1
|
Valério M, C Buga C, Mendonça DA, Castanho MARB, Melo MN, Soares CM, Lousa D, Veiga AS. Unravelling the role of key amino acid residues of the parainfluenza fusion peptide in membrane fusion. RSC Chem Biol 2025:d5cb00058k. [PMID: 40406163 PMCID: PMC12093645 DOI: 10.1039/d5cb00058k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/10/2025] [Indexed: 05/26/2025] Open
Abstract
Parainfluenza viruses enter host cells by fusing their envelope with the cell membrane. In this process mediated by the fusion glycoprotein, the fusion peptide plays an essential role in membrane binding and triggering fusion. Previously, we demonstrated that the parainfluenza fusion peptide (PIFP) oligomerizes into porelike structures within the membrane, leading to membrane perturbations, fusion, and leakage. Additionally, we identified two key amino acid residues in the PIFP, F103 and Q120, which are important in inducing lipid tail protrusion and maintaining peptide-peptide interactions, respectively. Here, we seek to elucidate the role of these two residues in the PIFP function by studying the impact of F103A and Q120A substitutions on peptide activity. We compared the substituted peptides with the native peptide using biophysical experiments and molecular dynamics (MD) simulations. Our results show that the F103A substitution significantly impairs PIFP's interaction with the membrane and its ability to induce lipid mixing and membrane leakage in experimental assays. Moreover, a decrease in lipid perturbation and water flux through the membrane was observed in the MD simulations. In contrast, the Q120A substitution appears to have minimal impact on membrane interaction and PIFP-induced membrane leakage. Interestingly, a pronounced change in the interpeptide interactions within the membrane of the substituted peptides was observed in the MD simulations. These findings provide crucial insights into the potential role of F103 and Q120 in PIFP activity: the N-terminal phenylalanine (F103) is pivotal for membrane insertion and fusion, while the Q120 is crucial for regulating peptide oligomerization and pore formation.
Collapse
Affiliation(s)
- Mariana Valério
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Carolina C Buga
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
- Gulbenkian Institute for Molecular Medicine Av. Professor Egas Moniz 1649-028 Lisboa Portugal
- Faculdade de Medicina, Universidade de Lisboa Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Diogo A Mendonça
- Gulbenkian Institute for Molecular Medicine Av. Professor Egas Moniz 1649-028 Lisboa Portugal
- Faculdade de Medicina, Universidade de Lisboa Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Miguel A R B Castanho
- Gulbenkian Institute for Molecular Medicine Av. Professor Egas Moniz 1649-028 Lisboa Portugal
- Faculdade de Medicina, Universidade de Lisboa Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Ana Salomé Veiga
- Gulbenkian Institute for Molecular Medicine Av. Professor Egas Moniz 1649-028 Lisboa Portugal
- Faculdade de Medicina, Universidade de Lisboa Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
2
|
Grau B, Kormos R, Bañó-Polo M, Chen K, García-Murria MJ, Hajredini F, Sánchez del Pino MM, Jo H, Martínez-Gil L, von Heijne G, DeGrado WF, Mingarro I. Sequence-dependent scale for translocon-mediated insertion of interfacial helices in membranes. SCIENCE ADVANCES 2025; 11:eads6804. [PMID: 39970206 PMCID: PMC11837994 DOI: 10.1126/sciadv.ads6804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Biological membranes consist of a lipid bilayer studded with integral and peripheral membrane proteins. Most α-helical membrane proteins require protein-conducting insertases known as translocons to assist in their membrane insertion and folding. While the sequence-dependent propensities for a helix to either translocate through the translocon or insert into the membrane have been codified into numerical hydrophobicity scales, the corresponding propensity to partition into the membrane interface remains unrevealed. By engineering diagnostic glycosylation sites around test peptide sequences inserted into a host protein, we devised a system that can differentiate between water-soluble, surface-bound, and transmembrane (TM) states of the sequence based on its glycosylation pattern. Using this system, we determined the sequence-dependent propensities for transfer from the translocon to a TM, interfacial, or extramembrane space and compared these propensities with the corresponding probability distributions determined from the sequences and structures of experimentally determined proteins.
Collapse
Affiliation(s)
- Brayan Grau
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Rian Kormos
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manuel Bañó-Polo
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Kehan Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - María J. García-Murria
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Fatlum Hajredini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manuel M. Sánchez del Pino
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luis Martínez-Gil
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Gunnar von Heijne
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - William F. DeGrado
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Ismael Mingarro
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Valério M, Buga CC, Melo MN, Soares CM, Lousa D. Viral entry mechanisms: the role of molecular simulation in unlocking a key step in viral infections. FEBS Open Bio 2025; 15:269-284. [PMID: 39402013 PMCID: PMC11788750 DOI: 10.1002/2211-5463.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 02/04/2025] Open
Abstract
Viral infections are a major global health concern, affecting millions of people each year. Viral entry is one of the crucial stages in the infection process, but its details remain elusive. Enveloped viruses are enclosed by a lipid membrane that protects their genetic material and these viruses are linked to various human illnesses, including influenza, and COVID-19. Due to the advancements made in the field of molecular simulation, significant progress has been made in unraveling the dynamic processes involved in viral entry of enveloped viruses. Simulation studies have provided deep insight into the function of the proteins responsible for attaching to the host receptors and promoting membrane fusion (fusion proteins), deciphering interactions between these proteins and receptors, and shedding light on the functional significance of key regions, such as the fusion peptide. These studies have already significantly contributed to our understanding of this critical aspect of viral infection and assisted the development of effective strategies to combat viral diseases and improve global health. This review focuses on the vital role of fusion proteins in facilitating the entry process of enveloped viruses and highlights the contributions of molecular simulation studies to uncover the molecular details underlying their mechanisms of action.
Collapse
Affiliation(s)
- Mariana Valério
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Carolina C. Buga
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisbonPortugal
| | - Manuel N. Melo
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Diana Lousa
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
4
|
Valério M, Mendonça DA, Morais J, Buga CC, Cruz CH, Castanho MA, Melo MN, Soares CM, Veiga AS, Lousa D. Parainfluenza Fusion Peptide Promotes Membrane Fusion by Assembling into Oligomeric Porelike Structures. ACS Chem Biol 2022; 17:1831-1843. [PMID: 35500279 PMCID: PMC9295702 DOI: 10.1021/acschembio.2c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paramyxoviruses are enveloped viruses harboring a negative-sense RNA genome that must enter the host's cells to replicate. In the case of the parainfluenza virus, the cell entry process starts with the recognition and attachment to target receptors, followed by proteolytic cleavage of the fusion glycoprotein (F) protein, exposing the fusion peptide (FP) region. The FP is responsible for binding to the target membrane, and it is believed to play a crucial role in the fusion process, but the mechanism by which the parainfluenza FP (PIFP) promotes membrane fusion is still unclear. To elucidate this matter, we performed biophysical experimentation of the PIFP in membranes, together with coarse grain (CG) and atomistic (AA) molecular dynamics (MD) simulations. The simulation results led to the pinpointing of the most important PIFP amino acid residues for membrane fusion and show that, at high concentrations, the peptide induces the formation of a water-permeable porelike structure. This structure promotes lipid head intrusion and lipid tail protrusion, which facilitates membrane fusion. Biophysical experimental results validate these findings, showing that, depending on the peptide/lipid ratio, the PIFP can promote fusion and/or membrane leakage. Our work furthers the understanding of the PIFP-induced membrane fusion process, which might help foster development in the field of viral entry inhibition.
Collapse
Affiliation(s)
- Mariana Valério
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diogo A. Mendonça
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - João Morais
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carolina C. Buga
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carlos H. Cruz
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel A.R.B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
5
|
Mechanism of negative membrane curvature generation by I-BAR domains. Structure 2021; 29:1440-1452.e4. [PMID: 34520736 DOI: 10.1016/j.str.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
The membrane sculpting ability of BAR domains has been attributed to the intrinsic curvature of their banana-shaped dimeric structure. However, there is often a mismatch between this intrinsic curvature and the diameter of the membrane tubules generated. I-BAR domains are especially mysterious since they are almost flat but generate high negative membrane curvature. Here, we use atomistic implicit-solvent computer modeling to show that the membrane bending of the IRSp53 I-BAR domain is dictated by its higher oligomeric structure, whose curvature is completely unrelated to the intrinsic curvature of the dimer. Two other I-BARs give similar results, whereas a flat F-BAR sheet develops a concave membrane-binding interface, consistent with its observed positive membrane curvature generation. Laterally interacting helical spirals of I-BAR dimers on tube interiors are stable and have an enhanced binding energy that is sufficient for membrane bending to experimentally observed tubule diameters at a reasonable surface density.
Collapse
|
6
|
Basso LGM, Zeraik AE, Felizatti AP, Costa-Filho AJ. Membranotropic and biological activities of the membrane fusion peptides from SARS-CoV spike glycoprotein: The importance of the complete internal fusion peptide domain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183697. [PMID: 34274319 PMCID: PMC8280623 DOI: 10.1016/j.bbamem.2021.183697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022]
Abstract
Fusion peptides (FP) are prominent hydrophobic segments of viral fusion proteins that play critical roles in viral entry. FPs interact with and insert into the host lipid membranes, triggering conformational changes in the viral protein that leads to the viral-cell fusion. Multiple membrane-active domains from the severe acute respiratory syndrome (SARS) coronavirus (CoV) spike protein have been reported to act as the functional fusion peptide such as the peptide sequence located between the S1/S2 and S2' cleavage sites (FP1), the S2'-adjacent fusion peptide domain (FP2), and the internal FP sequence (cIFP). Using a combined biophysical approach, we demonstrated that the α-helical coiled-coil-forming internal cIFP displayed the highest membrane fusion and permeabilizing activities along with membrane ordering effect in phosphatidylcholine (PC)/phosphatidylglycerol (PG) unilamellar vesicles compared to the other two N-proximal fusion peptide counterparts. While the FP1 sequence displayed intermediate membranotropic activities, the well-conserved FP2 peptide was substantially less effective in promoting fusion, leakage, and membrane ordering in PC/PG model membranes. Furthermore, Ca2+ did not enhance the FP2-induced lipid mixing activity in PC/phosphatidylserine/cholesterol lipid membranes, despite its strong erythrocyte membrane perturbation. Nonetheless, we found that the three putative SARS-CoV membrane-active fusion peptide sequences here studied altered the physical properties of model and erythrocyte membranes to different extents. The importance of the distinct membranotropic and biological activities of all SARS-CoV fusion peptide domains and the pronounced effect of the internal fusion peptide sequence to the whole spike-mediated membrane fusion process are discussed.
Collapse
Affiliation(s)
- Luis Guilherme Mansor Basso
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Grupo de Biofísica e Biologia Estrutural "Sérgio Mascarenhas", Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil
| | - Ana Paula Felizatti
- Laboratório de Produtos Naturais, Departamento de Química, Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, Monjolinho, 13565905, São Carlos, SP, Brazil; Grupo de Biofísica e Biologia Estrutural "Sérgio Mascarenhas", Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil
| | - Antonio José Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Abstract
Parainfluenza viruses, members of the enveloped, negative-sense, single stranded RNA Paramyxoviridae family, impact global child health as the cause of significant lower respiratory tract infections. Parainfluenza viruses enter cells by fusing directly at the cell surface membrane. How this fusion occurs via the coordinated efforts of the two molecules that comprise the viral surface fusion complex, and how these efforts may be blocked, are the subjects of this chapter. The receptor binding protein of parainfluenza forms a complex with the fusion protein of the virus, remaining stably associated until a receptor is reached. At that point, the receptor binding protein actively triggers the fusion protein to undergo a series of transitions that ultimately lead to membrane fusion and viral entry. In recent years it has become possible to examine this remarkable process on the surface of viral particles and to begin to understand the steps in the transition of this molecular machine, using a structural biology approach. Understanding the steps in entry leads to several possible strategies to prevent fusion and inhibit infection.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Matteo Porotto
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Anne Moscona
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy; Department of Physiology & Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
8
|
Pal S, Koeppe RE, Chattopadhyay A. Membrane electrostatics sensed by tryptophan anchors in hydrophobic model peptides depends on non-aromatic interfacial amino acids: implications in hydrophobic mismatch. Faraday Discuss 2021; 232:330-346. [PMID: 34549729 DOI: 10.1039/d0fd00065e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
WALPs are synthetic α-helical membrane-spanning peptides that constitute a well-studied system for exploring hydrophobic mismatch. These peptides represent a simplified consensus motif for transmembrane domains of intrinsic membrane proteins due to their hydrophobic core of alternating leucine and alanine flanked by membrane-anchoring aromatic tryptophan residues. Although the modulation of mismatch responses in WALPs by tryptophan anchors has been reported earlier, there have been limited attempts to utilize the intrinsic tryptophan fluorescence of this class of peptides in mismatch sensors. We have previously shown, utilizing the red edge excitation shift (REES) approach, that interfacial WALP tryptophan residues in fluid phase bilayers experience a dynamically constrained membrane microenvironment. Interestingly, emerging reports suggest the involvement of non-aromatic interfacially localized residues in modulating local structure and dynamics in WALP analogs. In this backdrop, we have explored the effect of interfacial amino acids, such as lysine (in KWALPs) and glycine (in GWALPs), on the tryptophan microenvironment of WALP analogs in zwitterionic and negatively charged membranes. We show that interfacial tryptophans in KWALP and GWALP experience a more restricted microenvironment, as reflected in the substantial increase in magnitude of REES and apparent rotational correlation time, relative to those in WALP in zwitterionic membranes. Interestingly, in contrast to WALP, the tryptophan anchors in KWALP and GWALP appear insensitive to the presence of negatively charged lipids in the membrane. These results reveal a subtle interplay between non-aromatic flanking residues in transmembrane helices and negatively charged lipids at the membrane interface, which could modulate the membrane microenvironment experienced by interfacially localized tryptophan residues. Since interfacial tryptophans are known to influence mismatch responses in WALPs, our results highlight the possibility of utilizing the fluorescence signatures of tryptophans in membrane proteins or model peptides such as WALP as markers for assessing protein responses to hydrophobic mismatch. More importantly, these results constitute one of the first reports on the influence of lipid headgroup charge in fine-tuning hydrophobic mismatch in membrane bilayers, thereby enriching the existing framework of hydrophobic mismatch.
Collapse
Affiliation(s)
- Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India. .,CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, AR 72701, USA
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
9
|
Sutherland M, Kwon B, Hong M. Interactions of HIV gp41's membrane-proximal external region and transmembrane domain with phospholipid membranes from 31P NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183723. [PMID: 34352242 DOI: 10.1016/j.bbamem.2021.183723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
HIV-1 entry into cells requires coordinated changes of the conformation and dynamics of both the fusion protein, gp41, and the lipids in the cell membrane and virus envelope. Commonly proposed features of membrane deformation during fusion include high membrane curvature, lipid disorder, and membrane surface dehydration. The virus envelope and target cell membrane contain a diverse set of phospholipids and cholesterol. To dissect how different lipids interact with gp41 to contribute to membrane fusion, here we use 31P solid-state NMR spectroscopy to investigate the curvature, dynamics, and hydration of POPE, POPC and POPS membranes, with and without cholesterol, in the presence of a peptide comprising the membrane proximal external region (MPER) and transmembrane domain (TMD) of gp41. Static 31P NMR spectra indicate that the MPER-TMD induces strong negative Gaussian curvature (NGC) to the POPE membrane but little curvature to POPC and POPC:POPS membranes. The NGC manifests as an isotropic peak in the static NMR spectra, whose intensity increases with the peptide concentration. Cholesterol inhibits the NGC formation and stabilizes the lamellar phase. Relative intensities of magic-angle spinning 31P cross-polarization and direct-polarization spectra indicate that all three phospholipids become more mobile upon peptide binding. Finally, 2D 1H-31P correlation spectra show that the MPER-TMD enhances water 1H polarization transfer to the lipids, indicating that the membrane surfaces become more hydrated. These results suggest that POPE is an essential component of the high-curvature fusion site, and lipid dynamic disorder is a general feature of membrane restructuring during fusion.
Collapse
Affiliation(s)
- Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Huang Y, Liu Y, Li Y, Liu Y, Zhang C, Wen H, Zhao L, Song Y, Wang L, Wang Z. Role of key amino acids in the transmembrane domain of the Newcastle disease virus fusion protein. Biosci Trends 2021; 15:16-23. [PMID: 33504738 DOI: 10.5582/bst.2020.03317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Newcastle disease (ND), caused by the Newcastle disease virus (NDV), is transmitted by poultry with severe infectivity and a high fatality rate. The fusion (F) protein on the NDV envelope facilitates the merger of the viral and host cell membranes with the help of the homologous hemagglutinin-neuraminidase protein (HN). The transmembrane (TM) domains of viral fusion proteins are typically required for fusion, but the key amino acids in NDV F TM domains have not been identified. Site-directed mutagenesis was utilized to change the conserved amino acids at 500, 501, 502, 505, 510, 513, 516, 519, and 520 to alanine. It was found that mutants L519 and V520 had an interrupted protein expression, decreased to below 10%, and mutants A500, I505, V513, and V516 had a hypoactive impact on fusion activity, decreased to 85.38%, 67.05%, 55.38% and 51.13% of wt F, respectively. The results indicated that the TM domain plays a vital part in the fusion activity of the NDV F protein.
Collapse
Affiliation(s)
- Yanan Huang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yaqing Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yanguo Li
- Department of Health Management and Services, Cangzhou Medical College, Cangzhou, Hebei, China
| | - Ying Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Chi Zhang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Hongling Wen
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Li Zhao
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yanyan Song
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Liyang Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| |
Collapse
|
11
|
Kwon B, Mandal T, Elkins MR, Oh Y, Cui Q, Hong M. Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. J Mol Biol 2020; 432:4705-4721. [PMID: 32592698 PMCID: PMC7781112 DOI: 10.1016/j.jmb.2020.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
HIV-1 entry into cells is mediated by the fusion protein gp41. Cholesterol plays an important role in this virus-cell fusion, but molecular structural information about cholesterol-gp41 interaction is so far absent. Here, we present experimental and computational data about cholesterol complexation with gp41 in lipid bilayers. We focus on the C-terminal region of the protein, which comprises a membrane-proximal external region (MPER) and the transmembrane domain (TMD). We measured peptide-cholesterol contacts in virus-mimetic lipid bilayers using solid-state NMR spectroscopy, and augmented these experimental data with all-atom molecular dynamics simulations. 2D 19F NMR spectra show correlation peaks between MPER residues and the cholesterol isooctyl tail, indicating that cholesterol is in molecular contact with the MPER-TMD trimer. 19F-13C distance measurements between the peptide and 13C-labeled cholesterol show that C17 on the D ring and C9 at the intersection of B and C rings are ~7.0 Å from the F673 side-chain 4-19F. At high peptide concentrations in the membrane, the 19F-13C distance data indicate three cholesterol molecules bound near F673 in each trimer. Mutation of a cholesterol recognition amino acid consensus motif did not change these distances, indicating that cholesterol binding does not require this sequence motif. Molecular dynamics simulations further identify two hotspots for cholesterol interactions. Taken together, these experimental data and simulations indicate that the helix-turn-helix conformation of the MPER-TMD is responsible for sequestering cholesterol. We propose that this gp41-cholesterol interaction mediates virus-cell fusion by recruiting gp41 to the boundary of the liquid-disordered and liquid-ordered phases to incur membrane curvature.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Taraknath Mandal
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Matthew R Elkins
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Younghoon Oh
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA; Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
13
|
Branttie JM, Dutch RE. Parainfluenza virus 5 fusion protein maintains pre-fusion stability but not fusogenic activity following mutation of a transmembrane leucine/isoleucine domain. J Gen Virol 2020; 101:467-472. [PMID: 32100701 DOI: 10.1099/jgv.0.001399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The paramyxoviruses Hendra virus (HeV) and parainfluenza virus 5 (PIV5) require the fusion (F) protein to efficiently infect cells. For fusion to occur, F undergoes dramatic, essentially irreversible conformational changes to merge the viral and cell membranes into a continuous bilayer. Recently, a transmembrane (TM) domain leucine/isoleucine (L/I) zipper was shown to be critical in maintaining the expression, stability and pre-fusion conformation of HeV F, allowing for fine-tuned timing of membrane fusion. To analyse the effect of the TM domain L/I zipper in another paramyxovirus, we created alanine mutations to the TM domain of PIV5 F, a paramyxovirus model system. Our data show that while the PIV5 F TM L/I zipper does not significantly affect total expression and only modestly affects surface expression and pre-fusion stability, it is critical for fusogenic activity. These results suggest that the roles of TM L/I zipper motifs differ among members of the family Paramyxoviridae.
Collapse
Affiliation(s)
- Jean Mawuena Branttie
- Department of Molecular and Cellular Biochemistry, College of Medicine University of Kentucky Biomedical Biological Sciences Research Bldg, 741 South Limestone Street, Lexington, KY, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, College of Medicine University of Kentucky Biomedical Biological Sciences Research Bldg, 741 South Limestone Street, Lexington, KY, USA
| |
Collapse
|
14
|
Aso J, Kimura H, Ishii H, Saraya T, Kurai D, Matsushima Y, Nagasawa K, Ryo A, Takizawa H. Molecular Evolution of the Fusion Protein ( F) Gene in Human Respirovirus 3. Front Microbiol 2020; 10:3054. [PMID: 32010105 PMCID: PMC6974460 DOI: 10.3389/fmicb.2019.03054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
To elucidate the evolution of human respirovirus 3 (HRV3), we performed detailed genetic analyses of the F gene (full-length) detected from hundreds of HRV3 strains obtained from various geographic regions. First, we performed time-scaled evolutionary analyses using the Bayesian Markov chain Monte Carlo method. Then, we performed analyses of phylodynamics, similarity, phylogenetic distance, selective pressure, and conformational B-cell epitope with the F-protein structural analyses. Time-scaled phylogenetic tree showed that the common ancestor of HRV3 and bovine respirovirus 3 diverged over 300 years ago and subdivided it into three major clusters and four subclusters during the most recent 100 years. The overall evolutionary rate was approximately 10-3 substitutions/site/year. Indigenous similarity was seen in the present strains, and the mean phylogenetic distance were 0.033. Many negative selection sites were seen in the ectodomain. The conformational epitopes did not correspond to the neutralizing antibody binding sites. These results suggest that the HRV3 F gene is relatively conserved and restricted in this diversity to preserve the protein function, although these strains form many branches on the phylogenetic tree. Furthermore, HRV3 reinfection may be responsible for discordances between the conformational epitopes and the neutralizing antibody binding sites of the F protein. These findings contribute to a better understanding of HRV3 virology.
Collapse
Affiliation(s)
- Jumpei Aso
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Science, Gunma Paz University, Gunma, Japan.,Department of Microbiology, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Daisuke Kurai
- Department of General Medicine, Division of Infectious Diseases, School of Medicine, Kyorin University, Tokyo, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kanagawa, Japan
| | - Koo Nagasawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihide Ryo
- Department of Microbiology, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
15
|
Lee M, Morgan CA, Hong M. Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers. J Biol Chem 2019; 294:14732-14744. [PMID: 31409642 DOI: 10.1074/jbc.ra119.009542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/04/2019] [Indexed: 11/06/2022] Open
Abstract
The HIV envelope glycoprotein mediates virus entry into target cells by fusing the virus lipid envelope with the cell membrane. This process requires large-scale conformational changes of the fusion protein gp41. Current understanding of the mechanisms with which gp41 induces membrane merger is limited by the fact that the hydrophobic N-terminal fusion peptide (FP) and C-terminal transmembrane domain (TMD) of the protein are challenging to characterize structurally in the lipid bilayer. Here we have expressed a gp41 construct that contains both termini, including the FP, the fusion peptide-proximal region (FPPR), the membrane-proximal external region (MPER), and the TMD. These hydrophobic domains are linked together by a shortened water-soluble ectodomain. We reconstituted this "short NC" gp41 into a virus-mimetic lipid membrane and conducted solid-state NMR experiments to probe the membrane-bound conformation and topology of the protein. 13C chemical shifts indicate that the C-terminal MPER-TMD is predominantly α-helical, whereas the N-terminal FP-FPPR exhibits β-sheet character. Water and lipid 1H polarization transfer to the protein revealed that the TMD is well-inserted into the lipid bilayer, whereas the FPPR and MPER are exposed to the membrane surface. Importantly, correlation signals between the FP-FPPR and the MPER are observed, providing evidence that the ectodomain is sufficiently collapsed to bring the N- and C-terminal hydrophobic domains into close proximity. These results support a hemifusion-like model of the short NC gp41 in which the ectodomain forms a partially folded hairpin that places the FPPR and MPER on the opposing surfaces of two lipid membranes.
Collapse
Affiliation(s)
- Myungwoon Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Chloe A Morgan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
16
|
Kolašinac R, Jaksch S, Dreissen G, Braeutigam A, Merkel R, Csiszár A. Influence of Environmental Conditions on the Fusion of Cationic Liposomes with Living Mammalian Cells. NANOMATERIALS 2019; 9:nano9071025. [PMID: 31319557 PMCID: PMC6669649 DOI: 10.3390/nano9071025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Lipid-based nanoparticles, also called vesicles or liposomes, can be used as carriers for drugs or many types of biological macromolecules, including DNA and proteins. Efficiency and speed of cargo delivery are especially high for carrier vesicles that fuse with the cellular plasma membrane. This occurs for lipid mixture containing equal amounts of the cationic lipid DOTAP and a neutral lipid with an additional few percents of an aromatic substance. The fusion ability of such particles depends on lipid composition with phosphoethanolamine (PE) lipids favoring fusion and phosphatidyl-choline (PC) lipids endocytosis. Here, we examined the effects of temperature, ionic strength, osmolality, and pH on fusion efficiency of cationic liposomes with Chinese hamster ovary (CHO) cells. The phase state of liposomes was analyzed by small angle neutron scattering (SANS). Our results showed that PC containing lipid membranes were organized in the lamellar phase. Here, fusion efficiency depended on buffer conditions and remained vanishingly small at physiological conditions. In contrast, SANS indicated the coexistence of very small (~50 nm) objects with larger, most likely lamellar structures for PE containing lipid particles. The fusion of such particles to cell membranes occurred with very high efficiency at all buffer conditions. We hypothesize that the altered phase state resulted in a highly reduced energetic barrier against fusion.
Collapse
Affiliation(s)
- Rejhana Kolašinac
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany
| | - Sebastian Jaksch
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany
| | - Georg Dreissen
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany
| | - Andrea Braeutigam
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-2 Theoretical Soft Matter and Biophysics, 52428 Jülich, Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany
| | - Agnes Csiszár
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany.
| |
Collapse
|
17
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Jefferys EE, Sansom MSP. Computational Virology: Molecular Simulations of Virus Dynamics and Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:201-233. [DOI: 10.1007/978-3-030-14741-9_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Intracellular Delivery: An Overview. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [DOI: 10.1007/978-3-030-29168-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Kwon B, Lee M, Waring AJ, Hong M. Oligomeric Structure and Three-Dimensional Fold of the HIV gp41 Membrane-Proximal External Region and Transmembrane Domain in Phospholipid Bilayers. J Am Chem Soc 2018; 140:8246-8259. [PMID: 29888593 DOI: 10.1021/jacs.8b04010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The HIV-1 glycoprotein, gp41, mediates fusion of the virus lipid envelope with the target cell membrane during virus entry into cells. Despite extensive studies of this protein, inconsistent and contradictory structural information abounds in the literature about the C-terminal membrane-interacting region of gp41. This C-terminal region contains the membrane-proximal external region (MPER), which harbors the epitopes for four broadly neutralizing antibodies, and the transmembrane domain (TMD), which anchors the protein to the virus lipid envelope. Due to the difficulty of crystallizing and solubilizing the MPER-TMD, most structural studies of this functionally important domain were carried out using truncated peptides either in the absence of membrane-mimetic solvents or bound to detergents and lipid bicelles. To determine the structural architecture of the MPER-TMD in the native environment of lipid membranes, we have now carried out a solid-state NMR study of the full MPER-TMD segment bound to cholesterol-containing phospholipid bilayers. 13C chemical shifts indicate that the majority of the peptide is α-helical, except for the C-terminus of the TMD, which has moderate β-sheet character. Intermolecular 19F-19F distance measurements of singly fluorinated peptides indicate that the MPER-TMD is trimerized in the virus-envelope mimetic lipid membrane. Intramolecular 13C-19F distance measurements indicate the presence of a turn between the MPER helix and the TMD helix. This is supported by lipid-peptide and water-peptide 2D 1H-13C correlation spectra, which indicate that the MPER binds to the membrane surface whereas the TMD spans the bilayer. Together, these data indicate that full-length MPER-TMD assembles into a trimeric helix-turn-helix structure in lipid membranes. We propose that the turn between the MPER and TMD may be important for inducing membrane defects in concert with negative-curvature lipid components such as cholesterol and phosphatidylethanolamine, while the surface-bound MPER helix may interact with N-terminal segments of the protein during late stages of membrane fusion.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Myungwoon Lee
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| | - Alan J Waring
- Department of Medicine , Harbor-UCLA Medical Center , 1000 West Carson Street, Building RB2 , Torrance , California 90502 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
21
|
Serrano S, Huarte N, Rujas E, Andreu D, Nieva JL, Jiménez MA. Structure-Related Roles for the Conservation of the HIV-1 Fusion Peptide Sequence Revealed by Nuclear Magnetic Resonance. Biochemistry 2017; 56:5503-5511. [PMID: 28930470 DOI: 10.1021/acs.biochem.7b00745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite extensive characterization of the human immunodeficiency virus type 1 (HIV-1) hydrophobic fusion peptide (FP), the structure-function relationships underlying its extraordinary degree of conservation remain poorly understood. Specifically, the fact that the tandem repeat of the FLGFLG tripeptide is absolutely conserved suggests that high hydrophobicity may not suffice to unleash FP function. Here, we have compared the nuclear magnetic resonance (NMR) structures adopted in nonpolar media by two FP surrogates, wtFP-tag and scrFP-tag, which had equal hydrophobicity but contained wild-type and scrambled core sequences LFLGFLG and FGLLGFL, respectively. In addition, these peptides were tagged at their C-termini with an epitope sequence that folded independently, thereby allowing Western blot detection without interfering with FP structure. We observed similar α-helical FP conformations for both specimens dissolved in the low-polarity medium 25% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), but important differences in contact with micelles of the membrane mimetic dodecylphosphocholine (DPC). Thus, whereas wtFP-tag preserved a helix displaying a Gly-rich ridge, the scrambled sequence lost in great part the helical structure upon being solubilized in DPC. Western blot analyses further revealed the capacity of wtFP-tag to assemble trimers in membranes, whereas membrane oligomers were not observed in the case of the scrFP-tag sequence. We conclude that, beyond hydrophobicity, preserving sequence order is an important feature for defining the secondary structures and oligomeric states adopted by the HIV FP in membranes.
Collapse
Affiliation(s)
- Soraya Serrano
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC) , Serrano 119, E-28006 Madrid, Spain
| | - Nerea Huarte
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University , Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - José L Nieva
- Biofisika Institute (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country , P.O. Box 644, 48080 Bilbao, Spain
| | - María Angeles Jiménez
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC) , Serrano 119, E-28006 Madrid, Spain
| |
Collapse
|
22
|
Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. Proc Natl Acad Sci U S A 2017; 114:E7987-E7996. [PMID: 28874543 DOI: 10.1073/pnas.1708052114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ebolavirus (EBOV), an enveloped filamentous RNA virus causing severe hemorrhagic fever, enters cells by macropinocytosis and membrane fusion in a late endosomal compartment. Fusion is mediated by the EBOV envelope glycoprotein GP, which consists of subunits GP1 and GP2. GP1 binds to cellular receptors, including Niemann-Pick C1 (NPC1) protein, and GP2 is responsible for low pH-induced membrane fusion. Proteolytic cleavage and NPC1 binding at endosomal pH lead to conformational rearrangements of GP2 that include exposing the hydrophobic fusion loop (FL) for insertion into the cellular target membrane and forming a six-helix bundle structure. Although major portions of the GP2 structure have been solved in pre- and postfusion states and although current models place the transmembrane (TM) and FL domains of GP2 in close proximity at critical steps of membrane fusion, their structures in membrane environments, and especially interactions between them, have not yet been characterized. Here, we present the structure of the membrane proximal external region (MPER) connected to the TM domain: i.e., the missing parts of the EBOV GP2 structure. The structure, solved by solution NMR and EPR spectroscopy in membrane-mimetic environments, consists of a helix-turn-helix architecture that is independent of pH. Moreover, the MPER region is shown to interact in the membrane interface with the previously determined structure of the EBOV FL through several critical aromatic residues. Mutation of aromatic and neighboring residues in both binding partners decreases fusion and viral entry, highlighting the functional importance of the MPER/TM-FL interaction in EBOV entry and fusion.
Collapse
|
23
|
Schmidt NW, Grigoryan G, DeGrado WF. The accommodation index measures the perturbation associated with insertions and deletions in coiled-coils: Application to understand signaling in histidine kinases. Protein Sci 2017; 26:414-435. [PMID: 27977891 PMCID: PMC5326573 DOI: 10.1002/pro.3095] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023]
Abstract
Coiled-coils are essential components of many protein complexes. First discovered in structural proteins such as keratins, they have since been found to figure largely in the assembly and dynamics required for diverse functions, including membrane fusion, signal transduction and motors. Coiled-coils have a characteristic repeating seven-residue geometric and sequence motif, which is sometimes interrupted by the insertion of one or more residues. Such insertions are often highly conserved and critical to interdomain communication in signaling proteins such as bacterial histidine kinases. Here we develop the "accommodation index" as a parameter that allows automatic detection and classification of insertions based on the three dimensional structure of a protein. This method allows precise identification of the type of insertion and the "accommodation length" over which the insertion is structurally accommodated. A simple theory is presented that predicts the structural perturbations of 1, 3, 4 residue insertions as a function of the length over which the insertion is accommodated. Analysis of experimental structures is in good agreement with theory, and shows that short accommodation lengths give rise to greater perturbation of helix packing angles, changes in local helical phase, and increased structural asymmetry relative to long accommodation lengths. Cytoplasmic domains of histidine kinases in different signaling states display large changes in their accommodation lengths, which can now be seen to underlie diverse structural transitions including symmetry/asymmetry and local variations in helical phase that accompany signal transduction.
Collapse
Affiliation(s)
- Nathan W. Schmidt
- Department of Pharmaceutical ChemistryCardiovascular Research Institute, University of CaliforniaSan FranciscoCalifornia94158
| | - Gevorg Grigoryan
- Department of Computer ScienceDartmouth CollegeHanoverNew Hampshire03755
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire03755
| | - William F. DeGrado
- Department of Pharmaceutical ChemistryCardiovascular Research Institute, University of CaliforniaSan FranciscoCalifornia94158
| |
Collapse
|
24
|
Yao H, Lee M, Liao SY, Hong M. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain. Biochemistry 2016; 55:6787-6800. [DOI: 10.1021/acs.biochem.6b00568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongwei Yao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Myungwoon Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shu-Yu Liao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Oh KI, Smith-Dupont KB, Markiewicz BN, Gai F. Kinetics of peptide folding in lipid membranes. Biopolymers 2016; 104:281-90. [PMID: 25808575 DOI: 10.1002/bip.22640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022]
Abstract
Despite our extensive understanding of water-soluble protein folding kinetics, much less is known about the folding dynamics and mechanisms of membrane proteins. However, recent studies have shown that for relatively simple systems, such as peptides that form a transmembrane α-helix, helical dimer, or helix-turn-helix, it is possible to assess the kinetics of several important steps, including peptide binding to the membrane from aqueous solution, peptide folding on the membrane surface, helix insertion into the membrane, and helix-helix association inside the membrane. Herein, we provide a brief review of these studies and also suggest new initiation and probing methods that could lead to improved temporal and structural resolution in future experiments.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn B Smith-Dupont
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
26
|
Abstract
The family Paramyxoviridae includes many viruses that significantly affect human and animal health. An essential step in the paramyxovirus life cycle is viral entry into host cells, mediated by virus-cell membrane fusion. Upon viral entry, infection results in expression of the paramyxoviral glycoproteins on the infected cell surface. This can lead to cell-cell fusion (syncytia formation), often linked to pathogenesis. Thus membrane fusion is essential for both viral entry and cell-cell fusion and an attractive target for therapeutic development. While there are important differences between viral-cell and cell-cell membrane fusion, many aspects are conserved. The paramyxoviruses generally utilize two envelope glycoproteins to orchestrate membrane fusion. Here, we discuss the roles of these glycoproteins in distinct steps of the membrane fusion process. These findings can offer insights into evolutionary relationships among Paramyxoviridae genera and offer future targets for prophylactic and therapeutic development.
Collapse
|
27
|
Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins. J Virol 2016; 90:5586-5600. [PMID: 27030273 DOI: 10.1128/jvi.00015-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/23/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The fusion peptides (FP) play an essential role in fusion of viral envelope with cellular membranes. The location and properties of the FPs in the spike (S) glycoproteins of different coronaviruses (CoV) have not yet been determined. Through amino acid sequence analysis of S proteins of representative CoVs, we identified a common region as a possible FP (pFP) that shares the characteristics of FPs of class I viral fusion proteins, including high Ala/Gly content, intermediate hydrophobicity, and few charged residues. To test the hypothesis that this region contains the CoV FP, we systemically mutated every residue in the pFP of Middle East respiratory syndrome betacoronavirus (MERS-CoV) and found that 11 of the 22 residues in the pFP (from G953 to L964, except for A956) were essential for S protein-mediated cell-cell fusion and virus entry. The synthetic MERS-CoV pFP core peptide (955IAGVGWTAGL964) induced extensive fusion of liposome membranes, while mutant peptide failed to induce any lipid mixing. We also selectively mutated residues in pFPs of two other β-CoVs, severe acute respiratory syndrome coronavirus (SARS-CoV) and mouse hepatitis virus (MHV). Although the amino acid sequences of these two pFPs differed significantly from that of MERS-CoV and each other, most of the pFP mutants of SARS-CoV and MHV also failed to mediate membrane fusion, suggesting that these pFPs are also the functional FPs. Thus, the FPs of 3 different lineages of β-CoVs are conserved in location within the S glycoproteins and in their functions, although their amino acid sequences have diverged significantly during CoV evolution. IMPORTANCE Within the class I viral fusion proteins of many enveloped viruses, the FP is the critical mediator of fusion of the viral envelope with host cell membranes leading to virus infection. FPs from within a virus family, like influenza viruses or human immunodeficiency viruses (HIV), tend to share high amino acid sequence identity. In this study, we determined the location and amino acid sequences of the FPs of S glycoproteins of 3 β-CoVs, MERS-CoV, SARS-CoV, and MHV, and demonstrated that they were essential for mediating cell-cell fusion and virus entry. Interestingly, in marked contrast to the FPs of influenza and HIV, the primary amino acid sequences of the FPs of β-CoVs in 3 different lineages differed significantly. Thus, during evolution the FPs of β-CoVs have diverged significantly in their primary sequences while maintaining the same essential biological functions. Our findings identify a potential new target for development of drugs against CoVs.
Collapse
|
28
|
Li ZL, Ding HM, Ma YQ. Interaction of peptides with cell membranes: insights from molecular modeling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:083001. [PMID: 26828575 DOI: 10.1088/0953-8984/28/8/083001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide-membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field.
Collapse
Affiliation(s)
- Zhen-lu Li
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | |
Collapse
|
29
|
Lai AL, Freed JH. The Interaction between Influenza HA Fusion Peptide and Transmembrane Domain Affects Membrane Structure. Biophys J 2015; 109:2523-2536. [PMID: 26682811 PMCID: PMC4699882 DOI: 10.1016/j.bpj.2015.10.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 11/27/2022] Open
Abstract
Viral glycoproteins, such as influenza hemagglutinin (HA) and human immunodeficiency virus gp41, are anchored by a single helical segment transmembrane domain (TMD) on the viral envelope membrane. The fusion peptides (FP) of the glycoproteins insert into the host membrane and initiate membrane fusion. Our previous study showed that the FP or TMD alone perturbs membrane structure. Interaction between the influenza HA FP and TMD has previously been shown, but its role is unclear. We used PC spin labels dipalmitoylphospatidyl-tempo-choline (on the headgroup), 5PC and 14PC (5-C and 14-C positions on the acyl chain) to detect the combined effect of FP-TMD interaction by titrating HA FP to TMD-reconstituted 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol)/cholesterol lipid bilayers using electron spin resonance. We found that the FP-TMD increases the lipid order at all positions, which has a greater lipid ordering effect than the sum of the FP or TMD alone, and this effect reaches deeper into the membranes. Although HA-mediated membrane fusion is pH dependent, this combined effect is observed at both pH 5 and pH 7. In addition to increasing lipid order, multiple components are found for 5PC at increased concentration of FP-TMD, indicating that distinct domains are induced. However, the mutation of Gly1 in the FP and L187 in the TMD eliminates the perturbations, consistent with their fusogenic phenotypes. Electron spin resonance on spin-labeled peptides confirms these observations. We suggest that this interaction may provide a driving force in different stages of membrane fusion: initialization, transition from hemifusion stalk to transmembrane contact, and fusion pore formation.
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
30
|
Abstract
The authors use molecular dynamics simulations to investigate viral peptide interactions as the cause of pH-dependent fusion in liposomal drug delivery. Viral peptides (LEFN) are composed of a linker peptide (LELELELE) connected to a synthetic viral peptide (DRGWGNGCGLFGKGSI). Rather than being anchored in a lipid bilayer, the viral peptides are anchored to a neutral surface by the amino termini of the linker peptide (anchor atoms are mobile in the xy-plane). Atomistic-level peptide pair arrangement on a surface depends on pH; however, the overall propensity to cluster is independent of pH, indicating that pH-sensitive liposome fusion is not due to peptide clustering. To further investigate a molecular cause of pH-sensitive fusion, the authors treat the linker peptides as ectodomains, with the assumption that the viral peptides are already inserted into a target membrane. In these simulations, the linker peptides are elongated to encourage them to bundle. At both high and low pH, the peptides readily bundle. At high pH, however, bundling was constrained by long-range order induced by sodium ions bridging negatively charged glutamic acid residues on neighboring peptides. The authors hypothesize that this constraint hinders the ability of the linker peptides to support viral peptide insertion, resulting in decreased levels of fusion observed experimentally.
Collapse
|
31
|
Zhang Y, Bartz R, Grigoryan G, Bryant M, Aaronson J, Beck S, Innocent N, Klein L, Procopio W, Tucker T, Jadhav V, Tellers DM, DeGrado WF. Computational design and experimental characterization of peptides intended for pH-dependent membrane insertion and pore formation. ACS Chem Biol 2015; 10:1082-93. [PMID: 25630033 DOI: 10.1021/cb500759p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There are many opportunities to use macromolecules, such as peptides and oligonucleotides, for intracellular applications. Despite this, general methods for delivering these molecules to the cytosol in a safe and efficient manner are not available. Efforts to develop a variety of intracellular drug delivery systems such as viral vectors, lipoplexes, nanoparticles, and amphiphilic peptides have been made, but various challenges such as delivery efficiency, toxicity, and controllability remain. A central challenge is the ability to selectively perturb, not destroy, the membrane to facilitate cargo introduction. Herein, we describe our efforts to design and characterize peptides that form pores inside membranes at acidic pH, so-called pH-switchable pore formation (PSPF) peptides, as a potential means for facilitating cargo translocation through membranes. Consistent with pore formation, these peptides exhibit low-pH-triggered selective release of ATP and miRNA, but not hemoglobin, from red blood cells. Consistent with these observations, biophysical studies (tryptophan fluorescence, circular dichroism, size-exclusion chromatography, analytical ultracentrifugation, and attenuated total reflectance Fourier transformed infrared spectroscopy) show that decreased pH destabilizes the PSPF peptides in aqueous systems while promoting their membrane insertion. Together, these results suggest that reduced pH drives insertion of PSPF peptides into membranes, leading to target-specific escape through a proposed pore formation mechanism.
Collapse
Affiliation(s)
- Yao Zhang
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - René Bartz
- Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Gevorg Grigoryan
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael Bryant
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeff Aaronson
- Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Stephen Beck
- Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Nathalie Innocent
- Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Lee Klein
- Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - William Procopio
- Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Tom Tucker
- Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Vasant Jadhav
- Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - David M. Tellers
- Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - William F. DeGrado
- Department
of Pharmaceutical Chemistry, University of California−San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
32
|
Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Unity in diversity: shared mechanism of entry among paramyxoviruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:1-32. [PMID: 25595799 DOI: 10.1016/bs.pmbts.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus, and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus-encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral "fusion machinery." The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here, we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Biology, Ecole Normale Supérieure, Lyon, France
| | - Eric M Jurgens
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA
| | - Anne Moscona
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA.
| | - Laura M Palermo
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| |
Collapse
|
33
|
Smrt ST, Draney AW, Lorieau JL. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature. J Biol Chem 2014; 290:228-38. [PMID: 25398882 DOI: 10.1074/jbc.m114.611657] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk.
Collapse
Affiliation(s)
- Sean T Smrt
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Adrian W Draney
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Justin L Lorieau
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| |
Collapse
|
34
|
Efficient replication of a paramyxovirus independent of full zippering of the fusion protein six-helix bundle domain. Proc Natl Acad Sci U S A 2014; 111:E3795-804. [PMID: 25157143 DOI: 10.1073/pnas.1403609111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enveloped viruses such as HIV and members of the paramyxovirus family use metastable, proteinaceous fusion machineries to merge the viral envelope with cellular membranes for infection. A hallmark of the fusogenic glycoproteins of these pathogens is refolding into a thermodynamically highly stable fusion core structure composed of six antiparallel α-helices, and this structure is considered instrumental for pore opening and/or enlargement. Using a paramyxovirus fusion (F) protein, we tested this paradigm by engineering covalently restricted F proteins that are predicted to be unable to close the six-helix bundle core structure fully. Several candidate bonds formed efficiently, resulting in F trimers and higher-order complexes containing covalently linked dimers. The engineered F complexes were incorporated into recombinant virions efficiently and were capable of refolding into a postfusion conformation without temporary or permanent disruption of the disulfide bonds. They efficiently formed fusion pores based on virus replication and quantitative cell-to-cell and virus-to-cell fusion assays. Complementation of these F mutants with a monomeric, fusion-inactive F variant enriched the F oligomers for heterotrimers containing a single disulfide bond, without affecting fusion complementation profiles compared with standard F protein. Our demonstration that complete closure of the fusion core does not drive paramyxovirus entry may aid the design of strategies for inhibiting virus entry.
Collapse
|
35
|
Molecular dynamics simulations of homo-oligomeric bundles embedded within a lipid bilayer. Biophys J 2014; 105:1569-80. [PMID: 24094398 DOI: 10.1016/j.bpj.2013.07.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022] Open
Abstract
Using molecular dynamics simulations, we studied the structure, interhelix interactions, and dynamics of transmembrane proteins. Specifically, we investigated homooligomeric helical bundle systems consisting of synthetic α-helices with either the sequence Ac-(LSLLLSL)3-NH2 (LS2) or Ac-(LSSLLSL)3-NH2 (LS3). The LS2 and LS3 helical peptides are designed to have amphipathic characteristics that form ion channels in membrane. We simulated bundles containing one to six peptides that were embedded in palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer and placed between two lamellae of water. We aim to provide a fundamental understanding of how amphipathic helical peptides interact with each other and their dynamical behaviors in different homooligomeric states. To understand structural properties, we examined the helix lengths, tilt angles of individual helices and the entire bundle, interhelix distances, interhelix cross-angles, helix hydrophobic-to-hydrophilic vector projections, and the average number of interhelix hydrophilic (serine-serine) contacts lining the pore of the transmembrane channel. To analyze dynamical properties, we calculated the rotational autocorrelation function of each helix and the cross-correlation of the rotational velocity between adjacent helices. The observed structural and dynamical characteristics show that higher order bundles containing four to six peptides are composed of multiple lower order bundles of one to three peptides. For example, the LS2 channel was found to be stable in a tetrameric bundle composed of a "dimer of dimers." In addition, we observed that there is a minimum of two strong hydrophilic contacts between a pair of adjacent helices in the dimer to tetramer systems and only one strong hydrophilic interhelix contact in helix pairs of the pentamer and hexamer systems. We believe these results are general and can be applied to more complex ion channels, providing insight into ion channel stability and assembly.
Collapse
|
36
|
|
37
|
Apellániz B, Huarte N, Largo E, Nieva JL. The three lives of viral fusion peptides. Chem Phys Lipids 2014; 181:40-55. [PMID: 24704587 PMCID: PMC4061400 DOI: 10.1016/j.chemphyslip.2014.03.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 02/07/2023]
Abstract
The presence of a fusion peptide (FP) is a hallmark of viral fusion glycoproteins. Structure–function relationships underlying FP conservation remain greatly unknown. FPs establish interactions satisfying their folding within pre-fusion glycoproteins. Upon fusion activation FPs insert into and restructure target membranes. FPs can finally combine with transmembrane domains to form integral membrane bundles.
Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention.
Collapse
Affiliation(s)
- Beatriz Apellániz
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - José L Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
38
|
A novel membrane fusion protein family in Flaviviridae? Trends Microbiol 2014; 22:176-82. [PMID: 24569295 PMCID: PMC3985287 DOI: 10.1016/j.tim.2014.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 11/24/2022]
Abstract
Enveloped viruses must fuse their lipid membrane to a cellular membrane to deliver their genome into the cytoplasm for replication. Viral envelope proteins catalyze this critical membrane fusion event. They fall into three distinct structural classes. In 2013, envelope proteins from a pestivirus and hepatitis C virus were found to have two distinct novel folds. This was unexpected because these viruses are in the same family as flaviviruses, which have class II fusion proteins. We propose that the membrane fusion machinery of the closely related pestiviruses and hepatitis C virus defines a new structural class. This and other recently identified structural relationships between viral fusion proteins shift the paradigm for how these proteins evolved.
Collapse
|
39
|
Relating structure to evolution in class II viral membrane fusion proteins. Curr Opin Virol 2014; 5:34-41. [PMID: 24525225 PMCID: PMC4028412 DOI: 10.1016/j.coviro.2014.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/17/2014] [Indexed: 12/25/2022]
Abstract
Until 2013, class II proteins had only been found in flaviviruses and alphaviruses. A class II fusion protein was recently discovered in the unrelated phlebovirus genus. Within the same family as alphaviruses, rubella virus has a divergent class II fold. Pestiviruses, although they are Flaviviridae, have fusion proteins from a novel class. Viral class II proteins may originate from cellular class II fusion protein ancestors.
Enveloped viruses must fuse their lipid membrane to a cellular membrane to deliver the viral genome into the cytoplasm for replication. Viral envelope proteins catalyze this critical membrane fusion event. They fall into at least three distinct structural classes. Class II fusion proteins have a conserved three-domain architecture and are found in many important viral pathogens. Until 2013, class II proteins had only been found in flaviviruses and alphaviruses. However, in 2013 a class II fusion protein was discovered in the unrelated phlebovirus genus, and two unexpectedly divergent envelope proteins were identified in families that also contain prototypical class II proteins. The structural relationships of newly identified class II proteins, reviewed herein, shift the paradigm for how these proteins evolved.
Collapse
|
40
|
Yao H, Hong M. Conformation and lipid interaction of the fusion peptide of the paramyxovirus PIV5 in anionic and negative-curvature membranes from solid-state NMR. J Am Chem Soc 2014; 136:2611-24. [PMID: 24428385 PMCID: PMC3985871 DOI: 10.1021/ja4121956] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viral fusion proteins catalyze the merger of the virus envelope and the target cell membrane through multiple steps of protein conformational changes. The fusion peptide domain of these proteins is important for membrane fusion, but how it causes membrane curvature and dehydration is still poorly understood. We now use solid-state NMR spectroscopy to investigate the conformation, topology, and lipid and water interactions of the fusion peptide of the PIV5 virus F protein in three lipid membranes, POPC/POPG, DOPC/DOPG, and DOPE. These membranes allow us to investigate the effects of lipid chain disorder, membrane surface charge, and intrinsic negative curvature on the fusion peptide structure. Chemical shifts and spin diffusion data indicate that the PIV5 fusion peptide is inserted into all three membranes but adopts distinct conformations: it is fully α-helical in the POPC/POPG membrane, adopts a mixed strand/helix conformation in the DOPC/DOPG membrane, and is primarily a β-strand in the DOPE membrane. (31)P NMR spectra show that the peptide retains the lamellar structure and hydration of the two anionic membranes. However, it dehydrates the DOPE membrane, destabilizes its inverted hexagonal phase, and creates an isotropic phase that is most likely a cubic phase. The ability of the β-strand conformation of the fusion peptide to generate negative Gaussian curvature and to dehydrate the membrane may be important for the formation of hemifusion intermediates in the membrane fusion pathway.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Chemistry, Iowa State University , Ames, Iowa 50011 United States
| | | |
Collapse
|
41
|
Smith EC, Smith SE, Carter JR, Webb SR, Gibson KM, Hellman LM, Fried MG, Dutch RE. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function. J Biol Chem 2013; 288:35726-35. [PMID: 24178297 DOI: 10.1074/jbc.m113.514554] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.
Collapse
Affiliation(s)
- Everett Clinton Smith
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Larsson P, Kasson PM. Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models. PLoS Comput Biol 2013; 9:e1002950. [PMID: 23505359 PMCID: PMC3591293 DOI: 10.1371/journal.pcbi.1002950] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/11/2013] [Indexed: 11/18/2022] Open
Abstract
Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proportion to the ability of the corresponding full-length hemagglutinin to drive lipid mixing in fusion assays. We have performed molecular dynamics simulations of influenza fusion peptides in lipid bilayers, comparing the X-31 influenza strain against a series of N-terminal mutants. As hypothesized, the probability of lipid tail protrusion correlates well with the lipid mixing rate induced by each mutant. This supports the conclusion that tail protrusion is important to the transition state for fusion. Furthermore, it suggests that tail protrusion can be used to examine how fusion peptides might interact with membranes to promote fusion. Previous models for native influenza fusion peptide structure in membranes include a kinked helix, a straight helix, and a helical hairpin. Our simulations visit each of these conformations. Thus, the free energy differences between each are likely low enough that specifics of the membrane environment and peptide construct may be sufficient to modulate the equilibrium between them. However, the kinked helix promotes lipid tail protrusion in our simulations much more strongly than the other two structures. We therefore predict that the kinked helix is the most fusogenic of these three conformations. Membrane fusion is a common process critical to both cellular function and infection by enveloped viruses. Influenza is a particularly useful model system for studying fusion because the fusion reaction is accomplished by a single protein, hemagglutinin. Furthermore, mutations to the membrane-inserted portion of hemagglutinin have been identified that do not detectably alter the rest of the protein but can either arrest fusion halfway or block it entirely. For influenza at least, it seems that the membrane-inserted hemagglutinin peptide plays a critical role in promoting fusion, perhaps by increasing the local disorder of lipid bilayers. However, we lack a mechanistic understanding sufficient to predict the activity of fusion peptide mutants from their sequence. Here, we have used lipid tail protrusion as a way to measure how much fusion peptides disorder their surrounding bilayer; we see a strong relationship between lipid tail protrusion and the ability of fusion peptide mutants to promote lipid mixing between membranes. Our simulations also predict that this lipid tail protrusion is much more common when the peptides adopt a kinked helix structure than when they are straight or hairpin-like. We therefore hypothesize that, while all three types of structure likely undergo conformational exchange, the kinked helix structure is most active in promoting fusion.
Collapse
Affiliation(s)
- Per Larsson
- Departments of Molecular Physiology and Biological Physics and of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Peter M. Kasson
- Departments of Molecular Physiology and Biological Physics and of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Zhang M, Mao X, Wang C, Zeng W, Zhang C, Li Z, Fang Y, Yang Y, Liang W, Wang C. The effect of graphene oxide on conformation change, aggregation and cytotoxicity of HIV-1 regulatory protein (Vpr). Biomaterials 2013; 34:1383-90. [DOI: 10.1016/j.biomaterials.2012.10.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
|
44
|
Yao H, Hong M. Membrane-dependent conformation, dynamics, and lipid interactions of the fusion peptide of the paramyxovirus PIV5 from solid-state NMR. J Mol Biol 2012. [PMID: 23183373 DOI: 10.1016/j.jmb.2012.11.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The entry of enveloped viruses into cells requires protein-catalyzed fusion of the viral and cell membranes. The structure-function relation of a hydrophobic fusion peptide (FP) in viral fusion proteins is still poorly understood. We report magic-angle-spinning solid-state NMR results of the membrane-bound conformation, dynamics, and lipid interactions of the FP of the F protein of the paramyxovirus, parainfluenza virus 5 (PIV5). (13)C chemical shifts indicate that the PIV5 FP structure depends on the composition of the phospholipid membrane: the peptide is α-helical in palmitoyloleoylphosphatidylglycerol-containing anionic membranes but mostly β-sheet in neutral phosphocholine membranes. Other environmental factors, including peptide concentration, cholesterol, membrane reconstitution protocol, and a Lys solubility tag, do not affect the secondary structure. The α-helical and β-sheet states exhibit distinct dynamics and lipid interactions. The β-sheet FP is immobilized, resides on the membrane surface, and causes significant membrane curvature. In contrast, the α-helical FP undergoes intermediate-timescale motion and maintains the lamellar order of the membrane. Two-dimensional (31)P-(1)H correlation spectra show clear (31)P-water cross peaks for anionic membranes containing the α-helical FP but weak or no (31)P-water cross peak for neutral membranes containing the β-sheet FP. These results suggest that the β-sheet FP may be associated with high-curvature dehydrated fusion intermediates, while the α-helical state may be associated with the extended prehairpin state and the post-fusion state. Conformational plasticity is also a pronounced feature of the influenza and human immunodeficiency virus FPs, suggesting that these Gly-rich sequences encode structural plasticity to generate and sense different membrane morphologies.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
45
|
pH-triggered, activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR. Proc Natl Acad Sci U S A 2012; 109:19994-9. [PMID: 23169643 DOI: 10.1073/pnas.1213801109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The highly conserved first 23 residues of the influenza hemagglutinin HA2 subunit constitute the fusion domain, which plays a pivotal role in fusing viral and host-cell membranes. At neutral pH, this peptide adopts a tight helical hairpin wedge structure, stabilized by aliphatic hydrogen bonding and charge-dipole interactions. We demonstrate that at low pH, where the fusion process is triggered, the native peptide transiently visits activated states that are very similar to those sampled by a G8A mutant. This mutant retains a small fraction of helical hairpin conformation, in rapid equilibrium with at least two open structures. The exchange rate between the closed and open conformations of the wild-type fusion peptide is ~40 kHz, with a total open-state population of ~20%. Transitions to these activated states are likely to play a crucial role in formation of the fusion pore, an essential structure required in the final stage of membrane fusion.
Collapse
|
46
|
A transmembrane domain and GxxxG motifs within L2 are essential for papillomavirus infection. J Virol 2012; 87:464-73. [PMID: 23097431 DOI: 10.1128/jvi.01539-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During cellular invasion, human papillomavirus type 16 (HPV16) must transfer its viral genome (vDNA) across the endosomal membrane prior to its accumulation at nuclear PML bodies for the establishment of infection. After cellular uptake, the capsid likely undergoes pH-dependent disassembly within the endo-/lysosomal compartment, thereby exposing hidden domains in L2 that facilitate membrane penetration of L2/vDNA complexes. In an effort to identify regions of L2 that might physically interact with membranes, we have subjected the L2 sequence to multiple transmembrane (TM) domain prediction algorithms. Here, we describe a conserved TM domain within L2 (residues 45 to 67) and investigate its role in HPV16 infection. In vitro, the predicted TM domain adopts an alpha-helical structure in lipid environments and can function as a real TM domain, although not as efficiently as the bona fide TM domain of PDGFR. An L2 double point mutant renders the TM domain nonfunctional and blocks HPV16 infection by preventing endosomal translocation of vDNA. The TM domain contains three highly conserved GxxxG motifs. These motifs can facilitate homotypic and heterotypic interactions between TM helices, activities that may be important for vDNA translocation. Disruption of some of these GxxxG motifs resulted in noninfectious viruses, indicating a critical role in infection. Using a ToxR-based homo-oligomerization assay, we show a propensity for this TM domain to self-associate in a GxxxG-dependent manner. These data suggest an important role for the self-associating L2 TM domain and the conserved GxxxG motifs in the transfer of vDNA across the endo-/lysosomal membrane.
Collapse
|
47
|
Lorieau JL, Louis JM, Bax A. The impact of influenza hemagglutinin fusion peptide length and viral subtype on its structure and dynamics. Biopolymers 2012; 99:189-95. [PMID: 23015412 DOI: 10.1002/bip.22102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/25/2012] [Indexed: 12/11/2022]
Abstract
A peptide comprising no fewer than the first 20 residues of the influenza hemagglutinin HA2 subunit suffices to induce lipid mixing between the membranes of different unilamellar vesicles. This 20-residue peptide was previously reported to adopt an open "boomerang" structure that differs significantly from the closed helical-hairpin structure of a fusion peptide consisting of the first 23 residues of the HA2 sequence. This study investigates the structural and dynamic features of fusion peptides of different length and subtype. Lacking key interactions that stabilize the closed, helical-hairpin structure, the 20-residue peptide is in a dynamic equilibrium between closed and open states, adopting a ca. 11% population of the former when solubilized by DPC micelles. Peptides shorter than 20 residues would have even fewer interactions to stabilize a helical hairpin fold, resulting in a vanishing hairpin population. Considering the conserved nature of hairpin-stabilizing interactions across all serotypes, and the minimum of 20 residues needed for fusion, we postulate that the closed state plays an essential role in the fusion process. However, opening of this hairpin structure may be essential to the formation of a membrane pore at the final stage of the fusion process.
Collapse
Affiliation(s)
- Justin L Lorieau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
48
|
Schramm CA, Hannigan BT, Donald JE, Keasar C, Saven JG, Degrado WF, Samish I. Knowledge-based potential for positioning membrane-associated structures and assessing residue-specific energetic contributions. Structure 2012; 20:924-35. [PMID: 22579257 DOI: 10.1016/j.str.2012.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/28/2012] [Accepted: 03/07/2012] [Indexed: 01/27/2023]
Abstract
The complex hydrophobic and hydrophilic milieus of membrane-associated proteins pose experimental and theoretical challenges to their understanding. Here, we produce a nonredundant database to compute knowledge-based asymmetric cross-membrane potentials from the per-residue distributions of C(β), C(γ) and functional group atoms. We predict transmembrane and peripherally associated regions from genomic sequence and position peptides and protein structures relative to the bilayer (available at http://www.degradolab.org/ez). The pseudo-energy topological landscapes underscore positional stability and functional mechanisms demonstrated here for antimicrobial peptides, transmembrane proteins, and viral fusion proteins. Moreover, experimental effects of point mutations on the relative ratio changes of dual-topology proteins are quantitatively reproduced. The functional group potential and the membrane-exposed residues display the largest energetic changes enabling to detect native-like structures from decoys. Hence, focusing on the uniqueness of membrane-associated proteins and peptides, we quantitatively parameterize their cross-membrane propensity, thus facilitating structural refinement, characterization, prediction, and design.
Collapse
Affiliation(s)
- Chaim A Schramm
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kulp DW, Subramaniam S, Donald JE, Hannigan BT, Mueller BK, Grigoryan G, Senes A. Structural informatics, modeling, and design with an open-source Molecular Software Library (MSL). J Comput Chem 2012; 33:1645-61. [PMID: 22565567 PMCID: PMC3432414 DOI: 10.1002/jcc.22968] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/16/2012] [Accepted: 03/02/2012] [Indexed: 01/22/2023]
Abstract
We present the Molecular Software Library (MSL), a C++ library for molecular modeling. MSL is a set of tools that supports a large variety of algorithms for the design, modeling, and analysis of macromolecules. Among the main features supported by the library are methods for applying geometric transformations and alignments, the implementation of a rich set of energy functions, side chain optimization, backbone manipulation, calculation of solvent accessible surface area, and other tools. MSL has a number of unique features, such as the ability of storing alternative atomic coordinates (for modeling) and multiple amino acid identities at the same backbone position (for design). It has a straightforward mechanism for extending its energy functions and can work with any type of molecules. Although the code base is large, MSL was created with ease of developing in mind. It allows the rapid implementation of simple tasks while fully supporting the creation of complex applications. Some of the potentialities of the software are demonstrated here with examples that show how to program complex and essential modeling tasks with few lines of code. MSL is an ongoing and evolving project, with new features and improvements being introduced regularly, but it is mature and suitable for production and has been used in numerous protein modeling and design projects. MSL is open-source software, freely downloadable at http://msl-libraries.org. We propose it as a common platform for the development of new molecular algorithms and to promote the distribution, sharing, and reutilization of computational methods.
Collapse
Affiliation(s)
| | | | | | - Brett T. Hannigan
- U. of Pennsylvania, Genomics and Computational Biology Graduate Group
| | | | | | | |
Collapse
|
50
|
Smith EC, Gregory SM, Tamm LK, Creamer TP, Dutch RE. Role of sequence and structure of the Hendra fusion protein fusion peptide in membrane fusion. J Biol Chem 2012; 287:30035-48. [PMID: 22761418 DOI: 10.1074/jbc.m112.367862] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.
Collapse
Affiliation(s)
- Everett Clinton Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|