1
|
Narayanaswamy S, Technau U. Self-organization of an organizer: Whole-body regeneration from reaggregated cells in cnidarians. Cells Dev 2025:204024. [PMID: 40180217 DOI: 10.1016/j.cdev.2025.204024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Cnidarians like the freshwater polyp Hydra and the sea anemone Nematostella, are famous for their enormous capacity to regenerate missing head or feet upon bisection. Classical transplantation experiments have demonstrated that the hypostome, the oral tip of the freshwater polyp Hydra, acts as an axial organizer. Likewise, transplantation of the blastopore lip of an early Nematostella gastrula stage embryo to an aboral position leads to ectopic head formation. Following molecular analyses have shown that Wnt signaling is the key component of this organizer activity. Moreover, when dissociated and reaggregated head (and foot) organizer centres are re-established by self-organization. Similarly, "gastruloids", i.e. aggregates of dissociated early gastrula stage embryos, are able to self-organize. Here, we review the past and recent molecular and theoretical work in the field to explain this phenomenon. While Turing-type reaction-diffusion models involving morphogens like Wnt dominated the field for many years, recent work emphasized the importance of biophysical cues in symmetry breaking and establishment of the organizers in aggregates. The comparison with Nematostella aggregates suggests that the principles of self-organization in cnidarians is not universal.
Collapse
Affiliation(s)
- Sanjay Narayanaswamy
- Dept. of Neurosciences and Developmental Biology, Research Platform "Single cell regulation of stem cells", Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ulrich Technau
- Dept. of Neurosciences and Developmental Biology, Research Platform "Single cell regulation of stem cells", Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
2
|
Campos SE, Naziri S, Crane J, Tsverov J, Cox BD, Ciampa C, Juliano CE. Wnt signaling restores evolutionary loss of regenerative potential in Hydra. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643955. [PMID: 40166132 PMCID: PMC11957054 DOI: 10.1101/2025.03.18.643955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The regenerative potential of animals varies widely, even among closely-related species. In a comparative study of regeneration across the Hydra genus, we found that while most species exhibit robust whole-body regeneration, Hydra oligactis and other members of the Oligactis clade consistently fail to regenerate their feet. To investigate the mechanisms underlying this deficiency, we analyzed transcriptional responses during head and foot regeneration in H. oligactis. Our analysis revealed that the general injury response in H. oligactis lacks activation of Wnt signaling, a pathway essential for Hydra vulgaris foot regeneration. Notably, transient treatment with a Wnt agonist in H. oligactis triggered a foot-specific transcriptional program, successfully rescuing foot regeneration. Our transcriptional profiling also revealed dlx2 as a likely high-level regulator of foot regeneration, dependent on Wnt signaling activation. Our study establishes a comparative framework for understanding the molecular basis of regeneration and its evolutionary loss in closely-related species.
Collapse
Affiliation(s)
- Sergio E. Campos
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CIE-Cinvestav), Sede Sur, Mexico City, 14330, Mexico
| | - Sahar Naziri
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Jackson Crane
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | - Jennifer Tsverov
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | - Ben D. Cox
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | - Craig Ciampa
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | - Celina E. Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| |
Collapse
|
3
|
Maroudas-Sacks Y, Suganthan S, Garion L, Ascoli-Abbina Y, Westfried A, Dori N, Pasvinter I, Popović M, Keren K. Mechanical strain focusing at topological defect sites in regenerating Hydra. Development 2025; 152:DEV204514. [PMID: 40026208 PMCID: PMC11925399 DOI: 10.1242/dev.204514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/31/2024] [Indexed: 03/04/2025]
Abstract
The formation of a new head during Hydra regeneration involves the establishment of a head organizer that functions as a signaling center and contains an aster-shaped topological defect in the organization of the supracellular actomyosin fibers. Here, we show that the future head region in regenerating tissue fragments undergoes multiple instances of extensive stretching and rupture events from the onset of regeneration. These recurring localized tissue deformations arise due to transient contractions of the supracellular ectodermal actomyosin fibers that focus mechanical strain at defect sites. We further show that stabilization of aster-shaped defects is disrupted by perturbations of the Wnt signaling pathway. We propose a closed-loop feedback mechanism promoting head organizer formation, and develop a biophysical model of regenerating Hydra tissues that incorporates a morphogen source activated by mechanical strain and an alignment interaction directing fibers along morphogen gradients. We suggest that this positive-feedback loop leads to mechanical strain focusing at defect sites, enhancing local morphogen production and promoting robust organizer formation.
Collapse
Affiliation(s)
- Yonit Maroudas-Sacks
- Department of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - S. Suganthan
- Max-Planck Institute for Physics of Complex Systems, MPI-PKS, Nothnitzer Strasse 38, Dresden 01187, Germany
| | - Liora Garion
- Department of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Ascoli-Abbina
- Department of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Westfried
- Department of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Noam Dori
- Department of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Iris Pasvinter
- Department of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Marko Popović
- Max-Planck Institute for Physics of Complex Systems, MPI-PKS, Nothnitzer Strasse 38, Dresden 01187, Germany
- Cluster of Excellence, Physics of Life, Technische Universitat Dresden, Arnoldstrasse 18, Dresden 01307, Germany
- Center for Systems Biology, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Kinneret Keren
- Department of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratories and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
4
|
Chidiac R, Yang A, Kubarakos E, Mikolajewicz N, Han H, Almeida MP, Thibeault PE, Lin S, MacLeod G, Gratton JP, Moffat J, Angers S. Selective activation of FZD2 and FZD7 reveals non-redundant function during mesoderm differentiation. Stem Cell Reports 2025; 20:102391. [PMID: 39824186 PMCID: PMC11864152 DOI: 10.1016/j.stemcr.2024.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025] Open
Abstract
During gastrulation, Wnt-β-catenin signaling dictates lineage bifurcation generating different mesoderm cell types. However, the specific role of Wnt receptors in mesoderm specification remains elusive. Using selective Frizzled (FZD) and LRP5/6 antibody-based agonists, we examined FZD receptors' function during directed mesoderm differentiation of human pluripotent stem cells (hPSCs). We found that FZD2 and FZD7 receptors are expressed at the membrane of hPSCs and that their activation triggers β-catenin signaling with different kinetics, thereby influencing mesoderm patterning choices. Specifically, FZD7 activation enhances both paraxial and lateral mesoderm differentiation, whereas FZD2 activation favors paraxial mesoderm. Mechanistically, FZD2 activation promotes sustained Wnt-β-catenin levels, guiding hPSCs differentiation toward paraxial mesoderm, while blocking lateral mesoderm. In contrast, FZD7 activation kinetics display similar initial activation but more dampening of β-catenin signaling, permitting lateral mesoderm induction in addition to paraxial mesoderm specification. Our findings reveal non-redundant roles for FZD2 and FZD7 in mesoderm specification, offering leverage for precise directed differentiation outcomes.
Collapse
Affiliation(s)
- Rony Chidiac
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Andy Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Elli Kubarakos
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Nicholas Mikolajewicz
- Program in Genetics and Genome Biology, The Hospital for Sick Kids, Toronto, ON, Canada
| | - Hong Han
- Program in Genetics and Genome Biology, The Hospital for Sick Kids, Toronto, ON, Canada
| | - Maira P Almeida
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Pierre E Thibeault
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Graham MacLeod
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Kids, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Galliot B, Wenger Y. Organizer formation, organizer maintenance and epithelial cell plasticity in Hydra: Role of the Wnt3/β-catenin/TCF/Sp5/Zic4 gene network. Cells Dev 2025:204002. [PMID: 39929422 DOI: 10.1016/j.cdev.2025.204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
The experimental and conceptual knowledge in 1909 led to the discovery of the Hydra head organizer through transplantation experiments between pigmented and non-pigmented animals; a discovery followed by numerous transplantations demonstrating cross-regulation between activating and inhibiting components distributed along the body axis. This experimental work inspired mathematicians, engineers, physicists and computer scientists to develop theoretical models predicting the principles of developmental mechanisms. Today, we know that the Wnt/β-catenin/Sp5/Zic4 gene regulatory network (GRN) links organizer activity, morphogenesis and cellular identity in Hydra, with variable conformations depending on the region or epithelial layer, and varied phenotypes depending on which GRN element is misregulated. In intact animals, Wnt/β-catenin signaling acts as the head activator at the tip of the hypostome, restricted by Sp5 in the other regions of the animal. Moreover, in the tentacle ring, Sp5 and Zic4 act epistatically to support tentacle differentiation and prevent basal disc differentiation. Along the body column, Sp5 is self-repressed in the epidermis and acts as a head inhibitor along the gastrodermis. Other players modulate these activities, such as TSP and Margin/RAX apically, Notch signaling in the tentacle zone, Dkk1/2/4 and HAS-7 in the body column. In the developmental context of regeneration, cells below the amputation zone switch from repressed to locally de novo activated head organizer status, a transition driven by immediate symmetrical and asymmetrical metabolic changes that lead to gene expression regulations involving components and modulators of Wnt/β-catenin signaling, early-pulse and early-late transient both often symmetrical, together with sustained ones, specific to head regeneration.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
| | - Yvan Wenger
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Steichele M, Sauermann L, Pan Q, Moneer J, de la Porte A, Heß M, Mercker M, Strube C, Flaswinkel H, Jenewein M, Böttger A. Notch signaling mediates between two pattern-forming processes during head regeneration in Hydra. Life Sci Alliance 2025; 8:e202403054. [PMID: 39532539 PMCID: PMC11565402 DOI: 10.26508/lsa.202403054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Hydra head regeneration consists of hypostome/organizer and tentacle development, and involves Notch and Wnt/β-catenin signaling. Notch inhibition blocks hypostome/organizer regeneration, but not the appearance of the tentacle tissue. β-Catenin inhibition blocks tentacle, but not hypostome/organizer regeneration. Gene expression analyses during head regeneration revealed the Notch-promoting expression of HyWnt3, HyBMP2/4, and the transcriptional repressor genes CnGsc, Sp5, and HyHes, while blocking HyBMP5/8b and the c-fos-related gene HyKayak β-Catenin promotes the expression of the tentacle specification factor HyAlx, but not of HyWnt3 This suggests HyWnt3 and HyBMP4 as parts of a hypostome/organizer gene module, and BMP5/8, HyAlx, and β-catenin as parts of a tentacle gene module. Notch then functions as an inhibitor of tentacle production to allow regeneration of a hypostome/head organizer. HyKayak is a candidate target gene for HvNotch-induced repressor genes. Inhibiting HyKayak attenuated the expression of HyWnt3 Polyps of Craspedacusta do not have tentacles and thus after head removal only regenerate a hypostome structure. Notch signaling was not needed for head regeneration in Craspedacusta, corroborating the idea of its requirement during Hydra head regeneration to harmonize two co-operating pattern-forming processes.
Collapse
Affiliation(s)
- Mona Steichele
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lara Sauermann
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Qin Pan
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jasmin Moneer
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Martin Heß
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Moritz Mercker
- Institute of Applied Mathematics, Heidelberg-University, Heidelberg, Germany
| | - Catharina Strube
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heinrich Flaswinkel
- Center for Molecular Biosystems (BioSysM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marcell Jenewein
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Angelika Böttger
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
7
|
Perros T, Biquet-Bisquert A, Ben Meriem Z, Delarue M, Joseph P, Marcq P, Cochet-Escartin O. Mechanical characterization of regenerating Hydra tissue spheres. Biophys J 2024; 123:1792-1803. [PMID: 38783602 PMCID: PMC11267430 DOI: 10.1016/j.bpj.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/12/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Hydra vulgaris, long known for its remarkable regenerative capabilities, is also a long-standing source of inspiration for models of spontaneous patterning. Recently it became clear that early patterning during Hydra regeneration is an integrated mechanochemical process whereby morphogen dynamics is influenced by tissue mechanics. One roadblock to understanding Hydra self-organization is our lack of knowledge about the mechanical properties of these organisms. In this study, we combined microfluidic developments to perform parallelized microaspiration rheological experiments and numerical simulations to characterize these mechanical properties. We found three different behaviors depending on the applied stresses: an elastic response, a viscoelastic response, and tissue rupture. Using models of deformable shells, we quantify their Young's modulus, shear viscosity, and the critical stresses required to switch between behaviors. Based on these experimental results, we propose a description of the tissue mechanics during normal regeneration. Our results provide a first step toward the development of original mechanochemical models of patterning grounded in quantitative experimental data.
Collapse
Affiliation(s)
- Thomas Perros
- University Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Anaïs Biquet-Bisquert
- University Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France; Centre de Biologie Structurale, CNRS UMR5048, INSERM U1054, University of Montpellier, Montpellier, France
| | - Zacchari Ben Meriem
- Laboratory for Analysis and Architecture of Systems, Université de Toulouse-CNRS, Toulouse, France
| | - Morgan Delarue
- Laboratory for Analysis and Architecture of Systems, Université de Toulouse-CNRS, Toulouse, France
| | - Pierre Joseph
- Laboratory for Analysis and Architecture of Systems, Université de Toulouse-CNRS, Toulouse, France
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, Sorbonne Université, CNRS UMR 7636, ESPCI, Université Paris Cité, Paris, France
| | | |
Collapse
|
8
|
Iglesias Ollé L, Perruchoud C, Sanchez PGL, Vogg MC, Galliot B. The Wnt/β-catenin/TCF/Sp5/Zic4 Gene Network That Regulates Head Organizer Activity in Hydra Is Differentially Regulated in Epidermis and Gastrodermis. Biomedicines 2024; 12:1274. [PMID: 38927481 PMCID: PMC11201823 DOI: 10.3390/biomedicines12061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Hydra head formation depends on an organizing center in which Wnt/β-catenin signaling, that plays an inductive role, positively regulates Sp5 and Zic4, with Sp5 limiting Wnt3/β-catenin expression and Zic4 triggering tentacle formation. Using transgenic lines in which the HySp5 promoter drives eGFP expression in either the epidermis or gastrodermis, we show that Sp5 promoter activity is differentially regulated in each epithelial layer. In intact animals, epidermal HySp5:GFP activity is strong apically and weak along the body column, while in the gastrodermis, it is maximal in the tentacle ring region and maintained at a high level along the upper body column. During apical regeneration, HySp5:GFP is activated early in the gastrodermis and later in the epidermis. Alsterpaullone treatment induces a shift in apical HySp5:GFP expression towards the body column where it forms transient circular figures in the epidermis. Upon β-catenin(RNAi), HySp5:GFP activity is down-regulated in the epidermis while bud-like structures expressing HySp5:GFP in the gastrodermis develop. Sp5(RNAi) reveals a negative Sp5 autoregulation in the epidermis, but not in the gastrodermis. These differential regulations in the epidermis and gastrodermis highlight the distinct architectures of the Wnt/β-catenin/TCF/Sp5/Zic4 network in the hypostome, tentacle base and body column of intact animals, as well as in the buds and apical and basal regenerating tips.
Collapse
Affiliation(s)
| | | | | | | | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1205 Geneva, Switzerland (C.P.); (P.G.L.S.)
| |
Collapse
|
9
|
Holstein TW. The significance of Ethel Browne's research on Hydra for the organizer concept. Cells Dev 2024; 178:203907. [PMID: 38417631 DOI: 10.1016/j.cdev.2024.203907] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024]
Abstract
This article focuses on the roots of the organizer concept, which was developed by Hans Spemann during his studies of early embryonic development in amphibians. The fundamental properties of this axis-inducing signaling center have been elucidated through pioneering molecular research by Eddy De Robertis' laboratory and other researchers. Evolutionary comparisons have disclosed the presence of this signaling center, involving the interaction of Wnt and TGF-beta signaling pathways, existed not only in vertebrates but also in basal Metazoa such as Cnidaria. - Notably, even prior to the groundbreaking experiments conducted by Hilde Mangold and Hans Spemann, Ethel Browne conducted similar transplantation experiments on Hydra polyps. They were performed under the guidance of Thomas H Morgan and in the laboratory of Edmund B Wilson. Howard Lenhoff was the first to draw connections between Ethel Browne's transplantation experiments and those of Spemann and Mangold, igniting a vivid debate on the precedence of the organizer concept and its recognition in Nobel Prize considerations. This review critically compares the experiments conducted by Spemann and Mangold with those preceding their seminal work, concluding that the organizer concept clearly builds upon earlier research aimed at understanding developmental gradients, such as in the simple model Hydra. However, these approaches were not pursued further by Morgan, who shifted his focus towards unraveling the genetic control of development in flies, an approach that ultimately revealed the molecular identity of the Spemann organizer in vertebrates.
Collapse
Affiliation(s)
- Thomas W Holstein
- Heidelberg University, Centre for Organismal Studies (COS), Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Yuste R. Breaking the neural code of a cnidarian: Learning principles of neuroscience from the "vulgar" Hydra. Curr Opin Neurobiol 2024; 86:102869. [PMID: 38552547 DOI: 10.1016/j.conb.2024.102869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
The cnidarian Hydra vulgaris is a small polyp with a nervous system of few hundred neurons belonging to a dozen cell types, organized in two nerve nets without cephalization or ganglia. Using this simple neural "chassis", Hydra can maintain a stable repertoire of behaviors, even performing complex fixed-action patterns, such as somersaulting and feeding. The ability to image the activity of Hydra's entire neural and muscle tissue has revealed that Hydra's nerve nets are divided into coactive ensembles of neurons, associated with specific movements. These ensembles can be activated by neuropeptides and interact using cross-inhibition circuits and implement integrate-to-threshold algorithms. In addition, Hydra's nervous system can self-assemble from dissociated cells in a stepwise modular architecture. Studies of Hydra and other cnidarians could enable the systematic deciphering of the neural basis of its behavior and help provide perspective on basic principles of neuroscience.
Collapse
Affiliation(s)
- Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
11
|
Wang R, Bialas AL, Goel T, Collins EMS. Mechano-Chemical Coupling in Hydra Regeneration and Patterning. Integr Comp Biol 2023; 63:1422-1441. [PMID: 37339912 DOI: 10.1093/icb/icad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
The freshwater cnidarian Hydra can regenerate from wounds, small tissue fragments and even from aggregated cells. This process requires the de novo development of a body axis and oral-aboral polarity, a fundamental developmental process that involves chemical patterning and mechanical shape changes. Gierer and Meinhardt recognized that Hydra's simple body plan and amenability to in vivo experiments make it an experimentally and mathematically tractable model to study developmental patterning and symmetry breaking. They developed a reaction-diffusion model, involving a short-range activator and a long-range inhibitor, which successfully explained patterning in the adult animal. In 2011, HyWnt3 was identified as a candidate for the activator. However, despite the continued efforts of both physicists and biologists, the predicted inhibitor remains elusive. Furthermore, the Gierer-Meinhardt model cannot explain de novo axis formation in cellular aggregates that lack inherited tissue polarity. The aim of this review is to synthesize the current knowledge on Hydra symmetry breaking and patterning. We summarize the history of patterning studies and insights from recent biomechanical and molecular studies, and highlight the need for continued validation of theoretical assumptions and collaboration across disciplinary boundaries. We conclude by proposing new experiments to test current mechano-chemical coupling models and suggest ideas for expanding the Gierer-Meinhardt model to explain de novo patterning, as observed in Hydra aggregates. The availability of a fully sequenced genome, transgenic fluorescent reporter strains, and modern imaging techniques, that enable unprecedented observation of cellular events in vivo, promise to allow the community to crack Hydra's secret to patterning.
Collapse
Affiliation(s)
- Rui Wang
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
| | - April L Bialas
- Department of Biology, Swarthmore College, 500 College Ave, Swarthmore, 19081 PA, USA
| | - Tapan Goel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, 500 College Ave, Swarthmore, 19081 PA, USA
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| |
Collapse
|
12
|
Hanson A. On being a Hydra with, and without, a nervous system: what do neurons add? Anim Cogn 2023; 26:1799-1816. [PMID: 37540280 PMCID: PMC10770230 DOI: 10.1007/s10071-023-01816-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
The small freshwater cnidarian Hydra has been the subject of scientific inquiry for over 300 years due to its remarkable regenerative capacities and apparent immortality. More recently, Hydra has been recognized as an excellent model system within neuroscience because of its small size, transparency, and simple nervous system, which allow high-resolution imaging of its entire nerve net while behaving. In less than a decade, studies of Hydra's nervous system have yielded insights into the activity of neural circuits in vivo unobtainable in most other animals. In addition to these unique attributes, there is yet another lesser-known feature of Hydra that makes it even more intriguing: it does not require its neural hardware to live. The extraordinary ability to survive the removal and replacement of its entire nervous system makes Hydra uniquely suited to address the question of what neurons add to an extant organism. Here, I will review what early work on nerve-free Hydra reveals about the potential role of the nervous system in these animals and point towards future directions for this work.
Collapse
Affiliation(s)
- Alison Hanson
- Department of Biological Sciences, Neurotechnology Center, Columbia University, New York, NY, USA.
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Holstein TW. The Hydra stem cell system - Revisited. Cells Dev 2023; 174:203846. [PMID: 37121433 DOI: 10.1016/j.cdev.2023.203846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Cnidarians are >600 million years old and are considered the sister group of Bilateria based on numerous molecular phylogenetic studies. Apart from Hydra, the genomes of all major clades of Cnidaria have been uncovered (e.g. Aurelia, Clytia, Nematostella and Acropora) and they reveal a remarkable completeness of the metazoan genomic toolbox. Of particular interest is Hydra, a model system of aging research, regenerative biology, and stem cell biology. With the knowledge gained from scRNA research, it is now possible to characterize the expression profiles of all cell types with great precision. In functional studies, our picture of the Hydra stem cell biology has changed, and we are in the process of obtaining a clear picture of the homeostasis and properties of the different stem cell populations. Even though Hydra is often compared to plant systems, the new data on germline and regeneration, but also on the dynamics and plasticity of the nervous system, show that Hydra with its simple body plan represents in a nutshell the prototype of an animal with stem cell lineages, whose properties correspond in many ways to Bilateria. This review provides an overview of the four stem cell lineages, the two epithelial lineages that constitute the ectoderm and the endoderm, as well as the multipotent somatic interstitial lineage (MPSC) and the germline stem cell lineage (GSC), also known as the interstitial cells of Hydra.
Collapse
Affiliation(s)
- Thomas W Holstein
- Heidelberg University, Centre for Organismal Studies (COS), Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Petersen CP. Wnt signaling in whole-body regeneration. Curr Top Dev Biol 2023; 153:347-380. [PMID: 36967200 DOI: 10.1016/bs.ctdb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Regeneration abilities are widespread among animals and select species can restore any body parts removed by wounds that sever the major body axes. This capability of whole-body regeneration as exemplified in flatworm planarians, Acoels, and Cnidarians involves initial responses to injury, the assessment of wound site polarization, determination of missing tissue and programming of blastema fate, and patterned outgrowth to restore axis content and proportionality. Wnt signaling drives many shared and conserved aspects of the biology of whole-body regeneration in the planarian species Schmidtea mediterranea and Dugesia japonica, in the Acoel Hofstenia miamia, and in Cnidarians Hydra and Nematostella. These overlapping mechanisms suggest whole-body regeneration might be an ancestral property across diverse animal taxa.
Collapse
Affiliation(s)
- Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
15
|
Tursch A, Holstein TW. From injury to patterning—MAPKs and Wnt signaling in Hydra. Curr Top Dev Biol 2023; 153:381-417. [PMID: 36967201 DOI: 10.1016/bs.ctdb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hydra has a regenerative capacity that is not limited to individual organs but encompasses the entire body. Various global and integrative genome, transcriptome and proteome approaches have shown that many of the signaling pathways and transcription factors present in vertebrates are already present in Cnidaria, the sister group of Bilateria, and are also activated in regeneration. It is now possible to investigate one of the central questions of regeneration biology, i.e., how does the patterning system become activated by the injury signals that initiate regeneration. This review will present the current data obtained in Hydra and draw parallels with regeneration in Bilateria. Important findings of this global analysis are that the Wnt signaling pathway has a dual function in the regeneration process. In the early phase Wnt is activated generically and in a second phase of pattern formation it is activated in a position specific manner. Thus, Wnt signaling is part of the generic injury response, in which mitogen-activated protein kinases (MAPKs) are initially activated via calcium and reactive oxygen species (ROS). The MAPKs, p38, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERK) are essential for Wnt activation in Hydra head and foot regenerates. Furthermore, the antagonism between the ERK signaling pathway and stress-induced MAPKs results in a balanced induction of apoptosis and mitosis. However, the early Wnt genes are activated by MAPK signaling rather than apoptosis. Early Wnt gene activity is differentially integrated with a stable, β-Catenin-based gradient along the primary body axis maintaining axial polarity and activating further Wnts in the regenerating head. Because MAPKs and Wnts are highly evolutionarily conserved, we hypothesize that this mechanism is also present in vertebrates but may be activated to different degrees at the level of early Wnt gene integration.
Collapse
|
16
|
Vogg MC, Ferenc J, Buzgariu WC, Perruchoud C, Sanchez PGL, Beccari L, Nuninger C, Le Cras Y, Delucinge-Vivier C, Papasaikas P, Vincent S, Galliot B, Tsiairis CD. The transcription factor Zic4 promotes tentacle formation and prevents epithelial transdifferentiation in Hydra. SCIENCE ADVANCES 2022; 8:eabo0694. [PMID: 36563144 PMCID: PMC9788771 DOI: 10.1126/sciadv.abo0694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The molecular mechanisms that maintain cellular identities and prevent dedifferentiation or transdifferentiation remain mysterious. However, both processes are transiently used during animal regeneration. Therefore, organisms that regenerate their organs, appendages, or even their whole body offer a fruitful paradigm to investigate the regulation of cell fate stability. Here, we used Hydra as a model system and show that Zic4, whose expression is controlled by Wnt3/β-catenin signaling and the Sp5 transcription factor, plays a key role in tentacle formation and tentacle maintenance. Reducing Zic4 expression suffices to induce transdifferentiation of tentacle epithelial cells into foot epithelial cells. This switch requires the reentry of tentacle battery cells into the cell cycle without cell division and is accompanied by degeneration of nematocytes embedded in these cells. These results indicate that maintenance of cell fate by a Wnt-controlled mechanism is a key process both during homeostasis and during regeneration.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Jaroslav Ferenc
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- University of Basel, Petersplatz 1, Basel 4001, Switzerland
| | - Wanda Christa Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Chrystelle Perruchoud
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Paul Gerald Layague Sanchez
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
| | - Leonardo Beccari
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, University Claude Bernard Lyon 1, Lyon, France
| | - Clara Nuninger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- University of Basel, Petersplatz 1, Basel 4001, Switzerland
| | - Youn Le Cras
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Céline Delucinge-Vivier
- iGE3 Genomics Platform, University of Geneva, 1 Rue Michel-Servet, Geneva 4 1211, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| | - Stéphane Vincent
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie, Lyon F-69364, France
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 4 1211, Switzerland
- Corresponding author. (B.G.); (C.D.T.)
| | - Charisios D. Tsiairis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
- Corresponding author. (B.G.); (C.D.T.)
| |
Collapse
|
17
|
Injury-induced MAPK activation triggers body axis formation in Hydra by default Wnt signaling. Proc Natl Acad Sci U S A 2022; 119:e2204122119. [PMID: 35994642 PMCID: PMC9436372 DOI: 10.1073/pnas.2204122119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydra's almost unlimited regenerative potential is based on Wnt signaling, but so far it is unknown how the injury stimulus is transmitted to discrete patterning fates in head and foot regenerates. We previously identified mitogen-activated protein kinases (MAPKs) among the earliest injury response molecules in Hydra head regeneration. Here, we show that three MAPKs-p38, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs)-are essential to initiate regeneration in Hydra, independent of the wound position. Their activation occurs in response to any injury and requires calcium and reactive oxygen species (ROS) signaling. Phosphorylated MAPKs hereby exhibit cross talk with mutual antagonism between the ERK pathway and stress-induced MAPKs, orchestrating a balance between cell survival and apoptosis. Importantly, Wnt3 and Wnt9/10c, which are induced by MAPK signaling, can partially rescue regeneration in tissues treated with MAPK inhibitors. Also, foot regenerates can be reverted to form head tissue by a pharmacological increase of β-catenin signaling or the application of recombinant Wnts. We propose a model in which a β-catenin-based stable gradient of head-forming capacity along the primary body axis, by differentially integrating an indiscriminate injury response, determines the fate of the regenerating tissue. Hereby, Wnt signaling acquires sustained activation in the head regenerate, while it is transient in the presumptive foot tissue. Given the high level of evolutionary conservation of MAPKs and Wnts, we assume that this mechanism is deeply embedded in our genome.
Collapse
|
18
|
Plasticity of body axis polarity in Hydra regeneration under constraints. Sci Rep 2022; 12:13368. [PMID: 35922470 PMCID: PMC9349251 DOI: 10.1038/s41598-022-17411-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
One of the major events in animal morphogenesis is the emergence of a polar body axis. Here, we combine classic grafting techniques with live imaging to explore the plasticity of polarity determination during whole body regeneration in Hydra. Composite tissues are made by fusing two rings, excised from separate animals, in different configurations that vary in the polarity and original positions of the rings along the body axes of the parent animals. Under frustrating initial configurations, body axis polarity that is otherwise stably inherited from the parent animal, can become labile and even be reversed. Importantly, the site of head regeneration exhibits a strong bias toward the edges of the tissue, even when this involves polarity reversal. In particular, we observe head formation at an originally aboral tissue edge, which is not compatible with models of Hydra regeneration based only on preexisting morphogen gradients or an injury response. The site of the new head invariably contains an aster-like defect in the organization of the supra-cellular ectodermal actin fibers. While a defect is neither required nor sufficient for head formation, we show that the defect at the new head site can arise via different routes, either appearing directly following excision as the tissue seals at its edge or through de novo defect formation at the fusion site. Altogether, our results show that the emergence of a polar body axis depends on the original polarity and position of the excised tissues as well as structural factors, suggesting that axis determination is an integrated process that arises from the dynamic interplay of multiple biochemical and mechanical processes.
Collapse
|
19
|
Brooun M, Salvenmoser W, Dana C, Sudol M, Steele R, Hobmayer B, McNeill H. The Hippo pathway regulates axis formation and morphogenesis in Hydra. Proc Natl Acad Sci U S A 2022; 119:e2203257119. [PMID: 35858299 PMCID: PMC9304002 DOI: 10.1073/pnas.2203257119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
How did cells of early metazoan organisms first organize themselves to form a body axis? The canonical Wnt pathway has been shown to be sufficient for induction of axis in Cnidaria, a sister group to Bilateria, and is important in bilaterian axis formation. Here, we provide experimental evidence that in cnidarian Hydra the Hippo pathway regulates the formation of a new axis during budding upstream of the Wnt pathway. The transcriptional target of the Hippo pathway, the transcriptional coactivator YAP, inhibits the initiation of budding in Hydra and is regulated by Hydra LATS. In addition, we show functions of the Hippo pathway in regulation of actin organization and cell proliferation in Hydra. We hypothesize that the Hippo pathway served as a link between continuous cell division, cell density, and axis formation early in metazoan evolution.
Collapse
Affiliation(s)
- Maria Brooun
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, M5G 1X5, Canada
| | - Willi Salvenmoser
- Department of Zoology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Catherine Dana
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| | - Marius Sudol
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert Steele
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| | - Bert Hobmayer
- Department of Zoology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110-1093
| |
Collapse
|
20
|
Traffic light Hydra allows for simultaneous in vivo imaging of all three cell lineages. Dev Biol 2022; 488:74-80. [DOI: 10.1016/j.ydbio.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
21
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
22
|
Erofeeva TV, Grigorenko AP, Gusev FE, Kosevich IA, Rogaev EI. Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:269-293. [PMID: 35526848 DOI: 10.1134/s0006297922030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
Collapse
Affiliation(s)
- Taisia V Erofeeva
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia P Grigorenko
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Fedor E Gusev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor A Kosevich
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Evgeny I Rogaev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
23
|
Shani-Zerbib L, Garion L, Maroudas-Sacks Y, Braun E, Keren K. Canalized Morphogenesis Driven by Inherited Tissue Asymmetries in Hydra Regeneration. Genes (Basel) 2022; 13:360. [PMID: 35205404 PMCID: PMC8872179 DOI: 10.3390/genes13020360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
The emergence and stabilization of a body axis is a major step in animal morphogenesis, determining the symmetry of the body plan as well as its polarity. To advance our understanding of the emergence of body axis polarity, we study regenerating Hydra. Axis polarity is strongly memorized in Hydra regeneration even in small tissue segments. What type of processes confer this memory? To gain insight into the emerging polarity, we utilize frustrating initial conditions by studying regenerating tissue strips which fold into hollow spheroids by adhering their distal ends of opposite original polarities. Despite the convoluted folding process and the tissue rearrangements during regeneration, these tissue strips develop in a reproducible manner, preserving the original polarity and yielding an ordered body plan. These observations suggest that the integration of mechanical and biochemical processes supported by their mutual feedback attracts the tissue dynamics towards a well-defined developmental trajectory biased by weak inherited cues from the parent animal. Hydra thus provide an example of dynamic canalization in which the dynamic rules are instilled, but, in contrast to the classical picture, the detailed developmental trajectory does not unfold in a programmatic manner.
Collapse
Affiliation(s)
- Lital Shani-Zerbib
- Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel; (L.S.-Z.); (L.G.); (Y.M.-S.); (E.B.)
| | - Liora Garion
- Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel; (L.S.-Z.); (L.G.); (Y.M.-S.); (E.B.)
| | - Yonit Maroudas-Sacks
- Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel; (L.S.-Z.); (L.G.); (Y.M.-S.); (E.B.)
| | - Erez Braun
- Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel; (L.S.-Z.); (L.G.); (Y.M.-S.); (E.B.)
- Network Biology Research Laboratories, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Kinneret Keren
- Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel; (L.S.-Z.); (L.G.); (Y.M.-S.); (E.B.)
- Network Biology Research Laboratories, Technion—Israel Institute of Technology, Haifa 32000, Israel
- The Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
24
|
Vogg MC, Galliot B. Combining RNAi-Mediated β-Catenin Inhibition and Reaggregation to Study Hydra Whole-Body Regeneration. Methods Mol Biol 2022; 2450:635-647. [PMID: 35359333 PMCID: PMC9761923 DOI: 10.1007/978-1-0716-2172-1_34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In addition to its ability to regenerate any amputated body part, the Hydra freshwater polyp shows the amazing ability to regenerate as a full polyp after a complete dissociation of its tissues. The developmental processes at work in reaggregates undergoing whole-body regeneration can be investigated at the molecular level by RNA interference (RNAi). Here we provide a protocol that combines β-catenin RNAi with reaggregation. This protocol serves as a basis to generate "RNAi-reaggregates," followed by the extraction of high-quality RNA for the precise quantification of gene expression by real-time PCR. This protocol is efficient, providing both a molecular signature, with the significant downregulation of β-catenin and Wnt3, as well as a robust phenotype, the lack of axis formation, which is observed in all reaggregates.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, iGE3, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| | - Brigitte Galliot
- Department of Genetics and Evolution, iGE3, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Ferenc J, Papasaikas P, Ferralli J, Nakamura Y, Smallwood S, Tsiairis CD. Mechanical oscillations orchestrate axial patterning through Wnt activation in Hydra. SCIENCE ADVANCES 2021; 7:eabj6897. [PMID: 34890235 PMCID: PMC8664257 DOI: 10.1126/sciadv.abj6897] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Mechanical input shapes cell fate decisions during development and regeneration in many systems, yet the mechanisms of this cross-talk are often unclear. In regenerating Hydra tissue spheroids, periodic osmotically driven inflation and deflation cycles generate mechanical stimuli in the form of tissue stretching. Here, we demonstrate that tissue stretching during inflation is important for the appearance of the head organizer—a group of cells that secrete the Wnt3 ligand. Exploiting time series RNA expression profiles, we identify the up-regulation of Wnt signaling as a key readout of the mechanical input. In this system, the levels of Wnt3 expression correspond to the levels of stretching, and Wnt3 overexpression alone enables successful regeneration in the absence of mechanical stimulation. Our findings enable the incorporation of mechanical signals in the framework of Hydra patterning and highlight the broad significance of mechanochemical feedback loops for patterning epithelial lumens.
Collapse
Affiliation(s)
- Jaroslav Ferenc
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Jacqueline Ferralli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Yukio Nakamura
- Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, UK
| | - Sebastien Smallwood
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Charisios D. Tsiairis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
26
|
Vogg MC, Buzgariu W, Suknovic NS, Galliot B. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in Hydra. Cold Spring Harb Perspect Biol 2021; 13:a040725. [PMID: 34230037 PMCID: PMC8635000 DOI: 10.1101/cshperspect.a040725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here we discuss the developmental and homeostatic conditions necessary for Hydra regeneration. Hydra is characterized by populations of adult stem cells paused in the G2 phase of the cell cycle, ready to respond to injury signals. The body column can be compared to a blastema-like structure, populated with multifunctional epithelial stem cells that show low sensitivity to proapoptotic signals, and high inducibility of autophagy that promotes resistance to stress and starvation. Intact Hydra polyps also exhibit a dynamic patterning along the oral-aboral axis under the control of homeostatic organizers whose activity results from regulatory loops between activators and inhibitors. As in bilaterians, injury triggers the immediate production of reactive oxygen species (ROS) signals that promote wound healing and contribute to the reactivation of developmental programs via cell death and the de novo formation of new organizing centers from somatic tissues. In aging Hydra, regeneration is rapidly lost as homeostatic conditions are no longer pro-regenerative.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Wanda Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Nenad Slavko Suknovic
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
27
|
Murad R, Macias-Muñoz A, Wong A, Ma X, Mortazavi A. Coordinated Gene Expression and Chromatin Regulation during Hydra Head Regeneration. Genome Biol Evol 2021; 13:evab221. [PMID: 34877597 PMCID: PMC8651858 DOI: 10.1093/gbe/evab221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The cnidarian model organism Hydra has long been studied for its remarkable ability to regenerate its head, which is controlled by a head organizer located near the hypostome. The canonical Wnt pathway plays a central role in head organizer function during regeneration and during bud formation, which is the asexual mode of reproduction in Hydra. However, it is unclear how shared the developmental programs of head organizer genesis are in budding and regeneration. Time-series analysis of gene expression changes during head regeneration and budding revealed a set of 298 differentially expressed genes during the 48-h head regeneration and 72-h budding time courses. In order to understand the regulatory elements controlling Hydra head regeneration, we first identified 27,137 open-chromatin elements that are open in one or more sections of the organism body or regenerating tissue. We used histone modification ChIP-seq to identify 9,998 candidate proximal promoter and 3,018 candidate enhancer-like regions respectively. We show that a subset of these regulatory elements is dynamically remodeled during head regeneration and identify a set of transcription factor motifs that are enriched in the enhancer regions activated during head regeneration. Our results show that Hydra displays complex gene regulatory structures of developmentally dynamic enhancers, which suggests that the evolution of complex developmental enhancers predates the split of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Rabi Murad
- Department of Developmental and Cell Biology, University of California Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, USA
| | - Aide Macias-Muñoz
- Department of Developmental and Cell Biology, University of California Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, USA
| | - Ashley Wong
- Department of Developmental and Cell Biology, University of California Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, USA
| | - Xinyi Ma
- Department of Developmental and Cell Biology, University of California Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, USA
| |
Collapse
|
28
|
Beaman GM, Cervellione RM, Keene D, Reutter H, Newman WG. The Genomic Architecture of Bladder Exstrophy Epispadias Complex. Genes (Basel) 2021; 12:genes12081149. [PMID: 34440323 PMCID: PMC8391660 DOI: 10.3390/genes12081149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The bladder exstrophy-epispadias complex (BEEC) is an abdominal midline malformation comprising a spectrum of congenital genitourinary abnormalities of the abdominal wall, pelvis, urinary tract, genitalia, anus, and spine. The vast majority of BEEC cases are classified as non-syndromic and the etiology of this malformation is still unknown. This review presents the current knowledge on this multifactorial disorder, including phenotypic and anatomical characterization, epidemiology, proposed developmental mechanisms, existing animal models, and implicated genetic and environmental components.
Collapse
Affiliation(s)
- Glenda M. Beaman
- Division of Evolution and Genomic Sciences, Faculty of Biology, School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Raimondo M. Cervellione
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (R.M.C.); (D.K.)
| | - David Keene
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (R.M.C.); (D.K.)
| | - Heiko Reutter
- Department of Neonatology and Paediatric Intensive Care, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - William G. Newman
- Division of Evolution and Genomic Sciences, Faculty of Biology, School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Correspondence:
| |
Collapse
|
29
|
Ziegler B, Yiallouros I, Trageser B, Kumar S, Mercker M, Kling S, Fath M, Warnken U, Schnölzer M, Holstein TW, Hartl M, Marciniak-Czochra A, Stetefeld J, Stöcker W, Özbek S. The Wnt-specific astacin proteinase HAS-7 restricts head organizer formation in Hydra. BMC Biol 2021; 19:120. [PMID: 34107975 PMCID: PMC8191133 DOI: 10.1186/s12915-021-01046-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background The Hydra head organizer acts as a signaling center that initiates and maintains the primary body axis in steady state polyps and during budding or regeneration. Wnt/beta-Catenin signaling functions as a primary cue controlling this process, but how Wnt ligand activity is locally restricted at the protein level is poorly understood. Here we report a proteomic analysis of Hydra head tissue leading to the identification of an astacin family proteinase as a Wnt processing factor. Results Hydra astacin-7 (HAS-7) is expressed from gland cells as an apical-distal gradient in the body column, peaking close beneath the tentacle zone. HAS-7 siRNA knockdown abrogates HyWnt3 proteolysis in the head tissue and induces a robust double axis phenotype, which is rescued by simultaneous HyWnt3 knockdown. Accordingly, double axes are also observed in conditions of increased Wnt activity as in transgenic actin::HyWnt3 and HyDkk1/2/4 siRNA treated animals. HyWnt3-induced double axes in Xenopus embryos could be rescued by coinjection of HAS-7 mRNA. Mathematical modelling combined with experimental promotor analysis indicate an indirect regulation of HAS-7 by beta-Catenin, expanding the classical Turing-type activator-inhibitor model. Conclusions We show the astacin family protease HAS-7 maintains a single head organizer through proteolysis of HyWnt3. Our data suggest a negative regulatory function of Wnt processing astacin proteinases in the global patterning of the oral-aboral axis in Hydra. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01046-9.
Collapse
Affiliation(s)
- Berenice Ziegler
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Benjamin Trageser
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Sumit Kumar
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Moritz Mercker
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Svenja Kling
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Maike Fath
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Anna Marciniak-Czochra
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2 N2, Canada
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
30
|
Ramirez AN, Loubet-Senear K, Srivastava M. A Regulatory Program for Initiation of Wnt Signaling during Posterior Regeneration. Cell Rep 2021; 32:108098. [PMID: 32877680 DOI: 10.1016/j.celrep.2020.108098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Whole-body regeneration relies on the re-establishment of body axes for patterning of new tissue. Wnt signaling is required to correctly regenerate tissues along the primary axis in many animals. However, the causal mechanisms that first launch Wnt signaling during regeneration are poorly characterized. We use the acoel worm Hofstenia miamia to identify processes that initiate Wnt signaling during posterior regeneration and find that the ligand wnt-3 is upregulated early in posterior-facing wounds. Functional studies reveal that wnt-3 is required to regenerate posterior tissues. wnt-3 is expressed in stem cells, it is needed for their proliferation, and its function is stem cell dependent. Chromatin accessibility data reveal that wnt-3 activation requires input from the general wound response. In addition, the expression of a different Wnt ligand, wnt-1, before amputation is required for wound-induced activation of wnt-3. Our study establishes a gene regulatory network for initiating Wnt signaling in posterior tissues in a bilaterian.
Collapse
Affiliation(s)
- Alyson N Ramirez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kaitlyn Loubet-Senear
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
31
|
Cazet JF, Cho A, Juliano CE. Generic injuries are sufficient to induce ectopic Wnt organizers in Hydra. eLife 2021; 10:60562. [PMID: 33779545 PMCID: PMC8049744 DOI: 10.7554/elife.60562] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
During whole-body regeneration, a bisection injury can trigger two different types of regeneration. To understand the transcriptional regulation underlying this adaptive response, we characterized transcript abundance and chromatin accessibility during oral and aboral regeneration in the cnidarian Hydra vulgaris. We found that the initial response to amputation at both wound sites is identical and includes widespread apoptosis and the activation of the oral-specifying Wnt signaling pathway. By 8 hr post amputation, Wnt signaling became restricted to oral regeneration. Wnt pathway genes were also upregulated in puncture wounds, and these wounds induced the formation of ectopic oral structures if pre-existing organizers were simultaneously amputated. Our work suggests that oral patterning is activated as part of a generic injury response in Hydra, and that alternative injury outcomes are dependent on signals from the surrounding tissue. Furthermore, Wnt signaling is likely part of a conserved wound response predating the split of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Adrienne Cho
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
32
|
Schenkelaars Q, Perez-Cortes D, Perruchoud C, Galliot B. The polymorphism of Hydra microsatellite sequences provides strain-specific signatures. PLoS One 2020; 15:e0230547. [PMID: 32986740 PMCID: PMC7521734 DOI: 10.1371/journal.pone.0230547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
Hydra are freshwater polyps widely studied for their amazing regenerative capacity, adult stem cell populations, low senescence and value as ecotoxicological marker. Many wild-type strains of H. vulgaris have been collected worldwide and maintained effectively under laboratory conditions by asexual reproduction, while stable transgenic lines have been continuously produced since 2006. Efforts are now needed to ensure the genetic characterization of all these strains, which despite similar morphologies, show significant variability in their response to gene expression silencing procedures, pharmacological treatments or environmental conditions. Here, we established a rapid and reliable procedure at the single polyp level to produce via PCR amplification of three distinct microsatellite sequences molecular signatures that distinguish between Hydra strains and species. The TG-rich region of an uncharacterized gene (ms-c25145) helps to distinguish between Eurasian H. vulgaris-Pallas strains (Hm-105, Basel1, Basel2 and reg-16), between Eurasian and North American H. vulgaris strains (H. carnea, AEP), and between the H. vulgaris and H. oligactis species. The AT-rich microsatellite sequences located in the AIP gene (Aryl Hydrocarbon Receptor Interaction Protein, ms-AIP) also differ between Eurasian and North American H. vulgaris strains. Finally, the AT-rich microsatellite located in the Myb-Like cyclin D-binding transcription factor1 gene (ms-DMTF1) gene helps to distinguish certain transgenic AEP lines. This study shows that the analysis of microsatellite sequences, which is capable of tracing genomic variations between closely related lineages of Hydra, provides a sensitive and robust tool for characterizing the Hydra strains.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Diego Perez-Cortes
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Chrystelle Perruchoud
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Sinigaglia C, Peron S, Eichelbrenner J, Chevalier S, Steger J, Barreau C, Houliston E, Leclère L. Pattern regulation in a regenerating jellyfish. eLife 2020; 9:e54868. [PMID: 32894220 PMCID: PMC7524552 DOI: 10.7554/elife.54868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
Jellyfish, with their tetraradial symmetry, offer a novel paradigm for addressing patterning mechanisms during regeneration. Here we show that an interplay between mechanical forces, cell migration and proliferation allows jellyfish fragments to regain shape and functionality rapidly, notably by efficient restoration of the central feeding organ (manubrium). Fragmentation first triggers actomyosin-powered remodeling that restores body umbrella shape, causing radial smooth muscle fibers to converge around 'hubs' which serve as positional landmarks. Stabilization of these hubs, and associated expression of Wnt6, depends on the configuration of the adjoining muscle fiber 'spokes'. Stabilized hubs presage the site of the manubrium blastema, whose growth is Wnt/β-catenin dependent and fueled by both cell proliferation and long-range cell recruitment. Manubrium morphogenesis is modulated by its connections with the gastrovascular canal system. We conclude that body patterning in regenerating jellyfish emerges mainly from local interactions, triggered and directed by the remodeling process.
Collapse
Affiliation(s)
- Chiara Sinigaglia
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Sophie Peron
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Jeanne Eichelbrenner
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Sandra Chevalier
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Julia Steger
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Carine Barreau
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV)Villefranche-sur-merFrance
| |
Collapse
|
34
|
Wang R, Steele RE, Collins EMS. Wnt signaling determines body axis polarity in regenerating Hydra tissue fragments. Dev Biol 2020; 467:88-94. [PMID: 32871156 DOI: 10.1016/j.ydbio.2020.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023]
Abstract
How an animal establishes its body axis is a fundamental question in developmental biology. The freshwater cnidarian Hydra is an attractive model for studying axis formation because it is radially symmetric, with a single oral-aboral axis. It was recently proposed that the orientation of the new body axis in a regenerating Hydra polyp is determined by the oral-aboral orientation of the actin-myosin contractile processes (myonemes) in the animal's outer epithelial layer. However, it remained unclear how the oral-aboral polarity of the body axis would be defined. As Wnt signaling is known to control axis polarity in Hydra and bilaterians, we hypothesized that it plays a role in axis formation during regeneration of Hydra tissue pieces. We tested this hypothesis using pharmacological perturbations and novel grafting experiments to set Wnt signaling and myoneme orientation perpendicular to each other to determine which controls axis formation. Our results demonstrate that Wnt signaling is the dominant encoder of axis orientation and polarity, in line with its conserved role in axial patterning.
Collapse
Affiliation(s)
- Rui Wang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA; Department of Biology, Swarthmore College, Swarthmore, PA, 19081, USA
| | - Robert E Steele
- Department of Biological Chemistry, University of California, Irvine, 92697-1700, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, 19081, USA; Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Reddy PC, Gungi A, Ubhe S, Pradhan SJ, Kolte A, Galande S. Molecular signature of an ancient organizer regulated by Wnt/β-catenin signalling during primary body axis patterning in Hydra. Commun Biol 2019; 2:434. [PMID: 31799436 PMCID: PMC6879750 DOI: 10.1038/s42003-019-0680-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Wnt/β-catenin signalling has been shown to play a critical role during head organizer formation in Hydra. Here, we characterized the Wnt signalling regulatory network involved in formation of the head organizer. We found that Wnt signalling regulates genes that are important in tissue morphogenesis. We identified that majority of transcription factors (TFs) regulated by Wnt/β-catenin signalling belong to the homeodomain and forkhead families. Silencing of Margin, one of the Wnt regulated homeodomain TFs, results in loss of the ectopic tentacle phenotype typically seen upon activation of Wnt signalling. Furthermore, we show that the Margin promoter is directly bound and regulated by β-catenin. Ectopic expression of Margin in zebrafish embryos results in body axis abnormalities suggesting that Margin plays a role in axis patterning. Our findings suggest that homeobox TFs came under the regulatory umbrella of Wnt/β-catenin signalling presumably resulting in the evolution of primary body axis in animal phyla.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Akhila Gungi
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Suyog Ubhe
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Saurabh J. Pradhan
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Amol Kolte
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| |
Collapse
|
36
|
Boundary maintenance in the ancestral metazoan Hydra depends on histone acetylation. Dev Biol 2019; 458:200-214. [PMID: 31738910 DOI: 10.1016/j.ydbio.2019.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Abstract
Much of boundary formation during development remains to be understood, despite being a defining feature of many animal taxa. Axial patterning of Hydra, a member of the ancient phylum Cnidaria which diverged prior to the bilaterian radiation, involves a steady-state of production and loss of tissue, and is dependent on an organizer located in the upper part of the head. We show that the sharp boundary separating tissue in the body column from head and foot tissue depends on histone acetylation. Histone deacetylation disrupts the boundary by affecting numerous developmental genes including Wnt components and prevents stem cells from entering the position dependent differentiation program. Overall, our results suggest that reversible histone acetylation is an ancient regulatory mechanism for partitioning the body axis into domains with specific identity, which was present in the common ancestor of cnidarians and bilaterians, at least 600 million years ago.
Collapse
|
37
|
Han F, Konkalmatt P, Mokashi C, Kumar M, Zhang Y, Ko A, Farino ZJ, Asico LD, Xu G, Gildea J, Zheng X, Felder RA, Lee REC, Jose PA, Freyberg Z, Armando I. Dopamine D 2 receptor modulates Wnt expression and control of cell proliferation. Sci Rep 2019; 9:16861. [PMID: 31727925 PMCID: PMC6856370 DOI: 10.1038/s41598-019-52528-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
The Wnt/β-catenin pathway is one of the most conserved signaling pathways across species with essential roles in development, cell proliferation, and disease. Wnt signaling occurs at the protein level and via β-catenin-mediated transcription of target genes. However, little is known about the underlying mechanisms regulating the expression of the key Wnt ligand Wnt3a or the modulation of its activity. Here, we provide evidence that there is significant cross-talk between the dopamine D2 receptor (D2R) and Wnt/β-catenin signaling pathways. Our data suggest that D2R-dependent cross-talk modulates Wnt3a expression via an evolutionarily-conserved TCF/LEF site within the WNT3A promoter. Moreover, D2R signaling also modulates cell proliferation and modifies the pathology in a renal ischemia/reperfusion-injury disease model, via its effects on Wnt/β-catenin signaling. Together, our results suggest that D2R is a transcriptional modulator of Wnt/β-catenin signal transduction with broad implications for health and development of new therapeutics.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Dependovirus/genetics
- Dependovirus/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Gene Expression Regulation
- Gene Knockdown Techniques
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Primary Cell Culture
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Signal Transduction
- Transfection
- Wnt3A Protein/genetics
- Wnt3A Protein/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Fei Han
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Prasad Konkalmatt
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Chaitanya Mokashi
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Megha Kumar
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Yanrong Zhang
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Allen Ko
- Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Laureano D Asico
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Gaosi Xu
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - John Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiaoxu Zheng
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Robin E C Lee
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pedro A Jose
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Ines Armando
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
38
|
Abstract
The freshwater polyp Hydra provides a potent model system for investigating the conditions that promote wound healing, reactivation of a developmental process and, ultimately, regeneration of an amputated body part. Hydra polyps can also be dissociated to the single cell level and can regenerate a complete body axis from aggregates, behaving as natural organoids. In recent years, the ability to exploit Hydra has been expanded with the advent of new live-imaging approaches, genetic manipulations that include stable transgenesis, gene silencing and genome editing, and the accumulation of high-throughput omics data. In this Primer, we provide an overview of Hydra as a model system for studying regeneration, highlighting recent results that question the classical self-enhancement and long-range inhibition model supposed to drive Hydra regeneration. We underscore the need for integrative explanations incorporating biochemical as well as mechanical signalling.
Collapse
Affiliation(s)
- Matthias C Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Charisios D Tsiairis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
39
|
Electric-Induced Reversal of Morphogenesis in Hydra. Biophys J 2019; 117:1514-1523. [PMID: 31570230 PMCID: PMC6817546 DOI: 10.1016/j.bpj.2019.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Morphogenesis involves the dynamic interplay of biochemical, mechanical, and electrical processes. Here, we ask to what extent can the course of morphogenesis be modulated and controlled by an external electric field? We show that at a critical amplitude, an external electric field can halt morphogenesis in Hydra regeneration. Moreover, above this critical amplitude, the electric field can lead to reversal dynamics: a fully developed Hydra folds back into its incipient spheroid morphology. The potential to renew morphogenesis is reexposed when the field is reduced back to amplitudes below criticality. These dynamics are accompanied by modulations of the Wnt3 activity, a central component of the head organizer in Hydra. The controlled backward-forward cycle of morphogenesis can be repeated several times, showing that the reversal trajectory maintains the integrity of the tissue and its regeneration capability. Each cycle of morphogenesis leads to a newly emerged body plan in the redeveloped folded tissue, which is not necessarily similar to the one before the reversal process. Reversal of morphogenesis is shown to be triggered by enhanced electrical excitations in the Hydra tissue, leading to intensified calcium activity. Folding back of the body-plan morphology together with the decay of a central biosignaling system, indicate that electrical processes are tightly integrated with biochemical and mechanical-structural processes in morphogenesis and play an instructive role to a level that can direct developmental trajectories. Reversal of morphogenesis by external fields calls for extending its framework beyond program-like, forward-driven, hierarchical processes based on reaction diffusion and positional information.
Collapse
|
40
|
сWnt signaling modulation results in a change of the colony architecture in a hydrozoan. Dev Biol 2019; 456:145-153. [PMID: 31473187 DOI: 10.1016/j.ydbio.2019.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/11/2019] [Accepted: 08/28/2019] [Indexed: 01/11/2023]
Abstract
At the polyp stage, most hydrozoan cnidarians form highly elaborate colonies with a variety of branching patterns, which makes them excellent models for studying the evolutionary mechanisms of body plan diversification. At the same time, molecular mechanisms underlying the robust patterning of the architecturally complex hydrozoan colonies remain unexplored. Using non-model hydrozoan Dynamena pumila we showed that the key components of the Wnt/β-catenin (cWnt) pathway (β-catenin, TCF) and the cWnt-responsive gene, brachyury 2, are involved in specification and patterning of the developing colony shoots. Strikingly, pharmacological modulation of the cWnt pathway leads to radical modification of the monopodially branching colony of Dynamena which acquire branching patterns typical for colonies of other hydrozoan species. Our results suggest that modulation of the cWnt signaling is the driving force promoting the evolution of the vast variety of the body plans in hydrozoan colonies and offer an intriguing possibility that the involvement of the cWnt pathway in the regulation of branching morphogenesis might represent an ancestral feature predating the cnidarian-bilaterian split.
Collapse
|
41
|
Wang R, Goel T, Khazoyan K, Sabry Z, Quan HJ, Diamond PH, Collins EMS. Mouth Function Determines the Shape Oscillation Pattern in Regenerating Hydra Tissue Spheres. Biophys J 2019; 117:1145-1155. [PMID: 31443907 DOI: 10.1016/j.bpj.2019.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/25/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Hydra is a small freshwater polyp capable of regeneration from small tissue pieces and from aggregates of cells. During regeneration, a hollow bilayered sphere is formed that undergoes osmotically driven shape oscillations of inflation and rupture. These oscillations are necessary for successful regeneration. Eventually, the oscillating sphere breaks rotational symmetry along the future head-foot axis of the animal. Notably, the shape oscillations show an abrupt shift from large-amplitude, long-period oscillations to small-amplitude, short-period oscillations. It has been widely accepted that this shift in oscillation pattern is linked to symmetry breaking and axis formation, and current theoretical models of Hydra symmetry breaking use this assumption as a model constraint. However, a mechanistic explanation for the shift in oscillation pattern is lacking. Using in vivo manipulation and imaging, we quantified the shape oscillation dynamics and dissected the timing and triggers of the pattern shift. Our experiments demonstrate that the shift in the shape oscillation pattern in regenerating Hydra tissue pieces is caused by the formation of a functional mouth and not by shape symmetry breaking as previously assumed. Thus, model assumptions must be revised in light of these new experimental data, which can be used to constrain and validate improved theoretical models of pattern formation in Hydra.
Collapse
Affiliation(s)
- Rui Wang
- Department of Bioengineering, University of California San Diego, La Jolla, California; Biology Department, Swarthmore College, Swarthmore, Pennsylvania
| | - Tapan Goel
- Department of Physics, University of California San Diego, La Jolla, California; Biology Department, Swarthmore College, Swarthmore, Pennsylvania
| | - Kate Khazoyan
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Ziad Sabry
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania
| | - Heng J Quan
- Department of Physics, University of California San Diego, La Jolla, California; Department of Mathematics, University of California San Diego, La Jolla, California
| | - Patrick H Diamond
- Department of Physics, University of California San Diego, La Jolla, California
| | - Eva-Maria S Collins
- Department of Physics, University of California San Diego, La Jolla, California; Biology Department, Swarthmore College, Swarthmore, Pennsylvania.
| |
Collapse
|
42
|
Transgenesis in Hydra to characterize gene function and visualize cell behavior. Nat Protoc 2019; 14:2069-2090. [DOI: 10.1038/s41596-019-0173-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 12/13/2022]
|
43
|
Vogg MC, Beccari L, Iglesias Ollé L, Rampon C, Vriz S, Perruchoud C, Wenger Y, Galliot B. An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop restricts head organizer activity in Hydra. Nat Commun 2019; 10:312. [PMID: 30659200 PMCID: PMC6338789 DOI: 10.1038/s41467-018-08242-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022] Open
Abstract
Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when β-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/β-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via β-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/β-catenin signaling, a function conserved across eumetazoan evolution. Hydra regenerate various body parts on amputation by activation of the appropriate organiser, but how head formation is controlled is unclear. Here, the authors identify the transcription factor Sp5 as restricting head formation, by being activated by beta-catenin and then acting as a repressor of Wnt3.
Collapse
Affiliation(s)
- Matthias C Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Leonardo Beccari
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Laura Iglesias Ollé
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Christine Rampon
- Centre Interdisciplinaire de Recherche en Biologie (CIRB), CNRS UMR 7241/INSERM U1050/Collège de France, 11, Place Marcelin Berthelot, 75231, Paris Cedex 05, France.,Université Paris Diderot, Sorbonne Paris Cité, Biology Department, 75205, Paris Cedex 13, France.,PSL Research University, 75005, Paris, France
| | - Sophie Vriz
- Centre Interdisciplinaire de Recherche en Biologie (CIRB), CNRS UMR 7241/INSERM U1050/Collège de France, 11, Place Marcelin Berthelot, 75231, Paris Cedex 05, France.,Université Paris Diderot, Sorbonne Paris Cité, Biology Department, 75205, Paris Cedex 13, France.,PSL Research University, 75005, Paris, France
| | - Chrystelle Perruchoud
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Yvan Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
44
|
Abstract
Regeneration of lost body parts is essential to regain the fitness of the organism for successful living. In the animal kingdom, organisms from different clades exhibit varied regeneration abilities. Hydra is one of the few organisms that possess tremendous regeneration potential, capable of regenerating complete organism from small tissue fragments or even from dissociated cells. This peculiar property has made this genus one of the most invaluable model organisms for understanding the process of regeneration. Multiple studies in Hydra led to the current understanding of gross morphological changes, basic cellular dynamics, and the role of molecular signalling such as the Wnt signalling pathway. However, cell-to-cell communication by cell adhesion, role of extracellular components such as extracellular matrix (ECM), and nature of cell types that contribute to the regeneration process need to be explored in depth. Additionally, roles of developmental signalling pathways need to be elucidated to enable more comprehensive understanding of regeneration in Hydra. Further research on cross communication among extracellular, cellular, and molecular signalling in Hydra will advance the field of regeneration biology. Here, we present a review of the existing literature on Hydra regeneration biology and outline the future perspectives.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India.
| | - Akhila Gungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Manu Unni
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
45
|
Lommel M, Strompen J, Hellewell AL, Balasubramanian GP, Christofidou ED, Thomson AR, Boyle AL, Woolfson DN, Puglisi K, Hartl M, Holstein TW, Adams JC, Özbek S. Hydra Mesoglea Proteome Identifies Thrombospondin as a Conserved Component Active in Head Organizer Restriction. Sci Rep 2018; 8:11753. [PMID: 30082916 PMCID: PMC6079037 DOI: 10.1038/s41598-018-30035-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Thrombospondins (TSPs) are multidomain glycoproteins with complex matricellular functions in tissue homeostasis and remodeling. We describe a novel role of TSP as a Wnt signaling target in the basal eumetazoan Hydra. Proteome analysis identified Hydra magnipapillata TSP (HmTSP) as a major component of the cnidarian mesoglea. In general, the domain organization of cnidarian TSPs is related to the pentameric TSPs of bilaterians, and in phylogenetic analyses cnidarian TSPs formed a separate clade of high sequence diversity. HmTSP expression in polyps was restricted to the hypostomal tip and tentacle bases that harbor Wnt-regulated organizer tissues. In the hypostome, HmTSP- and Wnt3-expressing cells were identical or in close vicinity to each other, and regions of ectopic tentacle formation induced by pharmacological β-Catenin activation (Alsterpaullone) corresponded to foci of HmTSP expression. Chromatin immunoprecipitation (ChIP) confirmed binding of Hydra TCF to conserved elements in the HmTSP promotor region. Accordingly, β-Catenin knockdown by siRNAs reduced normal HmTSP expression at the head organizer. In contrast, knockdown of HmTSP expression led to increased numbers of ectopic organizers in Alsterpaullone-treated animals, indicating a negative regulatory function. Our data suggest an unexpected role for HmTSP as a feedback inhibitor of Wnt signaling during Hydra body axis patterning and maintenance.
Collapse
Affiliation(s)
- Mark Lommel
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jennifer Strompen
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Andrew L Hellewell
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Gnana Prakash Balasubramanian
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.,G200 Division of Applied Bioinformatics, German Cancer Research Institute (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Elena D Christofidou
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Andrew R Thomson
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.,School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| | - Aimee L Boyle
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.,Leiden Institute of Chemistry, Leiden University, POB 9502, NL-2300, RA Leiden, Netherlands
| | - Derek N Woolfson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK
| | - Kane Puglisi
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Thomas W Holstein
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Suat Özbek
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
46
|
Braun E, Keren K. HydraRegeneration: Closing the Loop with Mechanical Processes in Morphogenesis. Bioessays 2018; 40:e1700204. [DOI: 10.1002/bies.201700204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/29/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Erez Braun
- Department of Physics & Network Biology Research LaboratoriesTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Kinneret Keren
- Department of Physics & Network Biology Research LaboratoriesTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
47
|
Chiou K, Collins EMS. Why we need mechanics to understand animal regeneration. Dev Biol 2017; 433:155-165. [PMID: 29179947 DOI: 10.1016/j.ydbio.2017.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/31/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
Abstract
Mechanical forces are an important contributor to cell fate specification and cell migration during embryonic development in animals. Similarities between embryogenesis and regeneration, particularly with regards to pattern formation and large-scale tissue movements, suggest similarly important roles for physical forces during regeneration. While the influence of the mechanical environment on stem cell differentiation in vitro is being actively exploited in the fields of tissue engineering and regenerative medicine, comparatively little is known about the role of stresses and strains acting during animal regeneration. In this review, we summarize published work on the role of physical principles and mechanical forces in animal regeneration. Novel experimental techniques aimed at addressing the role of mechanics in embryogenesis have greatly enhanced our understanding at scales from the subcellular to the macroscopic - we believe the time is ripe for the field of regeneration to similarly leverage the tools of the mechanobiological research community.
Collapse
Affiliation(s)
- Kevin Chiou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eva-Maria S Collins
- Physics Department, UC San Diego, La Jolla, CA 92093, USA; Section of Cell&Developmental Biology, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Gufler S, Artes B, Bielen H, Krainer I, Eder MK, Falschlunger J, Bollmann A, Ostermann T, Valovka T, Hartl M, Bister K, Technau U, Hobmayer B. β-Catenin acts in a position-independent regeneration response in the simple eumetazoan Hydra. Dev Biol 2017; 433:310-323. [PMID: 29108673 DOI: 10.1016/j.ydbio.2017.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Wnt/β-Catenin signaling plays crucial roles in regenerative processes in eumetazoans. It also acts in regeneration and axial patterning in the simple freshwater polyp Hydra, whose morphallactic regenerative capacity is unparalleled in the animal kingdom. Previous studies have identified β-catenin as an early response gene activated within the first 30min in Hydra head regeneration. Here, we have studied the role of β-Catenin in more detail. First, we show that nuclear β-Catenin signaling is required for head and foot regeneration. Loss of nuclear β-Catenin function blocks head and foot regeneration. Transgenic Hydra tissue, in which β-Catenin is over-expressed, regenerates more heads and feet. In addition, we have identified a set of putative β-Catenin target genes by transcriptional profiling, and these genes exhibit distinct expression patterns in the hypostome, in the tentacles, or in an apical gradient in the body column. All of them are transcriptionally up-regulated in the tips of early head and foot regenerates. In foot regenerates, this is a transient response, and expression starts to disappear after 12-36h. ChIP experiments using an anti-HydraTcf antibody show Tcf binding at promoters of these targets. We propose that gene regulatory β-Catenin activity in the pre-patterning phase is generally required as an early regeneration response. When regenerates are blocked with iCRT14, initial local transcriptional activation of β-catenin and the target genes occurs, and all these genes remain upregulated at the site of both head and foot regeneration for the following 2-3 days. This indicates that the initial regulatory network is followed by position-specific programs that inactivate fractions of this network in order to proceed to differentiation of head or foot structures. brachyury1 (hybra1) has previously been described as early response gene in head and foot regeneration. The HyBra1 protein, however, appears in head regenerating tips not earlier than about twelve hours after decapitation, and HyBra1 translation does not occur in iCRT14-treated regenerates. Foot regenerates never show detectable levels of HyBra1 protein at all. These results suggest that translational control mechanisms may play a decisive role in the head- and foot-specific differentiation phase, and HyBra1 is an excellent candidate for such a key regulator of head specification.
Collapse
Affiliation(s)
- S Gufler
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - B Artes
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - H Bielen
- Department of Molecular Evolution and Development, University of Vienna, Austria
| | - I Krainer
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - M-K Eder
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - J Falschlunger
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - A Bollmann
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - T Ostermann
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - T Valovka
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - M Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - K Bister
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - U Technau
- Department of Molecular Evolution and Development, University of Vienna, Austria
| | - B Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Austria.
| |
Collapse
|
49
|
Tortelote GG, Reis RR, de Almeida Mendes F, Abreu JG. Complexity of the Wnt/β‑catenin pathway: Searching for an activation model. Cell Signal 2017; 40:30-43. [PMID: 28844868 DOI: 10.1016/j.cellsig.2017.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Wnt signaling refers to a conserved signaling pathway, widely studied due to its roles in cellular communication, cell fate decisions, development and cancer. However, the exact mechanism underlying inhibition of the GSK phosphorylation towards β-catenin and activation of the pathway after biding of Wnt ligand to its cognate receptors at the plasma membrane remains unclear. Wnt target genes are widely spread over several animal phyla. They participate in a plethora of functions during the development of an organism, from axial specification, gastrulation and organogenesis all the way to regeneration and repair in adults. Temporal and spatial oncogenetic re-activation of Wnt signaling almost certainly leads to cancer. Wnt signaling components have been extensively studied as possible targets in anti-cancer therapies. In this review we will discuss one of the most intriguing questions in this field, that is how β-catenin, a major component in this pathway, escapes the destruction complex, gets stabilized in the cytosol and it is translocated to the nucleus where it acts as a co-transcription factor. Four major models have evolved during the past 20years. We dissected each of them along with current views and future perspectives on this pathway. This review will focus on the molecular mechanisms by which Wnt proteins modulate β-catenin cytoplasmic levels and the relevance of this pathway for the development and cancer.
Collapse
Affiliation(s)
- Giovane G Tortelote
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata R Reis
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Garcia Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
50
|
Renfer E, Technau U. Meganuclease-assisted generation of stable transgenics in the sea anemone Nematostella vectensis. Nat Protoc 2017; 12:1844-1854. [DOI: 10.1038/nprot.2017.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|