1
|
Jiménez-Jiménez C, Grobe K, Guerrero I. Hedgehog on the Move: Glypican-Regulated Transport and Gradient Formation in Drosophila. Cells 2024; 13:418. [PMID: 38474382 PMCID: PMC10930589 DOI: 10.3390/cells13050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Glypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells. Recently, two mechanistic models have been proposed to explain how Hh can form the signalling gradient and how Glps may contribute to it. In this review, we describe the structure, biochemistry, and metabolism of Glps and their interactions with different components of the Hh-signalling pathway that are important for the release, transport, and reception of Hh.
Collapse
Affiliation(s)
- Carlos Jiménez-Jiménez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Isabel Guerrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| |
Collapse
|
2
|
Nakato E, Kamimura K, Knudsen C, Masutani S, Takemura M, Hayashi Y, Akiyama T, Nakato H. Differential heparan sulfate dependency of the Drosophila glypicans. J Biol Chem 2024; 300:105544. [PMID: 38072044 PMCID: PMC10796981 DOI: 10.1016/j.jbc.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are composed of a core protein and glycosaminoglycan (GAG) chains and serve as coreceptors for many growth factors and morphogens. To understand the molecular mechanisms by which HSPGs regulate morphogen gradient formation and signaling, it is important to determine the relative contributions of the carbohydrate and protein moieties to the proteoglycan function. To address this question, we generated ΔGAG alleles for dally and dally-like protein (dlp), two Drosophila HSPGs of the glypican family, in which all GAG-attachment serine residues are substituted to alanine residues using CRISPR/Cas9 mutagenesis. In these alleles, the glypican core proteins are expressed from the endogenous loci with no GAG modification. Analyses of the dallyΔGAG allele defined Dally functions that do not require heparan sulfate (HS) chains and that need both core protein and HS chains. We found a new, dallyΔGAG-specific phenotype, the formation of a posterior ectopic vein, which we have never seen in the null mutants. Unlike dallyΔGAG, dlpΔGAG mutants do not show most of the dlp null mutant phenotypes, suggesting that HS chains are dispensable for these dlp functions. As an exception, HS is essentially required for Dlp's activity at the neuromuscular junction. Thus, Drosophila glypicans show strikingly different levels of HS dependency. The ΔGAG mutant alleles of the glypicans serve as new molecular genetic toolsets highly useful to address important biological questions, such as molecular mechanisms of morphogen gradient formation.
Collapse
Affiliation(s)
- Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suzuka Masutani
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masahiko Takemura
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yoshiki Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Takuya Akiyama
- Department of Biology, Indiana State University, Terre Haute, Indiana, USA
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
3
|
Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 2023; 24:668-687. [PMID: 36932157 DOI: 10.1038/s41580-023-00591-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute and Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Wishart TFL, Lovicu FJ. Spatiotemporal Localisation of Heparan Sulphate Proteoglycans throughout Mouse Lens Morphogenesis. Cells 2023; 12:1364. [PMID: 37408198 DOI: 10.3390/cells12101364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Heparan sulphate proteoglycans (HSPGs) consist of a core protein decorated with sulphated HS-glycosaminoglycan (GAG) chains. These negatively charged HS-GAG chains rely on the activity of PAPSS synthesising enzymes for their sulfation, which allows them to bind to and regulate the activity of many positively charged HS-binding proteins. HSPGs are found on the surfaces of cells and in the pericellular matrix, where they interact with various components of the cell microenvironment, including growth factors. By binding to and regulating ocular morphogens and growth factors, HSPGs are positioned to orchestrate growth factor-mediated signalling events that are essential for lens epithelial cell proliferation, migration, and lens fibre differentiation. Previous studies have shown that HS sulfation is essential for lens development. Moreover, each of the full-time HSPGs, differentiated by thirteen different core proteins, are differentially localised in a cell-type specific manner with regional differences in the postnatal rat lens. Here, the same thirteen HSPG-associated GAGs and core proteins as well as PAPSS2, are shown to be differentially regulated throughout murine lens development in a spatiotemporal manner. These findings suggest that HS-GAG sulfation is essential for growth factor-induced cellular processes during embryogenesis, and the unique and divergent localisation of different lens HSPG core proteins indicates that different HSPGs likely play specialized roles during lens induction and morphogenesis.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
6
|
Notum leads to potential pro-survival of OSCC through crosstalk between Shh and Wnt/β-catenin signaling via p-GSK3β. Int J Biochem Cell Biol 2022; 153:106316. [DOI: 10.1016/j.biocel.2022.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
7
|
Akkermans O, Delloye-Bourgeois C, Peregrina C, Carrasquero-Ordaz M, Kokolaki M, Berbeira-Santana M, Chavent M, Reynaud F, Raj R, Agirre J, Aksu M, White ES, Lowe E, Ben Amar D, Zaballa S, Huo J, Pakos I, McCubbin PTN, Comoletti D, Owens RJ, Robinson CV, Castellani V, Del Toro D, Seiradake E. GPC3-Unc5 receptor complex structure and role in cell migration. Cell 2022; 185:3931-3949.e26. [PMID: 36240740 PMCID: PMC9596381 DOI: 10.1016/j.cell.2022.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/22/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.
Collapse
Affiliation(s)
- Onno Akkermans
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Céline Delloye-Bourgeois
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France
| | - Claudia Peregrina
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Maria Carrasquero-Ordaz
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Maria Kokolaki
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Miguel Berbeira-Santana
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Matthieu Chavent
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Toulouse, France
| | - Florie Reynaud
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Metin Aksu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Eleanor S White
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Edward Lowe
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dounia Ben Amar
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France
| | - Sofia Zaballa
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK; Division of Structural Biology, University of Oxford, Oxford, UK
| | - Irene Pakos
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Patrick T N McCubbin
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Davide Comoletti
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK; Division of Structural Biology, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Valérie Castellani
- MeLis, University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, Institut NeuroMyoGène, 8 avenue Rockefeller 69008 Lyon, Lyon, France.
| | - Daniel Del Toro
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain.
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Liu YC, Wierbowski BM, Salic A. Hedgehog pathway modulation by glypican 3-conjugated heparan sulfate. J Cell Sci 2022; 135:274739. [PMID: 35142364 PMCID: PMC8977055 DOI: 10.1242/jcs.259297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Glypicans are a family of cell surface heparan sulfate proteoglycans that play critical roles in multiple cell signaling pathways. Glypicans consist of a globular core, an unstructured stalk modified with sulfated glycosaminoglycan chains, and a glycosylphosphatidylinositol anchor. Though these structural features are conserved, their individual contribution to glypican function remains obscure. Here, we investigate how glypican 3 (GPC3), which is mutated in Simpson-Golabi-Behmel tissue overgrowth syndrome, regulates Hedgehog signaling. We find that GPC3 is necessary for the Hedgehog response, surprisingly controlling a downstream signal transduction step. Purified GPC3 ectodomain rescues signaling when artificially recruited to the surface of GPC3-deficient cells but has dominant-negative activity when unattached. Strikingly, the purified stalk, modified with heparan sulfate but not chondroitin sulfate, is necessary and sufficient for activity. Our results demonstrate a novel function for GPC3-associated heparan sulfate and provide a framework for the functional dissection of glycosaminoglycans by in vivo biochemical complementation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yulu Cherry Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, Hood College, Frederick, MD 21701, USA
| | | | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Lin L, He Y, Ni Z, Zhang M, Liu J, Mao Q, Huang B, Lin J. GPC2 deficiency inhibits cell growth and metastasis in colon adenocarcinoma. Open Med (Wars) 2022; 17:304-316. [PMID: 35233466 PMCID: PMC8847712 DOI: 10.1515/med-2022-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Glypican-2 (GPC2) has been reported to promote tumor progression through metabolic pathways. However, the role of GPC2 in colon adenocarcinoma (COAD) remains to be further investigated. This study was designed to evaluate the role of GPC2 in COAD. Based on patients with complete clinical information and GPC2 expression from the Cancer Genome Atlas-COAD database, we found that GPC2 mRNA was highly expressed in COAD tissues, which was associated with poor prognosis and tumornode-metastasis (TNM) stage. The predicted survival probability based on GPC2 mRNA expression and TNM stage was in good agreement with the observed survival probability. Furthermore, the genes coexpressed with GPC2 in COAD tissues were significantly enriched in basal cell carcinoma, Notch signaling pathway, and Hedgehog signaling pathway. After GPC2 was decreased through transfecting short hairpin RNA of GPC2 into HCT-8 and SW620 cells, cell cycle was arrested in G0/G1 phase, proliferation was decreased, apoptosis was increased, and migration and invasion were repressed. In conclusion, decreasing GPC2 significantly inhibited proliferation, migration, and invasion, and enhanced apoptosis, which implied that GPC2 can be considered a promising therapeutic target of COAD in the future.
Collapse
Affiliation(s)
- Lumin Lin
- Department of Spleen and Stomach Diseases, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Yanbin He
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Zhuona Ni
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Min Zhang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jie Liu
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Qianqian Mao
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Bin Huang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
10
|
Waghmare I, Page-McCaw A. Regulation of Wnt distribution and function by Drosophila glypicans. J Cell Sci 2022; 135:274233. [PMID: 35112708 PMCID: PMC8918805 DOI: 10.1242/jcs.259405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular distribution of secreted Wnt proteins is crucial for their ability to induce a response in target cells at short and long ranges to ensure proper development. Wnt proteins are evolutionarily conserved ligands that are lipid-modified, and their hydrophobic nature interferes with their solubility in the hydrophilic extracellular environment. This raises the question of how Wnt proteins spread extracellularly despite their lipid modifications, which are essential for both their secretion and function. Seminal studies on Drosophila Wingless (Wg), a prototypical Wnt, have discovered multiple mechanisms by which Wnt proteins spread. A central theme emerges from these studies: the Wnt lipid moiety is shielded from the aqueous environment, allowing the ligands to spread and remain viable for signaling. Wnt distribution in vivo is primarily facilitated by glypicans, which are cell-surface heparan sulfate proteoglycans, and recent studies have further provided mechanistic insight into how glypicans facilitate Wnt distribution. In this Review, we discuss the many diverse mechanisms of Wnt distribution, with a particular focus on glypican-mediated mechanisms.
Collapse
|
11
|
Li D, Lin S, Hong J, Ho M. Immunotherapy for hepatobiliary cancers: Emerging targets and translational advances. Adv Cancer Res 2022; 156:415-449. [DOI: 10.1016/bs.acr.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Gradilla AC, Guerrero I. Hedgehog on track: Long-distant signal transport and transfer through direct cell-to-cell contact. Curr Top Dev Biol 2022; 150:1-24. [DOI: 10.1016/bs.ctdb.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Lehmann RJ, Jolly LA, Johnson BV, Lord MS, Kim HN, Saville JT, Fuller M, Byers S, Derrick-Roberts AL. Impaired neural differentiation of MPS IIIA patient induced pluripotent stem cell-derived neural progenitor cells. Mol Genet Metab Rep 2021; 29:100811. [PMID: 34712574 PMCID: PMC8531667 DOI: 10.1016/j.ymgmr.2021.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is characterised by a progressive neurological decline leading to early death. It is caused by bi-allelic loss-of-function mutations in SGSH encoding sulphamidase, a lysosomal enzyme required for heparan sulphate glycosaminoglycan (HS GAG) degradation, that results in the progressive build-up of HS GAGs in multiple tissues most notably the central nervous system (CNS). Skin fibroblasts from two MPS IIIA patients who presented with an intermediate and a severe clinical phenotype, respectively, were reprogrammed into induced pluripotent stem cells (iPSCs). The intermediate MPS IIIA iPSCs were then differentiated into neural progenitor cells (NPCs) and subsequently neurons. The patient derived fibroblasts, iPSCs, NPCs and neurons all displayed hallmark biochemical characteristics of MPS IIIA including reduced sulphamidase activity and increased accumulation of an MPS IIIA HS GAG biomarker. Proliferation of MPS IIIA iPSC-derived NPCs was reduced compared to control, but could be partially rescued by reintroducing functional sulphamidase enzyme, or by doubling the concentration of the mitogen fibroblast growth factor 2 (FGF2). Whilst both control heparin, and MPS IIIA HS GAGs had a similar binding affinity for FGF2, only the latter inhibited FGF signalling, suggesting accumulated MPS IIIA HS GAGs disrupt the FGF2:FGF2 receptor:HS signalling complex. Neuronal differentiation of MPS IIIA iPSC-derived NPCs was associated with a reduction in the expression of neuronal cell marker genes βIII-TUBULIN, NF-H and NSE, revealing reduced neurogenesis compared to control. A similar result was achieved by adding MPS IIIA HS GAGs to the culture medium during neuronal differentiation of control iPSC-derived NPCs. This study demonstrates the generation of MPS IIIA iPSCs, and NPCs, the latter of which display reduced proliferation and neurogenic capacity. Reduced NPC proliferation can be explained by a model in which soluble MPS IIIA HS GAGs compete with cell surface HS for FGF2 binding. The mechanism driving reduced neurogenesis remains to be determined but appears downstream of MPS IIIA HS GAG accumulation.
Collapse
Affiliation(s)
- Rebecca J. Lehmann
- Genetics and Molecular Pathology, SA Pathology (at the Women's and Children's Hospital), 72 King William Rd, North Adelaide, SA 5006, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lachlan A. Jolly
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Brett V. Johnson
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Ha Na Kim
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jennifer T. Saville
- Genetics and Molecular Pathology, SA Pathology (at the Women's and Children's Hospital), 72 King William Rd, North Adelaide, SA 5006, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology (at the Women's and Children's Hospital), 72 King William Rd, North Adelaide, SA 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology (at the Women's and Children's Hospital), 72 King William Rd, North Adelaide, SA 5006, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ainslie L.K. Derrick-Roberts
- Genetics and Molecular Pathology, SA Pathology (at the Women's and Children's Hospital), 72 King William Rd, North Adelaide, SA 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
14
|
Shin D, Nakamura M, Morishita Y, Eiraku M, Yamakawa T, Sasamura T, Akiyama M, Inaki M, Matsuno K. Collective nuclear behavior shapes bilateral nuclear symmetry for subsequent left-right asymmetric morphogenesis in Drosophila. Development 2021; 148:260539. [PMID: 34097729 PMCID: PMC8126412 DOI: 10.1242/dev.198507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/23/2021] [Indexed: 11/20/2022]
Abstract
Proper organ development often requires nuclei to move to a specific position within the cell. To determine how nuclear positioning affects left-right (LR) development in the Drosophila anterior midgut (AMG), we developed a surface-modeling method to measure and describe nuclear behavior at stages 13-14, captured in three-dimensional time-lapse movies. We describe the distinctive positioning and a novel collective nuclear behavior by which nuclei align LR symmetrically along the anterior-posterior axis in the visceral muscles that overlie the midgut and are responsible for the LR-asymmetric development of this organ. Wnt4 signaling is crucial for the collective behavior and proper positioning of the nuclei, as are myosin II and the LINC complex, without which the nuclei fail to align LR symmetrically. The LR-symmetric positioning of the nuclei is important for the subsequent LR-asymmetric development of the AMG. We propose that the bilaterally symmetrical positioning of these nuclei may be mechanically coupled with subsequent LR-asymmetric morphogenesis.
Collapse
Affiliation(s)
- Dongsun Shin
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Mitsutoshi Nakamura
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yoshitaka Morishita
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Mototsugu Eiraku
- Department of Biosystems Science, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoko Yamakawa
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi Sasamura
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Masakazu Akiyama
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakanoku, Tokyo 164-8525, Japan
| | - Mikiko Inaki
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
15
|
Wierbowski BM, Petrov K, Aravena L, Gu G, Xu Y, Salic A. Hedgehog Pathway Activation Requires Coreceptor-Catalyzed, Lipid-Dependent Relay of the Sonic Hedgehog Ligand. Dev Cell 2020; 55:450-467.e8. [PMID: 33038332 DOI: 10.1016/j.devcel.2020.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022]
Abstract
Hedgehog signaling governs critical processes in embryogenesis, adult stem cell maintenance, and tumorigenesis. The activating ligand, Sonic hedgehog (SHH), is highly hydrophobic because of dual palmitate and cholesterol modification, and thus, its release from cells requires the secreted SCUBE proteins. We demonstrate that the soluble SCUBE-SHH complex, although highly potent in cellular assays, cannot directly signal through the SHH receptor, Patched1 (PTCH1). Rather, signaling by SCUBE-SHH requires a molecular relay mediated by the coreceptors CDON/BOC and GAS1, which relieves SHH inhibition by SCUBE. CDON/BOC bind both SCUBE and SHH, recruiting the complex to the cell surface. SHH is then handed off, in a dual lipid-dependent manner, to GAS1, and from GAS1 to PTCH1, initiating signaling. These results define an essential step in Hedgehog signaling, whereby coreceptors activate SHH by chaperoning it from a latent extracellular complex to its cell-surface receptor, and point to a broader paradigm of coreceptor function.
Collapse
Affiliation(s)
| | - Kostadin Petrov
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Aravena
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Garrick Gu
- Williams College, Williamstown, MA 01267, USA
| | - Yangqing Xu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
McGough IJ, Vecchia L, Bishop B, Malinauskas T, Beckett K, Joshi D, O'Reilly N, Siebold C, Jones EY, Vincent JP. Glypicans shield the Wnt lipid moiety to enable signalling at a distance. Nature 2020; 585:85-90. [PMID: 32699409 PMCID: PMC7610841 DOI: 10.1038/s41586-020-2498-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
A relatively small number of proteins have been suggested to act as morphogens-signalling molecules that spread within tissues to organize tissue repair and the specification of cell fate during development. Among them are Wnt proteins, which carry a palmitoleate moiety that is essential for signalling activity1-3. How a hydrophobic lipoprotein can spread in the aqueous extracellular space is unknown. Several mechanisms, such as those involving lipoprotein particles, exosomes or a specific chaperone, have been proposed to overcome this so-called Wnt solubility problem4-6. Here we provide evidence against these models and show that the Wnt lipid is shielded by the core domain of a subclass of glypicans defined by the Dally-like protein (Dlp). Structural analysis shows that, in the presence of palmitoleoylated peptides, these glypicans change conformation to create a hydrophobic space. Thus, glypicans of the Dlp family protect the lipid of Wnt proteins from the aqueous environment and serve as a reservoir from which Wnt proteins can be handed over to signalling receptors.
Collapse
Affiliation(s)
| | - Luca Vecchia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
17
|
Ma T, Zhang Y, Lao M, Chen W, Hu Q, Zhi X, Chen Z, Bai X, Dang X, Liang T. Endogenous Interleukin 18 Suppresses Liver Regeneration After Hepatectomy in Mice. Liver Transpl 2020; 26:408-418. [PMID: 31872961 DOI: 10.1002/lt.25709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/15/2019] [Indexed: 12/24/2022]
Abstract
The comprehensive role of interleukin (IL) 18 during liver regeneration is barely studied. Our aim is to evaluate the role of IL18 in liver regeneration after partial hepatectomy (PH) in mice. The expression profile of IL18 in the liver and the gut after 70% PH was measured. Liver samples after 70% and 85% PH from IL18 knockout (IL18-/- ) mice and wild type (WT) mice were collected for comparison of liver regeneration. The effect of recombinant IL18 on liver regeneration was tested in IL18-/- mice, and the utility of IL18 binding protein (BP) was also evaluated following 70% PH in WT mice. Expression levels of IL18 in the liver and the gut elevated after 70% PH. The liver weight/body weight ratios (LBWRs) after PH were significantly higher in IL18-/- mice than those in WT mice. Recombinant IL18 injection significantly decreased LBWR at 7 days after 70% PH in IL18-/- mice. The expression of cyclin D1, EdU labeling index, and Ki-67 proliferation index were much higher in IL18-/- mice than those in WT mice after 70% PH. The expression level of glypican 3 (GPC3) in WT mice significantly elevated during liver regeneration. In contrast, the expression level of GPC3 in IL18-/- mice remained roughly unchanged during liver regeneration. IL18BP injection significantly increased the LBWR at 7 days after 70% PH in WT mice. In conclusion, endogenous IL18 inhibited liver regeneration after PH in mice, possibly through up-regulating GPC3. IL18BP may be an effective agent to promote liver regeneration after PH.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Yibo Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Wen Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Qida Hu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Zhiliang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Xiaowei Dang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| |
Collapse
|
18
|
Baboci L, Capolla S, Di Cintio F, Colombo F, Mauro P, Dal Bo M, Argenziano M, Cavalli R, Toffoli G, Macor P. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. JOURNAL OF ONCOLOGY 2020; 2020:4638192. [PMID: 32184825 PMCID: PMC7060440 DOI: 10.1155/2020/4638192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The development of nanostructures for therapeutic purpose is rapidly growing, following the results obtained in vivo in animal models and in the clinical trials. Unfortunately, the potential therapeutic efficacy is not completely exploited, yet. This is mainly due to the fast clearance of the nanostructures in the body. Nanoparticles and the liver have a unique interaction because the liver represents one of the major barriers for drug delivery. This interaction becomes even more relevant and complex when the drug delivery strategies employing nanostructures are proposed for the therapy of liver diseases, such as hepatocellular carcinoma (HCC). In this case, the selective delivery of therapeutic nanoparticles to the tumor microenvironment collides with the tendency of nanostructures to be quickly eliminated by the organ. The design of a new therapeutic approach based on nanoparticles to treat HCC has to particularly take into consideration passive and active mechanisms to avoid or delay liver elimination and to specifically address cancer cells or the cancer microenvironment. This review will analyze the different aspects concerning the dual role of the liver, both as an organ carrying out a clearance activity for the nanostructures and as target for therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Federico Colombo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Prisca Mauro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Paolo Macor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
19
|
Takemura M, Noborn F, Nilsson J, Bowden N, Nakato E, Baker S, Su TY, Larson G, Nakato H. Chondroitin sulfate proteoglycan Windpipe modulates Hedgehog signaling in Drosophila. Mol Biol Cell 2020; 31:813-824. [PMID: 32049582 PMCID: PMC7185963 DOI: 10.1091/mbc.e19-06-0327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Proteoglycans, a class of carbohydrate-modified proteins, often modulate growth factor signaling on the cell surface. However, the molecular mechanism by which proteoglycans regulate signal transduction is largely unknown. In this study, using a recently developed glycoproteomic method, we found that Windpipe (Wdp) is a novel chondroitin sulfate proteoglycan (CSPG) in Drosophila. Wdp is a single-pass transmembrane protein with leucin-rich repeat (LRR) motifs and bears three CS sugar chain attachment sites in the extracellular domain. Here we show that Wdp modulates the Hedgehog (Hh) pathway. In the wing disc, overexpression of wdp inhibits Hh signaling, which is dependent on its CS chains and the LRR motifs. The wdp null mutant flies show a specific defect (supernumerary scutellar bristles) known to be caused by Hh overexpression. RNA interference knockdown and mutant clone analyses showed that loss of wdp leads to the up-regulation of Hh signaling. Altogether, our study demonstrates a novel role of CSPGs in regulating Hh signaling.
Collapse
Affiliation(s)
- Masahiko Takemura
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Fredrik Noborn
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Nanako Bowden
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Sarah Baker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Tsu-Yi Su
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
20
|
Guan L, Wu W, Pang H, Duan D, Li S. Anti-GPC3 single-chain scFv antibody acts as an agent for radio-immunoimaging in diagnosing hepatocellular carcinoma. Am J Transl Res 2019; 11:7422-7431. [PMID: 31934289 PMCID: PMC6943449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Glypican-3 (GPC3) over-expresses in hepatocellular carcinoma (HCC), but not expresses or under-expresses in normal adult hepatocytes. Therefore, GPC3 acts as a potential target for diagnosis and treatment of HCC. This study aimed to conduct radio-immunoimaging using GPC3 as a target in order, and to explore its potential for diagnosing and treating HCC. Humanized single-chain antibody scFv for HCC was established using phage antibody library. E.coli HB2151 was infected with recombinant phage antibodies that are considered to be strongly positive by phage ELISA. Then, the soluble antibodies were obtained post IPTG induction. Soluble antibodies were detected using SDS-PAGE assay. Anti-GPC3 single-chain antibodies were labeled using 131I, and then the distribution of radioactive markers in nude mice were analyzed in vivo by radio-immunoimaging. The results indicated that the size of soluble scFv products was 30 kD after purifying anti-GPC3 scFv antibodies that are successfully screened from phage antibody library. Anti-GPC3 phage antibodies could specifically bind to HCC cells. The ratios of radioactive tumor/blood and tumor/muscle for 131I labeled anti-GPC3 monoclonal antibodies were increased gradually, achieving the highest at 48 h. Radio-immunoimaging showed that the radioactive uptake of tumor sites remained the strongest at 48 h, and the ratio of target to non-target was the highest. In conclusion, the established anti-GPC3 scFv antibody had the potential to become an agent for radio-immunoimaging in diagnosing HCC and act as a targeted antibody for further radio-immunotherapy of HCC.
Collapse
Affiliation(s)
- Lili Guan
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Wei Wu
- The Chongqing Key Laboratory of Toxicology and Drug Analysis, Chongqing Police CollegeChongqing, China
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Dong Duan
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Shaolin Li
- Department of Radiology, Chongqing Medical UniversityChongqing, China
| |
Collapse
|
21
|
Li N, Wei L, Liu X, Bai H, Ye Y, Li D, Li N, Baxa U, Wang Q, Lv L, Chen Y, Feng M, Lee B, Gao W, Ho M. A Frizzled-Like Cysteine-Rich Domain in Glypican-3 Mediates Wnt Binding and Regulates Hepatocellular Carcinoma Tumor Growth in Mice. Hepatology 2019; 70:1231-1245. [PMID: 30963603 PMCID: PMC6783318 DOI: 10.1002/hep.30646] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Wnt signaling is one of the key regulators of hepatocellular carcinoma (HCC) tumor progression. In addition to the classical receptor frizzled (FZD), various coreceptors including heparan sulfate proteoglycans (HSPGs) are involved in Wnt activation. Glypican-3 (GPC3) is an HSPG that is overexpressed in HCC and functions as a Wnt coreceptor that modulates HCC cell proliferation. These features make GPC3 an attractive target for liver cancer therapy. However, the precise interaction of GPC3 and Wnt and how GPC3, Wnt, and FZD cooperate with each other are poorly understood. In this study, we established a structural model of GPC3 containing a putative FZD-like cysteine-rich domain at its N-terminal lobe. We found that F41 and its surrounding residues in GPC3 formed a Wnt-binding groove that interacted with the middle region located between the lipid thumb domain and the index finger domain of Wnt3a. Mutating residues in this groove significantly inhibited Wnt3a binding, β-catenin activation, and the transcriptional activation of Wnt-dependent genes. In contrast with the heparan sulfate chains, the Wnt-binding groove that we identified in the protein core of GPC3 seemed to promote Wnt signaling in conditions when FZD was not abundant. Specifically, blocking this domain using an antibody inhibited Wnt activation. In HCC cells, mutating residue F41 on GPC3 inhibited activation of β-catenin in vitro and reduced xenograft tumor growth in nude mice compared with cells expressing wild-type GPC3. Conclusion: Our investigation demonstrates a detailed interaction of GPC3 and Wnt3a, reveals the precise mechanism of GPC3 acting as a Wnt coreceptor, and provides a potential target site on GPC3 for Wnt blocking and HCC therapy.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Liwen Wei
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Bio-medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Xiaoyu Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hongjun Bai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvonne Ye
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qun Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Ling Lv
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, P.R. China
| | - Yun Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Mingqian Feng
- Bio-medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Byungkook Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Corresponding to: Dr. Wei Gao, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Room A110, Nanjing, Jiangsu, 211166, P.R. China. Tel: 86-25-86869471; Fax: 86-25-86869471, . Dr. Mitchell Ho, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5002, Bethesda, MD 20892-4264. Tel: (240)760-7848; Fax: (301)402-1344;
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Corresponding to: Dr. Wei Gao, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Room A110, Nanjing, Jiangsu, 211166, P.R. China. Tel: 86-25-86869471; Fax: 86-25-86869471, . Dr. Mitchell Ho, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5002, Bethesda, MD 20892-4264. Tel: (240)760-7848; Fax: (301)402-1344;
| |
Collapse
|
22
|
Wang Z, Zhao K, Zhang Y, Duan X, Zhao Y. Anti-GPC3 Antibody Tagged Cationic Switchable Lipid-Based Nanoparticles for the Co-Delivery of Anti-miRNA27a And Sorafenib in Liver Cancers. Pharm Res 2019; 36:145. [PMID: 31396764 DOI: 10.1007/s11095-019-2669-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE The immediate plasma metabolism and development of chemo-resistance (single agent) severely hampers the clinical effectiveness of Sorafenib (SRF) in liver cancer therapy. MicroRNA27a inhibition is a promising biological strategy for breast cancer therapy. METHODS In this study, we aimed to prepare SRF and anti-miRNA27a-loaded anti-GPC3 antibody targeted lipid nanoparticles to enhance the therapeutic efficacy against liver cancers. In this study, we have employed a unique cationic switchable lipid (CSL) as a mean to encapsulate miRNA as well as to confer pH-responsiveness to the nanocarrier system. RESULTS The G-S27LN was nanosized and offered a pH-responsive release of SRF from the carrier system and we have demonstrated the specific affinity of G-S27LN towards the GPC3-overexpressed HepG2 cancer cells. Anti-microRNA27a significantly increased the protein expression of FOXO1 and PPAR-γ which are crucial components involved in proliferation and apoptosis of tumor cells. Combination of SRF and anti-miRNA27a (G-S27LN) resulted in significantly lower cell viability with a marked increase in the apoptosis cell proportion compared to that of free SRF indicating the synergistic anticancer effect. Animal studies in liver cancer xenograft model demonstrated significant suppression of tumor burden, reduced tumor cell and elevated TUNEL positive apoptosis with no toxicity concerns in animals treated with G-S27LN formulation. CONCLUSION The CSL-based G-S27LN efficiently co-delivered anti-microRNA27a and SRF and therefore represents a promising therapy to treat liver cancer. This study also brings forth a platform strategy for the effective treatment of number of other advanced cancers.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kun Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingxuan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinxin Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongfu Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
23
|
Role of glypicans in regulation of the tumor microenvironment and cancer progression. Biochem Pharmacol 2019; 168:108-118. [PMID: 31251939 DOI: 10.1016/j.bcp.2019.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022]
Abstract
Glypicans are evolutionary conserved, cell surface heparan sulfate (HS) proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. Glypicans interact with a broad class of soluble and insoluble ligands, such as morphogens, growth factors, chemokines, receptors and components of the extracellular matrix (ECM). Such versatility comes from their ability to interact through both their HS chains and core protein. Glypicans are involved in cellular and tissue development, morphogenesis and cell motility. They exhibit differential expression in several cancers, acting as both tumor promoters and inhibitors in a cancer type-specific manner. They also influence tumor stroma by facilitating angiogenesis, ECM remodeling and alteration of immune cell functions. Glypicans have emerged as a new therapeutic moiety, whose functions can be exploited in the field of targeted therapies and precision medicine in cancer. This is demonstrated by the emergence of several anti-glypican antibody-based immunologics that have been recently developed and are being evaluated in clinical trials. This review will focus on glypican structure and function with an emphasis on their expression in various cancers. Discussion will also center on the potential of glypicans to be therapeutic targets for inhibition of cancer cell growth.
Collapse
|
24
|
Kerekes K, Bányai L, Trexler M, Patthy L. Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways. Growth Factors 2019; 37:29-52. [PMID: 31210071 DOI: 10.1080/08977194.2019.1626380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wnts and Hedgehogs (Hh) are large, lipid-modified extracellular morphogens that play key roles in embryonic development and stem cell proliferation of Metazoa. Both morphogens signal through heptahelical Frizzled-type receptors of the G-Protein Coupled Receptor family and there are several other similarities that suggest a common evolutionary origin of the Hh and Wnt pathways. There is evidence that the secreted protein, Wnt inhibitory factor 1 (WIF1) modulates the activity of both Wnts and Hhs and may thus contribute to the intertwining of these pathways. In this article, we review the structure, evolution, molecular interactions and functions of WIF1 with major emphasis on its role in carcinogenesis.
Collapse
Affiliation(s)
- Krisztina Kerekes
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Bányai
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Mária Trexler
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Patthy
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
25
|
Li N, Gao W, Zhang YF, Ho M. Glypicans as Cancer Therapeutic Targets. Trends Cancer 2018; 4:741-754. [PMID: 30352677 PMCID: PMC6209326 DOI: 10.1016/j.trecan.2018.09.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
Glypicans are a group of cell-surface glycoproteins in which heparan sulfate (HS) glycosaminoglycan chains are covalently linked to a protein core. The glypican gene family is broadly conserved across animal species and plays important roles in biological processes. Glypicans can function as coreceptors for multiple signaling molecules known for regulating cell growth, motility, and differentiation. Some members of the glypican family, including glypican 2 (GPC2) and glypican 3 (GPC3), are expressed in childhood cancers and liver cancers, respectively. Antibody-based therapies targeting glypicans are being investigated in preclinical and clinical studies, with the goal of treating solid tumors that do not respond to standard therapies. These studies may establish glypicans as a new class of therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Gao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yi-Fan Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Tang X, Chen L, Li A, Cai S, Zhang Y, Liu X, Jiang Z, Liu X, Liang Y, Ma D. Anti-GPC3 antibody-modified sorafenib-loaded nanoparticles significantly inhibited HepG2 hepatocellular carcinoma. Drug Deliv 2018; 25:1484-1494. [PMID: 29916268 PMCID: PMC6058710 DOI: 10.1080/10717544.2018.1477859] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sorafenib (SFB) has improved the treatment of hepatocellular carcinoma (HCC) and has fewer severe side effects than other agents used for that purpose. However, due to a lack of tumor-specific targeting, the concentration of the drug in tumor tissue cannot be permanently maintained at a level that inhibits tumor growth. To overcome this problem, we developed a novel SFB-loaded polymer nanoparticle (NP). The NP (a TPGS-b-PCL copolymer that was synthesized from ε-caprolactone and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) via ring-opening polymerization) contains Pluronic P123 and SFB, and its surface is modified with anti-GPC3 antibody to produce the polymer nanoparticle (NP-SFB-Ab). The Ab-conjugated NPs had higher cellular uptake by HepG2 cells than did non-antibody-conjugated SPD-containing nanoparticles (NP-SFB). The NP-SFB-Ab also displayed better stability characteristics, released higher levels of SFB into cell culture medium, and was more cytotoxic to tumor cells than was non-targeted NP-SFB and free SFB. The NP-SFB-Ab downregulated expression of the anti-apoptosis molecule MCL-1, which led to polymerization of Bax and Bak in mitochondrial cytosol. The NP-SFB-AB also promoted the mitochondrial release of cytochrome C, resulting in cellular apoptosis. Moreover, the NP-SFB-Ab significantly inhibited the growth of HepG2 xenograft tumors in nude mice without producing obvious side effects. These findings suggest that NP-SFB-Ab is a promising new method for achieving targeted therapy of HCC.
Collapse
Affiliation(s)
- Xiaolong Tang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Longzhou Chen
- b Department of Galactophore , Huai'an Maternity and Child Healthcare Hospital Affiliated to Yangzhou University Medical Academy , Huaian , China
| | - Amin Li
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Shiyu Cai
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Yinci Zhang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Xueke Liu
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Zhenyou Jiang
- c Department of Microbiology and Immunology , Jinan University , Guangzhou , China
| | - Xinkuang Liu
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Yong Liang
- d Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second Hospital , Huai'an , China
| | - Dong Ma
- e Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes , Jinan University , Guangzhou , China
| |
Collapse
|
27
|
Saad A, Liet B, Joucla G, Santarelli X, Charpentier J, Claverol S, Grosset CF, Trézéguet V. Role of Glycanation and Convertase Maturation of Soluble Glypican-3 in Inhibiting Proliferation of Hepatocellular Carcinoma Cells. Biochemistry 2018; 57:1201-1211. [PMID: 29345911 DOI: 10.1021/acs.biochem.7b01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glypican 3 (GPC3) is a complex heparan sulfate proteoglycan associated with the outer surface of the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. It is also N-glycosylated and processed by a furin-like convertase. GPC3 has numerous biological functions. Although GPC3 is undetectable in normal liver tissue, it is abnormally and highly overexpressed in hepatocellular carcinoma (HCC). Interestingly, proliferation of HCC cells such as HepG2 and HuH7 is inhibited when they express a soluble form of GPC3 after lentiviral transduction. To obtain more insight into the role of some of its post-translational modifications, we designed a mutant GPC3, sGPC3m, without its GPI anchor, convertase cleavage site, and glycosaminoglycan chains. The highly pure sGPC3m protein strongly inhibited HuH7 and HepG2 cell proliferation in vitro and induced a significant increase in their cell doubling time. It changed the morphology of HuH7 cells but not that of HepG2. It induced the enlargement of HuH7 cell nuclear area and the restructuration of adherent cell junctions. Unexpectedly, for both cell types, the levels of apoptosis, cell division, and β-catenin were not altered by sGPC3m, although growth inhibition was very efficient. Overall, our data show that glycanation and convertase maturation are not required for sGPC3m to inhibit HCC cell proliferation.
Collapse
Affiliation(s)
- Ahmad Saad
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Benjamin Liet
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Gilles Joucla
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | - Xavier Santarelli
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France
| | | | - Stéphane Claverol
- Univ. Bordeaux, Plateforme Protéome, CGFB , F-33076 Bordeaux, France
| | - Christophe F Grosset
- Univ. Bordeaux, Inserm, BMGIC, U1035 , 33076 Bordeaux, France.,Univ. Bordeaux, Inserm, GREF, U1053 , 33076 Bordeaux, France
| | - Véronique Trézéguet
- Univ. Bordeaux, CBMN, UMR 5248 , F-33615 Pessac, France.,CNRS, CBMN, UMR 5248 , F-33615 Pessac, France.,Bordeaux INP, CBMN, UMR 5248 , F-33615 Pessac, France.,Univ. Bordeaux, Inserm, BMGIC, U1035 , 33076 Bordeaux, France
| |
Collapse
|
28
|
Abstract
Gastric cancer is a disease with low survival rates and high morbidity, requiring accurate and prompt diagnosis and treatment. Although limited in the evaluation of the primary tumor as such, the metabolic information of primary tumors in an 18F-FDG PET/CT study can assist in surgical and treatment planning and differentiating gastric cancers. It detects nodal disease with good specificity and positive predictive value, thus enabling appropriate therapy for individual patients. It provides valuable information about distant metastases, altering therapy decisions. It has reasonably good performance in detecting recurrent disease and in the follow-up of patients.
Collapse
|
29
|
Simon E, Aguirre-Tamaral A, Aguilar G, Guerrero I. Perspectives on Intra- and Intercellular Trafficking of Hedgehog for Tissue Patterning. J Dev Biol 2016; 4:jdb4040034. [PMID: 29615597 PMCID: PMC5831803 DOI: 10.3390/jdb4040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Intercellular communication is a fundamental process for correct tissue development. The mechanism of this process involves, among other things, the production and secretion of signaling molecules by specialized cell types and the capability of these signals to reach the target cells in order to trigger specific responses. Hedgehog (Hh) is one of the best-studied signaling pathways because of its importance during morphogenesis in many organisms. The Hh protein acts as a morphogen, activating its targets at a distance in a concentration-dependent manner. Post-translational modifications of Hh lead to a molecule covalently bond to two lipid moieties. These lipid modifications confer Hh high affinity to lipidic membranes, and intense studies have been carried out to explain its release into the extracellular matrix. This work reviews Hh molecule maturation, the intracellular recycling needed for its secretion and the proposed carriers to explain Hh transportation to the receiving cells. Special focus is placed on the role of specialized filopodia, also named cytonemes, in morphogen transport and gradient formation.
Collapse
Affiliation(s)
- Eléanor Simon
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Adrián Aguirre-Tamaral
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Gustavo Aguilar
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Isabel Guerrero
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
30
|
Huang H, Kornberg TB. Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes. eLife 2016; 5. [PMID: 27591355 PMCID: PMC5030081 DOI: 10.7554/elife.18979] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/31/2016] [Indexed: 01/10/2023] Open
Abstract
Drosophila dorsal air sac development depends on Decapentaplegic (Dpp) and Fibroblast growth factor (FGF) proteins produced by the wing imaginal disc and transported by cytonemes to the air sac primordium (ASP). Dpp and FGF signaling in the ASP was dependent on components of the planar cell polarity (PCP) system in the disc, and neither Dpp- nor FGF-receiving cytonemes extended over mutant disc cells that lacked them. ASP cytonemes normally navigate through extracellular matrix (ECM) composed of collagen, laminin, Dally and Dally-like (Dlp) proteins that are stratified in layers over the disc cells. However, ECM over PCP mutant cells had reduced levels of laminin, Dally and Dlp, and whereas Dpp-receiving ASP cytonemes navigated in the Dally layer and required Dally (but not Dlp), FGF-receiving ASP cytonemes navigated in the Dlp layer, requiring Dlp (but not Dally). These findings suggest that cytonemes interact directly and specifically with proteins in the stratified ECM.
Collapse
Affiliation(s)
- Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
31
|
Awad W, Adamczyk B, Örnros J, Karlsson NG, Mani K, Logan DT. Structural Aspects of N-Glycosylations and the C-terminal Region in Human Glypican-1. J Biol Chem 2015; 290:22991-3008. [PMID: 26203194 PMCID: PMC4645609 DOI: 10.1074/jbc.m115.660878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
Glypicans are multifunctional cell surface proteoglycans involved in several important cellular signaling pathways. Glypican-1 (Gpc1) is the predominant heparan sulfate proteoglycan in the developing and adult human brain. The two N-linked glycans and the C-terminal domain that attach the core protein to the cell membrane are not resolved in the Gpc1 crystal structure. Therefore, we have studied Gpc1 using crystallography, small angle x-ray scattering, and chromatographic approaches to elucidate the composition, structure, and function of the N-glycans and the C terminus and also the topology of Gpc1 with respect to the membrane. The C terminus is shown to be highly flexible in solution, but it orients the core protein transverse to the membrane, directing a surface evolutionarily conserved in Gpc1 orthologs toward the membrane, where it may interact with signaling molecules and/or membrane receptors on the cell surface, or even the enzymes involved in heparan sulfate substitution in the Golgi apparatus. Furthermore, the N-glycans are shown to extend the protein stability and lifetime by protection against proteolysis and aggregation.
Collapse
Affiliation(s)
- Wael Awad
- From the Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Box 124, SE-221 00 Lund
| | - Barbara Adamczyk
- the Department of Biochemistry and Cell Biology, University of Gothenburg, Box 440, SE-40530 Gothenburg, and
| | - Jessica Örnros
- the Department of Biochemistry and Cell Biology, University of Gothenburg, Box 440, SE-40530 Gothenburg, and
| | - Niclas G Karlsson
- the Department of Biochemistry and Cell Biology, University of Gothenburg, Box 440, SE-40530 Gothenburg, and
| | - Katrin Mani
- the Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Derek T Logan
- From the Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Box 124, SE-221 00 Lund,
| |
Collapse
|
32
|
Marki A, Esko JD, Pries AR, Ley K. Role of the endothelial surface layer in neutrophil recruitment. J Leukoc Biol 2015; 98:503-15. [PMID: 25979432 DOI: 10.1189/jlb.3mr0115-011r] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Neutrophil recruitment in most tissues is limited to postcapillary venules, where E- and P-selectins are inducibly expressed by venular endothelial cells. These molecules support neutrophil rolling via binding of PSGL-1 and other ligands on neutrophils. Selectins extend ≤ 38 nm above the endothelial plasma membrane, and PSGL-1 extends to 50 nm above the neutrophil plasma membrane. However, endothelial cells are covered with an ESL composed of glycosaminoglycans that is ≥ 500 nm thick and has measurable resistance against compression. The neutrophil surface is also covered with a surface layer. These surface layers would be expected to completely shield adhesion molecules; thus, neutrophils should not be able to roll and adhere. However, in the cremaster muscle and in many other models investigated using intravital microscopy, neutrophils clearly roll, and their rolling is easily and quickly induced. This conundrum was thought to be resolved by the observation that the induction of selectins is accompanied by ESL shedding; however, ESL shedding only partially reduces the ESL thickness (to 200 nm) and thus is insufficient to expose adhesion molecules. In addition to its antiadhesive functions, the ESL also presents neutrophil arrest-inducing chemokines. ESL heparan sulfate can also bind L-selectin expressed by the neutrophils, which contributes to rolling and arrest. We conclude that ESL has both proadhesive and antiadhesive functions. However, most previous studies considered either only the proadhesive or only the antiadhesive effects of the ESL. An integrated model for the role of the ESL in neutrophil rolling, arrest, and transmigration is needed.
Collapse
Affiliation(s)
- Alex Marki
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Jeffrey D Esko
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Axel R Pries
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Klaus Ley
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| |
Collapse
|
33
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 848] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
34
|
House AJ, Daye LR, Tarpley M, Addo K, Lamson DS, Parker MK, Bealer WE, Williams KP. Design and characterization of a photo-activatable hedgehog probe that mimics the natural lipidated form. Arch Biochem Biophys 2014; 567:66-74. [PMID: 25529135 DOI: 10.1016/j.abb.2014.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Abstract
We have generated a photoactivatable form of sonic hedgehog protein by modifying the N-terminal cysteine with the heterobifunctional photocrosslinker 4-maleimidobenzophenone (Bzm). The Bzm modification on ShhN imparted a significant increase in activity as assessed in the C3H10T1/2 functional assay with potency comparable to that of the endogenous dual-lipidated form of ShhN (ShhNp). Reversed-phase HPLC analysis indicated that the increase in activity compared to unmodified ShhN may be due in part to the hydrophobic nature of the benzophenone group. In contrast to the fully processed ShhNp, Bzm-ShhN is monomeric as assessed by analytical SEC and does not require detergent to be soluble. Further, we demonstrated that the Bzm-ShhN was able to crosslink in vitro in the presence of a known binding partner, heparin. We suggest that Bzm-ShhN can serve as a relatively facile and preferred source of ShhNp for in vitro assays and as a probe to identify novel Hh protein interactions.
Collapse
Affiliation(s)
- Alan J House
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Laura R Daye
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Michael Tarpley
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Kezia Addo
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - David S Lamson
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Margie K Parker
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Warren E Bealer
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Kevin P Williams
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
35
|
McCabe JM, Leahy DJ. Smoothened goes molecular: new pieces in the hedgehog signaling puzzle. J Biol Chem 2014; 290:3500-7. [PMID: 25519909 DOI: 10.1074/jbc.r114.617936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A general aim of studies of signal transduction is to identify mediators of specific signals, order them into pathways, and understand the nature of interactions between individual components and how these interactions alter pathway behavior. Despite years of intensive study and its central importance to animal development and human health, our understanding of the Hedgehog (Hh) signaling pathway remains riddled with gaps, question marks, assumptions, and poorly understood connections. In particular, understanding how interactions between Hh and Patched (Ptc), a 12-pass integral membrane protein, lead to modulation of the function of Smoothened (Smo), a 7-pass integral membrane protein, has defied standard biochemical characterization. Recent structural and biochemical characterizations of Smoothened domains have begun to unlock this riddle, however, and lay the groundwork for improved cancer therapies.
Collapse
Affiliation(s)
- Jacqueline M McCabe
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Daniel J Leahy
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
36
|
Cheng H, Schaeffer RD, Liao Y, Kinch LN, Pei J, Shi S, Kim BH, Grishin NV. ECOD: an evolutionary classification of protein domains. PLoS Comput Biol 2014; 10:e1003926. [PMID: 25474468 PMCID: PMC4256011 DOI: 10.1371/journal.pcbi.1003926] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/22/2014] [Indexed: 01/02/2023] Open
Abstract
Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or "fold"). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.
Collapse
Affiliation(s)
- Hua Cheng
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - R. Dustin Schaeffer
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yuxing Liao
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lisa N. Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shuoyong Shi
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Bong-Hyun Kim
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Wang X, Page-McCaw A. A matrix metalloproteinase mediates long-distance attenuation of stem cell proliferation. ACTA ACUST UNITED AC 2014; 206:923-36. [PMID: 25267296 PMCID: PMC4178971 DOI: 10.1083/jcb.201403084] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-range signaling by Wingless in the Drosophila ovary requires the glypican Dally-like and is antagonized by Dally-like cleavage by the extracellular metalloproteinase Mmp2. Ligand-based signaling can potentiate communication between neighboring cells and between cells separated by large distances. In the Drosophila melanogaster ovary, Wingless (Wg) promotes proliferation of follicle stem cells located ∼50 µm or five cell diameters away from the Wg source. How Wg traverses this distance is unclear. We find that this long-range signaling requires Division abnormally delayed (Dally)-like (Dlp), a glypican known to extend the range of Wg ligand in the wing disc by binding Wg. Dlp-mediated spreading of Wg to follicle stem cells is opposed by the extracellular protease Mmp2, which cleaved Dlp in cell culture, triggering its relocalization such that Dlp no longer contacted Wg protein. Mmp2-deficient ovaries displayed increased Wg distribution, activity, and stem cell proliferation. Mmp2 protein is expressed in the same cells that produce Wg; thus, niche cells produce both a long-range stem cell proliferation factor and a negative regulator of its spreading. This system could allow for spatial control of Wg signaling to targets at different distances from the source.
Collapse
Affiliation(s)
- Xiaoxi Wang
- Department of Cell and Developmental Biology, Program in Developmental Biology, and Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 Department of Cell and Developmental Biology, Program in Developmental Biology, and Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Program in Developmental Biology, and Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 Department of Cell and Developmental Biology, Program in Developmental Biology, and Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 Department of Cell and Developmental Biology, Program in Developmental Biology, and Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
38
|
Lleo A, Zhang W, McDonald WH, Seeley EH, Leung PS, Coppel RL, Ansari AA, Adams DH, Afford S, Invernizzi P, Gershwin ME. Shotgun proteomics: identification of unique protein profiles of apoptotic bodies from biliary epithelial cells. Hepatology 2014; 60:1314-1323. [PMID: 24841946 PMCID: PMC4175017 DOI: 10.1002/hep.27230] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/16/2014] [Indexed: 01/06/2023]
Abstract
UNLABELLED Shotgun proteomics is a powerful analytic method to characterize complex protein mixtures in combination with multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). We used this platform for proteomic characterization of apoptotic bodies in an effort to define the complex protein mixtures found in primary cultures of human intrahepatic biliary epithelial cells (HiBEC), human renal proximal tubular epithelial cells, human bronchial epithelial cells, isolated intrahepatic biliary epithelial cells from explanted primary biliary cirrhosis (PBC), and control liver using a total of 24 individual samples. Further, as additional controls and for purposes of comparison, proteomic signatures were also obtained from intact cells and apoptotic bodies. The data obtained from LC-MS/MS, combined with database searches and protein assembly algorithms, allowed us to address significant differences in protein spectral counts and identify unique pathways that may be a component of the induction of the signature inflammatory cytokine response against BECs, including the Notch signaling pathway, interleukin (IL)8, IL6, CXCR2, and integrin signaling. Indeed, there are 11 proteins that localize specifically to apoptotic bodies of HiBEC and eight proteins that were specifically absent in HiBEC apoptotic bodies. CONCLUSION Proteomic analysis of BECs from PBC liver compared to normal liver are significantly different, suggesting that an immunological attack affects the repertoire of proteins expressed and that such cells should be thought of as living in an environment undergoing continuous selection secondary to an innate and adaptive immune response, reflecting an almost "Darwinian" bias.
Collapse
Affiliation(s)
- Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin H. Seeley
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Ross L. Coppel
- Department of Medical Microbiology, Monash University, Melbourne, Australia
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - David H. Adams
- Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - Simon Afford
- Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
39
|
Gao W, Kim H, Feng M, Phung Y, Xavier CP, Rubin JS, Ho M. Inactivation of Wnt signaling by a human antibody that recognizes the heparan sulfate chains of glypican-3 for liver cancer therapy. Hepatology 2014; 60:576-87. [PMID: 24492943 PMCID: PMC4083010 DOI: 10.1002/hep.26996] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/23/2013] [Indexed: 12/21/2022]
Abstract
UNLABELLED Wnt signaling is important for cancer pathogenesis and is often up-regulated in hepatocellular carcinoma (HCC). Heparan sulfate proteoglycans (HSPGs) function as coreceptors or modulators of Wnt activation. Glypican-3 (GPC3) is an HSPG that is highly expressed in HCC, where it can attract Wnt proteins to the cell surface and promote cell proliferation. Thus, GPC3 has emerged as a candidate therapeutic target in liver cancer. While monoclonal antibodies to GPC3 are currently being evaluated in preclinical and clinical studies, none have shown an effect on Wnt signaling. Here, we first document the expression of Wnt3a, multiple Wnt receptors, and GPC3 in several HCC cell lines, and demonstrate that GPC3 enhanced the activity of Wnt3a/β-catenin signaling in these cells. Then we report the identification of HS20, a human monoclonal antibody against GPC3, which preferentially recognized the heparan sulfate chains of GPC3, both the sulfated and nonsulfated portions. HS20 disrupted the interaction of Wnt3a and GPC3 and blocked Wnt3a/β-catenin signaling. Moreover, HS20 inhibited Wnt3a-dependent cell proliferation in vitro and HCC xenograft growth in nude mice. In addition, HS20 had no detectable undesired toxicity in mice. Taken together, our results show that a monoclonal antibody primarily targeting the heparin sulfate chains of GPC3 inhibited Wnt/β-catenin signaling in HCC cells and had potent antitumor activity in vivo. CONCLUSION An antibody directed against the heparan sulfate of a proteoglycan shows efficacy in blocking Wnt signaling and HCC growth, suggesting a novel strategy for liver cancer therapy.
Collapse
Affiliation(s)
- Wei Gao
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Heungnam Kim
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mingqian Feng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yen Phung
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Charles P. Xavier
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jeffrey S. Rubin
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,Corresponding Author: Dr. Mitchell Ho, Antibody Therapy Section, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5002C, Bethesda, MD 20892-4264. Tel: (301)451-8727; Fax: (301)402-1344;
| |
Collapse
|
40
|
Guerrero I, Kornberg TB. Hedgehog and its circuitous journey from producing to target cells. Semin Cell Dev Biol 2014; 33:52-62. [PMID: 24994598 DOI: 10.1016/j.semcdb.2014.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The hedgehog (Hh) signaling protein has essential roles in the growth, development and regulation of many vertebrate and invertebrate organs. The processes that make Hh and prepare it for release from producing cells and that move it to target cells are both diverse and complex. This article reviews the essential features of these processes and highlights recent work that provides a novel framework to understand how these processes contribute to an integrated pathway.
Collapse
Affiliation(s)
- Isabel Guerrero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain.
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
41
|
Ofuji K, Saito K, Yoshikawa T, Nakatsura T. Critical analysis of the potential of targeting GPC3 in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:35-42. [PMID: 27508174 PMCID: PMC4918265 DOI: 10.2147/jhc.s48517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. The treatment options for patients with advanced HCC are limited, and novel treatment strategies are required urgently. Glypican-3 (GPC3), a member of the glypican family of heparan sulfate proteoglycans, is overexpressed in 72%−81% of HCC cases, and is correlated with a poor prognosis. GPC3 regulates both stimulatory and inhibitory signals, and plays a key role in regulating cancer cell growth. GPC3 is released into the serum, and so might be a useful diagnostic marker for HCC. GPC3 is also used as an immunotherapeutic target in HCC. A Phase I study of a humanized anti-GPC3 monoclonal antibody, GC33, revealed a good safety profile and potential antitumor activity, and a Phase II trial is currently ongoing. In addition, the authors’ investigator-initiated Phase I study of a GPC3-derived peptide vaccine showed good safety and tolerability, and demonstrated that the GPC3 peptide-specific cytotoxic T-lymphocyte frequency in peripheral blood correlated with overall survival in HCC patients. A sponsor-initiated Phase I clinical trial of a three-peptide cocktail vaccine, which includes a GPC3-derived peptide, is also underway. GPC3 is currently recognized as a promising therapeutic target and diagnostic marker for HCC. This review introduces the recent progress in GPC3 research, from biology to clinical impact.
Collapse
Affiliation(s)
- Kazuya Ofuji
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Keigo Saito
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
42
|
Wilson NH, Stoeckli ET. Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner. Neuron 2013; 79:478-91. [PMID: 23931997 DOI: 10.1016/j.neuron.2013.05.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2013] [Indexed: 11/28/2022]
Abstract
Upon reaching their intermediate target, the floorplate, commissural axons acquire responsiveness to repulsive guidance cues, allowing the axons to exit the midline and adopt a contralateral, longitudinal trajectory. The molecular mechanisms that regulate this switch from attraction to repulsion remain poorly defined. Here, we show that the heparan sulfate proteoglycan Glypican1 (GPC1) is required as a coreceptor for the Shh-dependent induction of Hedgehog-interacting protein (Hhip) in commissural neurons. In turn, Hhip is required for postcrossing axons to respond to a repulsive anteroposterior Shh gradient. Thus, Shh is a cue with dual function. In precrossing axons it acts as an attractive guidance molecule in a transcription-independent manner. At the same time, Shh binds to GPC1 to induce the expression of its own receptor, Hhip, which mediates the repulsive response of postcrossing axons to Shh. Our study characterizes a molecular mechanism by which navigating axons switch their responsiveness at intermediate targets.
Collapse
Affiliation(s)
- Nicole H Wilson
- Institute of Molecular Life Sciences, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
43
|
Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C, González-Méndez L, Guerrero I. Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat Cell Biol 2013; 15:1269-81. [PMID: 24121526 PMCID: PMC3840581 DOI: 10.1038/ncb2856] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 08/29/2013] [Indexed: 12/13/2022]
Abstract
Hedgehog (Hh) signalling is important in development, stem cell biology and disease. In a variety of tissues, Hh acts as a morphogen to regulate growth and cell fate specification. Several hypotheses have been proposed to explain morphogen movement, one of which is transport along filopodia-like protrusions called cytonemes. Here, we analyse the mechanism underlying Hh movement in the wing disc and the abdominal epidermis of Drosophila melanogaster. We show that, in both epithelia, cells generate cytonemes in regions of Hh signalling. These protrusions are actin-based and span several cell diameters. Various Hh signalling components localize to cytonemes, as well as to punctate structures that move along cytonemes and are probably exovesicles. Using in vivo imaging, we show that cytonemes are dynamic structures and that Hh gradient establishment correlates with cytoneme formation in space and time. Indeed, mutant conditions that affect cytoneme formation reduce both cytoneme length and Hh gradient length. Our results suggest that cytoneme-mediated Hh transport is the mechanistic basis for Hh gradient formation.
Collapse
Affiliation(s)
- Marcus Bischoff
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Ana-Citlali Gradilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Irene Seijo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Germán Andrés
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Carmen Rodríguez-Navas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Laura González-Méndez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Isabel Guerrero
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
44
|
Nachtergaele S, Whalen DM, Mydock LK, Zhao Z, Malinauskas T, Krishnan K, Ingham PW, Covey DF, Siebold C, Rohatgi R. Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. eLife 2013; 2:e01340. [PMID: 24171105 PMCID: PMC3809587 DOI: 10.7554/elife.01340] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022] Open
Abstract
The Hedgehog (Hh) signal is transduced across the membrane by the heptahelical protein Smoothened (Smo), a developmental regulator, oncoprotein and drug target in oncology. We present the 2.3 Å crystal structure of the extracellular cysteine rich domain (CRD) of vertebrate Smo and show that it binds to oxysterols, endogenous lipids that activate Hh signaling. The oxysterol-binding groove in the Smo CRD is analogous to that used by Frizzled 8 to bind to the palmitoleyl group of Wnt ligands and to similar pockets used by other Frizzled-like CRDs to bind hydrophobic ligands. The CRD is required for signaling in response to native Hh ligands, showing that it is an important regulatory module for Smo activation. Indeed, targeting of the Smo CRD by oxysterol-inspired small molecules can block signaling by all known classes of Hh activators and by clinically relevant Smo mutants. DOI:http://dx.doi.org/10.7554/eLife.01340.001.
Collapse
MESH Headings
- Animals
- Binding Sites
- Crystallography, X-Ray
- Embryo, Nonmammalian
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Developmental
- Hedgehog Proteins/chemistry
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Ligands
- Mice
- Models, Molecular
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Smoothened Receptor
- Sterols/chemistry
- Structure-Activity Relationship
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Sigrid Nachtergaele
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Daniel M Whalen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Laurel K Mydock
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Zhonghua Zhao
- A*STAR Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Philip W Ingham
- A*STAR Institute of Molecular and Cell Biology, Singapore, Singapore
- Lee Kong Chian School of Medicine, Imperial College London/Nanyang Technological University, Singapore, Singapore
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
45
|
Feng M, Ho M. Glypican-3 antibodies: a new therapeutic target for liver cancer. FEBS Lett 2013; 588:377-82. [PMID: 24140348 DOI: 10.1016/j.febslet.2013.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 02/08/2023]
Abstract
Glypican-3 (GPC3) is an emerging therapeutic target in hepatocellular carcinoma (HCC), even though the biological function of GPC3 remains elusive. Currently human (MDX-1414 and HN3) and humanized mouse (GC33 and YP7) antibodies that target GPC3 for HCC treatment are under different stages of preclinical or clinical development. Humanized mouse antibody GC33 is being evaluated in a phase II clinical trial. Human antibodies MDX-1414 and HN3 are under different stages of preclinical evaluation. Here, we summarize current evidence for GPC3 as a new target in liver cancer, discuss both its oncogenic function and its mode of actions for current antibodies, and evaluate potential challenges for GPC3-targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Mingqian Feng
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell Ho
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Taneja-Bageshwar S, Gumienny TL. Regulation of TGFβ superfamily signaling by two separable domains of glypican LON-2 in C. elegans. WORM 2013; 2:e23843. [PMID: 24778932 PMCID: PMC3875644 DOI: 10.4161/worm.23843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/31/2013] [Indexed: 12/30/2022]
Abstract
Regulated intercellular signaling is critical for the normal development and maintenance of multicellular organisms. Glypicans have been shown to regulate signaling by TGFβs, hedgehogs and Wnts, in several cellular contexts. Glypicans comprise a conserved family of heparan sulfated, glycosylphosphatidylinositol (GPI)-linked extracellular proteins. The structural complexity of glypicans may underlie their functional complexity. In a recent study31, we built on previous findings that one of the two C. elegans glypicans, LON-2, specifically inhibits signaling by the TGFβ superfamily member DBL-1. We tested the functional requirements of LON-2 protein core components and post-translational modifications for LON-2 activity. We provide the first evidence that two parts of a glypican can independently regulate TGFβ superfamily signaling in vivo: the N-terminal furin protease product and a C-terminal region containing heparan sulfate attachment sites. Furthermore, we show a protein-protein interaction motif is crucial for LON-2 activity in the N-terminal protein core, suggesting that LON-2 acts by serving as a scaffold for DBL-1 and an RGD-binding protein. In addition, we demonstrate specificity of glypican function by showing C. elegans GPN-1 does not functionally substitute for LON-2. This work reveals a molecular foundation for understanding the complexity and specificity of glypican function.
Collapse
Affiliation(s)
- Suparna Taneja-Bageshwar
- Department of Molecular and Cellular Medicine; College of Medicine; Texas A&M Health Science Center; College Station, TX USA
| | - Tina L Gumienny
- Department of Molecular and Cellular Medicine; College of Medicine; Texas A&M Health Science Center; College Station, TX USA
| |
Collapse
|
47
|
Witt RM, Hecht ML, Pazyra-Murphy MF, Cohen SM, Noti C, van Kuppevelt TH, Fuller M, Chan JA, Hopwood JJ, Seeberger PH, Segal RA. Heparan sulfate proteoglycans containing a glypican 5 core and 2-O-sulfo-iduronic acid function as Sonic Hedgehog co-receptors to promote proliferation. J Biol Chem 2013; 288:26275-26288. [PMID: 23867465 DOI: 10.1074/jbc.m112.438937] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sonic Hedgehog (Shh) signaling is crucial for growth, cell fate determination, and axonal guidance in the developing nervous system. Although the receptors Patched (Ptch1) and Smoothened (Smo) are required for Shh signaling, a number of distinct co-receptors contribute to these critical responses to Shh. Several membrane-embedded proteins such as Boc, Cdo, and Gas1 bind Shh and promote signaling. In addition, heparan sulfate proteoglycans (HSPGs) have also been implicated in the initiation of Shh responses. However, the attributes of HSPGs that function as co-receptors for Shh have not yet been defined. Here, we identify HSPGs containing a glypican 5 core protein and 2-O-sulfo-iduronic acid residues at the nonreducing ends of the glycans as co-receptors for Shh. These HSPG co-receptors are expressed by cerebellar granule cell precursors and promote Shh binding and signaling. At the subcellular level, these HSPG co-receptors are located adjacent to the primary cilia that act as Shh signaling organelles. Thus, Shh binds to HSPG co-receptors containing a glypican 5 core and 2-O-sulfo-iduronic acid to promote neural precursor proliferation.
Collapse
Affiliation(s)
- Rochelle M Witt
- From the Dana Farber Cancer Institute, Boston, Massachusetts 02215,; the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02215
| | - Marie-Lyn Hecht
- the Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1,14476 Potsdam, Germany,; the Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Str.10, CH-8093 Zürich, Switzerland
| | - Maria F Pazyra-Murphy
- From the Dana Farber Cancer Institute, Boston, Massachusetts 02215,; the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02215
| | - Samuel M Cohen
- From the Dana Farber Cancer Institute, Boston, Massachusetts 02215,; the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02215
| | - Christian Noti
- the Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Str.10, CH-8093 Zürich, Switzerland
| | - Toin H van Kuppevelt
- the Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen Medical Centre, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Maria Fuller
- the Lysosomal Diseases Research Unit, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia 5006, Australia
| | - Jennifer A Chan
- the Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, and
| | - John J Hopwood
- the Lysosomal Diseases Research Unit, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia 5006, Australia
| | - Peter H Seeberger
- the Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1,14476 Potsdam, Germany,; the Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| | - Rosalind A Segal
- From the Dana Farber Cancer Institute, Boston, Massachusetts 02215,; the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02215,.
| |
Collapse
|
48
|
Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc Natl Acad Sci U S A 2013; 110:E1083-91. [PMID: 23471984 DOI: 10.1073/pnas.1217868110] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glypican-3 (GPC3) has emerged as a candidate therapeutic target in hepatocellular carcinoma (HCC), but the oncogenic role of GPC3 in HCC is poorly understood. Here, we report a human heavy-chain variable domain antibody, HN3, with high affinity (Kd = 0.6 nM) for cell-surface-associated GPC3 molecules. The human antibody recognized a conformational epitope that requires both the amino and carboxy terminal domains of GPC3. HN3 inhibited proliferation of GPC3-positive cells and exhibited significant inhibition of HCC xenograft tumor growth in nude mice. The underlying mechanism of HN3 action may involve cell-cycle arrest at G1 phase through Yes-associated protein signaling. This study suggests a previously unrecognized mechanism for GPC3-targeted cancer therapy.
Collapse
|
49
|
Dwivedi PP, Lam N, Powell BC. Boning up on glypicans-opportunities for new insights into bone biology. Cell Biochem Funct 2013; 31:91-114. [DOI: 10.1002/cbf.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/01/2023]
Affiliation(s)
| | - N. Lam
- Craniofacial Research Group; Women's and Children's Health Research Institute; North Adelaide; South Australia; Australia
| | | |
Collapse
|
50
|
Abstract
Liver regeneration is perhaps the most studied example of compensatory growth aimed to replace loss of tissue in an organ. Hepatocytes, the main functional cells of the liver, manage to proliferate to restore mass and to simultaneously deliver all functions hepatic functions necessary to maintain body homeostasis. They are the first cells to respond to regenerative stimuli triggered by mitogenic growth factor receptors MET (the hepatocyte growth factor receptor] and epidermal growth factor receptor and complemented by auxiliary mitogenic signals induced by other cytokines. Termination of liver regeneration is a complex process affected by integrin mediated signaling and it restores the organ to its original mass as determined by the needs of the body (hepatostat function). When hepatocytes cannot proliferate, progenitor cells derived from the biliary epithelium transdifferentiate to restore the hepatocyte compartment. In a reverse situation, hepatocytes can also transdifferentiate to restore the biliary compartment. Several hormones and xenobiotics alter the hepatostat directly and induce an increase in liver to body weight ratio (augmentative hepatomegaly). The complex challenges of the liver toward body homeostasis are thus always preserved by complex but unfailing responses involving orchestrated signaling and affecting growth and differentiation of all hepatic cell types.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|