1
|
Bertulfo K, Perez-Duran P, Miller H, Ma C, Ambesi-Impiombato A, Samon J, Mackey A, Lin WHW, Ferrando AA, Palomero T. Therapeutic targeting of the NOTCH1 and neddylation pathways in T cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2025; 122:e2426742122. [PMID: 40163723 PMCID: PMC12002235 DOI: 10.1073/pnas.2426742122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/30/2025] [Indexed: 04/02/2025] Open
Abstract
Gamma Secretase Inhibitors (GSIs) effectively block oncogenic Notch homolog-1 (NOTCH1), a characteristic feature of T cell acute lymphoblastic leukemias (T-ALL). However, their clinical application has been stalled by the induction of severe gastrointestinal toxicity resulting from the inhibition of NOTCH signaling in the gut, which translates into increased goblet cell differentiation. Genome-wide CRISPR loss-of-function screen in the colon cancer cell line LS174T identified the neddylation pathway as a main regulator of goblet cell differentiation upon NOTCH1 inhibition. Consistently, pharmacologic inhibition of the neddylation pathway with the small molecule inhibitor MLN4924, rescued GSI-induced differentiation in LS174T cells. Mechanistically, neddylation inhibition by MLN4924 increases the protein stability of Hairy and enhancer of split-1, a direct NOTCH1 transcriptional target and key regulator of absorptive and secretory cell fate decisions. Combined treatment with GSI and MLN4924 in a murine Notch1-dependent model of T-ALL led to leukemia regression and improved overall survival in the absence of gut toxicity. Overall, these results support the combined targeting of the NOTCH1 and neddylation pathways for the treatment of NOTCH1-induced T-ALL.
Collapse
Affiliation(s)
- Kalay Bertulfo
- Institute for Cancer Genetics, Columbia University, New York, NY10032
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Pablo Perez-Duran
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Hannah Miller
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Cindy Ma
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | | | - Jeremy Samon
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Adam Mackey
- Institute for Cancer Genetics, Columbia University, New York, NY10032
| | - Wen-Hsuan Wendy Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY10032
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY10032
- Department of Pediatrics, Columbia University Medical Center, New York, NY10032
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY10032
| |
Collapse
|
2
|
Luo Y, Ren Q, He J, Wu M. miR-126-3p Serves as a Biomarker for Hepatitis B Virus-Associated Chronic Acute Liver Failure and Regulates Inflammation by Regulating ERRFI1. J Biochem Mol Toxicol 2025; 39:e70252. [PMID: 40227026 DOI: 10.1002/jbt.70252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Hepatitis B virus-associated chronic acute liver failure (HBV-ACLF) is the leading cause of ACLF, affecting approximately 90% of patients with ACLF. The objective of this study was to investigate the clinical relevance of miR-126-3p on HBV-ACLF as well as the regulatory impact of ERRFI1 and miR-126-3p on the inflammatory response caused by ACLF via in vitro experimental methodologies. RT-qPCR was utilized to quantify the expression levels of miR-126-3p, ERRFI1, NLRP3, caspase 1, and IL-1β. The clinical function of miR-126-3p was assessed using ROC analysis or Kaplan-Meier curve. Cell proliferation was quantified via the CCK-8 assay, while the dual-luciferase reporter assay was employed to confirm the specific binding interaction between miR-126-3p and ERRFI1. In patients with HBV-ACLF, a significant downregulation of miR-126-3p expression was observed; The level of miR-126-3p served as a prognostic indicator for the progression of HBV-ACLF, with reduced expression being associated with an unfavorable clinical outcome. In addition, miR-126-3p was found to modulate LPS-induced cell proliferation, and inflammation in THLE-2 cells through the regulation of ERRFI1 expression. Therefore, miR-126-3p might serve as a biomarker for HBV-ACLF.
Collapse
Affiliation(s)
- Yiping Luo
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiuping Ren
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jun He
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Menghang Wu
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Pandey A, Li Z, Gautam M, Ghosh A, Man SM. Molecular mechanisms of emerging inflammasome complexes and their activation and signaling in inflammation and pyroptosis. Immunol Rev 2025; 329:e13406. [PMID: 39351983 PMCID: PMC11742652 DOI: 10.1111/imr.13406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Inflammasomes are multi-protein complexes that assemble within the cytoplasm of mammalian cells in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), driving the secretion of the pro-inflammatory cytokines IL-1β and IL-18, and pyroptosis. The best-characterized inflammasome complexes are the NLRP3, NAIP-NLRC4, NLRP1, AIM2, and Pyrin canonical caspase-1-containing inflammasomes, and the caspase-11 non-canonical inflammasome. Newer inflammasome sensor proteins have been identified, including NLRP6, NLRP7, NLRP9, NLRP10, NLRP11, NLRP12, CARD8, and MxA. These inflammasome sensors can sense PAMPs from bacteria, viruses and protozoa, or DAMPs in the form of mitochondrial damage, ROS, stress and heme. The mechanisms of action, physiological relevance, consequences in human diseases, and avenues for therapeutic intervention for these novel inflammasomes are beginning to be realized. Here, we discuss these emerging inflammasome complexes and their putative activation mechanisms, molecular and signaling pathways, and physiological roles in health and disease.
Collapse
Affiliation(s)
- Abhimanu Pandey
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Zheyi Li
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Manjul Gautam
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Aritra Ghosh
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Si Ming Man
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| |
Collapse
|
4
|
黄 萃, 孙 运, 李 文, 刘 丽, 王 伟, 张 静. [Nlrp6 overexpression inhibits lipid synthesis to suppress proliferation of hepatocellular carcinoma cells by regulating the AMPK-Srebp1c axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1910-1917. [PMID: 39523091 PMCID: PMC11526467 DOI: 10.12122/j.issn.1673-4254.2024.10.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the mechanism of Nlrp6 for regulating hepatocellular carcinoma (HCC) progression in light of lipid synthesis regulation. METHODS Nlrp6 expression level in HCC tissues of different pathological grades was investigated using RNA-seq data from The Cancer Genome Atlas (TCGA) database, and its correlation with the patients' survival was analyzed with Kaplan-Meier survival analysis. HepG2 cells with adenovirus-mediated Nlrp6 overexpression or knockdown were treated with palmitic acid (PA), and the changes in lipid deposition and cell proliferation were evaluated using Oil Red O staining, CCK-8 assay, EdU staining, and colony formation assay. RT-qPCR and Western blotting were used to detect the changes in expression of lipid synthesis-related genes and the proteins in the AMPK-Srebp1c axis. In a mouse model of hepatic steatosis established in liver-specific Nlrp6 knockout mice by high-fat diet feeding for 24 weeks, liver fibrosis was examined with histological staining, and the changes in expressions of HCC markers and the AMPK-Srebp1c signaling pathway were detected. RESULTS Nlrp6 expression was significantly reduced in HCC tissues with negative correlations with the pathological grades and the patients' survival (P < 0.0001). In HepG2 cells, Nlrp6 overexpression significantly inhibited lipid deposition and cell proliferation, whereas Nlrp6 knockdown produced the opposite effects. Nlrp6 overexpression strongly suppressed the expression of lipid synthesis-related genes, promoted AMPK phosphorylation, and inhibited Srebp1c expression. The mice with liver-specific Nlrp6 knockout and high-fat feeding showed increased hepatic steatosis, collagen deposition, and AFP expression with reduced AMPK phosphorylation and increased Srebp1c expression. CONCLUSION Nlrp6 overexpression inhibits lipid synthesis in HCC cells by regulating the AMPK-Srebp1c axis, which might be a key pathway for suppressing HCC cell proliferation.
Collapse
|
5
|
Dawson RE, Jenkins BJ. The Role of Inflammasome-Associated Innate Immune Receptors in Cancer. Immune Netw 2024; 24:e38. [PMID: 39513025 PMCID: PMC11538610 DOI: 10.4110/in.2024.24.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Dysregulated activation of the innate immune system is a critical driver of chronic inflammation that is associated with at least 30% of all cancers. Innate immunity can also exert tumour-promoting effects (e.g. proliferation) directly on cancer cells in an intrinsic manner. Conversely, innate immunity can influence adaptive immunity-based anti-tumour immune responses via Ag-presenting dendritic cells that activate natural killer and cytotoxic T cells to eradicate tumours. While adaptive anti-tumour immunity has underpinned immunotherapy approaches with immune checkpoint inhibitors and chimeric Ag receptor-T cells, the clinical utility of innate immunity in cancer is underexplored. Innate immune responses are governed by pattern recognition receptors, which comprise several families, including Toll-like, nucleotide-binding oligomerization domain-containing (NOD)-like and absent-in-melanoma 2 (AIM2)-like receptors. Notably, a subset of NOD-like and AIM2-like receptors can form large multiprotein "inflammasome" complexes which control maturation of biologically active IL-1β and IL-18 cytokines. Over the last decade, it has emerged that inflammasomes can coordinate contrasting pro- and anti-tumour responses in cancer and non-cancer (e.g. immune, stromal) cells. Considering the importance of inflammasomes to the net output of innate immune responses, here we provide an overview and discuss recent advancements on the diverse role of inflammasomes in cancer that have underpinned their potential targeting in diverse malignancies.
Collapse
Affiliation(s)
- Ruby E. Dawson
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| | - Brendan J. Jenkins
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
6
|
Valiño-Rivas L, Pintor-Chocano A, Carriazo SM, Sanz AB, Ortiz A, Sanchez-Niño MD. Loss of NLRP6 increases the severity of kidney fibrosis. J Cell Physiol 2024; 239:e31347. [PMID: 38934623 DOI: 10.1002/jcp.31347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
While NLRP3 contributes to kidney fibrosis, the function of most NOD-like receptors (NLRs) in chronic kidney disease (CKD) remains unexplored. To identify further NLR members involved in the pathogenesis of CKD, we searched for NLR genes expressed by normal kidneys and differentially expressed in human CKD transcriptomics databases. For NLRP6, lower kidney expression correlated with decreasing glomerular filtration rate. The role and molecular mechanisms of Nlrp6 in kidney fibrosis were explored in wild-type and Nlrp6-deficient mice and cell cultures. Data mining of single-cell transcriptomics databases identified proximal tubular cells as the main site of Nlrp6 expression in normal human kidneys and tubular cell Nlrp6 was lost in CKD. We confirmed kidney Nlrp6 downregulation following murine unilateral ureteral obstruction. Nlrp6-deficient mice had higher kidney p38 MAPK activation and more severe kidney inflammation and fibrosis. Similar results were obtained in adenine-induced kidney fibrosis. Mechanistically, profibrotic cytokines transforming growth factor beta 1 (TGF-β1) and TWEAK decreased Nlrp6 expression in cultured tubular cells, and Nlrp6 downregulation resulted in increased TGF-β1 and CTGF expression through p38 MAPK activation, as well as in downregulation of the antifibrotic factor Klotho, suggesting that loss of Nlrp6 promotes maladaptive tubular cell responses. The pattern of gene expression following Nlrp6 targeting in cultured proximal tubular cells was consistent with maladaptive transitions for proximal tubular cells described in single-cell transcriptomics datasets. In conclusion, endogenous constitutive Nlrp6 dampens sterile kidney inflammation and fibrosis. Loss of Nlrp6 expression by tubular cells may contribute to CKD progression.
Collapse
Grants
- Sociedad Española de Nefrología, Comunidad de Madrid en Biomedicina P2022/BMD-7223, CIFRA_COR-CM and COST Action PERMEDIK CA21165, supported by COST (European Cooperation in Science and Technology). MDSN and ABS were supported by MICINN Ramon y Cajal program RYC2018-024461-I and RYC2019-026916-I respectively. IIS- Fundacion Jimenez Diaz Biobank, part of the Spanish Biobanks Platform (PT17/0015/0006)
- MICINN
- This work was supported by Instituto de Salud Carlos III (ISCIII)-FIS/Fondo Europeo de Desarrollo Regional FEDER grants (PI18/01366, PI21/00251, PI22/00050, PI22/00469), Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación/Next Generation EU (CNS2022-135937), ERA- PerMed-JTC2022 (SPAREKID AC22/00027), RICORS program to RICORS2040 (RD21/0005/0001) funded by European Union - NextGenerationEU, Mecanismo para la Recuperación y la Resiliencia (MRR) and SPACKDc PMP21/00109 FEDER
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Sol M Carriazo
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Ana B Sanz
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria D Sanchez-Niño
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
- Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Zhu S, Zhang X, Xu K, Liang J, Wang W, Zeng L, Xu K. Loss of NLRP6 expression increases the severity of intestinal injury after syngeneic hematopoietic stem cell transplantation. Ann Hematol 2024; 103:3145-3154. [PMID: 38607553 DOI: 10.1007/s00277-024-05745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
NLRP6 plays a crucial role in maintaining intestinal homeostasis by regulating the interaction between the intestinal mucosa and the microbiota. However, the impact of NLRP6 deficiency on intestinal damage following hematopoietic stem cell transplantation (HSCT) remains poorly understood. In this study, we established a syngeneic HSCT mouse model using C57BL/6 mice as donors and NLRP6-/- or C57BL/6 mice as recipients. Our findings revealed that NLRP6 deficiency had minimal influence on peripheral blood cell counts and splenic immune cell proportions in transplanted mice. However, it exacerbated pathological changes in the small intestine on day 14 post-transplantation, accompanied by increased proportions of macrophages, dendritic cells, and neutrophils. Furthermore, the NLRP6 deficiency resulted in elevated expression of MPO and CD11b, while reducing the levels mature caspase-1 and mature IL-1β in the intestine. Moreover, the NLRP6 deficiency disturbed the expression of apoptosis-related molecules and decreased the tight junction protein occludin. Notably, recipient mice with NLRP6 deficiency exhibited lower mRNA expression levels of antimicrobial genes, such as Reg3γ and Pla2g2a. The short-term increase in inflammatory cell infiltration caused by NLRP6 deficiency was associated with intestinal damage, increased apoptosis, reduced expression of antimicrobial peptides, and impaired intestinal repair. Taken together, our findings demonstrate that the loss of NLRP6 exacerbates post-transplantation intestinal damage in recipient mice.
Collapse
Affiliation(s)
- Shengyun Zhu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No.99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Xue Zhang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kairen Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jing Liang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
| | - Weiwei Wang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
| | - Lingyu Zeng
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No.99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, No.99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China.
| |
Collapse
|
8
|
Műzes G, Sipos F. Inflammasomes Are Influenced by Epigenetic and Autophagy Mechanisms in Colorectal Cancer Signaling. Int J Mol Sci 2024; 25:6167. [PMID: 38892354 PMCID: PMC11173330 DOI: 10.3390/ijms25116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammasomes contribute to colorectal cancer signaling by primarily inducing inflammation in the surrounding tumor microenvironment. Its role in inflammation is receiving increasing attention, as inflammation has a protumor effect in addition to inducing tissue damage. The inflammasome's function is complex and controlled by several layers of regulation. Epigenetic processes impact the functioning or manifestation of genes that are involved in the control of inflammasomes or the subsequent signaling cascades. Researchers have intensively studied the significance of epigenetic mechanisms in regulation, as they encompass several potential therapeutic targets. The regulatory interactions between the inflammasome and autophagy are intricate, exhibiting both advantageous and harmful consequences. The regulatory aspects between the two entities also encompass several therapeutic targets. The relationship between the activation of the inflammasome, autophagy, and epigenetic alterations in CRC is complex and involves several interrelated pathways. This article provides a brief summary of the newest studies on how epigenetics and autophagy control the inflammasome, with a special focus on their role in colorectal cancer. Based on the latest findings, we also provide an overview of the latest therapeutic ideas for this complex network.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
9
|
Sundaram B, Tweedell RE, Prasanth Kumar S, Kanneganti TD. The NLR family of innate immune and cell death sensors. Immunity 2024; 57:674-699. [PMID: 38599165 PMCID: PMC11112261 DOI: 10.1016/j.immuni.2024.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
10
|
Chang L, Xu L, Tian Y, Liu Z, Song M, Li S, Zhang X, Chen Y, Hao Q, Lu Y, Zhen Y. NLRP6 deficiency suppresses colorectal cancer liver metastasis growth by modulating M-MDSC-induced immunosuppressive microenvironment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167035. [PMID: 38278335 DOI: 10.1016/j.bbadis.2024.167035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Colorectal cancer liver metastasis (CRLM) a profound influence on the prognosis of patients with colorectal cancer (CRC), prompting a comprehensive inquiry into its underlying mechanisms. Amidst the multifaceted tumor microenvironment, myeloid-derived suppressor cells (MDSCs) have emerged as pivotal orchestrators of immune modulation. However, their specific contributions to the CRLM have not been explored. The role of NLRP6, a member of the NOD-like receptor family, is of interest. Employing a liver metastasis model, our investigation revealed a heightened accumulation of monocytic MDSCs (M-MDSCs) within metastatic sites, culminating in an immunosuppressive milieu characterized by depleted CD8+ T cell populations. Remarkably, the absence of NLRP6 disrupts this intricate immunosuppressive network, highlighting its nuanced role in sculpting the trajectory of CRLM. This study elucidates the interplay between NLRP6 and MDSCs, potentially guiding novel therapeutic strategies to recalibrate the immune microenvironment in CRLM and enhance patient outcomes.
Collapse
Affiliation(s)
- Liangzheng Chang
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lei Xu
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yuying Tian
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010107, China
| | - Zherui Liu
- Peking University 302 Clinical Medical School, Beijing 100039, China; Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Meiru Song
- The Fifth Clinical Medical College of Anhui Medical University, Beijing 100039, China
| | - Shuang Li
- Peking University 302 Clinical Medical School, Beijing 100039, China; Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xinfeng Zhang
- The Fifth Clinical Medical College of Anhui Medical University, Beijing 100039, China
| | - Yue Chen
- Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qiuyao Hao
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yinying Lu
- Guizhou Medical University, Guiyang, Guizhou 550004, China; Peking University 302 Clinical Medical School, Beijing 100039, China; The Fifth Clinical Medical College of Anhui Medical University, Beijing 100039, China; Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; Guizhou Medical University, Guiyang, Guizhou 550004, China.
| |
Collapse
|
11
|
Li R, Zan Y, Wang D, Chen X, Wang A, Tan H, Zhang G, Ding S, Shen C, Wu H, Zhu S. A mouse model to distinguish NLRP6-mediated inflammasome-dependent and -independent functions. Proc Natl Acad Sci U S A 2024; 121:e2321419121. [PMID: 38289959 PMCID: PMC10861855 DOI: 10.1073/pnas.2321419121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
The NOD-like receptor (NLR) family pyrin domain containing 6 (NLRP6) serves as a sensor for microbial dsRNA or lipoteichoic acid (LTA) in intestinal epithelial cells (IECs), and initiating multiple pathways including inflammasome pathway and type I interferon (IFN) pathway, or regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. NLRP6 can exert its function in both inflammasome-dependent and inflammasome-independent manners. However, there is no tool to distinguish the contribution of individual NLRP6-mediated pathway to the physiology and pathology in vivo. Here, we validated that Arg39 and Trp50 residues in the pyrin domain (PYD) of murine NLRP6 are required for ASC recruitment and inflammasome activation, but are not important for the RNA binding and PYD-independent NLRP6 oligomerization. We further generated the Nlrp6R39E&W50E mutant mice, which showed reduced inflammasome activation in either steady state intestine or during viral infection. However, the type I IFN production in cells or intestine tissue from Nlrp6R39E&W50E mutant mice remain normal. Interestingly, NLRP6-mediated inflammasome activation or the IFN-I production seems to play distinct roles in the defense responses against different types of RNA viruses. Our work generated a useful tool to study the inflammasome-dependent role of NLRP6 in vivo, which might help to understand the complexity of multiple pathways mediated by NLRP6 in response to the complicated and dynamic environmental cues in the intestine.
Collapse
Affiliation(s)
- Runzhi Li
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Yang Zan
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Decai Wang
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei230051, China
| | - Xuequn Chen
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Anmin Wang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Haoyuan Tan
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Guorong Zhang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Chen Shen
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei230051, China
| |
Collapse
|
12
|
Bugaut H, El Morr Y, Mestdagh M, Darbois A, Paiva RA, Salou M, Perrin L, Fürstenheim M, du Halgouet A, Bilonda-Mutala L, Le Gac AL, Arnaud M, El Marjou A, Guerin C, Chaiyasitdhi A, Piquet J, Smadja DM, Cieslak A, Ryffel B, Maciulyte V, Turner JM, Bernardeau K, Montagutelli X, Lantz O, Legoux F. A conserved transcriptional program for MAIT cells across mammalian evolution. J Exp Med 2024; 221:e20231487. [PMID: 38117256 PMCID: PMC10733631 DOI: 10.1084/jem.20231487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells harbor evolutionarily conserved TCRs, suggesting important functions. As human and mouse MAIT functional programs appear distinct, the evolutionarily conserved MAIT functional features remain unidentified. Using species-specific tetramers coupled to single-cell RNA sequencing, we characterized MAIT cell development in six species spanning 110 million years of evolution. Cross-species analyses revealed conserved transcriptional events underlying MAIT cell maturation, marked by ZBTB16 induction in all species. MAIT cells in human, sheep, cattle, and opossum acquired a shared type-1/17 transcriptional program, reflecting ancestral features. This program was also acquired by human iNKT cells, indicating common differentiation for innate-like T cells. Distinct type-1 and type-17 MAIT subsets developed in rodents, including pet mice and genetically diverse mouse strains. However, MAIT cells further matured in mouse intestines to acquire a remarkably conserved program characterized by concomitant expression of type-1, type-17, cytotoxicity, and tissue-repair genes. Altogether, the study provides a unifying view of the transcriptional features of innate-like T cells across evolution.
Collapse
Affiliation(s)
- Hélène Bugaut
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Yara El Morr
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Martin Mestdagh
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Aurélie Darbois
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Rafael A. Paiva
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Marion Salou
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Laetitia Perrin
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Mariela Fürstenheim
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Anastasia du Halgouet
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Linda Bilonda-Mutala
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Anne-Laure Le Gac
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Manon Arnaud
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | | | - Coralie Guerin
- Cytometry Platform, CurieCoreTech, Institut Curie, Paris, France
- Innovative Therapies in Haemostasis, Institut National de La Santé et de La Recherche Médicale, Université de Paris, Paris, France
| | - Atitheb Chaiyasitdhi
- Laboratoire Physico-Chimie Curie, Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR168, Paris, France
- Sorbonne Université, Paris, France
| | - Julie Piquet
- Biosurgical Research Laboratory, Carpentier Foundation, Paris, France
| | - David M. Smadja
- Innovative Therapies in Haemostasis, Institut National de La Santé et de La Recherche Médicale, Université de Paris, Paris, France
- Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris-Centre-Université de Paris, Paris, France
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de La Santé et de La Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Bernhard Ryffel
- Université D’Orléans, Centre national de la recherche scientifique UMR7355, Orléans, France
| | - Valdone Maciulyte
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - James M.A. Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Karine Bernardeau
- Nantes Université, Centre hospitalier universitaire de Nantes, Centre national de la recherche scientifique, Institut National de La Santé et de La Recherche Médicale, BioCore, US16, Plateforme P2R, Structure Fédérative de Recherche François Bonamy, Nantes, France
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Olivier Lantz
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
- Laboratoire D’immunologie Clinique, Institut Curie, Paris, France
- Centre D’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie, Paris, France
| | - François Legoux
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
- Institut de Génétique et Développement de Rennes, Université de Rennes, Institut National de La Santé et de La Recherche Médicale ERL1305, Centre national de la recherche scientifique UMR6290, Rennes, France
| |
Collapse
|
13
|
Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal 2024; 17:eadh1641. [PMID: 38194476 DOI: 10.1126/scisignal.adh1641] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic, chronic condition characterized by episodes of inflammation in the gastrointestinal tract. The nuclear factor κB (NF-κB) system describes a family of dimeric transcription factors. Canonical NF-κB signaling is stimulated by and enhances inflammation, whereas noncanonical NF-κB signaling contributes to immune organogenesis. Dysregulation of NF-κB factors drives various inflammatory pathologies, including IBD. Signals from many immune sensors activate NF-κB subunits in the intestine, which maintain an equilibrium between local microbiota and host responses. Genetic association studies of patients with IBD and preclinical mouse models confirm the importance of the NF-κB system in host defense in the gut. Other studies have investigated the roles of these factors in intestinal barrier function and in inflammatory gut pathologies associated with IBD. NF-κB signaling modulates innate and adaptive immune responses and the production of immunoregulatory proteins, anti-inflammatory cytokines, antimicrobial peptides, and other tolerogenic factors in the intestine. Furthermore, genetic studies have revealed critical cell type-specific roles for NF-κB proteins in intestinal immune homeostasis, inflammation, and restitution that contribute to the etiopathology of IBD-associated manifestations. Here, we summarize our knowledge of the roles of these NF-κB pathways, which are activated in different intestinal cell types by specific ligands, and their cross-talk, in fueling aberrant intestinal inflammation. We argue that an in-depth understanding of aberrant immune signaling mechanisms may hold the key to identifying predictive or prognostic biomarkers and developing better therapeutics against inflammatory gut pathologies.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
14
|
Kulshrestha S, Goel A. Protein therapeutics as an emerging strategy to deal with skin cancer: A short review. Exp Dermatol 2024; 33:e14981. [PMID: 37983960 DOI: 10.1111/exd.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Cancer has turned into a global menace with an exponential increase in the rate of death every year. Amongst all forms of cancers, skin cancer is the one becoming more common day by day because of the increased exposure to ultraviolet rays, chemicals, pollutants, etc. Skin cancer is of three types namely basal cell, squamous cell and melanoma which is one of the most aggressive forms of cancer with a low survival rate and easy relapse. Melanoma is also notorious for being multi-drug resistant which accounts for its low survival rates in it. Many kinds of therapeutics are been practiced in the contemporary world, but among them, protein therapeutics is been emerging as a promising field with multiple molecular pathway targets that have revolutionized the science of oncology. Proteins acts as small-molecule targets for cancer cells by binding to the cell surface receptors. Proteins including bromodomain and extra-terminal domain (BET) and some toxin proteins are been tried on for dealing with melanoma targeting the major pathways including MAPK, NF-κB and PI3K/AKT. The protein therapeutics also targets the tumour microenvironment including myofibrils, lymphatic vessels etc., thus inducing tumour cell death. In the review, several kinds of proteins and their function toward cell death will be highlighted in the context of skin cancer. In addition to this, the review will look into the inhibition of the function of other inflammatory pathways by inflammasomes and cytokines, both of which have a role in preventing cancer.
Collapse
Affiliation(s)
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
15
|
Fagundes RR, Bravo-Ruiseco G, Hu S, Kierans SJ, Weersma RK, Taylor CT, Dijkstra G, Harmsen HJM, Faber KN. Faecalibacterium prausnitzii promotes intestinal epithelial IL-18 production through activation of the HIF1α pathway. Front Microbiol 2023; 14:1298304. [PMID: 38163085 PMCID: PMC10755969 DOI: 10.3389/fmicb.2023.1298304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Intestinal epithelial cells produce interleukin-18 (IL-18), a key factor in promoting epithelial barrier integrity. Here, we analyzed the potential role of gut bacteria and the hypoxia-inducible factor 1α (HIF1α) pathway in regulating mucosal IL18 expression in inflammatory bowel disease (IBD). Methods Mucosal samples from patients with IBD (n = 760) were analyzed for bacterial composition, IL18 levels and HIF1α pathway activation. Wild-type Caco-2 and CRISPR/Cas9-engineered Caco-2-HIF1A-null cells were cocultured with Faecalibacterium prausnitzii in a "Human oxygen-Bacteria anaerobic" in vitro system and analyzed by RNA sequencing. Results Mucosal IL18 mRNA levels correlated positively with the abundance of mucosal-associated butyrate-producing bacteria, in particular F. prausnitzii, and with HIF1α pathway activation in patients with IBD. HIF1α-mediated expression of IL18, either by a pharmacological agonist (dimethyloxallyl glycine) or F. prausnitzii, was abrogated in Caco-2-HIF1A-null cells. Conclusion Butyrate-producing gut bacteria like F. prausnitzii regulate mucosal IL18 expression in a HIF1α-dependent manner that may aid in mucosal healing in IBD.
Collapse
Affiliation(s)
- Raphael R. Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gabriela Bravo-Ruiseco
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sarah J. Kierans
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Cormac T. Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Nascimento M, Huot-Marchand S, Fanny M, Straube M, Le Bert M, Savigny F, Apetoh L, Van Snick J, Trovero F, Chamaillard M, Quesniaux VFJ, Ryffel B, Gosset P, Gombault A, Riteau N, Sokol H, Couillin I. NLRP6 controls pulmonary inflammation from cigarette smoke in a gut microbiota-dependent manner. Front Immunol 2023; 14:1224383. [PMID: 38146368 PMCID: PMC10749332 DOI: 10.3389/fimmu.2023.1224383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host-microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation.
Collapse
Affiliation(s)
- Mégane Nascimento
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Sarah Huot-Marchand
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Manoussa Fanny
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Marjolène Straube
- Sorbonne Université, Institut National de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine (CRSA), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint Antoine, Service de Gastroenterologie, Paris, France
| | - Marc Le Bert
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Florence Savigny
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | | | | | | | - Mathias Chamaillard
- Univ. Lille, Institut National de la Recherche Médicale (INSERM), U1003 - Laboratoire de physiologie cellulaire (PHYCEL) - Physiologie Cellulaire, Lille, France
| | - Valérie F. J. Quesniaux
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Bernhard Ryffel
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Philippe Gosset
- Institut PASTEUR INSERM U1019, Centre National de Recherche (CNRS) Unité Mixte de Recherche (UMR) 8204, Lille, France
| | - Aurélie Gombault
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Nicolas Riteau
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Harry Sokol
- Sorbonne Université, Institut National de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine (CRSA), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint Antoine, Service de Gastroenterologie, Paris, France
- Institut national de la recherche agronomique (INRA), UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Isabelle Couillin
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| |
Collapse
|
17
|
Wang RH, Shang BB, Wu SX, Wang L, Sui SG. Recent updates on pyroptosis in tumors of the digestive tract. J Dig Dis 2023; 24:640-647. [PMID: 38059890 DOI: 10.1111/1751-2980.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Pyroptosis is an inflammasome-dependent form of programmed cell death that is mediated by caspases-1, -4, -5, and -11, and the gasdermin protein family. It is characterized by the rupture of cell membrane and the subsequent release of cell contents and interleukins, leading to inflammatory reaction and activation of the immune system. Recent studies have suggested that pyroptosis plays a role in the development of gastrointestinal tumors, impeding tumor generation and progression as well as providing a favorable microenvironment for tumor growth. In this review we outlined the current knowledge regarding the implications of pyroptosis in gastrointestinal cancers.
Collapse
Affiliation(s)
- Ruo Han Wang
- Emergency Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Bing Bing Shang
- Emergency Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shi Xi Wu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Liang Wang
- Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shao Guang Sui
- Emergency Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
18
|
Garg S, Sharma N, Bharmjeet, Das A. Unraveling the intricate relationship: Influence of microbiome on the host immune system in carcinogenesis. Cancer Rep (Hoboken) 2023; 6:e1892. [PMID: 37706437 PMCID: PMC10644337 DOI: 10.1002/cnr2.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Cancer is an outcome of various disrupted or dysregulated metabolic processes like apoptosis, growth, and self-cell transformation. Human anatomy harbors trillions of microbes, and these microbes actively influence all kinds of human metabolic activities, including the human immune response. The immune system which inherently acts as a sentinel against microbes, curiously tolerates and even maintains a distinct normal microflora in our body. This emphasizes the evolutionarily significant role of microbiota in shaping our adaptive immune system and even potentiating its function in chronic ailments like cancers. Microbes interact with the host immune cells and play a part in cancer progression or regression by modulating immune cells, producing immunosuppressants, virulence factors, and genotoxins. RECENT FINDINGS An expanding plethora of studies suggest and support the evidence of microbiome impacting cancer etiology. Several studies also indicate that the microbiome can supplement various cancer therapies, increasing their efficacy. The present review discusses the relationship between bacterial and viral microbiota with cancer, discussing different carcinogenic mechanisms influenced by prokaryotes with special emphasis on their immunomodulatory axis. It also elucidates the potential of the microbiome in transforming the efficacy of immunotherapeutic treatments. CONCLUSION This review offers a thorough overview of the complex interaction between the human immune system and the microbiome and its impact on the development of cancer. The microbiome affects the immune responses as well as progression of tumor transformation, hence microbiome-based therapies can vastly improve the effectiveness of cancer immunotherapies. Individual variations of the microbiome and its dynamic variability in every individual impacts the immune modulation and cancer progression. Therefore, further research is required to understand these underlying processes in detail, so as to design better microbiome-immune system axis in the treatment of cancer.
Collapse
Affiliation(s)
- Saksham Garg
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Nikita Sharma
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Bharmjeet
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Asmita Das
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| |
Collapse
|
19
|
Lv L, Zhang Y, Kong R, Wang C, Wang X, Zhou X. Identification of pyroptosis-related signature and development of a novel prognostic model in diffuse large B-cell lymphoma. J Cancer Res Clin Oncol 2023; 149:12677-12690. [PMID: 37452851 DOI: 10.1007/s00432-023-05018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Emerging evidence suggests that pyroptosis plays an essential role in the development and progression of multiple cancers. However, the role of pyroptosis remains elusive in diffuse large B-cell lymphoma (DLBCL). METHODS The expression profile data of DLBCL and normal samples of pyroptosis-related genes (PRGs) were analyzed, and the clinical characteristics of DLBCL patients were further investigated. A prognostic model was established using LASSO-Cox regression analysis. The expression of these PRGs was validated by qRT-PCR in DLBCL cell lines. Cell proliferation assay and flow cytometry were utilized to explore the impact of pyroptosis inhibitor (disulfiram, DSF) combined with PD1/PD-L1 inhibitor (BMS1166) on DLBCL cell proliferation. RESULTS Most PRGs were dysregulated in DLBCL samples and associated with overall survival (OS). Six PRGs were selected to construct a prognostic risk score model. The qRT-PCR analysis revealed that CASP8, CASP9, NLRP1, NLRP6, and TIRAP are downregulated, while SCAF11 was significantly upregulated in DLBCL cell lines. This prognostic model divided DLBCL patients into low-risk and high-risk groups. Patients in the low-risk group exhibited lower mortality and longer OS than those in the high-risk group. The ROC curve and nomogram demonstrated this model's excellent predictive performance. GO and KEGG enrichment indicated that the differentially expressed genes (DEGs) between subgroups were associated with cellular protein modification processes and JAK-STAT signaling pathway regulation. Moreover, the risk score was correlated with the immune profile. Cell proliferation assay and flow cytometry further validated the synergistic anti-tumor effects of DSF and BMS1166 on DLBCL cells. CONCLUSION In summary, we developed a comprehensive prognostic model based on PRGs characteristics, which accurately predicted the prognosis of DLBCL patients. Pyroptosis-targeting coupled with immunotherapies would be a promising therapeutic strategy for DLBCL.
Collapse
Affiliation(s)
- Liemei Lv
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ran Kong
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Cong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
20
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Liu J, Liu W, Lv P, Wang Y, Ouyang X. Activation of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 6 by Porphyromonas gingivalis regulates programmed cell death in epithelium. J Dent Sci 2023; 18:1867-1875. [PMID: 37799925 PMCID: PMC10548009 DOI: 10.1016/j.jds.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Indexed: 10/07/2023] Open
Abstract
Background/purpose Gingival epithelial cells form a physiological barrier against bacterial invasion. Programmed cell death (PCD) regulated by pathogen precognition receptors (PRRs) lead to tissue destruction and is closely related to inflammatory diseases. The purpose of this study was to investigate whether nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 6 (NLRP6) expresses in periodontal epithelium and induces PCD of epithelial cells infected by Porphyromonas gingivalis (P. gingivalis), therefore involves in periodontitis. Material and methods The expression of NLRP6 was detected in periodontal epithelium from human gingival sections and HaCaT cells stimulated by P. gingivalis. NLRP6 was over-expressed by adenovirus infection in HaCaT or knocked down by siRNA in P. gingivalis infected HaCaT, and the cell death was observed by transmission electron microscopy and flow cytometry analysis. In addition, qPCR and Western blot were performed to determine the expression of NLRP6 and the pyroptosis excutors, caspase-1 and gasdermin D. Enzyme-linked immunosorbent assay were performed to detect the secretion of IL-1β and IL-18. Results NLRP6 was up-regulated in both gingival epithelium of patients with periodontitis and P. gingivalis infected HaCaT. Over-expression of NLRP6 in HaCaT led to caspase-1 dependent pyroptosis. Interestingly, knockdown of NLRP6 with siRNA followed by P. gingivalis stimulation inhibited pyroptosis and induced apoptosis. Conclusion Up-regulation of NLRP6 by P. gingivalis in HaCaT led to pyroptosis, while knocking down NLRP6 inhibited pyroptosis and induced apoptosis, which indicated this PRR may play a crucial role in periodontitis by regulating PCD in periodontal epithelium.
Collapse
Affiliation(s)
- Jianru Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wenyi Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Peiying Lv
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Biobank, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
22
|
Zhi F, Li B, Zhang C, Xia F, Wang R, Xie W, Cai S, Zhang D, Kong R, Hu Y, Yang Y, Peng Y, Cui J. NLRP6 potentiates PI3K/AKT signalling by promoting autophagic degradation of p85α to drive tumorigenesis. Nat Commun 2023; 14:6069. [PMID: 37770465 PMCID: PMC10539329 DOI: 10.1038/s41467-023-41739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
The PI3K/AKT pathway plays an essential role in tumour development. NOD-like receptors (NLRs) regulate innate immunity and are implicated in cancer, but whether they are involved in PI3K/AKT pathway regulation is poorly understood. Here, we report that NLRP6 potentiates the PI3K/AKT pathway by binding and destabilizing p85α, the regulatory subunit of PI3K. Mechanistically, NLRP6 recruits the E3 ligase RBX1 to p85α and ubiquitinates lysine 256 on p85α, which is recognized by the autophagy cargo receptor OPTN, causing selective autophagic degradation of p85α and subsequent activation of the PI3K/AKT pathway by reducing PTEN stability. We further show that loss of NLRP6 suppresses cell proliferation, colony formation, cell migration, and tumour growth in glioblastoma cells in vitro and in vivo. Disruption of the NLRP6/p85α interaction using the Pep9 peptide inhibits the PI3K/AKT pathway and generates potent antitumour effects. Collectively, our results suggest that NLRP6 promotes p85α degradation via selective autophagy to drive tumorigenesis, and the interaction between NLRP6 and p85α can be a promising therapeutic target for tumour treatment.
Collapse
Affiliation(s)
- Feng Zhi
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Bowen Li
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Chuanxia Zhang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Xia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rong Wang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weihong Xie
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sihui Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dawei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yilin Yang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Zhou F, Zhang GD, Tan Y, Hu SA, Tang Q, Pei G. NOD-like receptors mediate homeostatic intestinal epithelial barrier function: promising therapeutic targets for inflammatory bowel disease. Therap Adv Gastroenterol 2023; 16:17562848231176889. [PMID: 37701792 PMCID: PMC10493068 DOI: 10.1177/17562848231176889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 05/01/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease that involves host genetics, the microbiome, and inflammatory responses. The current consensus is that the disruption of the intestinal mucosal barrier is the core pathogenesis of IBD, including intestinal microbial factors, abnormal immune responses, and impaired intestinal mucosal barrier. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are dominant mediators in maintaining the homeostasis of the intestinal mucosal barrier, which play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Blocking NLRs inflammasome activation by botanicals may be a promising way to prevent IBD progression. In this review, we systematically introduce the multiple roles of NLRs in regulating intestinal mucosal barrier homeostasis and focus on summarizing the activities and potential mechanisms of natural products against IBD. Aiming to propose new directions on the pathogenesis and precise treatment of IBD.
Collapse
Affiliation(s)
- Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | | | - Yang Tan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Science and Technology Innovation Center/State Key Laboratory Breeding Base of Chinese Medicine Powder and Innovative Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shi An Hu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Prevention and Treatment of Depression Diseases, Changsha, China
| | - Qun Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Gang Pei
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| |
Collapse
|
24
|
Zhang B, Li Z, Wang K, Duan M, Yin Y, Zhan Q, Wang F, An R. Exploration of pyroptosis-associated prognostic gene signature and lncRNA regulatory network in ovarian cancer. Comput Biol Med 2023; 164:107343. [PMID: 37566932 DOI: 10.1016/j.compbiomed.2023.107343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Ovarian cancer (OC), is a tumor that poses a serious threat to women's health due to its high mortality rate and bleak prognosis. Pyroptosis, a type of programmed cell death, is important for determining the prognosis of a patient's prognosis for cancer and may represent a novel target for treatment. However, research into how prognosis is impacted by pyroptosis-related genes (PRGs) is poorly understood. In this study, a prognostic model was created using bioinformatic analysis of PRGs in OC. In OC, we discovered 18 pyroptosis regulators that were either up- or down-regulated. By analyzing prognoses, we developed a 9-genes based prognostic model. Each OC patient received a risk score that could be used to categorize them into two subgroups: those with high risk and/or low chance of survival and those with low risk and/or high chance of survival. Functional enrichment and immunoinfiltration analysis indicated that low expression of immune pathways in high-risk group may account for the decrease of survival possibility. In Multivariable cox regression studies, age, clinical stage and the prognostic model were discovered to be independent factors impacting the prognosis for OC. To forecast OC patient survival, a predictive nomogram was developed. Furthermore, we found a correlation between predictive PRGs and clinical stage, indicating that AIM2, CASP3, ZBP1 and CASP8 may play a role in the growth of tumor in OC. After detailed and complete bioinformatics analysis, the lncRNA RP11-186B7.4/hsa-miR-449a/CASP8/AIM2/ZBP1 regulatory axis was identified in OC. Our study may provide a novel approach for prognostic biomarkers and therapeutic targets of OC.
Collapse
Affiliation(s)
- Beilei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhanghang Li
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Kunqin Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mingke Duan
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yidan Yin
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qirui Zhan
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Fu Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xianyang, 712046, Shaanxi, China.
| | - Ruifang An
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
25
|
Okin D, Kagan JC. Inflammasomes as regulators of non-infectious disease. Semin Immunol 2023; 69:101815. [PMID: 37506489 PMCID: PMC10527946 DOI: 10.1016/j.smim.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Inflammasomes are cytoplasmic organelles that stimulate inflammation upon cellular detection of infectious or non-infectious stress. While much foundational work has focused on the infection-associated aspects of inflammasome activities, recent studies have highlighted the role of inflammasomes in non-infectious cellular and organismal functions. Herein, we discuss the evolution of inflammasome components and highlight characteristics that permit inflammasome regulation of physiologic processes. We focus on emerging data that highlight the importance of inflammasome proteins in the regulation of reproduction, development, and malignancy. A framework is proposed to contextualize these findings.
Collapse
Affiliation(s)
- Daniel Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Zou J, Yang R, Feng R, Liu J, Wan JB. Ginsenoside Rk2, a dehydroprotopanaxadiol saponin, alleviates alcoholic liver disease via regulating NLRP3 and NLRP6 inflammasome signaling pathways in mice. J Pharm Anal 2023; 13:999-1012. [PMID: 37842661 PMCID: PMC10568107 DOI: 10.1016/j.jpha.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heavy alcohol consumption results in alcoholic liver disease (ALD) with inadequate therapeutic options. Here, we first report the potential beneficial effects of ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin isolated from streamed ginseng, against alcoholic liver injury in mice. Chronic-plus-single-binge ethanol feeding caused severe liver injury, as manifested by significantly elevated serum aminotransferase levels, hepatic histological changes, increased lipid accumulation, oxidative stress, and inflammation in the liver. These deleterious effects were alleviated by the treatment with Rk2 (5 and 30 mg/kg). Acting as an nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inhibitor, Rk2 ameliorates alcohol-induced liver inflammation by inhibiting NLRP3 inflammasome signaling in the liver. Meanwhile, the treatment with Rk2 alleviated the alcohol-induced intestinal barrier dysfunction via enhancing NLRP6 inflammasome in the intestine. Our findings indicate that Rk2 is a promising agent for the prevention and treatment of ALD and other NLPR3-driven diseases.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Rujie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
27
|
Iyer K, Erkert L, Becker C. Know your neighbors: microbial recognition at the intestinal barrier and its implications for gut homeostasis and inflammatory bowel disease. Front Cell Dev Biol 2023; 11:1228283. [PMID: 37519301 PMCID: PMC10375050 DOI: 10.3389/fcell.2023.1228283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal epithelial cells (IECs) perform several physiological and metabolic functions at the epithelial barrier. IECs also play an important role in defining the overall immune functions at the mucosal region. Pattern recognition receptors (PRRs) on the cell surface and in other cellular compartments enable them to sense the presence of microbes and microbial products in the intestinal lumen. IECs are thus at the crossroads of mediating a bidirectional interaction between the microbial population and the immune cells present at the intestinal mucosa. This communication between the microbial population, the IECs and the underlying immune cells has a profound impact on the overall health of the host. In this review, we focus on the various PRRs present in different cellular compartments of IECs and discuss the recent developments in the understanding of their role in microbial recognition. Microbial recognition and signaling at the epithelial barrier have implications in the maintenance of intestinal homeostasis, epithelial barrier function, maintenance of commensals, and the overall tolerogenic function of PRRs in the gut mucosa. We also highlight the role of an aberrant microbial sensing at the epithelial barrier in the pathogenesis of inflammatory bowel disease (IBD) and the development of colorectal cancer.
Collapse
Affiliation(s)
- Krishna Iyer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
28
|
Chang L, Tian Y, Xu L, Hao Q, Song L, Lu Y, Zhen Y. Spotlight on NLRP6 and Tumor Research Situation: A Potential Cancer Participant. J Immunol Res 2023; 2023:6613064. [PMID: 37415625 PMCID: PMC10322559 DOI: 10.1155/2023/6613064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
NOD-like receptor family pyrin domain containing 6 (NLRP6) is a new pattern recognition receptor in the mammalian innate immune system. Both the liver and the gut exhibit substantial levels of cytoplasmic expression. It can speed up cell response to endogenous danger signals or exogenous pathogen infection. NLRP6 can function in various ways as an inflammasome or a noninflammasome. The understanding of NLRP6 is steadily increasing thanks to ongoing investigations, but due to discrepancies in how those studies have described their link with tumors, the significance of NLRP6 in the emergence of cancer is still debatable as of this writing. This article will use the structure and function of NLRP6 as the pivotal point and thoroughly explain the present interactions between NLRP6 and tumors and any possible clinical benefits.
Collapse
Affiliation(s)
| | - Yuying Tian
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lei Xu
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiuyao Hao
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinying Lu
- Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou, China
| |
Collapse
|
29
|
Barnett KC, Li S, Liang K, Ting JPY. A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell 2023; 186:2288-2312. [PMID: 37236155 PMCID: PMC10228754 DOI: 10.1016/j.cell.2023.04.025] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sirui Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
30
|
Chen X, Yang M, Wang L, Wang Y, Tu J, Zhou X, Yuan X. Identification and in vitro and in vivo validation of the key role of GSDME in pyroptosis-related genes signature in hepatocellular carcinoma. BMC Cancer 2023; 23:411. [PMID: 37149620 PMCID: PMC10164321 DOI: 10.1186/s12885-023-10850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/14/2023] [Indexed: 05/08/2023] Open
Abstract
We used pyroptosis-related genes to establish a risk-score model for prognostic prediction of liver hepatocellular carcinoma (LIHC) patients. A total of 52 pyroptosis-associated genes were identified. Then, data for 374 LIHC patients and 50 normal individuals were acquired from the TCGA database. Through gene expression analyses, differentially expressed genes (DEGs) were determined. The 13 pyroptosis-related genes (PRGs) confirmed as potential prognostic factors through univariate Cox regression analysis were entered into Lasso and multivariate Cox regression to build a PRGs prognostic signature, containing four PRGs (BAK1, GSDME, NLRP6, and NOD2) determined as independent prognostic factors. mRNA levels were evaluated by qRT-PCR, while overall survival (OS) rates were assessed by the Kaplan-Meier method. Enrichment analyses were done to establish the mechanisms associated with differential survival status of LIHC patients from a tumor immunology perspective. Additionally, a risk score determined by the prognostic model could divide LIHC patients into low- and high-risk groups using median risk score as cut-off. A prognostic nomogram, derived from the prognostic model and integrating clinical characteristics of patients, was constructed. The prognostic function of the model was also validated using GEO, ICGC cohorts, and online databases Kaplan-Meier Plotter. Small interfering RNA-mediated knockdown of GSDME, as well as lentivirus-mediated GSDME knockdown, were performed to validate that knockdown of GSDME markedly suppressed growth of HCC cells both in vivo and in vitro. Collectively, our study demonstrated a PRGs prognostic signature that had great clinical value in prognosis assessment.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| | - Xiao Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei, China.
| |
Collapse
|
31
|
Gu Q, Zou J, Zhou Y, Deng Q. Mechanism of inflammasomes in cancer and targeted therapies. Front Oncol 2023; 13:1133013. [PMID: 37020871 PMCID: PMC10067570 DOI: 10.3389/fonc.2023.1133013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Inflammasomes, composed of the nucleotide-binding oligomerization domain(NOD)-like receptors (NLRs), are immune-functional protein multimers that are closely linked to the host defense mechanism. When NLRs sense pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), they assemble into inflammasomes. Inflammasomes can activate various inflammatory signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, and produce a large number of proinflammatory cytokines, which are closely associated with multiple cancers. They can also accelerate the occurrence and development of cancer by providing suitable tumor microenvironments, promoting tumor cell proliferation, and inhibiting tumor cell apoptosis. Therefore, the exploitation of novel targeted drugs against various inflammasomes and proinflammatory cytokines is a new idea for the treatment of cancer. In recent years, more than 50 natural extracts and synthetic small molecule targeted drugs have been reported to be in the research stage or have been applied to the clinic. Herein, we will overview the mechanisms of inflammasomes in common cancers and discuss the therapeutic prospects of natural extracts and synthetic targeted agents.
Collapse
Affiliation(s)
- Qingdan Gu
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Jiazhen Zou
- Department of Laboratory Medicine, Shenzhen Second People’s Hospital, The First Affiliated 5 Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Ying Zhou
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Qiuchan Deng
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
- *Correspondence: Qiuchan Deng,
| |
Collapse
|
32
|
Chen KQ, Ke BY, Cheng L, Yu XQ, Wang ZB, Wang SZ. Research and progress of inflammasomes in nonalcoholic fatty liver disease. Int Immunopharmacol 2023; 118:110013. [PMID: 36931172 DOI: 10.1016/j.intimp.2023.110013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
With the development of the social economy, unhealthy living habits and eating styles are gradually affecting people's health in recent years. As a chronic liver disease, NAFLD is deeply affected by unhealthy living habits and eating styles and has gradually become an increasingly serious public health problem. As a protein complex in clinical research, the inflammasomes play a crucial role in the development of NAFLD, atherosclerosis, and other diseases. This paper reviews the types, composition, characteristics of inflammasomes, and molecular mechanism of the inflammasome in NAFLD. Meanwhile, the paper reviews the drugs and non-drugs that target NLRP3 inflammasome in the treatment of NAFLD in the past decades. we also analyzed and summarized the related experimental models, mechanisms, and results of NAFLD. Although current therapeutic strategies for NAFLD are not effective, we expect that we will be able to find an appropriate treatment to address this problem in the future with further research on inflammasome.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Bo-Yi Ke
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lu Cheng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiao-Qing Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
33
|
Tang C, Wang Q, Shen J, Wang C, Ding H, Wen S, Yang F, Jiao R, Wu X, Li J, Kong L. Neuron stem cell NLRP6 sustains hippocampal neurogenesis to resist stress-induced depression. Acta Pharm Sin B 2023; 13:2017-2038. [DOI: 10.1016/j.apsb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
|
34
|
Pearson JA, Peng J, Huang J, Yu X, Tai N, Hu Y, Sha S, Flavell RA, Zhao H, Wong FS, Wen L. NLRP6 deficiency expands a novel CD103 + B cell population that confers immune tolerance in NOD mice. Front Immunol 2023; 14:1147925. [PMID: 36911699 PMCID: PMC9995752 DOI: 10.3389/fimmu.2023.1147925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Gut microbiota have been linked to modulating susceptibility to Type 1 diabetes; however, there are many ways in which the microbiota interact with host cells, including through microbial ligand binding to intracellular inflammasomes (large multi-subunit proteins) to initiate immune responses. NLRP6, a microbe-recognizing inflammasome protein, is highly expressed by intestinal epithelial cells and can alter susceptibility to cancer, obesity and Crohn's disease; however, the role of NLRP6 in modulating susceptibility to autoimmune diabetes, was previously unknown. Methods We generated NLRP6-deficient Non-obese diabetic (NOD) mice to study the effect of NLRP6-deficiency on the immune cells and susceptibility to Type 1 diabetes development. Results NLRP6-deficient mice exhibited an expansion of CD103+ B cells and were protected from type 1 diabetes. Moreover, NLRP6-deficient CD103+ B cells express regulatory markers, secreted higher concentrations of IL-10 and TGFb1 cytokines and suppressed diabetogenic T cell proliferation, compared to NLRP6-sufficient CD103+ B cells. Microarray analysis of NLRP6-sufficient and -deficient CD103+ B cells identified 79 significantly different genes including genes regulated by lipopolysaccharide (LPS), tretinoin, IL-10 and TGFb, which was confirmed in vitro following LPS stimulation. Furthermore, microbiota from NLRP6-deficient mice induced CD103+ B cells in colonized NLRP6-sufficient germ-free mice; however, the long-term maintenance of the CD103+ B cells required the absence of NLRP6 in the hosts, or continued exposure to microbiota from NLRP6-deficient mice. Discussion Together, our data indicate that NLRP6 deficiency promotes expansion and maintenance of a novel TGF -dependent CD103+ Breg population. Thus, targeting NLRP6 therapeutically may prove clinically useful.
Collapse
Affiliation(s)
- James A. Pearson
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jian Peng
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Xiaoqing Yu
- Department of Bioinformatics & Data Science, School of Public Health, Yale University, New Haven, CT, United States
| | - Ningwen Tai
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Youjia Hu
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Sha Sha
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Richard A. Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Hongyu Zhao
- Department of Bioinformatics & Data Science, School of Public Health, Yale University, New Haven, CT, United States
| | - F. Susan Wong
- Department of Bioinformatics & Data Science, School of Public Health, Yale University, New Haven, CT, United States
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
35
|
Sharma BR, Kanneganti TD. Inflammasome signaling in colorectal cancer. Transl Res 2023; 252:45-52. [PMID: 36150688 PMCID: PMC9839553 DOI: 10.1016/j.trsl.2022.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/17/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the world. Inflammation is often an underlying risk factor for developing CRC. Maintaining gut homeostasis and balancing inflammation is therefore critical to prevent CRC development. One key class of molecular complexes that impact gut homeostasis are inflammasomes, cytosolic multiprotein immune complexes that assemble upon sensing various intracellular alterations. Inflammasomes regulate inflammation, cell death, cytokine release, signaling cascades, and other cellular processes. Roles for inflammasomes in colitis and colitis-associated CRC have been shown in multiple animal models. The activation of inflammasomes leads to the release of the bioactive forms of interleukin (IL)-1β and IL-18, the inflammasome effector cytokines. These cytokines ensure an optimal inflammatory immune response during colitis and colitis-associated CRC. The activation of some inflammasome sensors, including NLRP3, NLRP1, NLRP6, and Pyrin, provides protection from colitis-associated CRC via effector cytokine-dependent mechanisms. Additionally, activation of other inflammasome sensors, such as AIM2, NLRC4, and NAIPs, provides mostly effector cytokine-independent protection. Inflammasomes can also act as integral components of PANoptosomes, which are multifaceted complexes that integrate components from other cell death pathways and regulate a unique form of innate immune inflammatory cell death called PANoptosis. Furthermore, IRF1, a key regulator of some inflammasomes and PANoptosomes, has been implicated in CRC. It is therefore critical to consider the role of inflammasomes in effector cytokine-dependent and -independent protection as well as their role in PANoptosis to modulate CRC for therapeutic targeting. Here, we discuss the mechanisms of inflammasome activation, the functions of inflammasomes in CRC, and current obstacles and future perspectives in inflammasome and CRC research.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
36
|
Secher T, Couturier A, Huot L, Bouscayrol H, Grandjean T, Boulard O, Hot D, Ryffel B, Chamaillard M. A Protective Role of NOD2 on Oxazolone-induced Intestinal Inflammation Through IL-1β-mediated Signalling Pathway. J Crohns Colitis 2023; 17:111-122. [PMID: 35917251 DOI: 10.1093/ecco-jcc/jjac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS NOD2 has emerged as a critical player in the induction of both Th1 and Th2 responses for potentiation and polarisation of antigen-dependent immunity. Loss-of-function mutations in the NOD2-encoding gene and deregulation of its downstream signalling pathway have been linked to Crohn's disease. Although it is well documented that NOD2 is capable of sensing bacterial muramyl dipeptide, it remains counter-intuitive to link development of overt intestinal inflammation to a loss of bacterial-induced inflammatory response. We hypothesised that a T helper bias could also contribute to an autoimmune-like colitis different from inflammation that is fully fledged by Th1 type cells. METHODS An oedematous bowel wall with a mixed Th1/Th2 response was induced in mice by intrarectal instillation of the haptenating agent oxazolone. Survival and clinical scoring were evaluated. At several time points after instillation, colonic damage was assessed by macroscopic and microscopic observations. To evaluate the involvement of NOD2 in immunochemical phenomena, quantitative polymerase chain reaction [PCR] and flow cytometry analysis were performed. Bone marrow chimera experimentation allowed us to evaluate the role of haematopoietic/non-hematopoietic NOD2-expressing cells. RESULTS Herein, we identified a key regulatory circuit whereby NOD2-mediated sensing of a muramyl dipeptide [MDP] by radio-resistant cells improves colitis with a mixed Th1/Th2 response that is induced by oxazolone. Genetic ablation of either Nod2 or Ripk2 precipitated oxazolone colitis that is predominantly linked to a lack of interferon-gamma. Bone marrow chimera experiments revealed that inactivation of Nod2 signalling in non-haematopoietic cells is causing a biased M1-M2 polarisation of macrophages and a decreased frequency of splenic regulatory T cells that correlates with an impaired activation of CD4 + T cells within mesenteric lymph nodes. Mechanistically, mice were protected from oxazolone-induced colitis upon administration of MDP in an interleukin-1- and interleukin-23-dependent manner. CONCLUSIONS These findings indicate that Nod2 signalling may prevent pathological conversion of T helper cells for maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Thomas Secher
- INEM, Orléans University, CNRS UMR 7355, F-45071, Orléans, France.,CEPR, Tours University, INSERM U1100, F-37000, Tours, France
| | | | - Ludovic Huot
- Centre d'Infection et d'Immunité de Lille, Université de Lille, CNRS, Inserm, CHRU Lille, Institut Pasteur de Lille, U1019-UMR 9017, F-59000, Lille, France
| | - Helene Bouscayrol
- Service d'oncologie-radiothérapie, CHR d'Orléans-La Source, Orléans, France
| | - Teddy Grandjean
- Centre d'Infection et d'Immunité de Lille, Université de Lille, CNRS, Inserm, CHRU Lille, Institut Pasteur de Lille, U1019-UMR 9017, F-59000, Lille, France
| | - Olivier Boulard
- Laboratory of Cell Physiology, Inserm U1003, University of Lille, Lille, France
| | - David Hot
- CEPR, Tours University, INSERM U1100, F-37000, Tours, France.,University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - Bernhard Ryffel
- INEM, Orléans University, CNRS UMR 7355, F-45071, Orléans, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, Inserm U1003, University of Lille, Lille, France
| |
Collapse
|
37
|
Keestra-Gounder AM, Nagao PE. Inflammasome activation by Gram-positive bacteria: Mechanisms of activation and regulation. Front Immunol 2023; 14:1075834. [PMID: 36761775 PMCID: PMC9902775 DOI: 10.3389/fimmu.2023.1075834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The inflammasomes are intracellular multimeric protein complexes consisting of an innate immune sensor, the adapter protein ASC and the inflammatory caspases-1 and/or -11 and are important for the host defense against pathogens. Activaton of the receptor leads to formation of the inflammasomes and subsequent processing and activation of caspase-1 that cleaves the proinflammatory cytokines IL-1β and IL-18. Active caspase-1, and in some instances caspase-11, cleaves gasdermin D that translocates to the cell membrane where it forms pores resulting in the cell death program called pyroptosis. Inflammasomes can detect a range of microbial ligands through direct interaction or indirectly through diverse cellular processes including changes in ion fluxes, production of reactive oxygen species and disruption of various host cell functions. In this review, we will focus on the NLRP3, NLRP6, NLRC4 and AIM2 inflammasomes and how they are activated and regulated during infections with Gram-positive bacteria, including Staphylococcus spp., Streptococcus spp. and Listeria monocytogenes.
Collapse
Affiliation(s)
- A. Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Mound A, Goormachtigh G, Bray F, Flament S, Rolando C, Ruez R, Martin N, Decourcelle A, Dehennaut V, Saliou JM, Chamaillard M, Abbadie C. The NLRP6 protein is very faintly expressed in several normal and cancerous epithelial cells and may be confused with an unrelated protein. PLoS One 2023; 18:e0279028. [PMID: 36662875 PMCID: PMC9858803 DOI: 10.1371/journal.pone.0279028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Nod-Like Receptor Pyrin domain-containing protein 6 (NLRP6), a member of the Nucleotide-oligomerization domain-Like Receptor (NLR) family of proteins, assembles together with the ASC protein to form an inflammasome upon stimulation by bacterial lipoteichoic acid and double-stranded DNA. Besides its expression in myeloid cells, NLRP6 is also expressed in intestinal epithelial cells where it may contribute to the maintenance of gut homeostasis and negatively controls colorectal tumorigenesis. Here, we report that NLRP6 is very faintly expressed in several colon cancer cell lines, detected only in cytoplasmic small dots were it colocalizes with ASC. Consequently, it is very hardly detected by standard western-blotting techniques by several presently available commercial antibodies which, in contrast, highly cross-react with a protein of 90kDa that we demonstrate to be unrelated to NLRP6. We report here these results to caution the community not to confuse the 90kDa protein with the endogenous human NLRP6.
Collapse
Affiliation(s)
- Abdallah Mound
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Gautier Goormachtigh
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Fabrice Bray
- Univ. Lille, CNRS, USR 3290—MSAP—Miniaturization for Synthesis, Analysis & Proteomics, Lille, France
| | - Stéphanie Flament
- Univ. Lille, CNRS, USR 3290—MSAP—Miniaturization for Synthesis, Analysis & Proteomics, Lille, France
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290—MSAP—Miniaturization for Synthesis, Analysis & Proteomics, Lille, France
- Shrieking Sixties, Villeneuve-d’Ascq, France
| | - Richard Ruez
- Univ. Lille, Inserm, U1003 –PhyCell–Laboratoire de Physiologie Cellulaire, Lille, France
| | - Nathalie Martin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Amélie Decourcelle
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Vanessa Dehennaut
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 –UMS2014 –PLBS, Lille, France
| | - Mathias Chamaillard
- Univ. Lille, Inserm, U1003 –PhyCell–Laboratoire de Physiologie Cellulaire, Lille, France
| | - Corinne Abbadie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
39
|
Pandey A, Kurera M, Man SM. Primary Intestinal Fibroblasts: Isolation, Cultivation, and Maintenance. Methods Mol Biol 2023; 2691:327-335. [PMID: 37355555 DOI: 10.1007/978-1-0716-3331-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Intestinal fibroblasts maintain homeostasis and contribute to inflammatory responses and the development of cancer. Intestinal fibroblasts express pattern recognition receptors which can mount an immune response. Since intestinal fibroblasts interact with diverse immune and nonimmune cells, further insights into the biology of intestinal fibroblasts could expand our knowledge of the development, homeostasis, and pathophysiology of the intestine. Here, we describe a simple protocol for the isolation, cultivation, and maintenance of primary fibroblasts from the mouse colon. These cells express α-smooth muscle actin, a characteristic of specialized contractile fibroblasts called myofibroblasts. We also outline the use of these colonic fibroblasts for immunoblotting and immunofluorescence assays with or without stimulation with a growth factor.
Collapse
Affiliation(s)
- Abhimanu Pandey
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Melan Kurera
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
40
|
Chenuet P, Marquant Q, Fauconnier L, Youness A, Mellier M, Marchiol T, Rouxel N, Messaoud-Nacer Y, Maillet I, Ledru A, Quesniaux VFJ, Ryffel B, Horsnell W, Végran F, Apetoh L, Togbe D. NLRP6 negatively regulates type 2 immune responses in mice. Allergy 2022; 77:3320-3336. [PMID: 35615773 DOI: 10.1111/all.15388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Inflammasomes are large protein complexes that assemble in the cytosol in response to danger such as tissue damage or infection. Following activation, inflammasomes trigger cell death and the release of biologically active forms of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. NOD-like receptor family pyrin domain containing 6 (NLRP6) inflammasome is required for IL-18 secretion by intestinal epithelial cells, macrophages, and T cells, contributing to homeostasis and self-defense against pathogenic microbes. However, the involvement of NLRP6 in type 2 lung inflammation remains elusive. METHODS Wild-type (WT) and Nlrp6-/- mice were used. Birch pollen extract (BPE)-induced allergic lung inflammation, eosinophil recruitment, Th2-related cytokine and chemokine production, airway hyperresponsiveness, and lung histopathology, Th2 cell differentiation, GATA3, and Th2 cytokines expression, were determined. Nippostrongylus brasiliensis (Nb) infection, worm count in intestine, type 2 innate lymphoid cell (ILC2), and Th2 cells in lungs were evaluated. RESULTS We demonstrate in Nlrp6-/- mice that a mixed Th2/Th17 immune responses prevailed following birch pollen challenge with increased eosinophils, ILC2, Th2, and Th17 cell induction and reduced IL-18 production. Nippostrongylus brasiliensis infected Nlrp6-/- mice featured enhanced early expulsion of the parasite due to enhanced type 2 immune responses compared to WT hosts. In vitro, NLRP6 repressed Th2 polarization, as shown by increased Th2 cytokines and higher expression of the transcription factor GATA3 in the absence of NLRP6. Exogenous IL-18 administration partially reduced the enhanced airways inflammation in Nlrp6-/- mice. CONCLUSIONS In summary, our data identify NLRP6 as a negative regulator of type 2 immune responses.
Collapse
Affiliation(s)
| | - Quentin Marquant
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans-Cedex 2, France
| | | | - Ali Youness
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans-Cedex 2, France
| | | | | | | | - Yasmine Messaoud-Nacer
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans-Cedex 2, France
| | - Isabelle Maillet
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans-Cedex 2, France
| | | | - Valérie F J Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans-Cedex 2, France
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans-Cedex 2, France
| | - William Horsnell
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans-Cedex 2, France.,Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town 7925, South Africa & South African Medical Research Council, Cape Town, South Africa.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | | | - Dieudonnée Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans-Cedex 2, France
| |
Collapse
|
41
|
Estrogen receptor β activation inhibits colitis by promoting NLRP6-mediated autophagy. Cell Rep 2022; 41:111454. [DOI: 10.1016/j.celrep.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/24/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
|
42
|
Millet V, Gensollen T, Maltese M, Serrero M, Lesavre N, Bourges C, Pitaval C, Cadra S, Chasson L, Vu Man TP, Masse M, Martinez-Garcia JJ, Tranchida F, Shintu L, Mostert K, Strauss E, Lepage P, Chamaillard M, Broggi A, Peyrin-Biroulet L, Grimaud JC, Naquet P, Galland F. Harnessing the Vnn1 pantetheinase pathway boosts short chain fatty acids production and mucosal protection in colitis. Gut 2022; 72:1115-1128. [PMID: 36175116 DOI: 10.1136/gutjnl-2021-325792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/05/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE In the management of patients with IBD, there is a need to identify prognostic markers and druggable biological pathways to improve mucosal repair and probe the efficacy of tumour necrosis factor alpha biologics. Vnn1 is a pantetheinase that degrades pantetheine to pantothenate (vitamin B5, a precursor of coenzyme A (CoA) biosynthesis) and cysteamine. Vnn1 is overexpressed by inflamed colonocytes. We investigated its contribution to the tolerance of the intestinal mucosa to colitis-induced injury. DESIGN We performed an RNA sequencing study on colon biopsy samples from patients with IBD stratified according to clinical severity and modalities of treatment. We generated the VIVA mouse transgenic model, which specifically overexpresses Vnn1 on intestinal epithelial cells and explored its susceptibility to colitis. We developed a pharmacological mimicry of Vnn1 overexpression by administration of Vnn1 derivatives. RESULTS VNN1 overexpression on colonocytes correlates with IBD severity. VIVA mice are resistant to experimentally induced colitis. The pantetheinase activity of Vnn1 is cytoprotective in colon: it enhances CoA regeneration and metabolic adaptation of colonocytes; it favours microbiota-dependent production of short chain fatty acids and mostly butyrate, shown to regulate mucosal energetics and to be reduced in patients with IBD. This prohealing phenotype is recapitulated by treating control mice with the substrate (pantethine) or the products of pantetheinase activity prior to induction of colitis. In severe IBD, the protection conferred by the high induction of VNN1 might be compromised because its enzymatic activity may be limited by lack of available substrates. In addition, we identify the elevation of indoxyl sulfate in urine as a biomarker of Vnn1 overexpression, also detected in patients with IBD. CONCLUSION The induction of Vnn1/VNN1 during colitis in mouse and human is a compensatory mechanism to reinforce the mucosal barrier. Therefore, enhancement of vitamin B5-driven metabolism should improve mucosal healing and might increase the efficacy of anti-inflammatory therapy.
Collapse
Affiliation(s)
- Virginie Millet
- Centre d'Immunologie de Marseille Luminy, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | - Thomas Gensollen
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Maltese
- Centre d'Immunologie de Marseille Luminy, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | - Melanie Serrero
- Gastroenterology, AP-HM Hôpital Nord, Aix Marseille Université, Marseille, France
| | - Nathalie Lesavre
- Centre d'investigation Clinique (CIC), AP-HM Hôpital Nord, Aix-Marseille Université, Marseille, France
| | - Christophe Bourges
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - Christophe Pitaval
- Centre d'Immunologie de Marseille Luminy, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | - Sophie Cadra
- Centre d'Immunologie de Marseille Luminy, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | - Lionel Chasson
- Centre d'Immunologie de Marseille Luminy, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | - Thien Phong Vu Man
- Centre d'Immunologie de Marseille Luminy, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | - Marion Masse
- Centre d'Immunologie de Marseille Luminy, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | | | - Fabrice Tranchida
- ISM2, Aix Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Marseille, France
| | - Laetitia Shintu
- ISM2, Aix Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Marseille, France
| | - Konrad Mostert
- Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Erick Strauss
- Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | | | | | - Achille Broggi
- Centre d'Immunologie de Marseille Luminy, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Inserm NGERE U1256, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jean-Charles Grimaud
- Gastroenterology, AP-HM Hôpital Nord, Aix Marseille Université, Marseille, France
| | - Philippe Naquet
- Centre d'Immunologie de Marseille Luminy, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | - Franck Galland
- Centre d'Immunologie de Marseille Luminy, Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Marseille, France
| |
Collapse
|
43
|
Lou X, Liu J, Ouyang X, Liu W, Xie Y, Zhong J, Lv P, Zhang S. Role of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 6 in activation of inflammation in human umbilical vein endothelial cells stimulated by Porphyromonas gingivalis-an in vitro study. J Dent Sci 2022; 18:510-516. [PMID: 37021264 PMCID: PMC10068369 DOI: 10.1016/j.jds.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/11/2022] [Indexed: 10/14/2022] Open
Abstract
Background/purpose Porphyromonas gingivalis (P. gingivalis) could induce the activation of vascular endothelial cells and promote the formation of atherosclerosis. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing (NLRP) 6 could recognize P. gingivalis, but its role in atherosclerosis was unknown. The purpose of this study is to investigate the role of NLRP6 in the activation of inflammation in human umbilical vein endothelial cells (HUVECs) stimulated by P. gingivalis. Materials and methods The expression level of NLRP6 in HUVECs with or without P. gingivalis-challenge was observed. Down-regulating the expression of NLRP6 in HUVECs, the expression levels of interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein (MCP)-1 were detected. Then, the HUVECs with NLRP6-overexpressed were stimulated by P. gingivalis, the levels of inflammatory cytokines above were examined and compared with those in HUVECs triggered by P. gingivalis only. To evaluate the effect of NLRP6 on bacterial immune escape, the NLRP6 was overexpressed, and the colonies of P. gingivalis that survived in HUVECs were calculated. Results NLRP6 was expressed in HUVECs and decreased after P. gingivalis stimulation. Downregulation of NLRP6 decreased the expression levels of IL-1β, IL-6, IL-8, TNF-α and MCP-1 in HUVECs. Those cytokines above in NLRP6-overexpressed HUVECs with P. gingivalis-stimulation significantly increased than in the cells with P. gingivalis-stimulation only. Furthermore, over-expression of NLRP6 decreased the colonies of P. gingivalis survival in HUVECs. Conclusion NLRP6 regulated the activation of inflammation in HUVECs triggered by P. gingivalis and played an important role in P. gingivalis survival in endothelial cells.
Collapse
|
44
|
Spivak I, Fluhr L, Elinav E. Local and systemic effects of microbiome‐derived metabolites. EMBO Rep 2022; 23:e55664. [PMID: 36031866 PMCID: PMC9535759 DOI: 10.15252/embr.202255664] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Commensal microbes form distinct ecosystems within their mammalian hosts, collectively termed microbiomes. These indigenous microbial communities broadly expand the genomic and functional repertoire of their host and contribute to the formation of a “meta‐organism.” Importantly, microbiomes exert numerous biochemical reactions synthesizing or modifying multiple bioactive small molecules termed metabolites, which impact their host's physiology in a variety of contexts. Identifying and understanding molecular mechanisms of metabolite–host interactions, and how their disrupted signaling can contribute to diseases, may enable their therapeutic application, a modality termed “postbiotic” therapy. In this review, we highlight key examples of effects of bioactive microbe‐associated metabolites on local, systemic, and immune environments, and discuss how these may impact mammalian physiology and associated disorders. We outline the challenges and perspectives in understanding the potential activity and function of this plethora of microbially associated small molecules as well as possibilities to harness them toward the promotion of personalized precision therapeutic interventions.
Collapse
Affiliation(s)
- Igor Spivak
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
- Medical Clinic III University Hospital Aachen Aachen Germany
| | - Leviel Fluhr
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
| | - Eran Elinav
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
- Microbiome & Cancer Division, DKFZ Heidelberg Germany
| |
Collapse
|
45
|
Chalkidi N, Paraskeva C, Koliaraki V. Fibroblasts in intestinal homeostasis, damage, and repair. Front Immunol 2022; 13:924866. [PMID: 36032088 PMCID: PMC9399414 DOI: 10.3389/fimmu.2022.924866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
The mammalian intestine is a self-renewing tissue that ensures nutrient absorption while acting as a barrier against environmental insults. This is achieved by mature intestinal epithelial cells, the renewing capacity of intestinal stem cells at the base of the crypts, the development of immune tolerance, and the regulatory functions of stromal cells. Upon intestinal injury or inflammation, this tightly regulated mucosal homeostasis is disrupted and is followed by a series of events that lead to tissue repair and the restoration of organ function. It is now well established that fibroblasts play significant roles both in the maintenance of epithelial and immune homeostasis in the intestine and the response to tissue damage mainly through the secretion of a variety of soluble mediators and ligands and the remodeling of the extracellular matrix. In addition, recent advances in single-cell transcriptomics have revealed an unexpected heterogeneity of fibroblasts that comprise distinct cell subsets in normal and inflammatory conditions, indicative of diverse functions. However, there is still little consensus on the number, terminology, and functional properties of these subsets. Moreover, it is still unclear how individual fibroblast subsets can regulate intestinal repair processes and what is their impact on the pathogenesis of inflammatory bowel disease. In this mini-review, we aim to provide a concise overview of recent advances in the field, that we believe will help clarify current concepts on fibroblast heterogeneity and functions and advance our understanding of the contribution of fibroblasts in intestinal damage and repair.
Collapse
|
46
|
Yu J, Liu T, Gao Z, Liu R, Wang Z, Chen Y, Cao J, Dong Y. Akkermansia muciniphila Colonization Alleviating High Fructose and Restraint Stress-Induced Jejunal Mucosal Barrier Disruption. Nutrients 2022; 14:nu14153164. [PMID: 35956340 PMCID: PMC9370786 DOI: 10.3390/nu14153164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is a mucin-degrading bacterium that resides in the mucus layer, but its potential in intestinal inflammatory diseases has sparked controversy. It is well known that both the consumption of fructose-containing beverages and psychological stress increase the risk of intestinal disease. Our results revealed that a high-fructose diet aggravated the damage to the jejunal mucosal barrier caused by restraint stress, reduced tight junction protein expression and the intestinal digestion and absorption capacity, disrupted the ability of Paneth cells to secrete antimicrobial peptides, and promoted the expression of inflammatory cytokines. A. muciniphila colonization enhanced the defense function of the mucosal barrier by enhancing the function of the NLRP6, promoting autophagy, maintaining the normal secretion of antimicrobial peptides in Paneth cells, promoting the expression of tight junction proteins, negatively regulating the NF-kB signaling pathway and inhibiting the expression of inflammatory cytokines. Our work indicates that A. muciniphila ameliorates the disruption of the intestinal mucosal barrier under high fructose and restraint stress. These results provided a rationale for the development of probiotic colonization for the prevention or treatment of intestinal diseases.
Collapse
|
47
|
Lara-Reyna S, Caseley EA, Topping J, Rodrigues F, Jimenez Macias J, Lawler SE, McDermott MF. Inflammasome activation: from molecular mechanisms to autoinflammation. Clin Transl Immunology 2022; 11:e1404. [PMID: 35832835 PMCID: PMC9262628 DOI: 10.1002/cti2.1404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammasomes are assembled by innate immune sensors that cells employ to detect a range of danger signals and respond with pro-inflammatory signalling. Inflammasomes activate inflammatory caspases, which trigger a cascade of molecular events with the potential to compromise cellular integrity and release the IL-1β and IL-18 pro-inflammatory cytokines. Several molecular mechanisms, working in concert, ensure that inflammasome activation is tightly regulated; these include NLRP3 post-translational modifications, ubiquitination and phosphorylation, as well as single-domain proteins that competitively bind to key inflammasome components, such as the CARD-only proteins (COPs) and PYD-only proteins (POPs). These diverse regulatory systems ensure that a suitable level of inflammation is initiated to counteract any cellular insult, while simultaneously preserving tissue architecture. When inflammasomes are aberrantly activated can drive excessive production of pro-inflammatory cytokines and cell death, leading to tissue damage. In several autoinflammatory conditions, inflammasomes are aberrantly activated with subsequent development of clinical features that reflect the degree of underlying tissue and organ damage. Several of the resulting disease complications may be successfully controlled by anti-inflammatory drugs and/or specific cytokine inhibitors, in addition to more recently developed small-molecule inhibitors. In this review, we will explore the molecular processes underlying the activation of several inflammasomes and highlight their role during health and disease. We also describe the detrimental effects of these inflammasome complexes, in some pathological conditions, and review current therapeutic approaches as well as future prospective treatments.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Institute of Microbiology and Infection University of Birmingham Birmingham UK
| | - Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences University of Leeds Leeds UK
| | - Joanne Topping
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital University of Leeds Leeds UK
| | - François Rodrigues
- AP-HP, Hôpital Tenon, Sorbonne Université, Service de Médecine interne Centre de Référence des Maladies Auto-inflammatoires et des Amyloses d'origine inflammatoire (CEREMAIA) Paris France
| | - Jorge Jimenez Macias
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA.,Brown Cancer Centre, Department of Pathology and Laboratory Medicine Brown University Providence Rhode Island USA
| | - Sean E Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA.,Brown Cancer Centre, Department of Pathology and Laboratory Medicine Brown University Providence Rhode Island USA
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital University of Leeds Leeds UK
| |
Collapse
|
48
|
Man SM, Jenkins BJ. Context-dependent functions of pattern recognition receptors in cancer. Nat Rev Cancer 2022; 22:397-413. [PMID: 35355007 DOI: 10.1038/s41568-022-00462-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 02/07/2023]
Abstract
The immune system plays a critical role in shaping all facets of cancer, from the early initiation stage through to metastatic disease and resistance to therapy. Our understanding of the importance of the adaptive arm of the immune system in antitumour immunity has led to the implementation of immunotherapy with immune checkpoint inhibitors in numerous cancers, albeit with differing efficacy. By contrast, the clinical utility of innate immunity in cancer has not been exploited, despite dysregulated innate immunity being a feature of at least one-third of all cancers associated with tumour-promoting chronic inflammation. The past two decades have seen innate immune pattern recognition receptors (PRRs) emerge as critical regulators of the immune response to microbial infection and host tissue damage. More recently, it has become apparent that in many cancer types, PRRs play a central role in modulating a vast array of tumour-inhibiting and tumour-promoting cellular responses both in immune cells within the tumour microenvironment and directly in cancer cells. Herein, we provide a comprehensive overview of the fast-evolving field of PRRs in cancer, and discuss the potential to target PRRs for drug development and biomarker discovery in a wide range of oncology settings.
Collapse
Affiliation(s)
- Si Ming Man
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
49
|
A pyroptosis-related gene signature predicts prognosis and immune microenvironment in hepatocellular carcinoma. World J Surg Oncol 2022; 20:179. [PMID: 35659304 PMCID: PMC9164458 DOI: 10.1186/s12957-022-02617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant tumor with a very poor prognosis. Pyroptosis is an inflammatory form of cell death and plays an important role in cancer development. The prognostic value of pyroptosis-related genes (PRGs) in HCC has not been studied extensively. METHODS Unsupervised consensus clustering analysis was performed to identify two subtypes based on the expression profiles of prognostic PRGs in the The Cancer Genome Atlas (TCGA) database, and the differences between the two subtypes were compared. A prognostic model based on four PRGs was established by further least absolute shrinkage and selection operator (LASSO) Cox regression analysis and multivariate Cox regression analysis. RESULTS Two subtypes (clusters 1 and 2) were identified by consensus clustering based on prognostic PRGs in HCC. Survival outcomes, biological function, genomic alterations, immune cell infiltration, and immune checkpoint genes were compared between the subtypes. Cluster 2 had a worse survival outcome than cluster 1. Cluster 2 was enriched for hallmarks of cancer progression, TP53 mutation, tumor-promoting immune cells, and immune checkpoint genes, which may contribute to the poor prognosis. A prognostic risk signature that predicted the overall survival (OS) of patients was constructed and validated. Consequently, a risk score was calculated for each patient. Combined with the clinical characteristics, the risk score was found to be an independent prognostic factor for survival of HCC patients. Further analysis revealed that the risk score was closely associated with the levels of immune cell infiltration and the expression profiles of immune checkpoint genes. CONCLUSIONS Collectively, our study established a prognostic risk signature for HCC and revealed a significant correlation between pyroptosis and the HCC immune microenvironment.
Collapse
|
50
|
Guo Z, Wang Y, Wang L, Li Q, Yuan X, Hua X. NLRP3 and NLRP6 expression in pterygium and normal conjunctiva and their relationship with pterygium formation and recurrence. Eur J Ophthalmol 2022; 32:3058-3063. [PMID: 35068231 DOI: 10.1177/11206721221074200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose This study aimed to explore the pterygium formation and recurrence, by detecting the expression of Nod-like receptor pyrin domain 3 (NLRP3) and Nod-like receptor pyrin domain 6 (NLRP6) in pterygium and evaluate the correlation between NLRP3 and NLRP6 in pterygium. Methods In this prospective study, the expression levels of NLRP3 and NLRP6, with their related effectors, were evaluated in primary pterygium (n = 40) and recurrent pterygium (n = 32) tissue samples and compared with normal conjunctiva (n = 11) tissue samples by immunohistochemistry. Results Compared to the normal conjunctiva group, the expression levels of NLRP3, caspase-1, IL-18, and IL-1β, were significantly higher, and NLRP6 showed an expression that was significantly lower in pterygium tissue samples (P < 0.05, respectively). Compared to the primary pterygium group, the expression levels of NLRP3, caspase-1, IL-18 and IL-1β were significantly higher, and NLRP6 showed an expression that was significantly lower in recurrent pterygium tissue samples (P < 0.05, respectively).There was a negative correlation between NLRP3 expression and NLRP6 expression in normal conjunctival (r = −0.739, P = 0.009) and pterygium (r = −0.533, P = 0.000). Conclusions NLRP3 and NLRP6 may be involved in the formation and recurrence of pterygium. NLRP6 may play an anti-inflammatory role in normal conjunctival tissue to maintain conjunctival homeostasis.
Collapse
Affiliation(s)
- Zhenfeng Guo
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Tianjin Beichen Hospital, Tianjin, China
| | - Yuchuan Wang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Lina Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Tianjin Xiaozhan Hospital, Tianjin, China
| | - Qingyu Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin, China
| |
Collapse
|