Chemistry, University of Bremen, Bremen, Germany
- Fisheries College, Ocean University of China, Qingdao, China
| | - Kai Bischof
- Marine Botany, Faculty Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Inka Bartsch
- Alfred-Wegener-Institute, Helmholtz Centre for Marine and Polar Research, Bremerhaven, Germany
| | - Klaus Ulrich Valentin
- Alfred-Wegener-Institute, Helmholtz Centre for Marine and Polar Research, Bremerhaven, Germany
| | - Erwan Corre
- Station Biologique de Roscoff, plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), 29680 Roscoff, France
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Lars Harms
- Alfred-Wegener-Institute, Helmholtz Centre for Marine and Polar Research, Bremerhaven, Germany
| | - Gernot Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Sandra Heinrich
- Institute for Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
44
|
Christensen EAF, Stieglitz JD, Grosell M, Steffensen JF. Intra-Specific Difference in the Effect of Salinity on Physiological Performance in European Perch ( Perca fluviatilis) and Its Ecological Importance for Fish in Estuaries. BIOLOGY 2019; 8:biology8040089. [PMID: 31744192 PMCID: PMC6956070 DOI: 10.3390/biology8040089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/02/2022]
Abstract
Changes in environmental salinity challenge fish homeostasis and may affect physiological performance, such as swimming capacity and metabolism, which are important for foraging, migration, and escaping predators in the wild. The effects of salinity stress on physiological performance are largely species specific, but may also depend on intra-specific differences in physiological capabilities of sub-populations. We measured critical swimming speed (Ucrit) and metabolic rates during swimming and at rest at salinities of 0 and 10 in European perch (Perca fluviatilis) from a low salinity tolerance population (LSTP) and a high salinity tolerance population (HSTP). Ucrit of LSTP was significantly reduced at a salinity of 10 yet was unaffected by salinity change in HSTP. We did not detect a significant cost of osmoregulation, which should theoretically be apparent from the metabolic rates during swimming and at rest at a salinity of 0 compared to at a salinity of 10 (iso-osmotic). Maximum metabolic rates were also not affected by salinity, indicating a modest tradeoff between respiration and osmoregulation (osmo-respiratory compromise). Intra-specific differences in effects of salinity on physiological performance are important for fish species to maintain ecological compatibility in estuarine environments, yet render these sub-populations vulnerable to fisheries. The findings of the present study are therefore valuable knowledge in conservation and management of estuarine fish populations.
Collapse
Affiliation(s)
- Emil A. F. Christensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark;
- Correspondence:
| | - John D. Stieglitz
- Department of Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA;
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA;
| | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark;
| |
Collapse
|
45
|
Styga JM, Pienaar J, Scott PA, Earley RL. Does Body Shape in Fundulus Adapt to Variation in Habitat Salinity? Front Physiol 2019; 10:1400. [PMID: 31803063 PMCID: PMC6872640 DOI: 10.3389/fphys.2019.01400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/30/2019] [Indexed: 01/29/2023] Open
Abstract
Understanding the ecological pressures that generate variation in body shape is important because body shape profoundly affects physiology and overall fitness. Using Fundulus, a genus of fish that exhibits considerable morphological and physiological variation with evidence of repeated transitions between freshwater and saltwater habitats, we tested whether habitat salinity has influenced the macroevolution of body shape at different stages in development. After accounting for phylogenetic inertia, we find that body shape deviates from the optimal streamlined shape in a manner consistent with different osmoregulatory pressures exerted by different salinity niches at every stage of ontogeny that we examined. We attribute variation in body shape to differential selection for osmoregulatory efficiency because: (1) saline intolerant species developed body shapes with relatively low surface areas more conducive to managing osmoregulatory demands and (2) inland species that exhibit high salinity tolerances have body shapes similar to saline tolerant species in marine environments.
Collapse
Affiliation(s)
- Joseph M Styga
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States.,Biology Program, Centre College, Danville, KY, United States
| | - Jason Pienaar
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Peter A Scott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ryan L Earley
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
46
|
Differential regulation of select osmoregulatory genes and Na +/K +-ATPase paralogs may contribute to population differences in salinity tolerance in a semi-anadromous fish. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110584. [PMID: 31676412 DOI: 10.1016/j.cbpa.2019.110584] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The Sacramento splittail (Pogonichthys macrolepidotus) is a species of special concern that is native to the San Francisco Estuary, USA. Two genetically distinct populations exist and differ in maximal salinity tolerances. We examined the expression of 12 genes representative of osmoregulatory functions in the gill over a 14 day time course at two different salinities [11 or 14 PSU (Practical Salinity Units)] and revealed that each population showed distinct patterns of gene expression consistent with population differences in response to osmotic regimes. The relatively more salinity-tolerant San Pablo population significantly upregulated nine out of the 12 transcripts investigated on day 1 of 11 PSU salinity exposure in comparison to the day zero freshwater control. Three transcripts (nka1a, nka1b, and mmp13) were differentially expressed between the populations at 7 and 14 days of salinity exposure, suggesting a reduced ability of the relatively salinity-intolerant Central Valley population to recover. Additionally, a phylogenetic analysis of several Sacramento splittail Na+/K+-ATPase α1 sequences resulted in grouping by proposed paralog rather than species, suggesting that different paralogs of this gene may exist. These findings, together with prior research conducted on the Sacramento splittail, suggest that the San Pablo population may be able to preferentially regulate select osmoregulatory genes, including different Na+/K+-ATPase α1 paralogs, to better cope with salinity challenges.
Collapse
|
47
|
McKenzie JL, Chung DJ, Healy TM, Brennan RS, Bryant HJ, Whitehead A, Schulte PM. Mitochondrial Ecophysiology: Assessing the Evolutionary Forces That Shape Mitochondrial Variation. Integr Comp Biol 2019; 59:925-937. [PMID: 31282925 DOI: 10.1093/icb/icz124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mitonuclear species concept hypothesizes that incompatibilities between interacting gene products of the nuclear and mitochondrial genomes are a major factor establishing and maintaining species boundaries. However, most of the data available to test this concept come from studies of genetic variation in mitochondrial DNA, and clines in the mitochondrial genome across contact zones can be produced by a variety of forces. Here, we show that using a combination of population genomic analyses of the nuclear and mitochondrial genomes and studies of mitochondrial function can provide insight into the relative roles of neutral processes, adaptive evolution, and mitonuclear incompatibility in establishing and maintaining mitochondrial clines, using Atlantic killifish (Fundulus heteroclitus) as a case study. There is strong evidence for a role of secondary contact following the last glaciation in shaping a steep mitochondrial cline across a contact zone between northern and southern subspecies of killifish, but there is also evidence for a role of adaptive evolution in driving differentiation between the subspecies in a variety of traits from the level of the whole organism to the level of mitochondrial function. In addition, studies are beginning to address the potential for mitonuclear incompatibilities in admixed populations. However, population genomic studies have failed to detect evidence for a strong and pervasive influence of mitonuclear incompatibilities, and we suggest that polygenic selection may be responsible for the complex patterns observed. This case study demonstrates that multiple forces can act together in shaping mitochondrial clines, and illustrates the challenge of disentangling their relative roles.
Collapse
Affiliation(s)
- Jessica L McKenzie
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dillon J Chung
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Timothy M Healy
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Reid S Brennan
- Department of Environmental Toxicology, University of California-Davis, 4138 Meyer Hall, 1 Shields Avenue, Davis, CA 95616, USA
| | - Heather J Bryant
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California-Davis, 4138 Meyer Hall, 1 Shields Avenue, Davis, CA 95616, USA
| | - Patricia M Schulte
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
48
|
Thompson JS. Salinity affects growth but not thermal preference of adult mummichogs Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2019; 95:1107-1115. [PMID: 31329269 DOI: 10.1111/jfb.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The effects of an ecologically relevant range of salinities (2, 12, 22, 32) on thermal preferences and growth of adult mummichogs Fundulus heteroclitus were determined for fish from a southern Chesapeake Bay population. Salinity did not affect the mean temperature selected by F. heteroclitus in a thermal gradient, which was identified as 26.6°C based on observations of 240 individuals. Salinity and temperature had significant and interacting effects on growth rates of F. heteroclitus measured over 12 weeks. Growth rates were highest overall and remained high over a broader range of temperatures at moderate salinities (12 and 22), while high growth rates were shifted toward lower temperatures for fish grown at a salinity of 2 and higher temperatures at a salinity of 32. Significant reductions in growth relative to the optimal conditions (28.6°C, salinity of 22) were observed at the coolest (19.6°C) and warmest (33.6°C) temperature tested at all salinities, as well as temperatures ≥ 26.6°C at a salinity of 2, ≥ 28.6°C at a salinity of 12 and ≤ 26.6°C at a salinity of 32. Growth rates provide a long-term, organismal measure of performance and results of this study indicate that performance may be reduced under conditions that the highly euryhaline F. heteroclitus can otherwise easily tolerate. The combination of reduced salinity and increased temperature that is predicted for temperate estuaries as a result of climate change may have negative effects on growth of this ecologically important species.
Collapse
Affiliation(s)
- Jessica S Thompson
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia, USA
| |
Collapse
|
49
|
Wood CM, Ruhr IM, Schauer KL, Wang Y, Mager EM, McDonald MD, Stanton B, Grosell M. The osmorespiratory compromise in the euryhaline killifish: water regulation during hypoxia. ACTA ACUST UNITED AC 2019; 222:jeb.204818. [PMID: 31466998 DOI: 10.1242/jeb.204818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023]
Abstract
Freshwater- and seawater-acclimated Fundulus heteroclitus were exposed to acute hypoxia (10% air saturation, 3 h), followed by normoxic recovery (3 h). In both salinities, ventilation increased and heart rate fell in the classic manner, while Ṁ O2 initially declined by ∼50%, with partial restoration by 3 h of hypoxia, and no O2 debt repayment during recovery. Gill paracellular permeability (measured with [14C] PEG-4000) was 1.4-fold higher in seawater, and declined by 50% during hypoxia with post-exposure overshoot to 188%. A similar pattern with smaller changes occurred in freshwater. Drinking rate (also measured with [14C] PEG-4000) was 8-fold higher in seawater fish, but declined by ∼90% during hypoxia in both groups, with post-exposure overshoots to ∼270%. Gill diffusive water flux (measured with 3H2O) was 1.9-fold higher in freshwater fish, and exhibited a ∼35% decrease during hypoxia, which persisted throughout recovery, but was unchanged during hypoxia in seawater fish. Nevertheless, freshwater killifish gained mass while seawater fish lost mass during hypoxia, and these changes were not corrected during normoxic recovery. We conclude that this hypoxia-tolerant teleost beneficially reduces gill water permeability in a salinity-dependent fashion during hypoxia, despite attempting to simultaneously improve Ṁ O2 , but nevertheless incurs a net water balance penalty in both freshwater and seawater.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA .,Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ilan M Ruhr
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.,Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Kevin L Schauer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Yadong Wang
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Edward M Mager
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.,Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Bruce Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
50
|
Miller JT, Reid NM, Nacci DE, Whitehead A. Developing a High-Quality Linkage Map for the Atlantic Killifish Fundulus heteroclitus. G3 (BETHESDA, MD.) 2019; 9:2851-2862. [PMID: 31289021 PMCID: PMC6723127 DOI: 10.1534/g3.119.400262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022]
Abstract
Killifish (Fundulus heteroclitus) are widely distributed among different aquatic environments where they demonstrate an impressive range of highly-plastic and locally adaptive phenotypes. High-throughput sequencing has begun to unravel the mechanisms and evolutionary history of these interesting features by establishing relationships in the genotype-phenotype map. However, some genotype-phenotype analyses require a higher order of contiguity than what initial scaffolded (fragmented genome assembly where contigs have been assemble into scaffolds) genome assemblies can provide. Here, we used 5,685 high-quality RAD-Seq markers from a single mapping family to order 84% of the scaffolded genome assembly to 24 chromosomes. This serves to: 1) expand the killifish genomic toolkit, 2) estimate genome-wide recombination rates, and 3) compare genome synteny to humans and other fishes. After initially building our map, we found that the selection of thresholds for sequence data filtration highly impacted scaffold placement in the map. We outline each step of the approach that dramatically improved our map to help guide others toward more effective linkage mapping for genome assembly. Our final map supports strong conservation of genomic synteny among closely related fish species and reveals previously described chromosomal rearrangements between more distantly related clades. However, we also commonly found minor scaffold misorientations in F. heteroclitus and in other assemblies, suggesting that further mapping (such as optical mapping) is necessary for finer scale resolution of genome structure. Lastly, we discuss the problems that would be expected from misoriented/unplaced scaffolds and stress the importance of a quality mapped genome as a key feature for further investigating population and comparative genomic questions with F. heteroclitus and other taxa.
Collapse
Affiliation(s)
- Jeffrey T Miller
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California, Davis, CA
| | - Noah M Reid
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, and
| | - Diane E Nacci
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI
| | - Andrew Whitehead
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California, Davis, CA
| |
Collapse
|