1
|
Esandi J, Renault P, Capilla-López MD, Blanch R, Edo Á, Ramirez-Gómez D, Bosch A, Almolda B, Saura CA, Giraldo J, Chillón M. HEBE: A novel chimeric chronokine for ameliorating memory deficits in Alzheimer's disease. Biomed Pharmacother 2025; 183:117815. [PMID: 39818099 DOI: 10.1016/j.biopha.2025.117815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-β and Tau protein depositions, with treatments focusing on single proteins have shown limited success due to the complexity of pathways involved. This study explored the potential of chronokines -proteins that modulate aging-related processes- as an alternative therapeutic approach. Specifically, we focused on a novel pleiotropic chimeric protein named HEBE, combining s-KL, sTREM2 and TIMP2, guided by bioinformatic analyses to ensure the preservation of each protein's conformation, crucial for their functions. In vitro studies confirmed HEBE's stability and enzymatic activities, even suggesting it has different activities compared to the individual chronokines. In vivo experiments on APP/Tau mice revealed improved learning and memory functions with HEBE treatment, along with decreased levels of phosphorylated Tau and minor effects on amyloid-β levels. These findings suggest that HEBE is as a promising therapeutic candidate for ameliorating memory deficits and reducing pTau in an AD mouse model.
Collapse
Affiliation(s)
- Jon Esandi
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Pedro Renault
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Unitat de Neurociència Translacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Bellaterra 08193, Spain.
| | - Maria Dolores Capilla-López
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Rebeca Blanch
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Ángel Edo
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - David Ramirez-Gómez
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Assumpció Bosch
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Beatriz Almolda
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain.
| | - Carlos Alberto Saura
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Unitat de Neurociència Translacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Bellaterra 08193, Spain.
| | - Miguel Chillón
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
2
|
Gupta P, Rani V. Gel Diffusion-Based Gelatin Zymography to Analyze MMP-2 and MMP-9 Activity in Cell Culture. Methods Mol Biol 2025; 2917:213-223. [PMID: 40347344 DOI: 10.1007/978-1-0716-4478-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes regulating the degradation of collagen as well as other proteins in the extracellular matrix (ECM), tissue repair, and remodeling. Validating MMPs as current drug targets can potentially establish the clinical relevance of their quantitative expression and distribution and open new therapeutic venues in tumor and metastasis. Zymography is a technique used for the identification of the proteolytic activity of MMPs in diverse biological samples. In gel diffusion zymography, analysis of the functional activity of the gelatinases (MMP-2 and MMP-9) by the digestion of gelatin as a substrate, added to agarose gel to assess the active forms of MMPs, is done. Here we describe a detailed experimental protocol to quantitate the gelatinase activity within the cell culture.
Collapse
Affiliation(s)
- Priyadarshini Gupta
- Transcriptome Laboratory, Centre of Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Vibha Rani
- Transcriptome Laboratory, Centre of Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| |
Collapse
|
3
|
Grötter LG, Cainelli S, Peralta MB, Angeli E, Belotti EM, Ortega HH, Rey F, Velázquez MML, Gareis NC. Metalloproteases and their inhibitors in the postpartum endometrial remodeling in dairy cows: their relationship with days to conception after parturition. Vet Res Commun 2024; 49:53. [PMID: 39714564 DOI: 10.1007/s11259-024-10622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
In dairy herds, it is expected that cows will be cycling and the uterus will be ready for a new conception before the fourth week postpartum. However, an alteration in the endometrial remodeling can delay conception, increasing the parturition-to-conception interval, and consequently decreasing the reproductive performance. The endometrial matrix has a relevant participation in the processes of postpartum uterine remodeling. In this sense, the matrix metalloprotease (MMP) system and its inhibitors (TIMPs) are directly involved in the proteolytic degradation of the matrix and their action is related to the concentration of steroid hormones. The aim of this study was to evaluate the protein expression of MMP2, MMP14, MMP9, and their inhibitors, TIMP1 and TIMP2, in the luminal epithelium, glandular epithelium and stroma of endometrial biopsies from dairy cows, at 60 days in milk. Together, the results obtained provide evidence about the expression of MMP2, MMP14 and MMP9, and their inhibitors, TIMP1 and TIMP2, in the postpartum uterus of dairy cows, and about how the balance in their expression could be associated with the achievement of pregnancy. The high protein expression of MMP2, MMP14 and TIMP1 in dairy cows with short parturition-to-conception interval could be important for uterine remodeling and early conception in dairy cows. In addition, the imbalance observed in the MMP9/TIMP1 ratio could be generating an excess of gelatinase activity in the endometrium, causing a delayed conception.
Collapse
Affiliation(s)
- L G Grötter
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral) Universidad Nacional del Litoral (UNL). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - S Cainelli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral) Universidad Nacional del Litoral (UNL). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - M B Peralta
- Instituto de Ecología Humana y Desarrollo Sustentable, Universidad Católica de Santa Fe. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - E Angeli
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral) Universidad Nacional del Litoral (UNL). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - E M Belotti
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral) Universidad Nacional del Litoral (UNL). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral) Universidad Nacional del Litoral (UNL). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - F Rey
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral) Universidad Nacional del Litoral (UNL). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - M M L Velázquez
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
- Instituto de Ecología Humana y Desarrollo Sustentable, Universidad Católica de Santa Fe. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - N C Gareis
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral) Universidad Nacional del Litoral (UNL). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.
- Instituto Nacional de Tecnología Agropecuaria (INTA), Rafaela, Santa Fe, Argentina.
| |
Collapse
|
4
|
Wang Y. Novel drug discovery approaches for MMP-13 inhibitors in the treatment of osteoarthritis. Bioorg Med Chem Lett 2024; 114:130009. [PMID: 39477129 DOI: 10.1016/j.bmcl.2024.130009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/05/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Recently, the key role of matrix metalloproteinase-13 (MMP-13) in a variety of diseases has attracted much attention. In the field of osteoarthritis (OA) treatment, the study of MMP-13 inhibitors has become a hotspot, and the development of selective MMP-13 inhibitors is a key direction of OA treatment strategies. This paper aims to summarize the latest research progress on MMP-13 inhibitors in drug design and delivery systems in OA treatment, in order to provide new ideas and strategies for the development of MMP-13 inhibitors. In the context of drug design, researchers have utilized innovative drug discovery strategies to developed a number of potential MMP-13 inhibitors by accurately simulating the active site and analyzing the structure of known inhibitors. With regard to delivery systems, nanotechnology has been extensively employed to enhance the targeting and bioavailability of MMP-13 inhibitors, effectively improving therapeutic efficacy through precise delivery to the lesion site. The latest research developments not only reveal the significant potential of MMP-13 inhibitors in disease treatment, but also provide new directions and challenges for future research.
Collapse
Affiliation(s)
- Yi Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
5
|
Peeney D, Gurung S, Rich JA, Coates-Park S, Liu Y, Toor J, Jones J, Richie CT, Jenkins LM, Stetler-Stevenson WG. Mapping Extracellular Protein-Protein Interactions Using Extracellular Proximity Labeling (ePL). J Proteome Res 2024; 23:4715-4728. [PMID: 39238192 PMCID: PMC11460327 DOI: 10.1021/acs.jproteome.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Proximity labeling (PL) has given researchers the tools to explore protein-protein interactions (PPIs) in living systems; however, most PL studies are performed on intracellular targets. We have adapted the original PL method to investigate PPIs within the extracellular compartment, which we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigated the interactome of the matrisome protein TIMP2. TIMPs are a family of multifunctional proteins that were initially defined by their ability to inhibit metalloproteinases, the major mediators of extracellular matrix (ECM) turnover. TIMP2 exhibits broad expression and is often abundant in both normal and diseased tissues. Understanding the functional transformation of matrisome regulators, such as TIMP2, during disease progression is essential for the development of ECM-targeted therapeutics. Using dual orientation fusion proteins of TIMP2 with BioID2/TurboID, we describe the TIMP2 proximal interactome (MassIVE MSV000095637). We also illustrate how the TIMP2 interactome changes in the presence of different stimuli, in different cell types, in unique culture conditions (2D vs 3D), and with different reaction kinetics, demonstrating the power of this technique versus classical PPI methods. We propose that screening of matrisome targets in disease models using ePL will reveal new therapeutic targets for further comprehensive studies.
Collapse
Affiliation(s)
- David Peeney
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Sadeechya Gurung
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joshua A. Rich
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Sasha Coates-Park
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Yueqin Liu
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jack Toor
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jane Jones
- Center
for
Cancer Research Protein Expression Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Christopher T. Richie
- Genetic
Engineering
and Viral Vector Core, Office of the Scientific Director, National Institute on Drug Abuse, Baltimore, Maryland 21224, United States
| | - Lisa M. Jenkins
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - William G. Stetler-Stevenson
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Pang G, Ye L, Jiang Y, Wu Y, Zhang R, Yang H, Yang Y. Unveiling the bidirectional role of MMP9: A key player in kidney injury. Cell Signal 2024; 122:111312. [PMID: 39074714 DOI: 10.1016/j.cellsig.2024.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc-dependent proteolytic metalloenzymes that are involved in numerous pathological conditions, including nephropathy. MMP9, a member of the MMPs family, is categorized as a constituent of the gelatinase B subgroup, and its involvement in extracellular matrix (ECM) remodeling and renal fibrosis highlights its importance in the development and progression of renal diseases. The exact role of MMP9 in the development of kidney diseases is still controversial. This study investigated the dual role of MMP9 in kidney injury, discussing its implications in the pathogenesis of kidney diseases and investigating the design and mechanism of MMP9 inhibitors based on previous studies. This study provides an effective basis for the development of novel and selective MMP9 inhibitors for treating renal diseases.
Collapse
Affiliation(s)
- Guiying Pang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Ling Ye
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yinxiao Jiang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yilin Wu
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Rufeng Zhang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China
| | - Hongxu Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China.
| | - Yi Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China.
| |
Collapse
|
7
|
Batty LM, Mackenzie C, Landwehr C, Webster KE, Feller JA. The Role of Biomarkers in Predicting Outcomes of Anterior Cruciate Ligament Reconstruction: A Systematic Review. Orthop J Sports Med 2024; 12:23259671241275072. [PMID: 39380669 PMCID: PMC11460236 DOI: 10.1177/23259671241275072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/05/2024] [Indexed: 10/10/2024] Open
Abstract
Background Anterior cruciate ligament (ACL) injury is frequently associated with injuries to other parts of the knee, including the menisci and articular cartilage. After ACL injury and reconstruction, there may be progressive chondral degradation. Biomarkers in blood, urine, and synovial fluid can be measured after ACL injury and reconstruction and have been proposed as a means of measuring the associated cellular changes occurring in the knee. Purpose To systematically review the literature regarding biomarkers in urine, serum, or synovial fluid that have been associated with an outcome measure after ACL reconstruction. Study Design Systematic review; Level of evidence, 3. Methods This review was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The MEDLINE, Embase, CINAHL, and Web of Science databases were searched to identify studies published before September 2023 that reported on patients undergoing ACL reconstruction where a biomarker was measured and related to an outcome variable. Of 9360 results, 16 studies comprising 492 patients were included. Findings were reported as descriptive summaries synthesizing the available literature. Results A total of 45 unique biomarkers or biomarker ratios were investigated (12 serum, 3 urine, and 38 synovial fluid; 8 biomarkers were measured from >1 source). Nineteen different outcome measures were identified, including the International Knee Documentation Committee Subjective Knee Form, Knee injury and Osteoarthritis Outcome Score, numeric pain scores, radiological outcomes (magnetic resonance imaging and radiography), rates of arthrofibrosis and cyclops lesions, and gait biomechanics. Across the included studies, 17 biomarkers were found to have a statistically significant association (P < .05) with an outcome variable. Serum interleukin 6 (s-IL-6), serum and synovial fluid matrix metalloproteinase-3 (s-MMP-3 and sf-MMP-3), urinary and synovial fluid C-terminal telopeptide of type 2 collagen (u-CTX-II and sf-CTX-II), and serum collagen type 2 cleavage product (s-C2C) showed promise in predicting outcomes after ACL reconstruction, specifically regarding patient-reported outcome measures (s-IL-6 and u-CTX-II), gait biomechanical parameters (s-IL-6, sf-MMP-3, s-MMP-3, and s-C2C), pain (s-IL-6 and u-CTX-II), and radiological osteoarthritis (ratio of u-CTX-II to serum procollagen 2 C-propeptide). Conclusion The results highlight several biomarkers that have been associated with clinically important postoperative outcome measures and may warrant further research to understand if they can provide meaningful information in the clinical environment.
Collapse
Affiliation(s)
- Lachlan M. Batty
- OrthoSport Victoria Research Unit, Melbourne, Victoria, Australia
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
- St. Vincent’s Hospital Melbourne, Melbourne, Victoria, Australia
| | | | - Chelsea Landwehr
- Sunshine Coast University Hospital, Queensland Health, Birtinya, Queensland, Australia
| | - Kate E. Webster
- OrthoSport Victoria Research Unit, Melbourne, Victoria, Australia
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Julian A. Feller
- OrthoSport Victoria Research Unit, Melbourne, Victoria, Australia
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Ahmad S, Muurinen M, Loid P, Ali MZ, Muzammal M, Fatima S, Khan J, Khan MA, Mäkitie O. A clinical and molecular characterization of a Pakistani family with multicentric osteolysis, nodulosis and arthropathy (MONA) syndrome. Bone Rep 2024; 22:101789. [PMID: 39540058 PMCID: PMC11558256 DOI: 10.1016/j.bonr.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 11/16/2024] Open
Abstract
Multicentric osteolysis nodulosis and arthropathy (MONA) is a rare skeletal dysplasia characterized primarily by progressive osteolysis, particularly affecting the carpal and tarsal bones, accompanied by osteoporosis. In addition, it features subcutaneous nodules on the palms and soles, along with the progressive onset of arthropathy, encompassing joint contractures, pain, swelling and stiffness. It is caused by a deficiency of the Matrix Metalloproteinase-2 (MMP2). In the current study we present a comprehensive clinical, radiological, genetic and in silico analysis of MONA in a consanguineous Pakistani family. Clinical and radiological examinations of the three severely affected siblings demonstrated a progressive MONA syndrome with phenotypic variability. The patients presented unusual facial appearance, thickened skin, severe short stature, short hands and feet. Radiographs revealed extensive bone deformities affecting upper and lower arms, legs, vertebrae and hip. Genetic analysis revealed a homozygous missense variant [c.539 A > T p.(Asp180Val)] in the MMP2 gene. In silico findings suggested a mutant MMP2 protein with a decreased stability and an altered pattern of interactions. Our findings add to the existing literature on the skeletal phenotype of MONA syndrome, including the specific clinical and radiological patterns observed. Moreover, the study will aid in genetic counseling and accurate diagnosis of families affected by the same disorder within the Pakistani population.
Collapse
Affiliation(s)
- Safeer Ahmad
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Muurinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
| | - Petra Loid
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
| | - Muhammad Zeeshan Ali
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Sana Fatima
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Jabbar Khan
- Institute of Biological Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Muzammil Ahmad Khan
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Outi Mäkitie
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
| |
Collapse
|
9
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
10
|
Rajiv Gandhi G, Sharanya CS, Jayanandan A, Haridas M, Edwin Hillary V, Rajiv Gandhi S, Sridharan G, Sivasubramanian R, Silva Vasconcelos AB, Montalvão MM, Antony Ceasar S, Sousa NFD, Scotti L, Scotti MT, Gurgel RQ, Quintans-Júnior LJ. Multitargeted molecular docking and dynamics simulation studies of flavonoids and volatile components from the peel of Citrus sinensis L. (Osbeck) against specific tumor protein markers. J Biomol Struct Dyn 2024; 42:3051-3080. [PMID: 37203996 DOI: 10.1080/07391102.2023.2212062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
Citrus sinensis (L.) Osbeck (Rutaceae), commonly known as the sweet orange, is a popular and widely consumed fruit with several medicinal properties. The present study aimed to perform the in silico screening of 18 flavonoids and eight volatile components from the peel of C. sinensis against apoptotic and inflammatory proteins, metalloprotease, and tumor suppressor markers. Flavonoids obtained higher probabilities than volatile components against selected anti-cancer drug targets. Hence, the data from the binding energies against the essential apoptotic and cell proliferation proteins substantiate that they may be promising compounds in developing effective candidates to block cell growth, proliferation, and induced cell death by activating the apoptotic pathway. Further, the binding stability of the selected targets and the corresponding molecules were analyzed by 100 ns molecular dynamics (MD) simulations. Chlorogenic acid has the most binding affinity against the important anti-cancer targets iNOS, MMP-9, and p53. The congruent binding mode to different drug targets focused on cancer shown by chlorogenic acid suggests that it may be a compound with significant therapeutic potential. Moreover, the binding energy predictions indicated that the compound had stable electrostatic and van der Waal energies. Thus, our data reinforce the medicinal importance of flavonoids from C. sinensis and expand the need for more studies, seeking to optimize results and amplify the impacts of further in vitro and in vivo studies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Kochi, India
| | - Chelankara Suresh Sharanya
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Kochi, India
| | - Abhithaj Jayanandan
- Department of Biotechnology and Microbiology, Dr. Janaki Ammal Campus, Kannur University, Thalassery, Kannur, India
| | - Madathilkovilakath Haridas
- Department of Biotechnology and Microbiology, Dr. Janaki Ammal Campus, Kannur University, Thalassery, Kannur, India
| | - Varghese Edwin Hillary
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Kochi, India
| | - Sathiyabama Rajiv Gandhi
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program of Health Sciences (PPGCS), University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Gurunagarajan Sridharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, India
| | - Rengaraju Sivasubramanian
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, India
| | - Alan Bruno Silva Vasconcelos
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Postgraduate Program of Health Sciences (PPGCS), University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Kochi, India
| | - Natália Ferreira de Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Paraíba, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Paraíba, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Paraíba, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Lucindo José Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program of Health Sciences (PPGCS), University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| |
Collapse
|
11
|
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci 2024; 25:2763. [PMID: 38474009 DOI: 10.3390/ijms25052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
12
|
Ma CY, Chen Y, Zhan X, Dong YW. Tracing the evolution of tissue inhibitor of metalloproteinases in Metazoa with the Pteria penguin genome. iScience 2024; 27:108579. [PMID: 38161420 PMCID: PMC10755359 DOI: 10.1016/j.isci.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/13/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Tissue inhibitors of metalloproteinase (TIMPs) play a pivotal role in regulating extracellular matrix (ECM) dynamics and have been extensively studied in vertebrates. However, understanding their evolution across invertebrate phyla is limited. Utilizing the high-quality Pteria penguin genome, we conducted phylogenomic orthology analyses across metazoans, revealing the emergence and distribution of the TIMP gene family. Our findings show that TIMP repertoires originated during eumetazoan radiation, experiencing independent duplication events in different clades, resulting in varied family sizes. Particularly, Pteriomorphia bivalves within Mollusca exhibited the most significant expansion and displayed the most diverse TIMP repertoires among metazoans. These expansions were attributed to multiple gene duplication events, potentially driven by the demands for functional diversification related to multiple adaptive traits, contributing to the adaptation of Pteriomorphia bivalves as stationary filter feeders. In this context, Pteriomorphia bivalves offer a promising model for studying invertebrate TIMP evolution.
Collapse
Affiliation(s)
- Chao-Yi Ma
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
- Academy of the Future Ocean, Ocean University of China, Qingdao 266100, P.R. China
| | - Yi Chen
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P.R. China
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, P.R. China
| | - Xin Zhan
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P.R. China
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, P.R. China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
- Academy of the Future Ocean, Ocean University of China, Qingdao 266100, P.R. China
| |
Collapse
|
13
|
Peeney D, Gurung S, Rich JA, Coates-Park S, Liu Y, Toor J, Jones J, Richie CT, Jenkins LM, Stetler-Stevenson WG. Extracellular Proximity Labeling Reveals an Expanded Interactome for the Matrisome Protein TIMP2. RESEARCH SQUARE 2024:rs.3.rs-3857263. [PMID: 38313275 PMCID: PMC10836090 DOI: 10.21203/rs.3.rs-3857263/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Classical methods of investigating protein-protein interactions (PPIs) are generally performed in non-living systems, yet in recent years new technologies utilizing proximity labeling (PL) have given researchers the tools to explore proximal PPIs in living systems. PL has distinct advantages over traditional protein interactome studies, such as the ability to identify weak and transient interactions in vitro and in vivo. Most PL studies are performed on targets within the cell or on the cell membrane. We have adapted the original PL method to investigate PPIs within the extracellular compartment, using both BioID2 and TurboID, that we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigate the interactome of the widely expressed matrisome protein tissue inhibitor of metalloproteinases 2 (TIMP2). Tissue inhibitors of metalloproteinases (TIMPs) are a family of multi-functional proteins that were initially defined by their ability to inhibit the enzymatic activity of metalloproteinases (MPs), the major mediators of extracellular matrix (ECM) breakdown and turnover. TIMP2 exhibits a broad expression profile and is often abundant in both normal and diseased tissues. Understanding the functional transformation of matrisome regulators, like TIMP2, during the evolution of tissue microenvironments associated with disease progression is essential for the development of ECM-targeted therapeutics. Using carboxyl- and amino-terminal fusion proteins of TIMP2 with BioID2 and TurboID, we describe the TIMP2 proximal interactome. We also illustrate how the TIMP2 interactome changes in the presence of different stimuli, in different cell types, in unique culture conditions (2D vs 3D), and with different reaction kinetics (BioID2 vs. TurboID); demonstrating the power of this technique versus classical PPI methods. We propose that the screening of matrisome targets in disease models using ePL will reveal new therapeutic targets for further comprehensive studies.
Collapse
Affiliation(s)
- David Peeney
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Josh A. Rich
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sasha Coates-Park
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jack Toor
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jane Jones
- Center for Cancer Research Protein Expression Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Christopher T. Richie
- Genetic Engineering and Viral Vector Core, Office of the Scientific Director, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
14
|
Shoari A, Khalili-Tanha G, Coban MA, Radisky ES. Structure and computation-guided yeast surface display for the evolution of TIMP-based matrix metalloproteinase inhibitors. Front Mol Biosci 2023; 10:1321956. [PMID: 38074088 PMCID: PMC10702220 DOI: 10.3389/fmolb.2023.1321956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
The study of protein-protein interactions (PPIs) and the engineering of protein-based inhibitors often employ two distinct strategies. One approach leverages the power of combinatorial libraries, displaying large ensembles of mutant proteins, for example, on the yeast cell surface, to select binders. Another approach harnesses computational modeling, sifting through an astronomically large number of protein sequences and attempting to predict the impact of mutations on PPI binding energy. Individually, each approach has inherent limitations, but when combined, they generate superior outcomes across diverse protein engineering endeavors. This synergistic integration of approaches aids in identifying novel binders and inhibitors, fine-tuning specificity and affinity for known binding partners, and detailed mapping of binding epitopes. It can also provide insight into the specificity profiles of varied PPIs. Here, we outline strategies for directing the evolution of tissue inhibitors of metalloproteinases (TIMPs), which act as natural inhibitors of matrix metalloproteinases (MMPs). We highlight examples wherein design of combinatorial TIMP libraries using structural and computational insights and screening these libraries of variants using yeast surface display (YSD), has successfully optimized for MMP binding and selectivity, and conferred insight into the PPIs involved.
Collapse
Affiliation(s)
| | | | | | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
15
|
Coates-Park S, Lazaroff C, Gurung S, Rich J, Colladay A, O’Neill M, Butler GS, Overall CM, Stetler-Stevenson WG, Peeney D. Tissue inhibitors of metalloproteinases are proteolytic targets of matrix metalloproteinase 9. Matrix Biol 2023; 123:59-70. [PMID: 37804930 PMCID: PMC10843048 DOI: 10.1016/j.matbio.2023.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Extracellular proteolysis and turnover are core processes of tissue homeostasis. The predominant matrix-degrading enzymes are members of the Matrix Metalloproteinase (MMP) family. MMPs extensively degrade core matrix components in addition to processing a range of other factors in the extracellular, plasma membrane, and intracellular compartments. The proteolytic activity of MMPs is modulated by the Tissue Inhibitors of Metalloproteinases (TIMPs), a family of four multi-functional matrisome proteins with extensively characterized MMP inhibitory functions. Thus, a well-regulated balance between MMP activity and TIMP levels has been described as critical for healthy tissue homeostasis, and this balance can be chronically disturbed in pathological processes. The relationship between MMPs and TIMPs is complex and lacks the constraints of a typical enzyme-inhibitor relationship due to secondary interactions between various MMPs (specifically gelatinases) and TIMP family members. We illustrate a new complexity in this system by describing how MMP9 can cleave members of the TIMP family when in molar excess. Proteolytic processing of TIMPs can generate functionally altered peptides with potentially novel attributes. We demonstrate here that all TIMPs are cleaved at their C-terminal tails by a molar excess of MMP9. This processing removes the N-glycosylation site for TIMP3 and prevents the TIMP2 interaction with latent proMMP2, a prerequisite for cell surface MMP14-mediated activation of proMMP2. TIMP2/4 are further cleaved producing ∼14 kDa N-terminal proteins linked to a smaller C-terminal domain through residual disulfide bridges. These cleaved TIMP2/4 complexes show perturbed MMP inhibitory activity, illustrating that MMP9 may bear a particularly prominent influence upon the TIMP:MMP balance in tissues.
Collapse
Affiliation(s)
- Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Carolyn Lazaroff
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
- Washington University in St. Louis School of Medicine, Department of Orthopedics
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Josh Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Alexandra Colladay
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Maura O’Neill
- Protein Characterization Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| | - Georgina S. Butler
- Centre for Blood Research, Life Sciences Centre, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Oral Biological and Medical Science, Faculty of Dentistry, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
| | - Christopher M. Overall
- Centre for Blood Research, Life Sciences Centre, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Oral Biological and Medical Science, Faculty of Dentistry, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Stetler-Stevenson WG. The Continuing Saga of Tissue Inhibitor of Metalloproteinase 2: Emerging Roles in Tissue Homeostasis and Cancer Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1336-1352. [PMID: 37572947 PMCID: PMC10548276 DOI: 10.1016/j.ajpath.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as cytokine-like erythroid growth factors. Subsequently, TIMPs were characterized as endogenous inhibitors of matrixin proteinases. These proteinases are the primary mediators of extracellular matrix turnover in pathologic conditions, such as cancer invasion and metastasis. Thus, TIMPs were immediately recognized as important regulators of tissue homeostasis. However, TIMPs also demonstrate unique biological activities that are independent of metalloproteinase regulation. Although often overlooked, these non-protease-mediated TIMP functions demonstrate a variety of direct cellular effects of potential therapeutic value. TIMP2 is the most abundantly expressed TIMP family member, and ongoing studies show that its tumor suppressor activity extends beyond protease inhibition to include direct modulation of tumor, endothelial, and fibroblast cellular responses in the tumor microenvironment. Recent data suggest that TIMP2 can suppress both primary tumor growth and metastatic niche formation. TIMP2 directly interacts with cellular receptors and matrisome elements to modulate cell signaling pathways that result in reduced proliferation and migration of neoplastic, endothelial, and fibroblast cell populations. These effects result in enhanced cell adhesion and focal contact formation while reducing tumor and endothelial proliferation, migration, and epithelial-to-mesenchymal transitions. These findings are consistent with TIMP2 homeostatic functions beyond simple inhibition of metalloprotease activity. This review examines the ongoing evolution of TIMP2 function, future perspectives in TIMP research, and the therapeutic potential of TIMP2.
Collapse
Affiliation(s)
- William G Stetler-Stevenson
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
17
|
Effects of riboflavin/ultraviolet-A scleral collagen cross-linking on regional scleral thickness and expression of MMP-2 and MT1-MMP in myopic guinea pigs. PLoS One 2023; 18:e0279111. [PMID: 36652495 PMCID: PMC9847964 DOI: 10.1371/journal.pone.0279111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/29/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE To investigate the effects of scleral collagen cross-linking (SXL) using riboflavin and ultraviolet A (UVA) light on the scleral thickness of different regions and expression of matrix metalloproteinase 2 (MMP-2) and membrane-type MMP-1 (MT1-MMP) in guinea pigs with lens-induced myopia. METHODS Forty-eight 4-week-old guinea pigs were assigned to three groups (n = 16 per group): SXL group, lens-induced myopia (LIM) group, and control group. The sclera of the right eye of the guinea pig in the SXL group was surgically exposed, riboflavin was dropped on the treatment area for 10 minutes before the 30-minute UVA irradiation. The same surgical procedure was performed in the LIM group without UVA irradiation. The -10.00 D lenses were then placed on the right eyes of guinea pigs in the SXL and LIM groups for six weeks. The control group received no treatment. The left eyes were untreated in all groups. The ocular axial length (AXL) and refraction were measured at 4 weeks and 10 weeks of age. 10-week-old guinea pigs were sacrificed, and the right eyes were enucleated and evenly divided for preparation of hematoxylin and eosin (HE) stained sections, quantitative real-time polymerase chain reaction (qPCR) and western blotting. The scleral thickness of different regions was measured on HE stained sections. The temporal half of the sclera was harvested to measure the expression of MMP-2 and MT1-MMP by qPCR and western blotting. RESULTS The AXL was significantly shorter, and the degree of myopic refraction was significantly lower in the SXL group than those in the LIM group at 10 weeks of age. The scleral thickness of the cross-linked area was significantly greater in the SXL group than that of the corresponding area in the LIM group, while the scleral thickness of the untreated nasal side was not significantly different between the SXL group and the LIM group. The expression of MMP-2 and MT1-MMP of the cross-linked sclera was significantly downregulated compared with that of the corresponding area in the LIM group. CONCLUSION Riboflavin/UVA SXL could slow myopia progression and thicken the cross-linked sclera in guinea pigs, which might be related to the downregulation of MMP-2 and MT1-MMP expression during the scleral remodeling process.
Collapse
|
18
|
Sanyal S, Amin SA, Banerjee P, Gayen S, Jha T. A review of MMP-2 structures and binding mode analysis of its inhibitors to strategize structure-based drug design. Bioorg Med Chem 2022; 74:117044. [DOI: 10.1016/j.bmc.2022.117044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
|
19
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
20
|
Ledford BT, Akerman AW, Sun K, Gillis DC, Weiss JM, Vang J, Willcox S, Clemons TD, Sai H, Qiu R, Karver MR, Griffith JD, Tsihlis ND, Stupp SI, Ikonomidis JS, Kibbe MR. Peptide Amphiphile Supramolecular Nanofibers Designed to Target Abdominal Aortic Aneurysms. ACS NANO 2022; 16:7309-7322. [PMID: 35504018 PMCID: PMC9733406 DOI: 10.1021/acsnano.1c06258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An abdominal aortic aneurysm (AAA) is a localized dilation of the aorta located in the abdomen that poses a severe risk of death when ruptured. The cause of AAA is not fully understood, but degradation of medial elastin due to elastolytic matrix metalloproteinases is a key step leading to aortic dilation. Current therapeutic interventions are limited to surgical repair to prevent catastrophic rupture. Here, we report the development of injectable supramolecular nanofibers using peptide amphiphile molecules designed to localize to AAA by targeting fragmented elastin, matrix metalloproteinase 2 (MMP-2), and membrane type 1 matrix metalloproteinase. We designed four targeting peptide sequences from X-ray crystallographic data and incorporated them into PA molecules via solid phase peptide synthesis. After coassembling targeted and diluent PAs at different molar ratios, we assessed their ability to form nanofibers using transmission electron microscopy and to localize to AAA in male and female Sprague-Dawley rats using light sheet fluorescence microscopy. We found that three formulations of the PA nanofibers were able to localize to AAA tissue, but the MMP-2 targeting PA substantially outperformed the other nanofibers. Additionally, we demonstrated that the MMP-2 targeting PA nanofibers had an optimal dose of 5 mg (∼12 mg/kg). Our results show that there was not a significant difference in targeting between male and female Sprague-Dawley rats. Given the ability of the MMP-2 targeting PA nanofiber to localize to AAA tissue, future studies will investigate potential diagnostic and targeted drug delivery applications for AAA.
Collapse
Affiliation(s)
- Benjamin T. Ledford
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adam W. Akerman
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kui Sun
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David C. Gillis
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenna M. Weiss
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Johnny Vang
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan D. Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ruomeng Qiu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Mark R. Karver
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nick D. Tsihlis
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John S. Ikonomidis
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melina R. Kibbe
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Hayun H, Arkadash V, Sananes A, Arbely E, Stepensky D, Papo N. Bioorthogonal PEGylation Prolongs the Elimination Half-Life of N-TIMP2 While Retaining MMP Inhibition. Bioconjug Chem 2022; 33:795-806. [PMID: 35446024 DOI: 10.1021/acs.bioconjchem.2c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of the matrix metalloproteinase (MMP) family of proteins, whose members are key regulators of the proteolysis of extracellular matrix components and hence of multiple biological processes. In particular, imbalanced activity of matrix metalloproteinase-14 (MMP-14) may lead to the development of cancer and cardiovascular and other diseases. This study aimed to engineer TIMP2, one of the four homologous TIMPs, as a potential therapeutic by virtue of its ability to bind to the active-site Zn2+ of MMP-14. However, the susceptibility to degradation of TIMP2 and its small size, which results in a short circulation half-life, limit its use as a therapeutic. PEGylation was thus used to improve the pharmacokinetic profile of TIMP2. PEGylation of the MMP-targeting N-terminal domain of TIMP2 (N-TIMP2), via either cysteine or lysine residues, resulted in a significant decrease in N-TIMP2 affinity toward MMP-14 or multisite conjugation and conjugate heterogeneity, respectively. Our strategy designed to address this problem was based on incorporating a noncanonical amino acid (NCAA) into N-TIMP2 to enable site-specific mono-PEGylation. The first step was to incorporate the NCAA propargyl lysine (PrK) at position S31 in N-TIMP2, which does not interfere with the N-TIMP2-MMP-14 binding interface. Thereafter, site-specific PEGylation was achieved via a click chemistry reaction between N-TIMP2-S31PrK and PEG-azide-20K. Inhibition studies showed that PEGylated N-TIMP2-S31PrK did indeed retain its inhibitory activity toward MMP-14. The modified protein also showed improved serum stability vs non-PEGylated N-TIMP2. In vivo pharmacokinetic studies in mice revealed a significant 8-fold increase in the elimination half-life of PEGylated N-TIMP2 vs the non-PEGylated protein. This study shows that site-specific bioorthogonal mono-PEGylation extends the half-life of N-TIMP2 without impairing its biological activity, thereby highlighting the advantage of this strategy for generating potent PEGylated proteins.
Collapse
Affiliation(s)
- Hezi Hayun
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Valeria Arkadash
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Amiram Sananes
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Eyal Arbely
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - David Stepensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
22
|
Abdelrahman HA, Akawi N, Al-Shamsi AM, Ali A, Al-Jasmi F, John A, Hertecant J, Al-Gazali L, Ali BR. Bi-allelic null variant in matrix metalloproteinase-15, causes congenital cardiac defect, cholestasis jaundice, and failure to thrive. Clin Genet 2022; 101:403-410. [PMID: 34988996 DOI: 10.1111/cge.14107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023]
Abstract
Here, we delineate the phenotype of two siblings with a bi-allelic frameshift variant in MMP15 gene with congenital cardiac defects, cholestasis, and dysmorphism. Genome sequencing analysis revealed a recently reported homozygous frameshift variant (c.1058delC, p.Pro353Glnfs*102) in MMP15 gene that co-segregates with the phenotype in the family in a recessive mode of inheritance. Relative quantification of MMP15 mRNA showed evidence of degradation of the mutated transcript, presumably by nonsense mediated decay. Likewise, MMP15: p.Gly231Arg, a concurrently reported homozygous missense variant in another patient exhibiting a similar phenotype, was predicted to disrupt zinc ion binding to the MMP-15 enzyme catalytic domain, which is essential for substrate proteolysis, by structural modeling. Previous animal models and cellular findings suggested that MMP15 plays a crucial role in the formation of endocardial cushions. These findings confirm that MMP15 is an important gene in human development, particularly cardiac, and that its loss of function is likely to cause a severe disorder phenotype.
Collapse
Affiliation(s)
- Hanadi A Abdelrahman
- Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Aisha M Al-Shamsi
- Paediatrics Department, Tawam hospital, Al-Ain, United Arab Emirates
| | - Amanat Ali
- Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jozef Hertecant
- Paediatrics Department, Tawam hospital, Al-Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Center for Health sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
23
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
24
|
Structure-based molecular insights into matrix metalloproteinase inhibitors in cancer treatments. Future Med Chem 2021; 14:35-51. [PMID: 34779649 DOI: 10.4155/fmc-2021-0246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protease inhibitors are of considerable interest as anticancer agents. Matrix metalloproteinases (MMPs) were the earliest type of proteases considered as anticancer targets. The developments of MMP inhibitors (MMPIs) by pharmaceutical companies can be dated from the early 1980s. Thus far, none of the over 50 MMPIs entering clinical trials have been approved. This work summarizes the reported studies on the structure of MMPs and complexes with ligands and inhibitors, based on which, the authors analyzed the clinical failures of MMPIs in a structural biological manner. Furthermore, MMPs were systematically compared with urokinase, a protease-generating plasmin, which plays similar pathological roles in cancer development; the reasons for the clinical successes of urokinase inhibitors and the clinical failures of MMPIs are discussed.
Collapse
|
25
|
Charzewski Ł, Krzyśko KA, Lesyng B. Structural characterisation of inhibitory and non-inhibitory MMP-9-TIMP-1 complexes and implications for regulatory mechanisms of MMP-9. Sci Rep 2021; 11:13376. [PMID: 34183752 PMCID: PMC8238946 DOI: 10.1038/s41598-021-92881-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
MMP-9 plays a number of important physiological functions but is also responsible for many pathological processes, including cancer invasion, metastasis, and angiogenesis. It is, therefore, crucial to understand its enzymatic activity, including activation and inhibition mechanisms. This enzyme may also be partially involved in the "cytokine storm" that is characteristic of COVID-19 disease (SARS-CoV-2), as well as in the molecular mechanisms responsible for lung fibrosis. Due to the variety of processing pathways involving MMP-9 in biological systems and its uniqueness due to the O-glycosylated domain (OGD) and fibronectin-like (FBN) domain, specific interactions with its natural TIMP-1 inhibitor should be carefully studied, because they differ significantly from other homologous systems. In particular, earlier experimental studies have indicated that the newly characterised circular form of a proMMP-9 homotrimer exhibits stronger binding properties to TIMP-1 compared to its monomeric form. However, molecular structures of the complexes and the binding mechanisms remain unknown. The purpose of this study is to fill in the gaps in knowledge. Molecular modelling methods are applied to build the inhibitory and non-inhibitory MMP-9-TIMP-1 complexes, which allows for a detailed description of these structures and should allow for a better understanding of the regulatory processes in which MMP-9 is involved.
Collapse
Affiliation(s)
- Łukasz Charzewski
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Krystiana A Krzyśko
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Bogdan Lesyng
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
26
|
Chen LH, Chiu KL, Hsia TC, Lee YH, Shen TC, Li CH, Shen YC, Chang WS, Tsai CW, Bau DAT. Significant Association of MMP2 Promoter Genotypes to Asthma Susceptibility in Taiwan. In Vivo 2021; 34:3181-3186. [PMID: 33144422 DOI: 10.21873/invivo.12153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Matrix metalloproteinase 2 (MMP2) is reported to be overexpressed in asthma; however, its genotypic contribution to asthma is not well studied. Therefore, we examined the association of MMP2 genotypes with asthma risk among Taiwanese. MATERIALS AND METHODS One hundred and ninety-eight asthma patients and 453 non-asthmatic subjects were determined with respect to their MMP2 -1306 (rs243845) and -735 (rs2285053) genotypes. RESULTS CT and TT at MMP2 rs243845 are 17.7% and 1.5% among asthma cases, whereas their presence in healthy subjects is at 28.1% and 2.4%, respectively (p for trend=0.0118). In detail, the CT genotype in MMP2 rs243845 was associated with a decreased asthma risk [adjusted odds ratio (OR)=0.57, 95% confidence interval (CI)=0.37-0.78, p=0.0040], and the T allele conferred a significantly lower asthma risk compared to the wild-type C allele (adjusted OR=0.55, 95%CI=0.43-0.77, p=0.0042). No significance was found for MMP2 rs2285053. CONCLUSION The genotype of CT in MMP2 rs243845 may serve as a novel biomarker in determining susceptibility to asthma in Taiwan.
Collapse
Affiliation(s)
- Li-Hsiou Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C
| | - Kuo-Liang Chiu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yen-Hsien Lee
- Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C
| | - Te-Chun Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Hsiang Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Cheng Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
27
|
Smolar J, Horst M, Salemi S, Eberli D. Predifferentiated Smooth Muscle-Like Adipose-Derived Stem Cells for Bladder Engineering. Tissue Eng Part A 2020; 26:979-992. [DOI: 10.1089/ten.tea.2019.0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jakub Smolar
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Maya Horst
- Division of Pediatric Urology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Souzan Salemi
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Wu L, Zhao KQ, Wang W, Cui LN, Hu LL, Jiang XX, Shuai J, Sun YP. Nuclear receptor coactivator 6 promotes HTR-8/SVneo cell invasion and migration by activating NF-κB-mediated MMP9 transcription. Cell Prolif 2020; 53:e12876. [PMID: 32790097 PMCID: PMC7507070 DOI: 10.1111/cpr.12876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives NCOA6 is a transcription coactivator; its deletion in mice results in growth retardation and lethality between 8.5 and 12.5 dpc with defects in the placenta. However, the transcription factor(s) and the mechanism(s) involved in the function of NCOA6 in placentation have not been elucidated. Here, the roles of NCOA6 in human cytotrophoblast invasion and migration were studied. Materials and Methods Human placenta tissues were collected from normal pregnancies and pregnancies complicated by early‐onset severe preeclampsia (sPE). Immunofluorescence, RT‐qPCR and Western blotting were used to determine NCOA6 expression. Transwell invasion/migration assays were performed to explore whether NCOA6 knockdown affected human placenta‐derived HTR‐8/SVneo cell invasion/migration. Gelatin zymography was performed to examine the change in the gelatinolytic activities of secreted MMP2 and MMP9. Luciferase reporter assays were used to explore whether NCOA6 coactivated NF‐κB‐mediated MMP9 transcription. Results NCOA6 is mainly expressed in the human placental trophoblast column, as well as in the EVTs. HTR‐8/SVneo cell invasion and migration were significantly attenuated after NCOA6 knockdown, and the secretion of MMP9 was decreased due to transcriptional suppression. NCOA6 was further found to coactivate NF‐κB‐mediated MMP9 transcription. Moreover, expression of NCOA6 was impaired in placentas of patients complicated by early‐onset sPE. Conclusions Thus, we demonstrated that NCOA6 is important for cytotrophoblast invasion/migration, at least partially, by activating NF‐κB‐mediated MMP9 transcription; the downregulation of NCOA6 may contribute to the pathogenesis of early‐onset sPE.
Collapse
Affiliation(s)
- Liang Wu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kun-Qing Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Na Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin-Li Hu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Shuai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Sarkar P, Li Z, Ren W, Wang S, Shao S, Sun J, Ren X, Perkins NG, Guo Z, Chang CEA, Song J, Xue M. Inhibiting Matrix Metalloproteinase-2 Activation by Perturbing Protein-Protein Interactions Using a Cyclic Peptide. J Med Chem 2020; 63:6979-6990. [PMID: 32491863 DOI: 10.1021/acs.jmedchem.0c00180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report on a cyclic peptide that inhibits matrix metalloproteinase-2 (MMP2) activation with a low-nM-level potency. This inhibitor specifically binds to the D570-A583 epitope on proMMP2 and interferes with the protein-protein interaction (PPI) between proMMP2 and tissue inhibitor of metalloproteinases-2 (TIMP2), thereby preventing the TIMP2-assisted proMMP2 activation process. We developed this cyclic peptide inhibitor through an epitope-targeted library screening process and validated its binding to proMMP2. Using a human melanoma cell line, we demonstrated the cyclic peptide's ability to modulate cellular MMP2 activities and inhibit cell migration. These results provide the first successful example of targeting the PPI between proMMP2 and TIMP2, confirming the feasibility of an MMP2 inhibition strategy that has been sought after for 2 decades.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Zhonghan Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Siwen Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Shiqun Shao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jianan Sun
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nicole G Perkins
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Zhili Guo
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Min Xue
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
30
|
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020; 9:E1313. [PMID: 32466129 PMCID: PMC7290391 DOI: 10.3390/cells9051313] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The metalloproteinase (MP) family of zinc-dependent proteases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteases (ADAMs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) plays a crucial role in the extracellular matrix (ECM) remodeling and degradation activities. A wide range of substrates of the MP family includes ECM components, chemokines, cell receptors, and growth factors. Metalloproteinases activities are tightly regulated by proteolytic activation and inhibition via their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the imbalance of the activation and inhibition is responsible in progression or inhibition of several diseases, e.g., cancer, neurological disorders, and cardiovascular diseases. We provide an overview of the structure, function, and the multifaceted role of MMPs, ADAMs, and TIMPs in several diseases via their cellular functions such as proteolysis of other cell signaling factors, degradation and remodeling of the ECM, and other essential protease-independent interactions in the ECM. The significance of MP inhibitors targeting specific MMP or ADAMs with high selectivity is also discussed. Recent advances and techniques used in developing novel MP inhibitors and MP responsive drug delivery tools are also reviewed.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA; (L.D.D.); (B.G.H.)
| | | | | |
Collapse
|
31
|
Ye R, Tan C, Chen B, Li R, Mao Z. Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Front Chem 2020; 8:402. [PMID: 32509730 PMCID: PMC7248183 DOI: 10.3389/fchem.2020.00402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
DNA is considered to be the primary target of platinum-based anticancer drugs which have gained great success in clinics, but DNA-targeted anticancer drugs cause serious side-effects and easily acquired drug resistance. This has stimulated the search for novel therapeutic targets. In the past few years, substantial research has demonstrated that zinc-containing metalloenzymes play a vital role in the occurrence and development of cancer, and they have been identified as alternative targets for metal-based anticancer agents. Metal complexes themselves have also exhibited a lot of appealing features for enzyme inhibition, such as: (i) the facile construction of 3D structures that can increase the enzyme-binding selectivity and affinity; (ii) the intriguing photophysical and photochemical properties, and redox activities of metal complexes can offer possibilities to design enzyme inhibitors with multiple modes of action. In this review, we discuss recent examples of zinc-containing metalloenzyme inhibition of metal-based anticancer agents, especially three zinc-containing metalloenzymes overexpressed in tumors, including histone deacetylases (HDACs), carbonic anhydrases (CAs), and matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Caiping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Bichun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Eckfeld C, Häußler D, Schoeps B, Hermann CD, Krüger A. Functional disparities within the TIMP family in cancer: hints from molecular divergence. Cancer Metastasis Rev 2020; 38:469-481. [PMID: 31529339 DOI: 10.1007/s10555-019-09812-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The members of the tissue inhibitor of metalloproteinase (TIMP) family (TIMP-1, 2, 3, 4) are prominently appreciated as natural inhibitors of cancer-promoting metalloproteinases. However, clinical and recent functional studies indicate that some of them correlate with bad prognosis and contribute to the progression of cancer and metastasis, pointing towards mechanisms beyond inhibition of cancer-promoting proteases. Indeed, it is increasingly recognized that TIMPs are multi-functional proteins mediating a variety of cellular effects including direct cell signaling. Our aim was to provide comprehensive information towards a better appreciation and understanding of the biological heterogeneity and complexity of the TIMPs in cancer. Comparison of all four members revealed distinct cancer-associated expression patterns and distinct prognostic impact including a clear correlation of TIMP-1 with bad prognosis for almost all cancer types. For the first time, we present the interactomes of all TIMPs regarding overlapping and non-overlapping interaction partners. Interestingly, the overlap was maximal for metalloproteinases (e.g., matrix metalloproteinase 1, 2, 3, 9) and decreased for non-protease molecules, especially cell surface receptors (e.g., CD63, overlapping only for TIMP-1 and 4; IGF-1R unique for TIMP-2; VEGFR2 unique for TIMP-3). Finally, we attempted to identify and summarize experimental evidence for common and unique structural traits of the four TIMPs on the basis of amino acid sequence and protein folding, which account for functional disparities. Altogether, the four TIMPs have to be appreciated as molecules with commonalities, but, more importantly, functional disparities, which need to be investigated further in the future, since those determine their distinct roles in cancer and metastasis.
Collapse
Affiliation(s)
- Celina Eckfeld
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Daniel Häußler
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Benjamin Schoeps
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Chris D Hermann
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Achim Krüger
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany.
| |
Collapse
|
33
|
Kumar GB, Nair BG, Perry JJP, Martin DBC. Recent insights into natural product inhibitors of matrix metalloproteinases. MEDCHEMCOMM 2019; 10:2024-2037. [PMID: 32904148 PMCID: PMC7451072 DOI: 10.1039/c9md00165d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Members of the matrix metalloproteinase (MMP) family have biological functions that are central to human health and disease, and MMP inhibitors have been investigated for the treatment of cardiovascular disease, cancer and neurodegenerative disorders. The outcomes of initial clinical trials with the first generation of MMP inhibitors proved disappointing. However, our growing understanding of the complexities of the MMP function in disease, and an increased understanding of MMP protein architecture and control of activity now provide new opportunities and avenues to develop MMP-focused therapies. Natural products that affect MMP activities have been of strong interest as templates for drug discovery, and for their use as chemical tools to help delineate the roles of MMPs that still remain to be defined. Herein, we highlight the most recent discoveries of structurally diverse natural product inhibitors to these proteases.
Collapse
Affiliation(s)
- Geetha B Kumar
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - Bipin G Nair
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - J Jefferson P Perry
- School of Biotechnology , Amrita University , Kollam , Kerala , India
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA .
| | - David B C Martin
- Department of Chemistry , University of California , Riverside , CA 92521 , USA
- Department of Chemistry , University of Iowa , Iowa City , IA 52242 , USA .
| |
Collapse
|
34
|
Chen GL, Wang SC, Shen TC, Tsai CW, Chang WS, Li HT, Wu CN, Chao CY, Hsia TC, Bau DT. The association of matrix metalloproteinas-2 promoter polymorphisms with lung cancer susceptibility in Taiwan. CHINESE J PHYSIOL 2019; 62:210-216. [PMID: 31670285 DOI: 10.4103/cjp.cjp_43_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Matrix metalloproteinases-2 (MMP2) has been reported to be overexpressed in various types of cancer. However, the contribution of various genotypes of MMP2 to lung cancer is controversial and not yet been examined in Taiwan. Therefore, in the current study, we investigated the association of MMP2 genotypes with lung cancer risk among Taiwanese. In this hospital-based, case-control study, 358 lung cancer patients and 716 age- and gender-matched healthy controls were recruited, and the genotypic distributions of MMP2-1306 and MMP2- 735 were determined. Then, their association with lung cancer was evaluated, and their interaction with personal smoking status was also examined via stratification analysis. The results showed that the percentages of variant CT and TT at MMP2-1306 were 17.3% and 1.7% among the lung cancer patients, respectively, much lower than those of 28.7% and 2.4%, respectively, among the healthy controls (P for trend = 0.0001). The allelic frequency distribution analysis showed that the variant T allele at MMP2-1306 conferred a statistically significantly lower lung cancer risk than the wild-type C allele (adjusted odds ratio = 0.54, 95% confidence interval = 0.41-0.72, P = 0.0001). There was an obvious effect of MMP2-1306 genotype on lung cancer risk among the subpopulations of ever smokers but not nonsmokers. As for the genotypes of MMP2-735, there was no such differential distribution in the aspects of genotypic or allelic frequencies, or combinative effects with smoking status. The genotypes of MMP2-1306 may act as a biomarker in determining personal susceptibility to lung cancer in Taiwan. The contribution of MMP2 genotypes alone and its joint effects with personal cigarette smoking habit on lung cancer susceptibility should be taken into consideration of the clinical practices for early detection and prediction of lung cancer in Taiwan.
Collapse
Affiliation(s)
- Guan-Liang Chen
- Graduate Institute of Biomedical Sciences, China Medical University; Taichung Armed Forces General Hospital, Taichung; National Defense Medical Center, Taipei, Taiwan
| | - Shou-Cheng Wang
- Taichung Armed Forces General Hospital, Taichung; National Defense Medical Center, Taipei, Taiwan
| | - Te-Chun Shen
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Ting Li
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Che-Yi Chao
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University; Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
35
|
Vanichkitrungruang S, Chuang CY, Hawkins CL, Hammer A, Hoefler G, Malle E, Davies MJ. Oxidation of human plasma fibronectin by inflammatory oxidants perturbs endothelial cell function. Free Radic Biol Med 2019; 136:118-134. [PMID: 30959171 DOI: 10.1016/j.freeradbiomed.2019.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023]
Abstract
Dysfunction of endothelial cells of the artery wall is an early event in cardiovascular disease and atherosclerosis. The cause(s) of this dysfunction are unresolved, but accumulating evidence suggests that oxidants arising from chronic low-grade inflammation are contributory agents, with increasing data implicating myeloperoxidase (MPO, released by activated leukocytes), and the oxidants it generates (e.g. HOCl and HOSCN). As these are formed extracellularly and react rapidly with proteins, we hypothesized that MPO-mediated damage to the matrix glycoprotein fibronectin (FN) would modulate FN structure and function, and its interactions with human coronary artery endothelial cells (HCAEC). Exposure of human plasma FN to HOCl resulted in modifications to FN and its functional epitopes. A dose-dependent loss of methionine and tryptophan residues, together with increasing concentrations of methionine sulfoxide, and modification of the cell-binding fragment (CBF) and heparin-binding fragment (HBF) domains was detected with HOCl, but not HOSCN. FN modification resulted in a loss of HCAEC adhesion, impaired cell spreading and reduced cell proliferation. Exposure to HCAEC to HOCl-treated FN altered the expression of HCAEC genes associated with extracellular matrix (ECM) synthesis and adhesion. Modifications were detected on HCAEC-derived ECM pre-treated with HOCl, but not HOSCN, with a loss of antibody recognition of the CBF, HBF and extra-domain A. Co-localization of epitopes arising from MPO-generated HOCl and cell-derived FN was detected in human atherosclerotic lesions. Damage was also detected on FN extracted from lesions. These data support the hypothesis that HOCl, but not HOSCN, targets and modifies FN resulting in arterial wall endothelial cell dysfunction.
Collapse
Affiliation(s)
- Siriluck Vanichkitrungruang
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael J Davies
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
36
|
Raeeszadeh-Sarmazdeh M, Greene KA, Sankaran B, Downey GP, Radisky DC, Radisky ES. Directed evolution of the metalloproteinase inhibitor TIMP-1 reveals that its N- and C-terminal domains cooperate in matrix metalloproteinase recognition. J Biol Chem 2019; 294:9476-9488. [PMID: 31040180 DOI: 10.1074/jbc.ra119.008321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Indexed: 01/04/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of matrix metalloproteinases (MMPs), enzymes that contribute to cancer and many inflammatory and degenerative diseases. The TIMP N-terminal domain binds and inhibits an MMP catalytic domain, but the role of the TIMP C-terminal domain in MMP inhibition is poorly understood. Here, we employed yeast surface display for directed evolution of full-length human TIMP-1 to develop MMP-3-targeting ultrabinders. By simultaneously incorporating diversity into both domains, we identified TIMP-1 variants that were up to 10-fold improved in binding MMP-3 compared with WT TIMP-1, with inhibition constants (Ki ) in the low picomolar range. Analysis of individual and paired mutations from the selected TIMP-1 variants revealed cooperative effects between distant residues located on the N- and C-terminal TIMP domains, positioned on opposite sides of the interaction interface with MMP-3. Crystal structures of MMP-3 complexes with TIMP-1 variants revealed conformational changes in TIMP-1 near the cooperative mutation sites. Affinity was strengthened by cinching of a reciprocal "tyrosine clasp" formed between the N-terminal domain of TIMP-1 and proximal MMP-3 interface and by changes in secondary structure within the TIMP-1 C-terminal domain that stabilize interdomain interactions and improve complementarity to MMP-3. Our protein engineering and structural studies provide critical insight into the cooperative function of TIMP domains and the significance of peripheral TIMP epitopes in MMP recognition. Our findings suggest new strategies to engineer TIMP proteins for therapeutic applications, and our directed evolution approach may also enable exploration of functional domain interactions in other protein systems.
Collapse
Affiliation(s)
| | - Kerrie A Greene
- From the Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Gregory P Downey
- Departments of Medicine, Pediatrics, and Biomedical Research, National Jewish Health, Denver, Colorado 80206, and.,Departments of Medicine, Immunology, and Microbiology, University of Colorado, Aurora, Colorado 80045
| | - Derek C Radisky
- From the Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224
| | - Evette S Radisky
- From the Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224,
| |
Collapse
|
37
|
Ruiz-Gómez G, Vogel S, Möller S, Pisabarro MT, Hempel U. Glycosaminoglycans influence enzyme activity of MMP2 and MMP2/TIMP3 complex formation - Insights at cellular and molecular level. Sci Rep 2019; 9:4905. [PMID: 30894640 PMCID: PMC6426840 DOI: 10.1038/s41598-019-41355-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/08/2019] [Indexed: 01/01/2023] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic network constantly remodeled by a fine-tuned protein formation and degradation balance. Matrix metalloproteinases (MMPs) constitute key orchestrators of ECM degradation. Their activity is controlled by tissue inhibitors of metalloproteinases (TIMPs) and glycosaminoglycans (GAG). Here, we investigated the molecular interplay of MMP2 with different GAG (chondroitin sulfate, hyaluronan (HA), sulfated hyaluronan (SH) and heparin (HE)) and the impact of GAG on MMP2/TIMP3 complex formation using in vitro-experiments with human bone marrow stromal cells, in silico docking and molecular dynamics simulations. SH and HE influenced MMP2 and TIMP3 protein levels and MMP2 activity. Only SH supported the alignment of both proteins in fibrillar-like structures, which, based on our molecular models, would be due to a stabilization of the interactions between MMP2-hemopexin domain and TIMP3-C-terminal tail. Dependent on the temporal sequential order in which the final ternary complex was formed, our models indicated that SH and HA can affect TIMP3-induced MMP2 inhibition through precluding or supporting their interactions, respectively. Our combined experimental and theoretical approach provides valuable new insights on how GAG interfere with MMP2 activity and MMP2/TIMP3 complex formation. The results obtained evidence GAG as promising molecules for fine-balanced intervention of ECM remodeling.
Collapse
Affiliation(s)
- Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Sarah Vogel
- Medical Department, Institute of Physiological Chemistry, TU Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V., Prüssingstraße 27 B, 07745, Jena, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Ute Hempel
- Medical Department, Institute of Physiological Chemistry, TU Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
| |
Collapse
|
38
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
39
|
John J, Sharma A, Kukshal P, Bhatia T, Nimgaonkar VL, Deshpande SN, Thelma BK. Rare Variants in Tissue Inhibitor of Metalloproteinase 2 as a Risk Factor for Schizophrenia: Evidence From Familial and Cohort Analysis. Schizophr Bull 2019; 45:256-263. [PMID: 29385606 PMCID: PMC6293225 DOI: 10.1093/schbul/sbx196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Candidate gene and genome-wide association study based common risk variant identification is being complemented by whole exome sequencing (WES)/whole genome sequencing based rare variant discovery in elucidation of genetic landscape of schizophrenia (SZ), a common neuropsychiatric disorder. WES findings of de novo mutations in case-parent trios have further implied genetic etiology, but do not explain the high genetic risk in general populations. Conversely, WES in multiplex families may be an insightful strategy for the identification of highly penetrant rare variants in SZ and possibly enhance our understanding of disease biology. In this study, we analyzed a 5-generation Indian family with multiple members affected with SZ by WES. We identified a rare heterozygous missense variant (NM_003255: c.506C>T; p.Pro169Leu; MAF = 0.0001) in Tissue Inhibitor of Metalloproteinase 2 (TIMP2, 17q25.3) segregating with all 6 affected individuals but not with unaffected members. Linkage analysis indicated a maximum logarithm of the odds score of 1.8, θ = 0 at this locus. The variant was predicted to be damaging by various in silico tools and also disrupt the structural integrity by molecular dynamics simulations. WES based screening of an independent SZ cohort (n = 370) identified 4 additional rare missense variants (p.Leu20Met, p.Ala26Ser, p.Lys48Arg and p. Ile217Leu) and a splice variant rs540397728 (NM_003255:c.232-5T>C), also predicted to be damaging, increasing the likelihood of contribution of this gene to SZ risk. Extensive biochemical and knockout mouse studies suggesting involvement of TIMP2 in neurodevelopmental and behavioral deficits, together with genetic evidence for TIMP2 conferring SZ risk from this study may have possible implications for new therapeutics.
Collapse
Affiliation(s)
- Jibin John
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Aditya Sharma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Prachi Kukshal
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, PGIMER-Dr. RML Hospital, New Delhi, India
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh PA
| | | | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
40
|
Wang D, Ba H, Li C, Zhao Q, Li C. Proteomic Analysis of Plasma Membrane Proteins of Antler Stem Cells Using Label-Free LC⁻MS/MS. Int J Mol Sci 2018; 19:3477. [PMID: 30400663 PMCID: PMC6275008 DOI: 10.3390/ijms19113477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022] Open
Abstract
Deer antlers are unusual mammalian organs that can fully regenerate after annual shedding. Stem cells resident in the pedicle periosteum (PPCs) provide the main cell source for antler regeneration. Central to various cellular processes are plasma membrane proteins, but the expression of these proteins has not been well documented in antler regeneration. In the present study, plasma membrane proteins of PPCs and facial periosteal cells (FPCs) were analyzed using label-free liquid chromatography⁻mass spetrometry (LC⁻MS/MS). A total of 1739 proteins were identified. Of these proteins, 53 were found solely in the PPCs, 100 solely in the FPCs, and 1576 co-existed in both PPCs and FPCs; and 39 were significantly up-regulated in PPCs and 49 up-regulated in FPCs. In total, 226 gene ontology (GO) terms were significantly enriched from the differentially expressed proteins (DEPs). Five clusters of biological processes from these GO terms comprised responses to external stimuli, signal transduction, membrane transport, regulation of tissue regeneration, and protein modification processes. Further studies are required to demonstrate the relevancy of these DEPs in antler stem cell biology and antler regeneration.
Collapse
Affiliation(s)
- Datao Wang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Hengxing Ba
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Chenguang Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Quanmin Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- Department of Biology, Changchun Sci-Tech University, Changchun 130600, China.
| |
Collapse
|
41
|
Abstract
Jawed vertebrates (Gnathostomes) have 4 tissue inhibitors of metalloproteinases (TIMPs), multifunctional proteins that all inhibit members of the large matrix metalloproteinase (MMP) family but differ in their other roles, including the regulation of pro-MMP activation, cell growth, apoptosis and angiogenesis, and the structure of extracellular matrices (ECMs). Molecular phylogeny analyses indicate that vertebrate TIMP genes arose from an invertebrate ancestor through 3 successive duplications, possibly including 2 whole genome duplications, during early vertebrate phylogeny. TIMPs from invertebrates also inhibit metalloproteinases, bind to pro-MMPs, and contribute to ECM structures but are not orthologs of any particular vertebrate TIMP. The most ancient vertebrate superclass, the Agnatha (jawless fish), seems to provide a snapshot of a stage in TIMP evolution preceding the third gene duplication. This review examines the structures of TIMPs from different vertebrate orders using information relating to the structural basis of their various functions. Provisional conclusions are that during their evolutionary divergence, various TIMPs lost inhibitory activity toward some metalloproteinases, specialized in effects on different pro-MMPs, and developed new interactions with discrete targets (including integrins and receptors), while recapitulating a role in ECM structure. The analysis is limited by the sparse information available regarding the functional properties of nonmammalian TIMPs.-Brew, K. Reflections on the evolution of the vertebrate tissue inhibitors of metalloproteinases.
Collapse
Affiliation(s)
- Keith Brew
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
42
|
Yosef G, Arkadash V, Papo N. Targeting the MMP-14/MMP-2/integrin α vβ 3 axis with multispecific N-TIMP2-based antagonists for cancer therapy. J Biol Chem 2018; 293:13310-13326. [PMID: 29986882 DOI: 10.1074/jbc.ra118.004406] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Indexed: 12/27/2022] Open
Abstract
The pathophysiological functions of the signaling molecules matrix metalloproteinase-14 (MMP-14) and integrin αvβ3 in various types of cancer are believed to derive from their collaborative activity in promoting invasion, metastasis, and angiogenesis, as shown in vitro and in vivo The two effectors act in concert in a cell-specific manner through the localization of pro-MMP-2 to the cell surface, where it is processed to intermediate and matured MMP-2. The matured MMP-2 product is localized to the cell surface via its binding to integrin αvβ3 The MMP-14/MMP-2/integrin αvβ3 axis thus constitutes an attractive putative target for therapeutic interventions, but the development of inhibitors that target this axis remains an unfulfilled task. To address the lack of such multitarget inhibitors, we have established a combinatorial approach that is based on flow cytometry screening of a yeast-displayed N-TIMP2 (N-terminal domain variant of tissue inhibitor of metalloproteinase-2) mutant library. On the basis of this screening, we generated protein monomers and a heterodimer that contain monovalent and bivalent binding epitopes to MMP-14 and integrin αvβ3 Among these proteins, the bi-specific heterodimer, which bound strongly to both MMP-14 and integrin αvβ3, exhibited superior ability to inhibit MMP-2 activation and displayed the highest inhibitory activity in cell-based models of a MMP-14-, MMP-2-, and integrin αvβ3-dependent glioblastoma and of endothelial cell invasiveness and endothelial capillary tube formation. These assays enabled us to show the superiority of the combined target effects of the inhibitors and to investigate separately the role each of the three signaling molecules in various malignant processes.
Collapse
Affiliation(s)
- Gal Yosef
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Valeria Arkadash
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
43
|
Duarte S, Matian P, Ma S, Busuttil RW, Coito AJ. Adeno-Associated Virus-Mediated Gene Transfer of Tissue Inhibitor of Metalloproteinases-1 Impairs Neutrophil Extracellular Trap Formation and Ameliorates Hepatic Ischemia and Reperfusion Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1820-1832. [PMID: 29870740 DOI: 10.1016/j.ajpath.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) is abundantly expressed by infiltrating leukocytes and contributes to the pathogenesis of hepatic ischemia and reperfusion injury (IRI). On the other hand, its physiological inhibitor, the tissue inhibitor of metalloproteinases-1 (TIMP-1), is available in insufficient levels to hamper MMP-9 activity during hepatic IRI. In this study, we generated recombinant adeno-associated virus type 8 vectors (rAAV8) encoding mouse TIMP-1 driven by a liver-specific thyroxine-binding globulin promoter as a strategy to increase the levels of TIMP-1 during liver IRI. Biodistribution analysis confirmed selective overexpression of TIMP-1 in livers of rAAV8-TIMP-1 vector treated C57BL/6 mice. rAAV8-TIMP-1-treated mice showed reduced MMP-9 activity, diminished leukocyte trafficking and activation, lowered transaminase levels, and improved histology after liver IRI. Moreover, the rAAV8-TIMP-1 vector therapy enhanced significantly the 7-day survival rate of TIMP-1-/- mice subjected to hepatic IRI. Neutrophils are the first cells recruited to inflamed tissues and, once activated, they release nuclear DNA-forming web-like structures, known as neutrophil extracellular traps. It was found that TIMP-1 has the ability to reduce formation of neutrophil extracellular traps and, consequently, limit the impact of neutrophil extracellular trap-mediated cytotoxicity in hepatic IRI. This is the first report demonstrating that TIMP-1 overexpression is hepatoprotective in ischemia and reperfusion injury. Hence, TIMP-1 may represent a promising molecule for drug development to treat liver IRI.
Collapse
Affiliation(s)
- Sergio Duarte
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Patrick Matian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Stacy Ma
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ronald W Busuttil
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ana J Coito
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
44
|
Arolas JL, Goulas T, Cuppari A, Gomis-Rüth FX. Multiple Architectures and Mechanisms of Latency in Metallopeptidase Zymogens. Chem Rev 2018; 118:5581-5597. [PMID: 29775286 DOI: 10.1021/acs.chemrev.8b00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallopeptidases cleave polypeptides bound in the active-site cleft of catalytic domains through a general base/acid mechanism. This involves a solvent molecule bound to a catalytic zinc and general regulation of the mechanism through zymogen-based latency. Sixty reported structures from 11 metallopeptidase families reveal that prosegments, mostly N-terminal of the catalytic domain, block the cleft regardless of their size. Prosegments may be peptides (5-14 residues), which are only structured within the zymogens, or large moieties (<227 residues) of one or two folded domains. While some prosegments globally shield the catalytic domain through a few contacts, others specifically run across the cleft in the same or opposite direction as a substrate, making numerous interactions. Some prosegments block the zinc by replacing the solvent with particular side chains, while others use terminal α-amino or carboxylate groups. Overall, metallopeptidase zymogens employ disparate mechanisms that diverge even within families, which supports that latency is less conserved than catalysis.
Collapse
Affiliation(s)
- Joan L Arolas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Anna Cuppari
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| |
Collapse
|
45
|
Sánchez-Pozo J, Baker-Williams AJ, Woodford MR, Bullard R, Wei B, Mollapour M, Stetler-Stevenson WG, Bratslavsky G, Bourboulia D. Extracellular Phosphorylation of TIMP-2 by Secreted c-Src Tyrosine Kinase Controls MMP-2 Activity. iScience 2018; 1:87-96. [PMID: 30227959 PMCID: PMC6135941 DOI: 10.1016/j.isci.2018.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
The tissue inhibitor of metalloproteinases 2 (TIMP-2) is a specific endogenous inhibitor of matrix metalloproteinase 2 (MMP-2), which is a key enzyme that degrades the extracellular matrix and promotes tumor cell invasion. Although the TIMP-2:MMP-2 complex controls proteolysis, the signaling mechanism by which the two proteins associate in the extracellular space remains unidentified. Here we report that TIMP-2 is phosphorylated outside the cell by secreted c-Src tyrosine kinase. As a consequence, phosphorylation at Y90 significantly enhances TIMP-2 potency as an MMP-2 inhibitor and weakens the catalytic action of the active enzyme. TIMP-2 phosphorylation also appears to be essential for its interaction with the latent enzyme proMMP-2 in vivo. Absence of the kinase or non-phosphorylatable Y90 abolishes TIMP-2 binding to the latent enzyme, ultimately hampering proMMP-2 activation. Together, TIMP-2 phosphorylation by secreted c-Src represents a critical extracellular regulatory mechanism that controls the proteolytic function of MMP-2. c-Src tyrosine kinase phosphorylates TIMP-2 Secreted c-Src phosphorylates TIMP-2 extracellularly TIMP-2 Y90 phosphorylation promotes extracellular interaction with proMMP-2 Tyrosine phosphorylation of TIMP-2 regulates proMMP-2 processing and MMP-2 activity
Collapse
Affiliation(s)
- Javier Sánchez-Pozo
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Renee Bullard
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Beiyang Wei
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - William G Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
46
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 423] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
47
|
Liu M, An J, Huang M, Wang L, Tu B, Song Y, Ma K, Wang Y, Wang S, Zhu H, Xu N, Wu L. MicroRNA-492 overexpression involves in cell proliferation, migration, and radiotherapy response of cervical squamous cell carcinomas. Mol Carcinog 2017; 57:32-43. [PMID: 28802022 DOI: 10.1002/mc.22717] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Jusheng An
- Department of Gynecological Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Manni Huang
- Department of Gynecological Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Liming Wang
- Department of Abdominal Surgery; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Binbin Tu
- Department of Gynecological Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Yan Song
- Department of Pathology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Yu Wang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Shuren Wang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
| | - Lingying Wu
- Department of Gynecological Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| |
Collapse
|
48
|
Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC. Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer. J Cell Biochem 2017; 118:3531-3548. [PMID: 28585723 PMCID: PMC5621753 DOI: 10.1002/jcb.26185] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that cleave nearly all components of the extracellular matrix as well as many other soluble and cell-associated proteins. MMPs have been implicated in normal physiological processes, including development, and in the acquisition and progression of the malignant phenotype. Disappointing results from a series of clinical trials testing small molecule, broad spectrum MMP inhibitors as cancer therapeutics led to a re-evaluation of how MMPs function in the tumor microenvironment, and ongoing research continues to reveal that these proteins play complex roles in cancer development and progression. It is now clear that effective targeting of MMPs for therapeutic benefit will require selective inhibition of specific MMPs. Here, we provide an overview of the MMP family and its biological regulators, the tissue inhibitors of metalloproteinases (TIMPs). We then summarize recent research from model systems that elucidate how specific MMPs drive the malignant phenotype of breast cancer cells, including acquisition of cancer stem cell features and induction of the epithelial-mesenchymal transition, and we also outline clinical studies that implicate specific MMPs in breast cancer outcomes. We conclude by discussing ongoing strategies for development of inhibitors with therapeutic potential that are capable of selectively targeting the MMPs most responsible for tumor promotion, with special consideration of the potential of biologics including antibodies and engineered proteins based on the TIMP scaffold. J. Cell. Biochem. 118: 3531-3548, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| | | | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| |
Collapse
|
49
|
Kunte M, Desai K. The Inhibitory Effect of C-phycocyanin Containing Protein Extract (C-PC Extract) on Human Matrix Metalloproteinases (MMP-2 and MMP-9) in Hepatocellular Cancer Cell Line (HepG2). Protein J 2017; 36:186-195. [PMID: 28357609 DOI: 10.1007/s10930-017-9707-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Spirulina platensis :have been studied for several biological activities. In the current study C-phycocyanin containing protein extract (C-PC extract) of Spirulina platensis have been studied for its effect on human matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and tissue inhibitors of MMPs (TIMP-1 and TIMP-2). In the present study, breast cancer cell line (MDA-MB 231) and hepatocellular cancer cell line (HepG2) were examined for inhibition of MMPs at different levels of expression after C-PC extract treatment. Herein, we have demonstrated that C-PC extract significantly reduced activity of MMP-2 by 55.13% and MMP-9 by 57.9% in HepG2 cells at 15 μg concentration. Additionally, the treatment has reduced mRNA expression of MMP-2 and MMP-9 at 20 μg concentration by 1.65-folds and 1.66-folds respectively. The C-PC extract treatment have also downregulated a mRNA expression of TIMP-2 by 1.12 folds at 20 μg concentration in HepG2 cells. Together, these results indicate that C-PC, extract successfully inhibited MMP-2 and -9 at different levels of expression and TIMP-2 at a mRNA expression level; however, extract did not have any effect on MMP-1 expressed in MDA-MB231 and TIMP-1 expressed in HepG2 cells as well as the exact mechanism of inhibition of MMP-2, MMP-9 and TIMP-2 remained unclear.
Collapse
Affiliation(s)
- Mugdha Kunte
- Department of Biological Sciences, SD School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle (W), Mumbai, 400056, India
| | - Krutika Desai
- Department of Microbiology, SVKM's Mithibai College, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
50
|
Chang YC, Chang MC, Chen YJ, Liou JU, Chang HH, Huang WL, Liao WC, Chan CP, Jeng PY, Jeng JH. Basic Fibroblast Growth Factor Regulates Gene and Protein Expression Related to Proliferation, Differentiation, and Matrix Production of Human Dental Pulp Cells. J Endod 2017; 43:936-942. [PMID: 28416318 DOI: 10.1016/j.joen.2017.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Basic fibroblast growth factor (bFGF) plays differential effects on the proliferation, differentiation, and extracellular matrix turnover in various tissues. However, limited information is known about the effect of bFGF on dental pulp cells. The purposes of this study were to investigate whether bFGF influences the cell differentiation and extracellular matrix turnover of human dental pulp cells (HDPCs) and the related gene and protein expression as well as the role of the mitogen-activated protein kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling pathway. The expression of fibroblast growth factor receptors (FGFRs) in HDPCs was also studied. METHODS The expression of FGFR1 and FGFR2 in HDPCs was investigated by reverse-transcription polymerase chain reaction. HDPCs were treated with different concentrations of bFGF. Cell proliferation was evaluated using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Cell differentiation was evaluated using alkaline phosphatase (ALP) staining. Changes in messenger expression of cyclin B1 and tissue inhibitor of metalloproteinase (TIMP) 1 were determined by reverse-transcription polymerase chain reaction. Changes in protein expression of cdc2, TIMP-1, TIMP-2, and collagen I were determined by Western blotting. U0126 was used to clarify the role of MEK/ERK signaling. RESULTS HDPCs expressed both FGFR1 and FGFR2. Cell viability was stimulated by 50-250 ng/mL bFGF. The expression and enzyme activities of ALP were inhibited by 10-500 ng/mL bFGF. At similar concentrations, bFGF stimulates cdc2, cyclin B1, and TIMP-1 messenger RNA and protein expression. bFGF showed little effect on TIMP-2 and partly inhibited collagen I expression of pulp cells. U0126 (a MEK/ERK inhibitor) attenuated the bFGF-induced increase of cyclin B1, cdc2, and TIMP-1. CONCLUSIONS bFGF may be involved in pulpal repair and regeneration by activation of FGFRs to regulate cell growth; stimulate cdc2, cyclin B1, and TIMP-1 expression; and inhibit ALP. These events are partly associated with MEK/ERK signaling.
Collapse
Affiliation(s)
- Ya-Ching Chang
- Department of Dentistry, Mackay Memorial Hospital and Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan; Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan.
| | - Yi-Jane Chen
- School of Dentistry, National Taiwan University Medical College and Department of Dentistry, National Taiwan University Hospital, Taipei City, Taiwan
| | - Ji-Uei Liou
- Department of Dentistry, Mackay Memorial Hospital and Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Hsiao-Hua Chang
- School of Dentistry, National Taiwan University Medical College and Department of Dentistry, National Taiwan University Hospital, Taipei City, Taiwan
| | - Wei-Ling Huang
- Department of Dentistry, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wan-Chuen Liao
- School of Dentistry, National Taiwan University Medical College and Department of Dentistry, National Taiwan University Hospital, Taipei City, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry, National Taiwan University Medical College and Department of Dentistry, National Taiwan University Hospital, Taipei City, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, National Taiwan University Medical College and Department of Dentistry, National Taiwan University Hospital, Taipei City, Taiwan.
| |
Collapse
|