1
|
Fellmann F, Saunders C, O’Donohue MF, Reid DW, McFadden KA, Montel-Lehry N, Yu C, Fang M, Zhang J, Royer-Bertrand B, Farinelli P, Karboul N, Willer JR, Fievet L, Bhuiyan ZA, Kleinhenz AL, Jadeau J, Fulbright J, Rivolta C, Renella R, Katsanis N, Beckmann JS, Nicchitta CV, Da Costa L, Davis EE, Gleizes PE. An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants. JCI Insight 2024; 9:e172475. [PMID: 39088281 PMCID: PMC11385091 DOI: 10.1172/jci.insight.172475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein-encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%-20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.
Collapse
Affiliation(s)
- Florence Fellmann
- The ColLaboratory, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Carol Saunders
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | | | - David W. Reid
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Kelsey A. McFadden
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathalie Montel-Lehry
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Cong Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Pietro Farinelli
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Lorraine Fievet
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Zahurul Alam Bhuiyan
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Alissa L.W. Kleinhenz
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Julie Jadeau
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Joy Fulbright
- Division of Hematology/Oncology, Children’s Mercy Hospital and Clinics, Kansas City, Missouri, USA
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Raffaele Renella
- Division of Pediatrics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Jacques S. Beckmann
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Clinical Bioinformatics, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christopher V. Nicchitta
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique, Hôpital Robert Debré, Paris, France
- Université Paris Cité, Paris, France
- Hematim EA4666, CURS, CHU Amiens, Amiens, France
- LABEX GR-EX, Paris, France
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
2
|
Palepšienė R, Muralidharan A, Maciulevičius M, Ruzgys P, Chopra S, Boukany PE, Šatkauskas S. New insights into the mechanism of electrotransfer of small nucleic acids. Bioelectrochemistry 2024; 158:108696. [PMID: 38583283 DOI: 10.1016/j.bioelechem.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
RNA interference (RNAi) is a powerful and rapidly developing technology that enables precise silencing of genes of interest. However, the clinical development of RNAi is hampered by the limited cellular uptake and stability of the transferred molecules. Electroporation (EP) is an efficient and versatile technique for the transfer of both RNA and DNA. Although the mechanism of electrotransfer of small nucleic acids has been studied previously, too little is known about the potential effects of significantly larger pDNA on this process. Here we present a fundamental study of the mechanism of electrotransfer of oligonucleotides and siRNA that occur independently and simultaneously with pDNA by employing confocal fluorescence microscopy. In contrast to the conditional understanding of the mechanism, we have shown that the electrotransfer of oligonucleotides and siRNA is driven by both electrophoretic forces and diffusion after EP, followed by subsequent entry into the nucleus within 5 min after treatment. The study also revealed that the efficiency of siRNA electrotransfer decreases in response to an increase in pDNA concentration. Overall, the study provides new insights into the mechanism of electrotransfer of small nucleic acids which may have broader implications for the future application of RNAi-based strategies.
Collapse
Affiliation(s)
- Rūta Palepšienė
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Aswin Muralidharan
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands.
| | - Martynas Maciulevičius
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Paulius Ruzgys
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Sonam Chopra
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands.
| | - Saulius Šatkauskas
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| |
Collapse
|
3
|
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev 2024; 210:115340. [PMID: 38810703 PMCID: PMC11181159 DOI: 10.1016/j.addr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.
| |
Collapse
|
4
|
Muralidharan A, Boukany PE. Electrotransfer for nucleic acid and protein delivery. Trends Biotechnol 2024; 42:780-798. [PMID: 38102019 DOI: 10.1016/j.tibtech.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Electrotransfer of nucleic acids and proteins has become crucial in biotechnology for gene augmentation and genome editing. This review explores the applications of electrotransfer in both ex vivo and in vivo scenarios, emphasizing biomedical uses. We provide insights into completed clinical trials and successful instances of nucleic acid and protein electrotransfer into therapeutically relevant cells such as immune cells and stem and progenitor cells. In addition, we delve into emerging areas of electrotransfer where nanotechnology and deep learning techniques overcome the limitations of traditional electroporation.
Collapse
Affiliation(s)
- Aswin Muralidharan
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
5
|
Albérola G, Bellard E, Kolosnjaj-Tabi J, Guard J, Golzio M, Rols MP. Fibroblasts transfection by electroporation in 3D reconstructed human dermal tissue. Bioelectrochemistry 2024; 157:108670. [PMID: 38364517 DOI: 10.1016/j.bioelechem.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
The understanding of the mechanisms involved in DNA electrotransfer in human skin remains modest and limits the clinical development of various biomedical applications, such as DNA vaccination. To elucidate some mechanisms of DNA transfer in the skin following electroporation, we created a model of the dermis using a tissue engineering approach. This model allowed us to study the electrotransfection of fibroblasts in a three-dimensional environment that included multiple layers of fibroblasts as well as the self-secreted collagen matrix. With the aim of improving transfection yield, we applied electrical pulses with electric field lines perpendicular to the reconstructed model tissue. Our results indicate that the fibroblasts of the reconstructed skin tissue can be efficiently permeabilized by applied millisecond electrical pulses. However, despite efficient permeabilization, the transfected cells remain localized only on the surface of the microtissue, to which the plasmid was deposited. Second harmonic generation microscopy revealed the extensive extracellular collagen matrix around the fibroblasts, which might have affected the mobility of the plasmid into deeper layers of the skin tissue model. Our results show that the used skin tissue model reproduces the structural barriers that might be responsible for the limited gene electrotransfer in the skin.
Collapse
Affiliation(s)
- Géraldine Albérola
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Jorgan Guard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
6
|
Pavlin M, Škorja Milić N, Kandušer M, Pirkmajer S. Importance of the electrophoresis and pulse energy for siRNA-mediated gene silencing by electroporation in differentiated primary human myotubes. Biomed Eng Online 2024; 23:47. [PMID: 38750477 PMCID: PMC11097476 DOI: 10.1186/s12938-024-01239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.
Collapse
Affiliation(s)
- Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | - Nives Škorja Milić
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia
| | - Maša Kandušer
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Pharmacy Institute, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
de Caro A, Bellard E, Kolosnjaj-Tabi J, Golzio M, Rols MP. Gene Electrotransfer Efficiency in 2D and 3D Cancer Cell Models Using Different Electroporation Protocols: A Comparative Study. Pharmaceutics 2023; 15:pharmaceutics15031004. [PMID: 36986866 PMCID: PMC10053976 DOI: 10.3390/pharmaceutics15031004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Electroporation, a method relying on a pulsed electric field to induce transient cell membrane permeabilization, can be used as a non-viral method to transfer genes in vitro and in vivo. Such transfer holds great promise for cancer treatment, as it can induce or replace missing or non-functioning genes. Yet, while efficient in vitro, gene-electrotherapy remains challenging in tumors. To assess the differences of gene electrotransfer in respect to applied pulses in multi-dimensional (2D, 3D) cellular organizations, we herein compared pulsed electric field protocols applicable to electrochemotherapy and gene electrotherapy and different "High Voltage-Low Voltage" pulses. Our results show that all protocols can result in efficient permeabilization of 2D- and 3D-grown cells. However, their efficiency for gene delivery varies. The gene-electrotherapy protocol is the most efficient in cell suspensions, with a transfection rate of about 50%. Conversely, despite homogenous permeabilization of the entire 3D structure, none of the tested protocols allowed gene delivery beyond the rims of multicellular spheroids. Taken together, our findings highlight the importance of electric field intensity and the occurrence of cell permeabilization, and underline the significance of pulses' duration, impacting plasmids' electrophoretic drag. The latter is sterically hindered in 3D structures and prevents the delivery of genes into spheroids' core.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale du CNRS UMR 5089, 205, Route de Narbonne, 31077 Toulouse CEDEX, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale du CNRS UMR 5089, 205, Route de Narbonne, 31077 Toulouse CEDEX, France
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale du CNRS UMR 5089, 205, Route de Narbonne, 31077 Toulouse CEDEX, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale du CNRS UMR 5089, 205, Route de Narbonne, 31077 Toulouse CEDEX, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale du CNRS UMR 5089, 205, Route de Narbonne, 31077 Toulouse CEDEX, France
| |
Collapse
|
9
|
Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, Miklavčič D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14122700. [PMID: 36559197 PMCID: PMC9786189 DOI: 10.3390/pharmaceutics14122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are still unknown, which represents a limitation for its broader use. Further, not knowing the effects that different experimental electrical and biological parameters have on GET additionally hinders GET optimization, resulting in the majority of research being performed using a trial-and-error approach. To explore the current state of knowledge, we conducted a systematic literature review of GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart from the availability of the required electroporation device and electrodes, the choice of an optimal GET approach depends on parameters such as the electroporation medium; type and origin of cells; and the size, concentration, promoter, and type of the NA to be transfected. Equally important are appropriate controls and the measurement or evaluation of the output pulses to allow a fair and unbiased evaluation of the experimental results. Since many experimental electrical and biological parameters can affect GET, it is important that all used parameters are adequately reported to enable the comparison of results, as well as potentially faster and more efficient experiment planning and optimization.
Collapse
Affiliation(s)
- Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
10
|
Roh EH, Sullivan MO, Epps TH. A kinetic modeling platform for predicting the efficacy of siRNA formulations in vitro and in vivo. STAR Protoc 2022; 3:101723. [PMID: 36313537 PMCID: PMC9597118 DOI: 10.1016/j.xpro.2022.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present a computational modeling protocol that can accurately predict changes in both in vitro and in vivo gene expression levels in response to the application of various siRNA formulations. We describe how to use this Python-based pipeline to obtain crucial information, namely maximum silencing level and duration of silencing, toward the design of therapeutically relevant dosing regimens. The protocol details the steps for running internalization rate fitting to produce predictions based on experimental measurements from a single time point. For complete details on the use and execution of this protocol, please refer to Roh et al., 2021. Protocol to predict siRNA formulation efficacy using data from a single time point Applicable to various cell types and nanocarriers Translation of in vitro experimental silencing data to predict in vivo results
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Esther H. Roh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA,Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA,Corresponding author
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA,Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, DE 19716, USA,Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA,Corresponding author
| |
Collapse
|
11
|
Bae SJ, Im DJ. Safe and efficient RNA and DNA introduction into cells using digital electroporation system. Bioelectrochemistry 2022; 148:108268. [PMID: 36155386 DOI: 10.1016/j.bioelechem.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
We systematically compared the delivery and expression efficiencies according to cell types (plant and animal cells) and genetic materials (RNA and DNA) to deliver RNA using a digital electroporation system. Despite the significantly lower RNA delivery in Chlamydomoans reinhartii than DNA delivery due to RNA secondary structure and cell wall, the expression/delivery ratio of RNA was significantly higher than that of DNA (up to 90%), confirming the generally known fact that RNA is more favorable for expression than DNA. On the other hand, in K562 cells, the difference in RNA and DNA delivery efficiency was negligible. Therefore, structural differences between DNA and RNA affect delivery efficiency differently depending on the cell type. RNA delivery efficiency of K562 cells was high, but expression efficiency was much lower than that of microalgae. According to the proposed strategy, compatibility between K562 cells and the nucleic acids used in this study is presumed to be one of the reasons for this low expression efficiency. Gene regulation by delivering small interfering RNA (siRNA) was demonstrated in K562 cells, confirming the feasibility of the digital electroporation system for RNA interference (RNAi) research as a safe and efficient delivery system.
Collapse
Affiliation(s)
- Seo Jun Bae
- Department of Chemical Engineering, Pukyong National University, (48513) 45, Yongso-ro, Nam-Gu, Busan, South Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, (48513) 45, Yongso-ro, Nam-Gu, Busan, South Korea.
| |
Collapse
|
12
|
Abstract
Electroporation (EP) is a commonly used strategy to increase cell permeability for intracellular cargo delivery or irreversible cell membrane disruption using electric fields. In recent years, EP performance has been improved by shrinking electrodes and device structures to the microscale. Integration with microfluidics has led to the design of devices performing static EP, where cells are fixed in a defined region, or continuous EP, where cells constantly pass through the device. Each device type performs superior to conventional, macroscale EP devices while providing additional advantages in precision manipulation (static EP) and increased throughput (continuous EP). Microscale EP is gentle on cells and has enabled more sensitive assaying of cells with novel applications. In this Review, we present the physical principles of microscale EP devices and examine design trends in recent years. In addition, we discuss the use of reversible and irreversible EP in the development of therapeutics and analysis of intracellular contents, among other noteworthy applications. This Review aims to inform and encourage scientists and engineers to expand the use of efficient and versatile microscale EP technologies.
Collapse
Affiliation(s)
- Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
13
|
Wang F, Lin S, Yu Z, Wang Y, Zhang D, Cao C, Wang Z, Cui D, Chen D. Recent advances in microfluidic-based electroporation techniques for cell membranes. LAB ON A CHIP 2022; 22:2624-2646. [PMID: 35775630 DOI: 10.1039/d2lc00122e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electroporation is a fundamental technique for applications in biotechnology. To date, the ongoing research on cell membrane electroporation has explored its mechanism, principles and potential applications. Therefore, in this review, we first discuss the primary electroporation mechanism to help establish a clear framework. Within the context of its principles, several critical terms are highlighted to present a better understanding of the theory of aqueous pores. Different degrees of electroporation can be used in different applications. Thus, we discuss the electric factors (shock strength, shock duration, and shock frequency) responsible for the degree of electroporation. In addition, finding an effective electroporation detection method is of great significance to optimize electroporation experiments. Accordingly, we summarize several primary electroporation detection methods in the following sections. Finally, given the development of micro- and nano-technology has greatly promoted the innovation of microfluidic-based electroporation devices, we also present the recent advances in microfluidic-based electroporation devices. Also, the challenges and outlook of the electroporation technique for cell membrane electroporation are presented.
Collapse
Affiliation(s)
- Fei Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Zixian Yu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Yanpu Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Di Zhang
- Centre for Advanced Electronic Materials and Devices (AEMD), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chengxi Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, P. R. China
- Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai 200240, P. R. China
| |
Collapse
|
14
|
Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144:107994. [PMID: 34930678 DOI: 10.1016/j.bioelechem.2021.107994] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.
Collapse
Affiliation(s)
- Shaurya Sachdev
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Houthaeve G, De Smedt SC, Braeckmans K, De Vos WH. The cellular response to plasma membrane disruption for nanomaterial delivery. NANO CONVERGENCE 2022; 9:6. [PMID: 35103909 PMCID: PMC8807741 DOI: 10.1186/s40580-022-00298-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Delivery of nanomaterials into cells is of interest for fundamental cell biological research as well as for therapeutic and diagnostic purposes. One way of doing so is by physically disrupting the plasma membrane (PM). Several methods that exploit electrical, mechanical or optical cues have been conceived to temporarily disrupt the PM for intracellular delivery, with variable effects on cell viability. However, apart from acute cytotoxicity, subtler effects on cell physiology may occur as well. Their nature and timing vary with the severity of the insult and the efficiency of repair, but some may provoke permanent phenotypic alterations. With the growing palette of nanoscale delivery methods and applications, comes a need for an in-depth understanding of this cellular response. In this review, we summarize current knowledge about the chronology of cellular events that take place upon PM injury inflicted by different delivery methods. We also elaborate on their significance for cell homeostasis and cell fate. Based on the crucial nodes that govern cell fitness and functionality, we give directions for fine-tuning nano-delivery conditions.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
16
|
Roh E, Epps TH, Sullivan MO. Kinetic Modeling to Accelerate the Development of Nucleic Acid Formulations. ACS NANO 2021; 15:16055-16066. [PMID: 34636541 PMCID: PMC8860063 DOI: 10.1021/acsnano.1c04555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A critical hurdle in the clinical translation of nucleic acid drugs is the inefficiency in testing formulations for therapeutic potential. Specifically, the ability to quantitatively predict gene expression is lacking when transitioning between cell culture and animal studies. We address this challenge by developing a mathematical framework that can reliably predict short-interfering RNA (siRNA)-mediated gene silencing with as few as one experimental data point as an input, evaluate the efficacies of existing formulations in an expeditious manner, and ultimately guide the design of nanocarriers with optimized performances. The model herein consisted of only essential rate-limiting steps and parameters with easily characterizable values of the RNA interference process, enabling the easy identification of which parameters play dominant roles in determining the potencies of siRNA formulations. Predictions from our framework were in close agreement with in vitro and in vivo experimental results across a retrospective analysis using multiple published data sets. Notably, our findings suggested that siRNA dilution was the primary determinant of gene-silencing kinetics. Our framework shed light on the fact that this dilution rate is governed by different parameters, i.e., cell dilution (in vitro) versus clearance from target tissue (in vivo), highlighting a key reason why in vitro experiments do not always predict in vivo outcomes. Moreover, although our current effort focuses on siRNA, we anticipate that the framework can be modified and applied to other nucleic acids, such as mRNA, that rely on similar biological processes.
Collapse
Affiliation(s)
- Esther
H. Roh
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center
for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United
States
| | - Millicent O. Sullivan
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19716, United
States
| |
Collapse
|
17
|
Kumar S, Lazau E, Kim C, N Thadhani N, R Prausnitz M. Serum Protects Cells and Increases Intracellular Delivery of Molecules by Nanoparticle-Mediated Photoporation. Int J Nanomedicine 2021; 16:3707-3724. [PMID: 34103912 PMCID: PMC8180297 DOI: 10.2147/ijn.s307027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction Intracellular delivery of molecules is central to applications in biotechnology, medicine, and basic research. Nanoparticle-mediated photoporation using carbon black nanoparticles exposed to pulsed, near-infrared laser irradiation offers a physical route to create transient cell membrane pores, enabling intracellular delivery. However, nanoparticle-mediated photoporation, like other physical intracellular delivery technologies, necessitates a trade-off between achieving efficient uptake of exogenous molecules and maintaining high cell viability. Methods In this study, we sought to shift this balance by adding serum to cells during nanoparticle-mediated photoporation as a viability protectant. DU-145 prostate cancer cells and human dermal fibroblasts were exposed to laser irradiation in the presence of carbon black (CB) nanoparticles and other formulation additives, including fetal bovine serum (FBS) and polymers. Results Our studies showed that FBS can protect cells from viability loss, even at high-fluence laser irradiation conditions that lead to high levels of intracellular delivery in two different mammalian cell types. Further studies revealed that full FBS was not needed: viability protection was achieved with denatured FBS, with just the high molecular weight fraction of FBS (>30 kDa), or even with individual proteins like albumin or hemoglobin. Finally, we found that viability protection was also obtained using certain neutral water-soluble polymers, including Pluronic F127, polyvinylpyrrolidone, poly(2-ethyl-2-oxazoline), and polyethylene glycol, which were more effective at increased concentration, molecular weight, or hydrophobicity. Conclusion Altogether, these findings suggest an interaction between amphiphilic domains of polymers with the cell membrane to help cells maintain viability, possibly by facilitating transmembrane pore closure. In this way, serum components or synthetic polymers can be used to increase intracellular delivery by nanoparticle-mediated photoporation while maintaining high cell viability.
Collapse
Affiliation(s)
- Simple Kumar
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eunice Lazau
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Carter Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
18
|
Transfer of small interfering RNA by electropermeabilization in tumor spheroids. Bioelectrochemistry 2021; 141:107848. [PMID: 34118554 DOI: 10.1016/j.bioelechem.2021.107848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022]
Abstract
The ability to modulate deregulated genes by RNAi provides treatment perspectives in certain diseases including cancers. Electrotransfer of oligonucleotides was studied in vitro, showing a direct transfer of negatively charged siRNA across the plasma membrane into the cytoplasm. In vivo, the feasibility of siRNA electrotransfer was demonstrated in different studies and tissues. While effective, electrotransfer of siRNA into 3D tissues still needs to be understood. Here, we evaluated the efficiency of siRNA electrotransfer and assessed its effect in 3D spheroids made of HCT116-GFP cells by confocal fluorescence microscopy and flow cytometry. Our results indicate that siRNA uptake was not uniform across 3D multicellular spheroids. The electrophoretic migration of nucleic acids upon delivery of unipolar electric field pulses could explain the asymmetry of siRNA uptake. Moreover, a gradient was observed from external layers toward the center, leading to siRNA silencing of GFP positive cells located in the outer rim. While siRNA delivery experiments on spheroids may differ from intratumoral injections, the levels of transfection in spheroids are comparable to levels observed in published studies in vivo. Taken together, our results provide fundamental information about siRNA 3D distribution during electrotransfer, indicating that multicellular spheroids remain a relevant alternative to animal experimentation.
Collapse
|
19
|
Ganganboina AB, Dega NK, Tran HL, Darmonto W, Doong RA. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens Bioelectron 2021; 181:113151. [PMID: 33740543 DOI: 10.1016/j.bios.2021.113151] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Glioma is the predominant brain tumor with high death rate. The successful development of biosensor to achieve an efficient detection of glioma cells at low concentration remains a great challenge for the personalized glioma therapy. Herein, an ultrasensitive pulse induced electrochemically impedimetric biosensor for glioma cells detection has been successfully fabricated. The 4-11 nm sulfur-doped graphene quantum dots (S-GQDs) are homogeneously deposited onto gold nanoparticles decorated carbon nanospheres (Au-CNS) by Au-thiol linkage to form S-GQDs@Au-CNS nanocomposite which acts as dual functional probe for enhancing the electrochemical activity as well as conjugating the angiopep-2 (Ang-2) for glioma cell detection. Moreover, the application of an externally electrical pulse at +0.6 V expend the surface of glioma cells to accelerate the attachment of glioma cells onto the Ang-2-conjugated S-GQDs@Au-CNS nanocomposite, resulting in the enhanced sensitivity toward glioma cell detection. An ultrasensitive impedimetric detection of glioma cells with a wide linear range of 100-100,000 cells mL-1 and a limit of detection of 40 cells mL-1 is observed. Moreover, the superior selectivity with long-term stability of the developed biosensor in human serum matrix corroborates the feasibility of using S-GQDs@Au-CNS based nanomaterials as the promising sensing probe for practical application to facilitate the ultrasensitive and highly selective detection of cancer cells.
Collapse
Affiliation(s)
| | - Naresh Kumar Dega
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hai Linh Tran
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Win Darmonto
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan; Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia.
| |
Collapse
|
20
|
Heller LC, Heller R. Gene Electrotransfer. ELECTROPORATION IN VETERINARY ONCOLOGY PRACTICE 2021:219-234. [DOI: 10.1007/978-3-030-80668-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Wang L, Chang CC, Sylvers J, Yuan F. A statistical framework for determination of minimal plasmid copy number required for transgene expression in mammalian cells. Bioelectrochemistry 2020; 138:107731. [PMID: 33434786 DOI: 10.1016/j.bioelechem.2020.107731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Plasmid DNA (pDNA) has been widely used for non-viral gene delivery. After pDNA molecules enter a mammalian cell, they may be trapped in subcellular structures or degraded by nucleases. Only a fraction of them can function as templates for transcription in the nucleus. Thus, an important question is, what is the minimal amount of pDNA molecules that need to be delivered into a cell for transgene expression? At present, it is technically a challenge to experimentally answer the question. To this end, we developed a statistical framework to establish the relationship between two experimentally quantifiable factors - average copy number of pDNA per cell among a group of cells after transfection and percent of the cells with transgene expression. The framework was applied to the analysis of electrotransfection under different experimental conditions in vitro. We experimentally varied the average copy number per cell and the electrotransfection efficiency through changes in extracellular pDNA dose, electric field strength, and pulse number. The experimental data could be explained or predicted quantitatively by the statistical framework. Based on the data and the framework, we could predict that the minimal number of pDNA molecules in the nucleus for transgene expression was on the order of 10. Although the prediction was dependent on the cell and experimental conditions used in the study, the framework may be generally applied to analysis of non-viral gene delivery.
Collapse
Affiliation(s)
- Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Justin Sylvers
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
22
|
Ye Y, Luan X, Zhang L, Zhao W, Cheng J, Li M, Zhao Y, Huang C. Single-Cell Electroporation with Real-Time Impedance Assessment Using a Constriction Microchannel. MICROMACHINES 2020; 11:mi11090856. [PMID: 32948046 PMCID: PMC7570009 DOI: 10.3390/mi11090856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/13/2023]
Abstract
The electroporation system can serve as a tool for the intracellular delivery of foreign cargos. However, this technique is presently limited by the inaccurate electric field applied to the single cells and lack of a real-time electroporation metrics subsystem. Here, we reported a microfluidic system for precise and rapid single-cell electroporation and simultaneous impedance monitoring in a constriction microchannel. When single cells (A549) were continuously passing through the constriction microchannel, a localized high electric field was applied on the cell membrane, which resulted in highly efficient (up to 96.6%) electroporation. During a single cell entering the constriction channel, an abrupt impedance drop was noticed and demonstrated to be correlated with the occurrence of electroporation. Besides, while the cell was moving in the constriction channel, the stabilized impedance showed the capability to quantify the electroporation extent. The correspondence of the impedance variation and electroporation was validated by the intracellular delivery of the fluorescence indicator (propidium iodide). Based on the obtained results, this system is capable of precise control of electroporation and real-time, label-free impedance assessment, providing a potential tool for intracellular delivery and other biomedical applications.
Collapse
Affiliation(s)
- Yifei Ye
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (Y.Y.); (X.L.); (L.Z.); (W.Z.); (J.C.); (M.L.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Luan
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (Y.Y.); (X.L.); (L.Z.); (W.Z.); (J.C.); (M.L.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqian Zhang
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (Y.Y.); (X.L.); (L.Z.); (W.Z.); (J.C.); (M.L.)
| | - Wenjie Zhao
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (Y.Y.); (X.L.); (L.Z.); (W.Z.); (J.C.); (M.L.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Cheng
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (Y.Y.); (X.L.); (L.Z.); (W.Z.); (J.C.); (M.L.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxiao Li
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (Y.Y.); (X.L.); (L.Z.); (W.Z.); (J.C.); (M.L.)
| | - Yang Zhao
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (Y.Y.); (X.L.); (L.Z.); (W.Z.); (J.C.); (M.L.)
- Correspondence: (Y.Z.); (C.H.); Tel.: +86-010-8299-5600 (Y.Z.); +86-010-8299-5743 (C.H.)
| | - Chengjun Huang
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (Y.Y.); (X.L.); (L.Z.); (W.Z.); (J.C.); (M.L.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.Z.); (C.H.); Tel.: +86-010-8299-5600 (Y.Z.); +86-010-8299-5743 (C.H.)
| |
Collapse
|
23
|
Investigation of Plasmid DNA Delivery and Cell Viability Dynamics for Optimal Cell Electrotransfection In Vitro. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electroporation is an effective method for delivering plasmid DNA molecules into cells. The efficiency of gene electrotransfer depends on several factors. To achieve high transfection efficiency while maintaining cell viability is a tedious task in electroporation. Here, we present a combined study in which the dynamics of both evaluation types of transfection efficiency and the cell viability were evaluated in dependence of plasmid concentration as well as at the different number of high voltage (HV) electric pulses. The results of this study reveal a quantitative sigmoidal (R2 > 0.95) dependence of the transfection efficiency and cell viability on the distance between the cell membrane and the nearest plasmid. We propose this distance value as a new, more accurate output parameter that could be used in further optimization studies as a predictor and a measure of electrotransfection efficiency.
Collapse
|
24
|
Mao M, Chang CC, Pickar-Oliver A, Cervia LD, Wang L, Ji J, Liton PB, Gersbach CA, Yuan F. Redirecting Vesicular Transport to Improve Nonviral Delivery of Molecular Cargo. ADVANCED BIOSYSTEMS 2020; 4:e2000059. [PMID: 33179869 PMCID: PMC7747957 DOI: 10.1002/adbi.202000059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Indexed: 01/09/2023]
Abstract
Cell engineering relies heavily on viral vectors for the delivery of molecular cargo into cells due to their superior efficiency compared to nonviral ones. However, viruses are immunogenic and expensive to manufacture, and have limited delivery capacity. Nonviral delivery approaches avoid these limitations but are currently inefficient for clinical applications. This work demonstrates that the efficiency of nonviral delivery of plasmid DNA, mRNA, Sleeping Beauty transposon, and ribonucleoprotein can be significantly enhanced through pretreatment of cells with the nondegradable sugars (NDS), such as sucrose, trehalose, and raffinose. The enhancement is mediated by the incorporation of the NDS into cell membranes, causing enlargement of lysosomes and formation of large (>500 nm) amphisome-like bodies (ALBs). The changes in subcellular structures redirect transport of cargo to ALBs rather than to lysosomes, reducing cargo degradation in cells. The data indicate that pretreatment of cells with NDS is a promising approach to improve nonviral cargo delivery in biomedical applications.
Collapse
Affiliation(s)
- Mao Mao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Lisa D Cervia
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jing Ji
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Paloma B Liton
- Department of Ophthalmology, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Department of Ophthalmology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
25
|
Wang Y, Chang CC, Wang L, Yuan F. Enhancing Cell Viability and Efficiency of Plasmid DNA Electrotransfer Through Reducing Plasma Membrane Permeabilization. Bioelectricity 2020; 2:251-257. [PMID: 33344914 DOI: 10.1089/bioe.2020.0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Pulsed electric field has been widely used to facilitate molecular cargo transfer into cells. However, the cell viability is often decreased when trying to increase the electrotransfer efficiency. We hypothesize that the decrease is due to electropermeabilization of cell membrane that disrupts homeostasis of intracellular microenvironment. Thus, a reduction in the membrane permeabilization may increase the cell viability. Materials and Methods Different compounds were supplemented into the pulsing buffer prior to electrotransfer for reduction of cell membrane damage. Extent of the damage was quantified by leakiness of the membrane to a fluorescent dye, calcein, preloaded into cells. At 24 hours post electrotransfer, cell viability and electrotransfer efficiency were quantified with flow cytometry. Results The cell viability could be substantially increased by supplementation of either type B gelatin or bovine serum albumin (BSA), without compromising the electrotransfer efficiency. The supplementation also decreased the amount of calcein leaking out of the cells, suggesting that the improvement in cell viability was due to the reduction in electrotransfer-induced membrane damage. Conclusion Data from the study demonstrate that type B gelatin and BSA can be used as inexpensive supplements for improving cell viability in electrotransfer.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
26
|
Fajrial AK, He QQ, Wirusanti NI, Slansky JE, Ding X. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics 2020; 10:5532-5549. [PMID: 32373229 PMCID: PMC7196308 DOI: 10.7150/thno.43465] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Gene editing is a versatile technique in biomedicine that promotes fundamental research as well as clinical therapy. The development of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a genome editing machinery has accelerated the application of gene editing. However, the delivery of CRISPR components often suffers when using conventional transfection methods, such as viral transduction and chemical vectors, due to limited packaging size and inefficiency toward certain cell types. In this review, we discuss physical transfection methods for CRISPR gene editing which can overcome these limitations. We outline different types of physical transfection methods, highlight novel techniques to deliver CRISPR components, and emphasize the role of micro and nanotechnology to improve transfection performance. We present our perspectives on the limitations of current technology and provide insights on the future developments of physical transfection methods.
Collapse
Affiliation(s)
- Apresio K. Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Qing Qing He
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Nurul I. Wirusanti
- University Medical Center Groningen, University of Groningen, Groningen, The Netherland
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
27
|
Sachdev S, Feijoo Moreira S, Keehnen Y, Rems L, Kreutzer MT, Boukany PE. DNA-membrane complex formation during electroporation is DNA size-dependent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183089. [DOI: 10.1016/j.bbamem.2019.183089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023]
|
28
|
Lezzerini M, Penzo M, O’Donohue MF, Marques dos Santos Vieira C, Saby M, Elfrink HL, Diets IJ, Hesse AM, Couté Y, Gastou M, Nin-Velez A, Nikkels PGJ, Olson AN, Zonneveld-Huijssoon E, Jongmans MCJ, Zhang G, van Weeghel M, Houtkooper RH, Wlodarski MW, Kuiper RP, Bierings MB, van der Werff ten Bosch J, Leblanc T, Montanaro L, Dinman JD, Da Costa L, Gleizes PE, MacInnes AW. Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism. Nucleic Acids Res 2020; 48:770-787. [PMID: 31799629 PMCID: PMC6954397 DOI: 10.1093/nar/gkz1042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/17/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts.
Collapse
Affiliation(s)
- Marco Lezzerini
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marianna Penzo
- Laboratorio di Patologia Clinica, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale and Centro di Ricerca Biomedica Applicata (CRBA), Policlinico Universitario di S. Orsola, Università di Bologna,Via Massarenti 9, 40138 Bologna, Italy
| | - Marie-Françoise O’Donohue
- LBME, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | | | - Manon Saby
- INSERM UMR S1134, F-75015, Paris, France
| | - Hyung L Elfrink
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Illja J Diets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne-Marie Hesse
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, F-38000 Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, F-38000 Grenoble, France
| | - Marc Gastou
- Paris University, Paris, France
- Laboratory of Excellence for Red Cell, LABEX GR-Ex, F-75015, Paris, France
- Institute Gustave Roussy, Inserm unit U1170, F-94800 Villejuif, France
| | - Alexandra Nin-Velez
- Department of Comparative Biology and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Peter G J Nikkels
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Alexandra N Olson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn C J Jongmans
- Department of Genetics, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
- Princess Maxima Center for Pediatric Oncology and Utrecht University Children's Hospital, Utrecht, The Netherlands
| | - GuangJun Zhang
- Department of Comparative Biology and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Michel van Weeghel
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marcin W Wlodarski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
- St. Jude's Children Research Hospital, Memphis, TN, USA
| | - Roland P Kuiper
- Department of Genetics, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Marc B Bierings
- Princess Maxima Center for Pediatric Oncology and Utrecht University Children's Hospital, Utrecht, The Netherlands
| | | | - Thierry Leblanc
- Pediatric Hematology/Oncology Service, Robert Debré Hospital, F-75019 Paris, France
| | - Lorenzo Montanaro
- Laboratorio di Patologia Clinica, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale and Centro di Ricerca Biomedica Applicata (CRBA), Policlinico Universitario di S. Orsola, Università di Bologna,Via Massarenti 9, 40138 Bologna, Italy
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Lydie Da Costa
- INSERM UMR S1134, F-75015, Paris, France
- Paris University, Paris, France
- Laboratory of Excellence for Red Cell, LABEX GR-Ex, F-75015, Paris, France
- Hematology Lab, Robert Debré Hospital, F-75019 Paris, France
| | - Pierre-Emmanuel Gleizes
- LBME, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Alyson W MacInnes
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
29
|
Paganin-Gioanni A, Rols MP, Teissié J, Golzio M. Cyclin B1 knockdown mediated by clinically approved pulsed electric fields siRNA delivery induces tumor regression in murine melanoma. Int J Pharm 2020; 573:118732. [DOI: 10.1016/j.ijpharm.2019.118732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
|
30
|
Vaiwala R, Jadhav S, Thaokar R. Establishing an Electrostatics Paradigm for Membrane Electroporation in the Framework of Dissipative Particle Dynamics. J Chem Theory Comput 2019; 15:5737-5749. [PMID: 31430431 DOI: 10.1021/acs.jctc.9b00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With an exclusive aim to looking into a mechanism of membrane electroporation on mesoscopic length and time scales, we report the dissipative particle dynamics (DPD) simulation results for systems with and without electrolytes. A polarizable DPD model of water is employed for accurate modeling of long-range electrostatics near the water-lipid interfaces. A great deal of discussion on field induced change in dipole moments of water and lipids together with the special variation of electric field is made in order to understand the dielectrophoretic movement of water, initiating a pore formation via an intrusion through the bilayer core. The presence of salt alters the dipolar arrangement of lipids and water, and thereby it reduces the external field required to create a pore in the membrane. The species fluxes through the pore, distributions for bead density, electrostatic potential, stresses across the membrane, etc. are used to answer some of the key questions pertaining to mechanism of electroporation. The findings are compared with the molecular dynamics simulation results found in the literature, and the comparison successfully establishes an electrostatics paradigm for biomembrane studies using DPD simulations.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| | - Sameer Jadhav
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| | - Rochish Thaokar
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| |
Collapse
|
31
|
Forjanic T, Markelc B, Marcan M, Bellard E, Couillaud F, Golzio M, Miklavci D. Electroporation-Induced Stress Response and Its Effect on Gene Electrotransfer Efficacy: In Vivo Imaging and Numerical Modeling. IEEE Trans Biomed Eng 2019; 66:2671-2683. [DOI: 10.1109/tbme.2019.2894659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Pulsed Electric Field Treatment Enhances the Cytotoxicity of Plasma-Activated Liquids in a Three-Dimensional Human Colorectal Cancer Cell Model. Sci Rep 2019; 9:7583. [PMID: 31110227 PMCID: PMC6527570 DOI: 10.1038/s41598-019-44087-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/02/2019] [Indexed: 01/04/2023] Open
Abstract
Cold atmospheric plasma and more recently, plasma-activated liquids (culture media, water or buffered solutions previously exposed to plasma), are gathering momentum in cancer cells treatment. Nevertheless, in vitro tests show that this novel approach is sometimes less efficient than expected. We here evaluate the mechanisms of action of the plasma-activated PBS and suggest to use electropermeabilization (EP) in combination with the plasma-activated phosphate-buffered saline (PBS), in order to potentiate the cytotoxic effect of the plasma activated liquid. Human multicellular tumor spheroids (MCTS), a three-dimensional cell model, which resembles small avascular tumors, was used to define the optimal treatment conditions for single and dual-mode treatments. MCTS growth, viability, and global morphological changes were assessed by live cell video-microscopy. In addition, the induction of caspases activation, the appearance of DNA damages, and cell membrane permeabilization, as well as the early modifications in the cellular ultrastructure, were examined by immunofluorescence, propidium iodide staining, confocal fluorescence microscopy and transmission electron microscopy, respectively. Altogether, our results show that a combined treatment resulted in an earlier onset of DNA damage and caspases activation, which completely abolished MCTS growth. This report is a proof of concept study evidencing that electropermeabilization greatly potentiates the cytotoxic effect of plasma-activated PBS in vitro in a three-dimensional cancer cell model.
Collapse
|
33
|
Mahara A, Kobayashi N, Hirano Y, Yamaoka T. Sonoporation-based labeling of mesenchymal stem cells with polymeric MRI contrast agents for live-cell tracking. Polym J 2019. [DOI: 10.1038/s41428-019-0177-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu Rev Biophys 2019; 48:63-91. [PMID: 30786231 DOI: 10.1146/annurev-biophys-052118-115451] [Citation(s) in RCA: 386] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure of biological cells to high-voltage, short-duration electric pulses causes a transient increase in their plasma membrane permeability, allowing transmembrane transport of otherwise impermeant molecules. In recent years, large steps were made in the understanding of underlying events. Formation of aqueous pores in the lipid bilayer is now a widely recognized mechanism, but evidence is growing that changes to individual membrane lipids and proteins also contribute, substantiating the need for terminological distinction between electroporation and electropermeabilization. We first revisit experimental evidence for electrically induced membrane permeability, its correlation with transmembrane voltage, and continuum models of electropermeabilization that disregard the molecular-level structure and events. We then present insights from molecular-level modeling, particularly atomistic simulations that enhance understanding of pore formation, and evidence of chemical modifications of membrane lipids and functional modulation of membrane proteins affecting membrane permeability. Finally, we discuss the remaining challenges to our full understanding of electroporation and electropermeabilization.
Collapse
Affiliation(s)
- Tadej Kotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| | - Lea Rems
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17165 Solna, Sweden;
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ,
| |
Collapse
|
35
|
Vaiwala R, Jadhav S, Thaokar R. Electroporation Using Dissipative Particle Dynamics with a Novel Protocol for Applying Electric Field. J Chem Theory Comput 2019; 15:603-612. [PMID: 30525589 DOI: 10.1021/acs.jctc.8b00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In molecular dynamics simulations of membrane electroporation, the bilayer is subjected to an electric field E either by direct addition of a force f = qE on the charge-bearing species or by imposing an ion imbalance in the salt solutions on the two sides of the bilayer. The former is believed to mimic electroporation with high fields over nanosecond pulse period, during which the membrane is almost uncharged, especially in the low salt limit. Conversely, the ion imbalance method elucidates a low electric field-induced poration over a longer period of micro- to milliseconds with a fully charged membrane. Both these methods of applying electric field have disadvantages while investigating electroporation using dissipative particle dynamics (DPD) simulations. The method involving direct addition of force fails to address the presence of a nonuniform dielectric background for ions embedded in nonpolarizable DPD water and those found in the core of the bilayer. The ion imbalance method in DPD simulations suffers from its unavoidable use of a wall potential to prevent the movement of ions across the periodic boundaries. To address the above issues, we propose a simple method for imposing a desired transmembrane potential (TMV) by placing oppositely but uniformly charged plates on either side of the bilayer. Our DPD simulations demonstrate that the profiles for bead density, mechanical stress, electrical potential, as well as the transient responses in the dipole moment and species fluxes obtained from the proposed method utilizing charged plates are quite similar to those obtained using the ion imbalance method. The proposed protocol is free from the aforementioned drawbacks of the direct force addition and ion imbalance methods.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| | - Sameer Jadhav
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| | - Rochish Thaokar
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| |
Collapse
|
36
|
Phonesouk E, Lechevallier S, Ferrand A, Rols MP, Bezombes C, Verelst M, Golzio M. Increasing Uptake of Silica Nanoparticles with Electroporation: From Cellular Characterization to Potential Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E179. [PMID: 30621089 PMCID: PMC6337455 DOI: 10.3390/ma12010179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022]
Abstract
In the fields of biology and medicine, nanoproducts such as nanoparticles (NPs) are specifically interesting as theranostic tools, since they offer the double capacity to locally deliver active drugs and to image exactly where the product is delivered. Among the many described possibilities, silica nanoparticles (SiNPs) represent a good choice because of their ease of synthesis, the possibility of their vast functionalization, and their good biocompatibility. However, SiNPs' passive cell internalization by endocytosis only distributes NPs into the cell cytoplasm and is unable to target the nucleus if SiNPs are larger than a few nanometers. In this study, we demonstrate that the cell penetration of SiNPs of 28⁻30 nm in diameter can be strongly enhanced using a physical method, called electroporation or electropermeabilization (EP). The uptake of fluorescently labelled silica nanoparticles was improved in two different cancer cell lines, namely, HCT-116 (human colon cancer) cells and RL (B-lymphoma) cells. First, we studied cells' capability for the regular passive uptake of SiNPs in vitro. Then, we set EP parameters in order to induce a more efficient and rapid cell loading, also comprising the nuclear compartment, while preserving the cell viability. In the final approach, we performed in vivo experiments, and evidenced that the labeling was long-lasting, as confirmed by fluorescence imaging of labeled tumors, which enabled a 30-day follow-up. This kind of SiNPs delivery, achieved by EP, could be employed to load extensive amounts of active ingredients into the cell nucleus, and concomitantly allow the monitoring of the long-term fate of nanoparticles.
Collapse
Affiliation(s)
- Erick Phonesouk
- Institut de Pharmacologie et de Biologie Structurale-UMR 5089, 205 route de Narbonne, 31077 Toulouse CEDEX 04, France.
- Chromalys SAS, 29 rue jeanne Marvig, 31400 Toulouse, France.
| | | | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM (U1220), INRA, ENVT, UPS, 31024Toulouse cedex 3, France.
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale-UMR 5089, 205 route de Narbonne, 31077 Toulouse CEDEX 04, France.
| | - Christine Bezombes
- UMR1037 INSERM, Université de Toulouse, ERL5294 CNRS, 31100 Toulouse, France.
| | - Marc Verelst
- Chromalys SAS, 29 rue jeanne Marvig, 31400 Toulouse, France.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale-UMR 5089, 205 route de Narbonne, 31077 Toulouse CEDEX 04, France.
| |
Collapse
|
37
|
Góral M, Pankiewicz U, Sujka M, Kowalski R. Bioaccumulation of zinc ions in Lactobacillus rhamnosus B 442 cells under treatment of the culture with pulsed electric field. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-018-3219-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Abstract
The CRISPR-Cas9 system in bacteria and archaea has recently been exploited for genome editing in various model organisms, including the mice. In this scheme, components of the CRISPR-Cas9 system are delivered into the mouse zygote and mutant mice carrying genetic modifications derived. Although microinjection has been the technology of choice, electroporation has also emerged and been proven to be effective delivering CRISPR-Cas9 reagents into the mouse zygote. Here, we describe the experimental protocol employing electroporation to deliver CRISPR-Cas9 reagents into mouse embryos and derive gene-edited mutant mice.
Collapse
Affiliation(s)
- Wenning Qin
- The Jackson Laboratory, Bar Harbor, ME, USA.
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv Drug Deliv Rev 2019; 138:56-67. [PMID: 30414494 DOI: 10.1016/j.addr.2018.10.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/05/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Electric fields are among physical stimuli that have revolutionized therapy. Occurring endogenously or exogenously, the electric field can be used as a trigger for controlled drug release from electroresponsive drug delivery systems, can stimulate wound healing and cell proliferation, may enhance endocytosis or guide stem cell differentiation. Electric field pulses may be applied to induce cell fusion, can increase the penetration of therapeutic agents into cells, or can be applied as a standalone therapy to ablate tumors. This review describes the main therapeutic trends and overviews the main physical, chemical and biological mechanisms underlying the actions of electric fields. Overall, the electric field can be used in therapeutic approaches in several ways. The electric field can act on drug carriers, cells and tissues. Understanding the multiple effects of this powerful tool will help harnessing its full therapeutic potential in an efficient and safe way.
Collapse
|
40
|
Kozuch S, Cultrara CN, Beck AE, Heller CJ, Shah S, Patel MR, Zilberberg J, Sabatino D. Enhanced Cancer Theranostics with Self-Assembled, Multilabeled siRNAs. ACS OMEGA 2018; 3:12975-12984. [PMID: 30411024 PMCID: PMC6217585 DOI: 10.1021/acsomega.8b01999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/26/2018] [Indexed: 05/12/2023]
Abstract
The integration of therapy and diagnostics, termed "theranostics", has recently gained widespread utility in the development of new and improved therapeutics that effectively diagnose and treat diseases, such as cancer. In this study, the covalent attachment of multiple fluorescent labels (i.e., fluorescein isothiocyanate (FITC)) to a wide range of siRNAs, including those adopting linear, V- and Y-shape nanostructures, was successfully accomplished by solid-phase bioconjugation for monitoring cell uptake, co-localization, and biological activity in cell culture. The FITC-labeled higher-order V- and Y-shape siRNAs maintained the requisite hybrid stabilities and A-type helical structures for invoking RNAi activity. The FITC-siRNA hybrids with sense-strand modifiers enabled efficient mRNA knockdown (∼50-90%), which also translated to increased cell death (∼20-95%) in a bone metastatic prostate cancer cell line, over a 72 h incubation period. Significantly, the Y-shaped siRNA containing three FITC probes enhanced fluorescent signaling relative to the siRNA constructs containing single and double fluorophores while retaining potent knockdown and cell death effects post-transfection. Taken together, this data highlights the theranostic utility of the multilabeled FITC-siRNA constructs for potential cancer gene therapy applications.
Collapse
Affiliation(s)
- Stephen
D. Kozuch
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Christopher N. Cultrara
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Adah E. Beck
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Claudia J. Heller
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Sunil Shah
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Mayurbhai R. Patel
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
- Nitto
Denko Avecia Inc, 8560
Reading Road, Cincinnati, Ohio 45215, United
States
| | - Jenny Zilberberg
- Department
of Biomedical Research, Hackensack University
Medical Center, Hackensack, New Jersey 07601, United States
| | - David Sabatino
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
- E-mail: . Tel: +1-973-313-6359
| |
Collapse
|
41
|
Abstract
Electrotransfection (ET) is a nonviral method for delivery of various types of molecules into cells both in vitro and in vivo. Close to 90 clinical trials that involve the use of ET have been performed, and approximately half of them are related to cancer treatment. Particularly, ET is an attractive technique for cancer immunogene therapy because treatment of cells with electric pulses alone can induce immune responses to solid tumors, and the responses can be further enhanced by ET of plasmid DNA (pDNA) encoding therapeutic genes. Compared to other gene delivery methods, ET has several unique advantages. It is relatively inexpensive, flexible, and safe in clinical applications, and introduces only naked pDNA into cells without the use of additional chemicals or viruses. However, the efficiency of ET is still low, partly because biological mechanisms of ET in cells remain elusive. In previous studies, it was believed that pDNA entered the cells through transient pores created by electric pulses. As a result, the technique is commonly referred to as electroporation. However, recent discoveries have suggested that endocytosis plays an important role in cellular uptake and intracellular transport of electrotransfected pDNA. This review will discuss current progresses in the study of biological mechanisms underlying ET and future directions of research in this area. Understanding the mechanisms of pDNA transport in cells is critical for the development of new strategies for improving the efficiency of gene delivery in tumors.
Collapse
Affiliation(s)
- Lisa D Cervia
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Fan Yuan
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
42
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 449] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
43
|
Gibot L, Golzio M, Rols MP. How Imaging Membrane and Cell Processes Involved in Electropermeabilization Can Improve Its Development in Cell Biology and in Clinics. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 227:107-118. [PMID: 28980043 DOI: 10.1007/978-3-319-56895-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cell membranes can be transiently permeabilized under the application of electric pulses. This process, called electropermeabilization or electroporation, allows hydrophilic molecules, such as anticancer drugs and DNA, to enter into cells and tissues. The method is nowadays used in clinics to treat cancers. Vaccination and gene therapy are other fields of application of DNA electrotransfer. A description of the mechanisms can be assayed by using different complementary systems with increasing complexities (models of membranes, cells cultivated in 2D and 3D culture named spheroids, and tissues in living mice) and different microscopy tools to visualize the processes from single molecules to entire animals. Single-cell imaging experiments revealed that the uptake of molecules (nucleic acids, antitumor drugs) takes place in well-defined membrane regions and depends on their chemical and physical properties (size, charge). If small molecules freely cross the electropermeabilized membrane and have a free access to the cytoplasm, larger molecules, such as plasmid DNA, face physical barriers (plasma membrane, cytoplasm crowding, nuclear envelope) which reduce transfection efficiency and engender a complex mechanism of transfer. Gene electrotransfer indeed involves different steps that include the initial interaction with the membrane, its crossing, transport within the cytoplasm, and finally gene expression. In vivo, additional very important effects of electric pulses are present such as blood flow modifications. The full knowledge on the way molecules are transported across the electropermeabilized membranes and within tissues is mandatory to improve the efficacy and the safety of the electropermeabilization process both in cell biology and in clinics.
Collapse
Affiliation(s)
- Laure Gibot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, BP 64182, F-31077, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, BP 64182, F-31077, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, BP 64182, F-31077, Toulouse, France.
| |
Collapse
|
44
|
Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods – An overview. Bioelectrochemistry 2018; 120:166-182. [DOI: 10.1016/j.bioelechem.2017.12.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
|
45
|
Markelc B, Bellard E, Sersa G, Jesenko T, Pelofy S, Teissié J, Frangez R, Rols MP, Cemazar M, Golzio M. Increased permeability of blood vessels after reversible electroporation is facilitated by alterations in endothelial cell-to-cell junctions. J Control Release 2018; 276:30-41. [PMID: 29476881 DOI: 10.1016/j.jconrel.2018.02.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
Delivery of electric field pulses, i.e. electroporation (EP), to tissues has been shown to have a blood flow modifying effect. Indeed, the diameter of blood vessels exposed to EP is immediately reduced resulting in blood flow abrogation, followed by an increase in vascular permeability. The main cause of the increased permeability remains unknown. The aim of this study was to determine whether the in vivo effects of EP on permeability of blood vessels are linked to the permeabilization of endothelial cells' membrane (EC) and/or disruption of cell-to-cell junctions. We used a dorsal window chamber model in C57Bl/6 mice coupled with multiphoton microscopy and fluorescently labelled antibodies against PECAM-1 (CD31) to visualize endothelial cell-to-cell junctions. Clinically validated EP parameters were used and behavior of cell-to-cell junctions, in combination with leakage of 70 kDa fluorescein isothiocyanate labelled dextran (FD), was followed in time. After EP, a constriction of blood vessels was observed and correlated with the change in the shape of ECs. This was followed by an increase in permeability of blood vessels for 70 kDa FD and a decrease in the volume of labelled cell-to-cell junctions. Both parameters returned to pre-treatment values in 50% of mice. For the remaining 50%, we hypothesize that disruption of cell-to-cell junctions after EP may trigger the platelet activation cascade. Our findings show for the first time in vivo that alterations in cell-to-cell junctions play an important role in the response of blood vessels to EP and explain their efficient permeabilization.
Collapse
Affiliation(s)
- Bostjan Markelc
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France; Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Sandrine Pelofy
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France
| | - Justin Teissié
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France
| | - Robert Frangez
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1000 Ljubljana, Slovenia
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, F-31077, France.
| |
Collapse
|
46
|
Li J, Wang B, Juba BM, Vazquez M, Kortum SW, Pierce BS, Pacheco M, Roberts L, Strohbach JW, Jones LH, Hett E, Thorarensen A, Telliez JB, Sharei A, Bunnage M, Gilbert JB. Microfluidic-Enabled Intracellular Delivery of Membrane Impermeable Inhibitors to Study Target Engagement in Human Primary Cells. ACS Chem Biol 2017; 12:2970-2974. [PMID: 29088528 DOI: 10.1021/acschembio.7b00683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biochemical screening is a major source of lead generation for novel targets. However, during the process of small molecule lead optimization, compounds with excellent biochemical activity may show poor cellular potency, making structure-activity relationships difficult to decipher. This may be due to low membrane permeability of the molecule, resulting in insufficient intracellular drug concentration. The Cell Squeeze platform increases permeability regardless of compound structure by mechanically disrupting the membrane, which can overcome permeability limitations and bridge the gap between biochemical and cellular studies. In this study, we show that poorly permeable Janus kinase (JAK) inhibitors are delivered into primary cells using Cell Squeeze, inhibiting up to 90% of the JAK pathway, while incubation of JAK inhibitors with or without electroporation had no significant effect. We believe this robust intracellular delivery approach could enable more effective lead optimization and deepen our understanding of target engagement by small molecules and functional probes.
Collapse
Affiliation(s)
- Jing Li
- Medicine Design, Pfizer, Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Bu Wang
- SQZ Biotechnologies, 134 Coolidge Avenue, Watertown, Massachusetts 02472, United States
| | - Brian M. Juba
- Inflammation and Immunology Research Unit, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Michael Vazquez
- Medicine Design, Pfizer, Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Steve W. Kortum
- Medicine Design, Pfizer Inc, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Betsy S. Pierce
- Medicine Design, Pfizer Inc, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Michael Pacheco
- Medicine Design, Pfizer Inc, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Lee Roberts
- Medicine Design, Pfizer, Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Joseph W. Strohbach
- Medicine Design, Pfizer, Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Lyn H. Jones
- Medicine Design, Pfizer, Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Erik Hett
- Medicine Design, Pfizer, Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Atli Thorarensen
- Medicine Design, Pfizer, Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jean-Baptiste Telliez
- Inflammation and Immunology Research Unit, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Armon Sharei
- SQZ Biotechnologies, 134 Coolidge Avenue, Watertown, Massachusetts 02472, United States
| | - Mark Bunnage
- Medicine Design, Pfizer, Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
47
|
Montellese C, Montel-Lehry N, Henras AK, Kutay U, Gleizes PE, O'Donohue MF. Poly(A)-specific ribonuclease is a nuclear ribosome biogenesis factor involved in human 18S rRNA maturation. Nucleic Acids Res 2017; 45:6822-6836. [PMID: 28402503 PMCID: PMC5499762 DOI: 10.1093/nar/gkx253] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/03/2017] [Indexed: 01/28/2023] Open
Abstract
The poly-A specific ribonuclease (PARN), initially characterized for its role in mRNA catabolism, supports the processing of different types of non-coding RNAs including telomerase RNA. Mutations in PARN are linked to dyskeratosis congenita and pulmonary fibrosis. Here, we show that PARN is part of the enzymatic machinery that matures the human 18S ribosomal RNA (rRNA). Consistent with its nucleolar steady-state localization, PARN is required for 40S ribosomal subunit production and co-purifies with 40S subunit precursors. Depletion of PARN or expression of a catalytically-compromised PARN mutant results in accumulation of 3΄ extended 18S rRNA precursors. Analysis of these processing intermediates reveals a defect in 3΄ to 5΄ trimming of the internal transcribed spacer 1 (ITS1) region, subsequent to endonucleolytic cleavage at site E. Consistent with a function of PARN in exonucleolytic trimming of 18S-E pre-rRNA, recombinant PARN can process the corresponding ITS1 RNA fragment in vitro. Trimming of 18S-E pre-rRNA by PARN occurs in the nucleus, upstream of the final endonucleolytic cleavage by the endonuclease NOB1 in the cytoplasm. These results identify PARN as a new component of the ribosome biogenesis machinery in human cells. Defects in ribosome biogenesis could therefore underlie the pathologies linked to mutations in PARN.
Collapse
Affiliation(s)
| | - Nathalie Montel-Lehry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Ulrike Kutay
- Institut für Biochemie, ETH Zurich, Zurich CH-8093, Switzerland
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| |
Collapse
|
48
|
Masood M, Herberstein ME, Raftos DA, Nair SV. Double stranded RNA is processed differently in two oyster species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:285-291. [PMID: 28687485 DOI: 10.1016/j.dci.2017.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/07/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Ostreid herpes virus causes serious disease in the Pacific oyster (Crassostrea gigas), but not in the Sydney Rock Oyster (Saccostrea glomerata). To investigate differences in disease progression, we injected oysters with double stranded RNA (dsRNA). dsRNA is known to mimic viral infection, and can evoke immune responses when Toll-like receptors detect the dsRNA, leading to the production of type 1 interferon and inflammation cytokines. The uptake and processing of dsRNA was tracked in gill and mantle tissue of Crassostrea gigas and Saccostrea glomerata after injection of fluorochrome labelled poly (I:C) dsRNA. The two species showed significant differences in tissue uptake and clearance, and differences in immune responses confirmed by real time PCR. These results showed that S. glomerata was more efficient in processing dsRNA than C. gigas, and that the gill tissue is an important site of dsRNA processing and response.
Collapse
Affiliation(s)
- Muhammad Masood
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
| | - Marie E Herberstein
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Sham V Nair
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| |
Collapse
|
49
|
Guillet J, Flahaut E, Golzio M. A Hydrogel/Carbon‐Nanotube Needle‐Free Device for Electrostimulated Skin Drug Delivery. Chemphyschem 2017; 18:2715-2723. [DOI: 10.1002/cphc.201700517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jean‐François Guillet
- CIRIMATUniversité de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT 118 route de Narbonne 31062 Toulouse cedex 9 France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UPS, CNRS, UMR 5089; BP 82164 205 route de Narbonne 31077 Toulouse cedex 4 France
| | - Emmanuel Flahaut
- CIRIMATUniversité de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT 118 route de Narbonne 31062 Toulouse cedex 9 France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UPS, CNRS, UMR 5089; BP 82164 205 route de Narbonne 31077 Toulouse cedex 4 France
| |
Collapse
|
50
|
Chernousova S, Epple M. Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent. Gene Ther 2017; 24:282-289. [PMID: 28218744 PMCID: PMC5442419 DOI: 10.1038/gt.2017.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
Abstract
The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2-3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.
Collapse
Affiliation(s)
- S Chernousova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - M Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|