1
|
Parisis D, Sarrand J, Soyfoo M. The Potential Contribution of the IL-37/IL-18/IL-18BP/IL-18R Axis in the Pathogenesis of Sjögren's Syndrome. Int J Mol Sci 2025; 26:4877. [PMID: 40430016 PMCID: PMC12112074 DOI: 10.3390/ijms26104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
The objective of this study was to explore the expression profile of the Interleukin (IL)-37/IL-18/IL-18BP/IL-18R axis in patients with primary Sjögren's syndrome (pSS). This study included 36 patients diagnosed with pSS, 13 patients presenting with sicca symptoms without confirmed pSS, and 14 healthy controls. Serum concentrations of IL-37, IL-18, IL-18BP, and IL-18R were measured using a sandwich ELISA. These levels were then correlated with relevant clinical and biological parameters. Furthermore, expression of the same cytokines was assessed in salivary gland biopsies via immunohistochemistry. No significant difference in serum IL-37 levels was observed among the three groups (p = 0.1695). However, serum levels of IL-18 and IL-18BP were significantly elevated in pSS patients compared to healthy controls (p < 0.0001), and these levels were strongly correlated. Immunohistochemical analysis revealed significantly higher expression of IL-37 in both the excretory ducts and inflammatory infiltrates of salivary glands in pSS patients compared to sicca patients. No correlation was found between IL-37 expression and the histological severity of glandular infiltration as assessed by the Chisholm score. In addition, an enhanced expression of IL-18, IL-18BP, and IL-18Rα was observed in the salivary glands of pSS patients. These findings suggest the potential contribution of the IL-37/IL-18/IL-18BP/IL-18R signaling axis in the pathogenesis of Sjögren's syndrome, particularly through its increased expression in salivary glands and correlation with disease-specific inflammatory markers. These findings may contribute to a better understanding of pSS immunopathology and suggest new avenues for biomarker development or therapeutic targeting.
Collapse
Affiliation(s)
| | | | - Muhammad Soyfoo
- Department of Rheumatology, Hôpital Erasme, Hôpital Universitaire de Bruxelles HUB, Université Libre de Bruxelles ULB, 1070 Brussels, Belgium; (D.P.); (J.S.)
| |
Collapse
|
2
|
Wang L, Christodoulou MI, Jin Z, Ma Y, Hossen M, Ji Y, Wang W, Wang X, Wang E, Wei R, Xiao X, Liu X, Yang PC, Xing S, Chen B, Wang K, Huang JY, Tulunay-Virlan A, McInnes IB, Li J, Huang Z, Chu Y, Xu D. Human regulatory B cells suppress autoimmune disease primarily via interleukin-37. J Autoimmun 2025; 153:103415. [PMID: 40250016 DOI: 10.1016/j.jaut.2025.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/20/2025] [Accepted: 03/27/2025] [Indexed: 04/20/2025]
Abstract
Regulatory B cells (Bregs) are crucial for maintaining homeostasis and controlling inflammation. Although interleukin (IL)-10 has been traditionally suggested as the primary suppressive mechanism of Bregs in both mice and humans, the key functional differences between Bregs in these two species, particularly in the context of disease, is still largely unresolved. IL-37, the latest described immunosuppressive cytokine, is produced in humans but not in mice. Herein we identified the characteristics and functions of IL-37-producing Bregs, that naturally exist in human and can be induced by recombinant IL-37 (rIL-37) and/or Toll-like receptor 9 agonist CpG via different mechanisms. rIL-37 alone is sufficient to prompt IL-37, but not IL-10, production and proliferation of Bregs, whereas CpG elicits IL-37 expression in Bregs independently of IL-10, but dependent on HIF-1α which binds on the enhancer/promoter of the IL-37 gene. Functionally, IL-37+ Bregs exhibit superior anti-inflammatory efficacy than IL-37- Bregs in vitro, as well as in psoriasis and colitis models. However, the frequency of IL-37+ Bregs is reduced in patients with psoriasis. Thus, IL-37+ Bregs hold significant therapeutic potential for treating various inflammatory disorders, including psoriasis and colitis.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, 2404, Cyprus; Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - Zheng Jin
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Yanmei Ma
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518060, China; Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Munnaf Hossen
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yuan Ji
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong, China
| | - Wenjun Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xueqi Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Eryi Wang
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong, China
| | - Rongfei Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaojun Xiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University, Shenzhen, China
| | - Ping-Chang Yang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University, Shenzhen, China
| | - Shaojun Xing
- Marshall Laboratory of Biomedical Engineering, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Bingni Chen
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Kaifan Wang
- Department of Dermatology, Ma'anshan People's Hospital, Anhui, China
| | - Jim Yi Huang
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Aysin Tulunay-Virlan
- Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Damo Xu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, China.
| |
Collapse
|
3
|
Lu Z, Yang J, Liu X, Wang J, Pan Y, Zhong J, Su X. Prognostic Value of Serum Interleukin-37 in Patients with Acute Respiratory Distress Syndrome. Immunol Invest 2025; 54:368-381. [PMID: 39698874 DOI: 10.1080/08820139.2024.2443253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is prominently characterized by uncontrolled inflammation and high mortality. The effect of interleukin-37 (IL-37) on the prognosis of ARDS remains unclear. METHODS This prospective cohort study detected and analyzed serum IL-37 levels on day 1 (baseline) in 128 patients with ARDS and 40 healthy controls, and on day 7 in patients with ARDS. Clinical and laboratory parameters were assayed. Survival status was tracked within 28-d of enrollment. RESULTS BaselineIL-37 concentration was lower in non-survivors (135.00 [87.75, 198.75] pg/mL) than in survivors (250.50 [173.25, 382.75] pg/mL) (p < .05). Non-survivors displayed a greater reduction in IL-37 levels from day 1-7 than survivors (49.87% vs. 40.09%) (p < .05). Baseline IL-37 levels were negatively associated with C-reactive protein, procalcitonin, and IL-6 levels. The area under the receiver operating characteristic curve of the baseline level and percentage decline in IL-37 was 0.755 and 0.809, respectively, for predicting 28-d mortality. Combining IL-37 with the acute physiology and chronic health evaluation II score further improved mortality prediction capability. Patients with ARDS with low IL-37 concentrations (<143.00 pg/mL) or a high percentage decline (≥44.76%) had a poorer survival rate than those with a high concentration or low percentage decline. The baseline IL-37 level and percentage decline independently predicted mortality in a univariate Cox regression model (p < .05). CONCLUSIONS A low IL-37 level or significantly declining rate predicts higher 28-d mortality in patients with ARDS, indicating that IL-37 may be a promising prognostic biomarker.
Collapse
Affiliation(s)
- Zhaohui Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoguang Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Juan Wang
- Emergency Intensive Care Unit, Wuhu Hospital Affiliated with East China Normal University, Wuhu, China
| | - Youjun Pan
- Department of Critical Care Medicine, Wuhu Hospital Affiliated with East China Normal University, Wuhu, China
| | - Jinjin Zhong
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Su
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
4
|
Mohammed NA, Sulaiman GM, Alabassi HM, Khalil KAA, Ahmed EM. The significant role of IL-15, IL-22, IL-37, and caspase 9 in polycystic ovary syndrome: A case-control study in a sample of Iraqi women. J Genet Eng Biotechnol 2025; 23:100462. [PMID: 40074436 PMCID: PMC11836498 DOI: 10.1016/j.jgeb.2025.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 03/14/2025]
Abstract
The study aims to evaluate the significant role of interleukin 15 (IL-15), IL-22, IL-37, and Caspase 9 gene expression in polycystic ovary syndrome (PCOS), focusing on the underlying mechanisms and potential diagnostic or therapeutic implications. Peripheral blood has been collected, and serum was separated for the evaluation of the serum IL-15, IL-22, and IL-37. The ELISA technique has been carried out to determine the serum levels of understudied factors mentioned above in Iraqi women patients diagnosed with PCOS (No. = 90) via a specialized gynecologist and healthy fertile women (No. = 48) as a control group. In addition, a genetic study on the expression of the caspase 9 gene in these patients had been performed. The data reveals statistically significant differences in interleukin levels in PCOS patients versus the control group. Specifically, the PCOS group exhibits significantly higher levels of IL-15 and IL-22 as compared to the control group. Conversely, the PCOS group shows significantly lower levels of IL-37 compared to the control group. The results showed no statistically significant difference in the mean expression of the Caspase 9 gene when comparing these fold graduations. However, it's worth noting that a higher fold frequency was observed in both the PCOS and control groups, with 57.1 % and 60 %, respectively, having folds less than 1. The distribution of folds varied across other categories was also addressed. Additionally, there was a notable difference in the frequency of 11.4 % in the PCOS group compared to 2 % in the control group for folds greater than 9. The findings suggest that interleukins, particularly IL-22 and IL-37, hold promise as diagnostic markers for distinguishing PCOS from healthy conditions. However, the potential diagnostic utility of the Caspase 9 gene expression was not confirmed in this study.
Collapse
Affiliation(s)
- Noor A Mohammed
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Hazima M Alabassi
- Department of Biology, College of Education for Pure Science, Ibn. Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Khalil A A Khalil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922 P.O. Box 551, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, Hodeidah University, Hodeidah, Yemen
| | - Elsadig M Ahmed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922 P.O. Box 551, Saudi Arabia; Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of Elmam El Mahdi, Kosti, 209 P.O. Box 27711, Sudan
| |
Collapse
|
5
|
Mohamed Thaha UAB, Wan Mohamad WM, Nik Husain NR, Yusop N, Mohamud R, Wan Ghazali WS. Potential and limitations of IL-37, a cytokine targeted for therapy of systemic lupus erythematosus: A Systematic Review. Int Immunopharmacol 2025; 144:113597. [PMID: 39566387 DOI: 10.1016/j.intimp.2024.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by dysregulated immune responses and inflammation. Interleukin-37 (IL-37) is a recently discovered immunomodulatory cytokine with potential anti-inflammatory properties. This systematic review explores the relationship between IL and 37 and SLE disease activity, and evaluates its potential as a therapeutic agent. METHODS Electronic databases were searched for studies investigating IL-37 and SLE. Data on IL-37 levels, SLE Disease Activity Index (SLEDAI) score, genetic polymorphisms, and its therapeutic effects from pre-clinical studies were extracted. RESULTS Previous studies presented conflicting findings on IL-37 levels in SLE patients. Some reported positive correlations with disease activity, while others observed associations between lower IL-37 and increased activity. Genetic variations in the IL-37 gene linked to SLE susceptibility have been reported. Pre-clinical studies using engineered mesenchymal stem cells or direct IL-37 treatment showed promise in reducing disease severity in mouse models and cell cultures of SLE. The analysis of multiple studies reveals that IL-37 expression varies significantly across different SLE subtypes. CONCLUSIONS While a potential link exists between IL and 37 and disease activity, genetic predisposition, and therapeutic benefit, further research is needed. Future studies with standardized designs, larger and more diverse populations, and mechanistic investigations are crucial to determine the therapeutic potential of IL-37 for SLE. This review highlights the need for well-designed clinical trials to evaluate the safety and efficacy of IL-37 therapy in patients with SLE.
Collapse
Affiliation(s)
- Ummul Aqeela Balqees Mohamed Thaha
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wan Majdiah Wan Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | - Norhayati Yusop
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | | |
Collapse
|
6
|
Lin CI, Wang YW, Su KY, Chuang YH. Interleukin-37 exacerbates liver inflammation and promotes IFN-γ production in NK cells. Int Immunopharmacol 2024; 142:113086. [PMID: 39260304 DOI: 10.1016/j.intimp.2024.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Interleukin (IL)-37, a unique member of the IL-1 family, is known for its anti-inflammatory properties. However, its effects on immune-mediated liver diseases, such as primary biliary cholangitis (PBC) and acute immune-mediated hepatitis, remain unclear. Using mouse models of autoimmune cholangitis and hepatitis induced by 2-OA-OVA and concanavalin A (Con A) respectively, we introduced the human IL-37 gene via a liver-preferred adeno-associated virus vector (AAV-IL-37) to mice, as mice lack endogenous IL-37. Our findings reveal that IL-37 did not affect autoimmune cholangitis. Surprisingly, IL-37 exacerbated inflammation in Con A-induced hepatitis rather than mitigating it. Mechanistic insights suggest that this exacerbation involves the interferon (IFN)-γ pathway, supported by elevated serum IFN-γ levels in AAV-IL-37-treated Con A mice. Specifically, IL-37 heightened the number of hepatic NK and NKT cells, increased the production of the NK cell chemoattractant CCL5, and elevated the frequency of hepatic NK and NKT cells expressing IFN-γ. Moreover, IL-37 enhanced IFN-γ secretion from NK cells when combined with other proinflammatory cytokines, highlighting its synergistic effect in promoting IFN-γ production. These unexpected outcomes underscore a novel role for IL-37 in exacerbating liver inflammation during immune-mediated liver diseases, implicating its influence on NK cells and the production of IFN-γ by these cells.
Collapse
Affiliation(s)
- Chia-I Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Genomic and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Yazdani R, Naziri H, Azizi G, Ciric B, Askari M, Ahmadi AM, Aseervatham J, Zhang GX, Rostami A. IL-37 suppresses CNS autoimmunity by increasing the frequency of Treg cells and reducing CD4 + T cell-derived IL-10 production. J Neuroinflammation 2024; 21:301. [PMID: 39563375 PMCID: PMC11575187 DOI: 10.1186/s12974-024-03295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Interleukin-37 (IL-37) has anti-inflammatory properties in innate and adaptive immunity. Patients with multiple sclerosis (MS), an autoimmune inflammatory demyelinating disease of the central nervous system (CNS), have increased serum levels of IL-37. However, it is unknown whether IL-37 has an inhibitory effect on ongoing autoimmune neuroinflammation, thus offering a potential MS therapy. AIM Here, we examined the effect of IL-37 in an experimental autoimmune encephalomyelitis (EAE) model after disease onset to determine if it was protective. FINDINGS IL-37-treated mice developed a less severe disease than control mice, with reduced demyelination as determined by increased expression of myelin basic protein. IL-37 suppressed inflammation by decreasing infiltration of CD4 + T cells into the CNS and increasing the frequency of regulatory T cells, while IL-10 expression by CD4 + T cells decreased over time in the CNS. CONCLUSION Our findings confirm the immunomodulatory role of IL-37 in CNS inflammation during ongoing disease, thus indicating the potential of IL-37 as an inhibitory reagent for MS therapy.
Collapse
Affiliation(s)
- Reza Yazdani
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Hamed Naziri
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Mozhde Askari
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Amir Moghadam Ahmadi
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Jaya Aseervatham
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Wang Q, Zhang G, An C, Hambly BD, Bao S. The role of IL-37 in gastrointestinal diseases. Front Immunol 2024; 15:1431495. [PMID: 39206201 PMCID: PMC11349528 DOI: 10.3389/fimmu.2024.1431495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Gastrointestinal mucosal surface is frequently under challenge due to it's the large surface area and most common entry of microbes. IL-37, an anti-inflammatory cytokine, regulates local and systemic host immunity. H. pylori infection leads to the inhibition of IL-37 in the gastric mucosa, contributing to heightened mucosal inflammation and destruction, thereby facilitating increased proliferation of H. pylori. Food allergy, due to immune dysregulation, also contribute to GI injury. On the other hand, elevated levels of IL-37 observed in gastric cancer patients align with reduced host immunity at the cellular and humoral levels, indicating that IL-37 may contribute to the development of gastric cancer via suppressing pro-inflammatory responses. While IL-37 provides protection in an IBD animal model, the detection of highly produced IL-37 in IBD patients suggests a stage-dependent role, being protective in acute inflammation but potentially exacerbates the development of IBD in chronic conditions. Moreover, elevated colonic IL-37 in CRC correlates with overall survival time and disease time, indicating a protective role for IL-37 in CRC. The differential regulation and expression of IL-37 between upper- and lower-GI organs may be attributed to variations in the microbial flora. This information suggests that IL-37 could be a potential therapeutic agent, depending on the stage and location.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Anatomy, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Guangrun Zhang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Caiping An
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, China
| | - Brett D. Hambly
- Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Shisan Bao
- Foreign Affairs Office, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
- Foreign Affairs Office, The First People’s Hospital of Baiyin, Baiyin, China
| |
Collapse
|
9
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
10
|
Ren R, Jiang J, Li X, Zhang G. Research progress of autoimmune diseases based on induced pluripotent stem cells. Front Immunol 2024; 15:1349138. [PMID: 38720903 PMCID: PMC11076788 DOI: 10.3389/fimmu.2024.1349138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Autoimmune diseases can damage specific or multiple organs and tissues, influence the quality of life, and even cause disability and death. A 'disease in a dish' can be developed based on patients-derived induced pluripotent stem cells (iPSCs) and iPSCs-derived disease-relevant cell types to provide a platform for pathogenesis research, phenotypical assays, cell therapy, and drug discovery. With rapid progress in molecular biology research methods including genome-sequencing technology, epigenetic analysis, '-omics' analysis and organoid technology, large amount of data represents an opportunity to help in gaining an in-depth understanding of pathological mechanisms and developing novel therapeutic strategies for these diseases. This paper aimed to review the iPSCs-based research on phenotype confirmation, mechanism exploration, drug discovery, and cell therapy for autoimmune diseases, especially multiple sclerosis, inflammatory bowel disease, and type 1 diabetes using iPSCs and iPSCs-derived cells.
Collapse
Affiliation(s)
| | | | | | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| |
Collapse
|
11
|
Zylberberg AK, Cottle DL, Runting J, Rodrigues G, Tham MS, Jones LK, Cumming HE, Short KM, Zaph C, Smyth IM. Modulating inflammation with interleukin 37 treatment ameliorates murine Autosomal Dominant Polycystic Kidney Disease. Kidney Int 2024; 105:731-743. [PMID: 38158181 DOI: 10.1016/j.kint.2023.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a leading cause of kidney failure and is associated with substantial morbidity and mortality. Interstitial inflammation is attributed to the action of infiltrating macrophages and is a feature thought to aggravate disease progression. Here, we investigated the therapeutic potential of the anti-inflammatory IL37b cytokine as a treatment for ADPKD using genetic mouse models, demonstrating that transgenic expression of human IL37b reduced collecting duct cyst burden in both early and adult-onset ADPKD rodent models. Moreover, injection of recombinant human IL37b could also reduce cyst burden in early onset ADPKD mice, an observation not associated with increased macrophage number at early stages of cyst formation. Interestingly, transgenic IL37b expression also did not alter macrophage numbers in advanced disease. Whole kidney RNA-seq highlighted an IL37b-mediated upregulation of the interferon signaling pathway and single-cell RNA-seq established that these changes originate at least partly from kidney resident macrophages. We further found that blocking type I interferon signaling in mice expressing IL37b resulted in increased cyst number, confirming this as an important pathway by which IL37b exerts its beneficial effects. Thus, our studies show that IL37b promotes interferon signaling in kidney resident macrophages which suppresses cyst initiation, identifying this protein as a potential therapy for ADPKD.
Collapse
Affiliation(s)
- Allara K Zylberberg
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Denny L Cottle
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
| | - Jessica Runting
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Grace Rodrigues
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ming Shen Tham
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Lynelle K Jones
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Helen E Cumming
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Colby Zaph
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ian M Smyth
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Qin Y, Shao B, Ren SH, Ye K, Qin H, Wang HD, Sun C, Zhu Y, Wang Z, Zhang J, Li X, Wang H. Interleukin-37 contributes to endometrial regenerative cell-mediated immunotherapeutic effect on chronic allograft vasculopathy. Cytotherapy 2024; 26:299-310. [PMID: 38159090 DOI: 10.1016/j.jcyt.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AIMS Chronic allograft vasculopathy (CAV) remains a predominant contributor to late allograft failure after organ transplantation. Several factors have already been shown to facilitate the progression of CAV, and there is still an urgent need for effective and specific therapeutic approaches to inhibit CAV. Human mesenchymal-like endometrial regenerative cells (ERCs) are free from the deficiencies of traditional invasive acquisition methods and possess many advantages. Nevertheless, the exact immunomodulation mechanism of ERCs remains to be elucidated. METHODS C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor abdominal aorta transplantation were treated with ERCs, negative control (NC)-ERCs and interleukin (IL)-37-/-ERCs (ERCs with IL-37 ablation), respectively. Pathologic lesions and inflammatory cell infiltration in the grafts, splenic immune cell populations, circulating donor-specific antibody levels and cytokine profiles were analyzed on postoperative day (POD) 40. The proliferative capacities of Th1, Th17 and Treg subpopulations were assessed in vitro. RESULTS Allografts from untreated recipients developed typical pathology features of CAV, namely endothelial thickening, on POD 40. Compared with untreated and IL-37-/-ERC-treated groups, IL-37-secreting ERCs (ERCs and NC-ERCs) significantly reduced vascular stenosis, the intimal hyperplasia and collagen deposition. IL-37-secreting ERCs significantly inhibited the proliferation of CD4+T cells, reduced the proportions of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. Furthermore, in vitro results also showed that IL-37-secreting ERCs significantly inhibited Th1 and Th17 cell responses, abolished B-cell activation, diminished donor-specific antibody production and increased Treg proportions. Notably, IL-37-secreting ERCs remarkably downregulated the levels of pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, IL-1β, IL-6 and IL-17A) and increased IL-10 levels in transplant recipients. CONCLUSIONS The knockdown of IL-37 dramatically abrogates the therapeutic ability of ERCs for CAV. Thus, this study highlights that IL-37 is indispensable for ERC-mediated immunomodulation for CAV and improves the long-term allograft acceptance.
Collapse
Affiliation(s)
- Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Department of Vascular Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, PR China.
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Kui Ye
- Department of Vascular Surgery, Tianjin Fourth Central Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, PR China.
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Zhaobo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, PR China.
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
13
|
Yang L, Tao W, Xie C, Chen Q, Zhao Y, Zhang L, Xiao X, Wang S, Zheng X. Interleukin-37 ameliorates periodontitis development by inhibiting NLRP3 inflammasome activation and modulating M1/M2 macrophage polarization. J Periodontal Res 2024; 59:128-139. [PMID: 37947055 DOI: 10.1111/jre.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Our study was designed to explore the role of IL-37 in M1/M2 macrophage polarization imbalance in the pathogenesis of periodontitis. BACKGROUND Periodontitis is a chronic progressive inflammatory disease featured by gingival inflammation and alveolar bone resorption. Recent research has revealed that regulating macrophage polarization is a viable method to ameliorate periodontal inflammation. IL-37 is an anti-inflammatory cytokine, which has been reported to inhibit innate and adaptive immunity. METHODS For in vitro experiment, mouse macrophage RAW264.7 cells were pretreated with 0.1 ng/mL recombinant human IL-37. M1 and M2 polarizations of RAW264.7 cells were induced by 100 ng/mL LPS and 20 ng/mL IL-4, respectively. The expression of M1 (iNOS, TNF-α, and IL-6) and M2 (CD206, Arg1, and IL-10) phenotype markers in RAW264.7 cells was detected by RT-qPCR, western blotting, and immunofluorescence staining. For in vivo experiment, experimental periodontitis mouse models were established by sterile silk ligation (5-0) around the bilateral maxillary second molar of mice for 1 week. H&E staining of the maxillary alveolar bone was used to show the resorption of root cementum and dentin. Alveolar bone loss in mouse models was evaluated through micro-CT analysis. The expression of iNOS and CD206 in gingival tissues was assessed by immunohistochemistry staining. NLRP3 inflammasome activation was confirmed by western blotting. RESULTS IL-37 pretreatment reduced iNOS, TNF-α, and IL-6 expression in LPS-treated RAW264.7 cells but increased CD206, Arg1, and IL-10 in IL-4-treated RAW264.7 cells. LPS-induced upregulation in NLRP3, GSDMD, cleaved-IL-1β, and cleaved-caspase-1 expression was antagonized by IL-37 treatment. In addition, IL-37 administration ameliorated the resorption of root cementum and dentin in periodontitis mouse models. IL-37 prominently decreased iNOS+ cell population but increased CD206+ cell population in gingival tissues of periodontitis mice. The enhancement in NLRP3, GSDMD, cleaved-IL-1β, and cleaved-caspase-1 expression in the gingival tissues of periodontitis mice was offset by IL-37 administration. CONCLUSION IL-37 prevents the progression of periodontitis by suppressing NLRP3 inflammasome activation and mediating M1/M2 macrophage polarization.
Collapse
Affiliation(s)
- Liyan Yang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Tao
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chen Xie
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Qiuye Chen
- Department of Stomatology, Hainan Cancer Hospital, Haikou, China
| | - Yunshan Zhao
- Integrated Department, Hainan Stomatological Hospital, Haikou, China
| | - Li Zhang
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Xu Xiao
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shilu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xu Zheng
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| |
Collapse
|
14
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
15
|
Cao J, Hou S, Chen Z, Yan J, Chao L, Qian Y, Li J, Yan X. Interleukin-37 relieves PM2.5-triggered lung injury by inhibiting autophagy through the AKT/mTOR signaling pathway in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115816. [PMID: 38091678 DOI: 10.1016/j.ecoenv.2023.115816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Autophagy mediates PM2.5-related lung injury (LI) and is tightly linked to inflammation and apoptosis processes. IL-37 has been demonstrated to regulate autophagy. This research aimed to examine the involvement of IL-37 in the progression of PM2.5-related LI and assess whether autophagy serves as a mediator for its effects.To create a model of PM2.5-related LI, this research employed a nose-only PM2.5 exposure system and utilized both human IL-37 transgenic mice and wild-type mice. The hIL-37tg mice demonstrated remarkable reductions in pulmonary inflammation and pathological LI compared to the WT mice. Additionally, they exhibited activation of the AKT/mTOR signaling pathway, which served to regulate the levels of autophagy and apoptosis.Furthermore, in vitro experiments revealed a dose-dependent upregulation of autophagy and apoptotic proteins following exposure to PM2.5 DMSO extraction. Simultaneously, p-AKT and p-mTOR expression was found to decrease. However, pretreatment with IL-37 demonstrated a remarkable reduction in the levels of autophagy and apoptotic proteins, along with an elevation of p-AKT and p-mTOR. Interestingly, pretreatment with rapamycin, an autophagy inducer, weakened the therapeutic impact of IL-37. Conversely, the therapeutic impact of IL-37 was enhanced when treated with 3-MA, a potent autophagy inhibitor. Moreover, the inhibitory effect of IL-37 on autophagy was successfully reversed by administering AKT inhibitor MK2206. The findings suggest that IL-37 can inhibit both the inflammatory response and autophagy, leading to the alleviation of PM2.5-related LI. At the molecular level, IL-37 may exert its anti autophagy and anti apoptosis effects by activating the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing Cao
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care Medicine, Hebei Institute of Respiratory Diseases, Shijiazhuang, Hebei 050000, China
| | - Shujie Hou
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care Medicine, Hebei Institute of Respiratory Diseases, Shijiazhuang, Hebei 050000, China
| | - Zixiao Chen
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care Medicine, Hebei Institute of Respiratory Diseases, Shijiazhuang, Hebei 050000, China
| | - Jie Yan
- Department of Cardiovascular Medicine,The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Lingshan Chao
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care Medicine, Hebei Institute of Respiratory Diseases, Shijiazhuang, Hebei 050000, China
| | - Yuxing Qian
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care Medicine, Hebei Institute of Respiratory Diseases, Shijiazhuang, Hebei 050000, China
| | - Jingwen Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care Medicine, Hebei Institute of Respiratory Diseases, Shijiazhuang, Hebei 050000, China
| | - Xixin Yan
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care Medicine, Hebei Institute of Respiratory Diseases, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
16
|
Wei R, Han X, Li M, Ji Y, Zhang L, Christodoulou MI, Hameed Aga NJ, Zhang C, Gao R, Liu J, Fu J, Lu G, Xiao X, Liu X, Yang PC, McInnes IB, Sun Y, Gao P, Qin C, Huang SK, Zhou Y, Xu D. The nuclear cytokine IL-37a controls lethal cytokine storms primarily via IL-1R8-independent transcriptional upregulation of PPARγ. Cell Mol Immunol 2023; 20:1428-1444. [PMID: 37891333 PMCID: PMC10687103 DOI: 10.1038/s41423-023-01091-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Cytokine storms are crucial in the development of various inflammatory diseases, including sepsis and autoimmune disorders. The immunosuppressive cytokine INTERLEUKIN (IL)-37 consists of five isoforms (IL-37a-e). We identified IL-37a as a nuclear cytokine for the first time. Compared to IL-37b, IL-37a demonstrated greater efficacy in protecting against Toll-like receptor-induced cytokine hypersecretion and lethal endotoxic shock. The full-length (FL) form of IL-37a and the N-terminal fragment, which is processed by elastase, could translocate into cell nuclei through a distinctive nuclear localization sequence (NLS)/importin nuclear transport pathway. These forms exerted their regulatory effects independent of the IL-1R8 receptor by transcriptionally upregulating the nuclear receptor peroxisome proliferator-activated receptor (PPARγ). This process involved the recruitment of the H3K4 methyltransferase complex WDR5/MLL4/C/EBPβ and H3K4me1/2 to the enhancer/promoter of Pparg. The receptor-independent regulatory pathway of the nuclear IL-37a-PPARγ axis and receptor-dependent signaling by secreted IL-37a maintain homeostasis and are potential therapeutic targets for various inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Rongfei Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biom--acromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Han
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengyuan Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Yuan Ji
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Maria-Ioanna Christodoulou
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, 2404, Cyprus
| | | | - Caiyan Zhang
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ran Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jiangning Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jinrong Fu
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaoyu Liu
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ping-Chang Yang
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ying Sun
- Department of Immunology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Peisong Gao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.
| | - Shau-Ku Huang
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan, China.
| | - Yufeng Zhou
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State-level Regional Children's Medical Center, Children's Hospital of Fudan University at Xiamen (Xiamen Children's Hospital), Fujian Provincial Key Laboratory of Neonatal Diseases, Xiamen, China.
| | - Damo Xu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
17
|
Akazawa H, Nozaki Y, Yamazawa H, Ishimura K, Ashida C, Okada A, Kinoshita K, Matsumura I. Blockade of IL-18Rα-mediated signaling pathway exacerbates neutrophil infiltration in imiquimod-induced psoriasis murine model. Front Med (Lausanne) 2023; 10:1293132. [PMID: 37964882 PMCID: PMC10641785 DOI: 10.3389/fmed.2023.1293132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Psoriasis is an immune-mediated inflammatory disease of the skin, which is characterized by epidermal hyperkeratosis and neutrophil infiltration. The interleukin (IL)-17/IL-23 pathway and associated cytokines play major roles in the pathogenesis and exacerbation of psoriasis. The IL-18/IL-18 receptor (R) α signaling pathway is important for Th1 cytokine production and differentiation of Th1 cells; however, its role in the pathogenesis of psoriasis remains unknown. In this study, we investigated the effect of the IL-18Rα-mediated signaling pathway in the pathogenesis of psoriasis in Il18ra-deficient mice (Il18ra-/-) and wild-type imiquimod (IMQ)-induced psoriatic dermatitis model mice. Blocking this pathway exacerbated IMQ-induced psoriatic skin inflammation. Il18ra deficiency led to significant increases in the levels of IL-1β, IL-6, IL-8, IL-17A, IL-23, and chemokine (C-X-C motif) ligand 2 in skin lesions. Gr1-positive cells highly infiltrated psoriatic skin lesions in Il18ra-/- mice compared to those in wild-type mice. Citrullinated histone H3-positive area was relatively broad in Il18ra-/- mice. These results suggest that IL-18Rα-mediated signaling pathways may inhibit psoriatic skin inflammation by regulating infiltration and activation of neutrophil and other innate immune cells.
Collapse
Affiliation(s)
- Hiroki Akazawa
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yuji Nozaki
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Gu M, Jin Y, Gao X, Xia W, Xu T, Pan S. Novel insights into IL-37: an anti-inflammatory cytokine with emerging roles in anti-cancer process. Front Immunol 2023; 14:1278521. [PMID: 37928545 PMCID: PMC10623001 DOI: 10.3389/fimmu.2023.1278521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Interleukin-37 (IL-37) is a newly discovered member of IL-1 family. The cytokine was proved to have extensive protective effects in infectious diseases, allergic diseases, metabolic diseases, autoimmune diseases and tumors since its discovery. IL-37 was mainly produced by immune and some non-immune cells in response to inflammatory stimulus. The IL-37 precursors can convert into the mature forms after caspase-1 cleavage and activation intracellularly, and then bind to Smad-3 and transfer to the nucleus to inhibit the production and functions of proinflammatory cytokines; extracellularly, IL-37 binds to cell surface receptors to form IL-37/IL-18Rα/IL-1R8 complex to exert immunosuppressive function via inhibiting/activating multiple signal pathways. In addition, IL-37 can attenuate the pro-inflammatory effect of IL-18 through directly or forming an IL-37/IL-18BP/IL-18Rβ complex. Therefore, IL-37 has the ability to suppress innate and acquired immunity of the host, and effectively control inflammatory stimulation, which was considered as a new hallmark of cancer. Specifically, it is concluded that IL-37 can inhibit the growth and migration of tumor cells, prohibit angiogenesis and mediate the immunoregulation in tumor microenvironment, so as to exert effective anti-tumor effects. Importantly, latest studies also showed that IL-37 may be a novel therapeutic target for cancer monitoring. In this review, we summarize the immunoregulation roles and mechanisms of IL-37 in anti-tumor process, and discuss its progress so far and potential as tumor immunotherapy.
Collapse
Affiliation(s)
- Min Gu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Ting Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
19
|
Kröhn L, Azabdaftari A, Heuberger J, Hudert C, Zilbauer M, Breiderhoff T, Bufler P. Modulation of intestinal IL-37 expression and its impact on the epithelial innate immune response and barrier integrity. Front Immunol 2023; 14:1261666. [PMID: 37799712 PMCID: PMC10548260 DOI: 10.3389/fimmu.2023.1261666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Background and Aims Intestinal epithelial cells separate the luminal flora from lamina propria immune cells and regulate innate immune responses in the gut. An imbalance of the mucosal immune response and disrupted intestinal barrier integrity contribute to the evolution of inflammatory bowel diseases. Interleukin (IL)-37 has broad anti- inflammatory activity and is expressed by the human intestinal epithelium. Mice ectopically expressing human IL-37 show reduced epithelial damage and inflammation after DSS-induced colitis. Here, we investigated the impact of IL-37 on the innate immune response and tight junction protein expression of mouse intestinal organoids and the modulation of IL37 expression in human intestinal organoids. Methods Murine intestinal organoids were generated from IL-37tg and wildtype mice. Human ileal organoids were generated from healthy young donors. Results Expression of transgene IL-37 or recombinant IL-37 protein did not significantly reduce overall proinflammatory cytokine mRNA expression in murine intestinal organoids. However, higher IL37 expression correlated with a reduced proinflammatory cytokine response in murine colonic organoids. IL37 mRNA expression in human ileal organoids was modulated by proinflammatory cytokines showing an increased expression upon TNF-α-stimulation and decreased expression upon IFN-gamma stimulation. Transgene IL-37 expression did not rescue TNF-α-induced changes in morphology as well as ZO-1, occludin, claudin-2, and E-cadherin expression patterns of murine jejunal organoids. Conclusions We speculate that the anti-inflammatory activity of IL-37 in the intestine is mainly mediated by lamina propria immune cells protecting intestinal epithelial integrity.
Collapse
Affiliation(s)
- Laura Kröhn
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Aline Azabdaftari
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Heuberger
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Zilbauer
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Tilman Breiderhoff
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
21
|
Zhang Y, Alqazlan N, Meng Z, Zhao J, Liu N, Zhang Y, Feng M, Ma S, Wang A. A novel approach to achieving more efficient production of the mature form of human IL-37 in plants. Transgenic Res 2023; 32:279-291. [PMID: 37266895 DOI: 10.1007/s11248-023-00351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Interleukin-37 is a newly discovered cytokine that plays a pivotal role in suppressing innate inflammation and acquired immunity. We have recently expressed both the mature(mat-) and pro-forms of human IL-37b in plants and demonstrated that while both forms of the plant-made hIL-37b are functional, pmat-hIL37b exhibited significantly greater activity than ppro-IL-37b. Compared to ppro-hIL-37b, on the other hand, the expression level of pmat-hIL-37b was substantially lower (100.5 µg versus 1.05 µg/g fresh leaf mass or 1% versus 0.01% TSP). Since the difference between ppro-hIL-37b and pmat-hIL-37b is that ppro-hIL-37b contains a signal sequence not cleavable by plant cells, we reasoned that this signal sequence would play a key role in stabilizing the ppro-hIL-37b protein. Here, we describe a novel approach to enhancing pmat-hIL-37b production in plants based on incorporation of a gene sequence encoding tobacco etch virus (TEV) protease between the signal peptide and the mature hIL-37b, including a TEV cleavage site at the C-termini of TEV protease. The rationale is that when expressed as a sp-TEV-matIL-37b fusion protein, the stabilizing properties of the signal peptide of pro-hIL-37b will be awarded to its fusion partners, resulting in increased yield of target proteins. The fusion protein is then expected to cleave itself in vivo to yield a mature pmat-hIL-37b. Indeed, when a sp-TEV-matIL-37b fusion gene was expressed in stable-transformed plants, a prominent band corresponding to dimeric pmat-hIL-37b was detected, with expression yields reaching 42.5 µg/g fresh leaf mass in the best expression lines. Bioassays demonstrated that plant-made mature pmat-hIL-37b is functional.
Collapse
Affiliation(s)
- Yao Zhang
- College of Horticulture and Landscape Architecture and College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Nadiyah Alqazlan
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Zihe Meng
- College of Horticulture and Landscape Architecture and College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Jingyao Zhao
- College of Hortculture and Lanscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Nan Liu
- College of Hortculture and Lanscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Yuxin Zhang
- College of Hortculture and Lanscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Mingfeng Feng
- College of Horticulture and Landscape Architecture and College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Shengwu Ma
- Department of Biology, University of Western Ontario, London, ON, Canada.
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture and College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China.
- College of Hortculture and Lanscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
22
|
Zhao M, Ma L, Jiang H, Gu Y, Yang X, Liu R, Sun C, Li Y. Interleukin-37 is involved in the immunopathogenesis of infectious mononucleosis. Ital J Pediatr 2023; 49:93. [PMID: 37507743 PMCID: PMC10386628 DOI: 10.1186/s13052-023-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Multiple immunopathological responses to viruses are observed in infectious mononucleosis (IM), a manifestation of primary infection with Epstein-Barr virus (EBV). Protective effects of the negative immunoregulatory molecule interleukin-37 (IL-37) have been observed in various bacterial and viral infections. However, the function of IL-37 in IM remains unknown. METHODS Flow cytometry and enzyme-linked immunosorbent assay (ELISA) were used to determine the expression of IL-37 in the peripheral blood of patients diagnosed with IM, and the variation of lymphocyte subsets. Furthermore, the associations between IL-37 expression and the percentage of lymphocyte subgroups were analyzed. RESULTS Patients with IM had severe immune dysfunction. The control group had a lower expression of IL-37 than the patients with IM. There were significant associations between IL-37 expression and both the proportion of CD3+T cells and the ratio of CD3+CD4+ to CD3+CD8+T cells. Patients with higher levels of IL-37 expression had lower levels of the liver inflammation indicators, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). CONCLUSIONS IL-37 may affect the immune pathogenesis of patients with IM infected with EBV, and may have immunotherapeutic benefit for EBV-associated illnesses.
Collapse
Affiliation(s)
- Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Li Ma
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Huihui Jiang
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Yufeng Gu
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Xin Yang
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Riming Liu
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Chengming Sun
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Yulan Li
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| |
Collapse
|
23
|
Park MS, Kim YJ, Shin HJ, Kwon YJ, Chu J, Lee I, Kim KH, Kim BK, Kim SH, Seo HW, Kim TW. Protective Effect of Novel Lactobacillus plantarum KC3 Isolated from Fermented Kimchi on Gut and Respiratory Disorders. Microorganisms 2023; 11:microorganisms11040967. [PMID: 37110390 PMCID: PMC10141104 DOI: 10.3390/microorganisms11040967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics have been shown to possess anti-inflammatory effects in the gut by directly reducing the production of pro-inflammatory cytokines and by secreting anti-inflammatory molecules. However, their systemic anti-inflammatory effects have not been thoroughly investigated. In this study, we aimed to develop probiotics that have efficacy in both intestinal and lung inflammation. Lactobacillus plantarum KC3 (KC3), which was isolated from kimchi, was selected as a pre-candidate based on its inhibitory effects on the production of pro-inflammatory cytokines in vitro. To further validate the effectiveness of KC3, we used ear edema, DSS-induced colitis, and ambient particulate-matter-induced lung inflammation models. First, KC3 exhibited direct anti-inflammatory effects on intestinal cells with the inhibition of IL-1β and TNF-α production. Additionally, KC3 treatment alleviated ear edema and DSS-induced colic inflammation, improving colon length and increasing the number of regulatory T cells. Beyond its local intestinal anti-inflammatory activity, KC3 inhibited pro-inflammatory cytokines in the bronchoalveolar fluid and prevented neutrophil infiltration in the lungs. These results suggest that KC3 could be a potential functional ingredient with respiratory protective effects against air-pollutant-derived inflammation, as well as for the treatment of local gut disorders.
Collapse
Affiliation(s)
- Min-Seon Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon 34131, Republic of Korea
| | - Yu-Jeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Biosystems & Bioengineering Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Han-Jae Shin
- KT&G Research Institute, Daejeon 34128, Republic of Korea
| | - Yoo Jin Kwon
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Jaeryang Chu
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Inock Lee
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon 34131, Republic of Korea
| |
Collapse
|
24
|
Reza Lahimchi M, Eslami M, Yousefi B. Interleukin-35 and Interleukin-37 anti-inflammatory effect on inflammatory bowel disease: Application of non-coding RNAs in IBD therapy. Int Immunopharmacol 2023; 117:109932. [PMID: 37012889 DOI: 10.1016/j.intimp.2023.109932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Inflammatory bowel disease (IBD) is a widespread autoimmune disease that may even be life-threatening. IBD is divided into two major subtypes: ulcerative colitis and Crohn's disease. Interleukin (IL)-35 and IL-37 are anti-inflammatory cytokines that belong to IL-12 and IL-1 families, respectively. Their recruitment relieves inflammation in various autoimmune diseases, including psoriasis, multiple sclerosis, rheumatoid arthritis, and IBD. Regulatory T cells (Tregs) and regulatory B cells (Bregs) are the primary producers of IL-35/IL-37. IL-35 and IL-37 orchestrate the regulation of the immune system through two main strategies: Blocking nuclear transcription factor kappa-B (NF-kB) and mitogen-activated protein kinase (MAPK) signaling pathways or promoting the proliferation of Tregs and Bregs. Moreover, IL-35 and IL-37 can also inhibit inflammation by adjusting the T helper (Th)17/Treg ratio balance. Among the anti-inflammatory cytokines, IL-35 and IL-37 have significant potential to reduce intestinal inflammation. Therefore, administering IL-35/IL-37-based drugs or blocking their inhibitor microRNAs could be a promising approach to alleviate IBD symptoms. Overall, in this review article, we summarized the therapeutic application of IL-35 and IL-37 in both human and experimental models of IBD. Also, it is hoped that this practical information will reach beyond IBD therapy and shed some light on treating all intestinal inflammations.
Collapse
|
25
|
Mariotti FR, Supino D, Landolina N, Garlanda C, Mantovani A, Moretta L, Maggi E. IL-1R8: A molecular brake of anti-tumor and anti-viral activity of NK cells and ILC. Semin Immunol 2023; 66:101712. [PMID: 36753974 DOI: 10.1016/j.smim.2023.101712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) play pivotal role in immunity and inflammation and are expressed by most cell types including cells of both the innate and adaptive immune system. In this context, IL-1 superfamily members are also important players in regulating function and differentiation of adaptive and innate lymphoid cells. This system is tightly regulated in order to avoid uncontrolled activation, which may lead to detrimental inflammation contributing to autoimmune or allergic responses. IL-1R8 (also known as TIR8 or SIGIRR) is a member of the IL-1R family that acts as a negative regulator dampening ILR and TLR signaling and as a co-receptor for human IL-37. Human and mouse NK cells, that are key players in immune surveillance of tumors and infections, express high level of IL-1R8. In this review, we will summarize our current understanding on the structure, expression and function of IL-1R8 and we will also discuss the emerging role of IL-1R8 as an important checkpoint regulating NK cells function in pathological conditions including cancer and viral infections.
Collapse
Affiliation(s)
- Francesca R Mariotti
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | | | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cecilia Garlanda
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Alberto Mantovani
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy; The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
26
|
Bosnić Z, Babič F, Anderková V, Štefanić M, Wittlinger T, Majnarić LT. A Critical Appraisal of the Diagnostic and Prognostic Utility of the Anti-Inflammatory Marker IL-37 in a Clinical Setting: A Case Study of Patients with Diabetes Type 2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3695. [PMID: 36834391 PMCID: PMC9966907 DOI: 10.3390/ijerph20043695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The role of the cytokine interleukin-37 (IL-37) has been recognized in reversing inflammation-mediated metabolic costs. The aim was to evaluate the clinical utility of this cytokine as a diagnostic and prognostic marker in patients with type 2 diabetes (T2D). METHODS We included 170 older (median: 66 years) individuals with T2D (females: 95) and classified as primary care attenders to assess the association of factors that describe patients with plasma IL-37 levels (expressed as quartiles) using multinomial regression models. We determined the diagnostic ability of IL-37 cut-offs to identify diabetes-related complications or patient subgroups by using Receiver Operating Characteristic analysis (c-statistics). RESULTS Frailty status was shown to have a suppressive effect on IL-37 circulating levels and a major modifying effect on associations of metabolic and inflammatory factors with IL-37, including the effects of treatments. Situations in which IL-37 reached a clinically significant discriminating ability included the model of IL-37 and C-Reactive Protein in differentiating among diabetic patients with low-normal/high BMI ((<25/≥25 kg/m2), and the model of IL-37 and Thyroid Stimulating Hormone in discriminating between women with/without metabolic syndrome. CONCLUSIONS The study has revealed limitations in using classical approaches in determining the diagnostic and prognostic utility of the cytokine IL-37 in patients with T2D and lain a foundation for new methodology approaches.
Collapse
Affiliation(s)
- Zvonimir Bosnić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia
| | - František Babič
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, 06601 Košice, Slovakia
| | - Viera Anderková
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, 06601 Košice, Slovakia
| | - Mario Štefanić
- Department of Nuclear Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia
| | - Thomas Wittlinger
- Department of Cardiology, Asklepios Hospital, University of Göttingen, 38642 Goslar, Germany
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia
| |
Collapse
|
27
|
Li Q, Meng F, Ma X, Sun Z, Dai J, Liu J, Li D, Cong P, Xu R, Zhao D, Wang W, Wang D, Liu C, Wang F, Li C, Lian H. The colonic interleukin-19 aggravates the dextran sodium sulfate/stress-induced comorbidities due to colitis and anxiety. Front Immunol 2023; 14:1153344. [PMID: 36936941 PMCID: PMC10018752 DOI: 10.3389/fimmu.2023.1153344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Comorbidities due to inflammatory bowel disease (IBD) and anxiety are commonly acknowledged; however, their underlying basis is unclear. In the current study, we first conducted a clinical retrospective analysis to identify the enhancive incidence rate of IBD before or after the epidemic of Corona Virus Disease 2019 (COVID-19), with higher Generalized Anxiety Disorder-7 (GAD-7), as well as poorer Gastrointestinal Quality of Life Index (GIQLI). Then, the dextran sodium sulfate (DSS) and chronic unpredictable stress (CUS)-induced IBD and anxiety comorbid models were established with the correlational relations between symptoms of IBD and anxiety-related behaviors. We found dysfunctional up-regulation of a new inflammatory factor interleukin (IL)-19 in the colon of DSS/CUS treated mice. Overexpression of IL-19 in colon induced anxious phenotypes, and accelerated the anxious condition and symptoms of colitis in the DSS/CUS model by promoting the expression of inducible nitric oxide synthase (iNOS), IL-1β, and IL-6 pro-inflammatory factors, and activating signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon. Furthermore, overexpression of IL-19 in the colon also reduced the expression levels of brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase (ERK), and cAMP-response element binding protein (CREB) signaling pathways activity in the hippocampus. These results suggest that IL-19 was a pivotal player in DSS/CUS-induced comorbidities of colitis and anxiety with different signaling pathways for the colon and hippocampus, which provides a candidate gene to explore the pathophysiology of comorbidities due to colitis and anxiety.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Fantao Meng
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Xiangxian Ma
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, China
| | - Zhe Sun
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Juanjuan Dai
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Jing Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Li
- College of Nursing, Binzhou Medical University, Binzhou, China
| | - Peijia Cong
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Ruixue Xu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Di Zhao
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Wentao Wang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Wang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Cuilan Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Faxiang Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- *Correspondence: Chen Li, ; Haifeng Lian, ; Faxiang Wang,
| | - Chen Li
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Chen Li, ; Haifeng Lian, ; Faxiang Wang,
| | - Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Chen Li, ; Haifeng Lian, ; Faxiang Wang,
| |
Collapse
|
28
|
González L, Rivera K, Andia ME, Martínez Rodriguez G. The IL-1 Family and Its Role in Atherosclerosis. Int J Mol Sci 2022; 24:17. [PMID: 36613465 PMCID: PMC9820551 DOI: 10.3390/ijms24010017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The IL-1 superfamily of cytokines is a central regulator of immunity and inflammation. The family is composed of 11 cytokines (with agonist, antagonist, and anti-inflammatory properties) and 10 receptors, all tightly regulated through decoy receptor, receptor antagonists, and signaling inhibitors. Inflammation not only is an important physiological response against infection and injury but also plays a central role in atherosclerosis development. Several clinical association studies along with experimental studies have implicated the IL-1 superfamily of cytokines and its receptors in the pathogenesis of cardiovascular disease. Here, we summarize the key features of the IL-1 family, its role in immunity and disease, and how it helps shape the development of atherosclerosis.
Collapse
Affiliation(s)
- Leticia González
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Katherine Rivera
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| | - Marcelo E. Andia
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Gonzalo Martínez Rodriguez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| |
Collapse
|
29
|
Nold-Petry CA, Nold MF. Rationale for IL-37 as a novel therapeutic agent in inflammation. Expert Rev Clin Immunol 2022; 18:1203-1206. [PMID: 35916240 DOI: 10.1080/1744666x.2022.2108792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Claudia A Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Marcel F Nold
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, Melbourne, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| |
Collapse
|
30
|
Ma N, Yuan C, Shi J, Zhu Q, Liu Y, Ma X, Li B, Gong W, Xue J, Lu G, Li W, Li J. Interleukin-37 protects against acinar cell pyroptosis in acute pancreatitis. JCI Insight 2022; 7:161244. [PMID: 36166295 PMCID: PMC9675483 DOI: 10.1172/jci.insight.161244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Acute pancreatitis (AP) is a local and/or systemic inflammatory disease that starts with acinar cell injury and necrosis; it has no effective medical treatment and thus remains a life-threatening condition. Interleukin-37 (IL-37), a natural immunomodulator, has demonstrated an antiinflammatory effect; however, the role of IL-37 in AP remains unknown. The serum IL-37 levels of 39 healthy controls and 94 patients with AP were measured. Cholecystokinin was applied to induce pancreatic acinar cell injury in vitro. Classical experimental AP models, such as caerulein, l-arginine, and taurolithocholic acid 3-sulfate disodium salt, were included in the in vivo study. A transgenic mouse model with the IL-37 gene and administration of recombinant IL-37 were used to further investigate the function of IL-37 in AP. Pancreas-specific gasdermin D-knockout (GSDMD-knockout) mice were used to explore the protective mechanism of IL-37. Our results showed that serum IL-37 levels in humans were negatively correlated with the severity of AP. Furthermore, IL-37-transgenic mice and supplementation with recombinant IL-37 could both protect against AP. Mechanistically, IL-37 was able to suppress pyroptosis of injured acinar cells, and specific depletion of GSDMD in the pancreas counteracted the protective effect of IL-37. Our study demonstrates that IL-37 protects against acinar cell pyroptosis in AP.
Collapse
Affiliation(s)
- Nan Ma
- Department of Critical Care Medicine, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, and,Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, and,Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yang Liu
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaojie Ma
- Department of Critical Care Medicine, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baiqiang Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, and,Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, and,Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weiqin Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jieshou Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
31
|
Zhang Y, Li JM, Lu R, Liu Z, Chen X, de Paiva CS, Pflugfelder SC, Li DQ. Imbalanced IL-37/TNF-α/CTSS signaling disrupts corneal epithelial barrier in a dry eye model in vitro. Ocul Surf 2022; 26:234-243. [PMID: 36208723 DOI: 10.1016/j.jtos.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE To explore novel role and molecular mechanism of a natural anti-inflammatory cytokine interleukin (IL) 37 in preventing corneal epithelial barrier disruption from hyperosmolar stress as can occur in dry eye disease. METHODS Primary human corneal epithelial cells (HCECs) were cultured from fresh donor limbal explants. An in vitro dry eye model with hyperosmolar stress was established by switching HCECs from isosmolar (312mOsM) to hyperosmolar medium (350-500 mOsM), and some cells were treated with rhIL-37 or rhTNF-α, for different periods (2-48 h). The expression of cytokines and cathepsin S, and barrier protein integrity were evaluated by RT-qPCR, ELISA, and immunofluorescent staining with confocal microscopy. RESULTS The integrity of epithelial barrier was significantly disrupted in HCECs exposed to hyperosmolar medium, as shown by immunofluorescent images of tight junction (TJ, ZO-1, occludin and claudin-1) and adheren junction (E-cadherin) proteins. TNF-α accentuated hyperosmolar-induced disruption of TJ barrier functional integrity whereas exposure to IL-37 blunted or even reversed these changes. Cathepsin S, encoded by CTSS gene, was found to directly disrupt epithelial barrier integrity. Interestingly, CTSS expression was significantly induced by TNF-α and hyperosmolarity, while exogenous rhIL-37 inhibited TNF-α and CTSS expression at mRNA and protein levels following hyperosmolar stress. Furthermore, rhIL-37 restored barrier protein integrity, observed in 2D and 3D confocal immunofluorescent images, in HCECs under hyperosmolar stress. CONCLUSION Our findings demonstrate a novel signaling pathway by which anti-inflammatory cytokine IL-37 prevents corneal epithelial barrier disruption under hyperosmotic stress via suppressing TNF-α and CTSS expression. This study provides new insight into mechanisms protecting corneal barrier in dry eye disease.
Collapse
Affiliation(s)
- Yun Zhang
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; School of Optometry and Ophthalmology, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jin-Miao Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangzhou, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangzhou, China
| | - Zhao Liu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Xin Chen
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; School of Optometry and Ophthalmology, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen C Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Lonnemann N, Hosseini S, Ohm M, Geffers R, Hiller K, Dinarello CA, Korte M. IL-37 expression reduces acute and chronic neuroinflammation and rescues cognitive impairment in an Alzheimer's disease mouse model. eLife 2022; 11:75889. [PMID: 36040311 PMCID: PMC9481244 DOI: 10.7554/elife.75889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The anti-inflammatory cytokine interleukin-37 (IL-37) belongs to the IL-1 family but is not expressed in mice. We used a human IL-37 (hIL-37tg) expressing mouse, which has been subjected to various models of local and systemic inflammation as well as immunological challenges. Previous studies reveal an immunomodulatory role of IL-37, which can be characterized as an important suppressor of innate immunity. Here, we examined the functions of IL-37 in the central nervous system and explored the effects of IL-37 on neuronal architecture and function, microglial phenotype, cytokine production and behavior after inflammatory challenge by intraperitoneal LPS-injection. In wild-type mice, decreased spine density, activated microglial phenotype and impaired long-term potentiation (LTP) were observed after LPS injection, whereas hIL-37tg mice showed no impairment. In addition, we crossed the hIL-37tg mouse with an animal model of Alzheimer’s disease (APP/PS1) to investigate the anti-inflammatory properties of IL-37 under chronic neuroinflammatory conditions. Our results show that expression of IL-37 is able to limit inflammation in the brain after acute inflammatory events and prevent loss of cognitive abilities in a mouse model of AD.
Collapse
Affiliation(s)
- Niklas Lonnemann
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie Ohm
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Karsten Hiller
- Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Health, Aurora, United States
| | - Martin Korte
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
33
|
Ren C, Liu F, Xing C, Zhao R, Tang X, Liu M, Gao W, Shen J. IL-37 alleviates liver granuloma caused by Schistosoma japonicum infection by inducing alternative macrophage activation. Parasit Vectors 2022; 15:300. [PMID: 36002836 PMCID: PMC9404629 DOI: 10.1186/s13071-022-05420-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatic macrophages regulate liver granuloma formation and fibrosis caused by infection with Schistosoma japonicum, with the manner of regulation dependent on macrophage activation state. Interleukin (IL)-37 may have immunomodulatory effects on macrophages. However, whether IL-37 can affect liver granuloma formation and fibrosis by affecting the polarization of macrophages in S. japonicum infection remains unclear. The aim of this study was to investigate IL-37-affected macrophage polarization in liver granuloma formation and fibrosis in S. japonicum infection. Methods An enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of IL-37 in the serum of patients with acute S. japonicum infection and in the serum of healthy people. Recombinant IL-37 (rIL-37), CPP-IgG2Fc-IL-37 and no CPP-IgG2Fc-IL-37 proteins were injected into S. japonicum-infected mice every 3 days for a total of 6 times from day 24 post infection onwards. Subsequently, ELISA, quantitative reverse transcription-PCR, fluorescence-activated cell sorting and western blot were used to analyze whether IL-37 inhibits the formation of liver granulomas and the development of liver fibrosis by regulating the phenotypic transition of macrophages. Finally, the three IL-37 proteins and SIS3, a Smad3 inhibitor, were co-cultured in mouse peritoneal macrophages to explore the mechanism underlying the promotion of the polarization of M0 macrophages to the M2 phenotype by IL-37. Results Serum IL-37 levels were upregulated in schistosomiasis patients, and this increased level of IL-37 protein apparently alleviated the liver granuloma of mice in infection models. It also could induce liver and peritoneal macrophages to polarize to the M2 phenotype in S. japonicum-infected mice. The S. japonicum-infected mice injected with CPP-IgG2Fc-IL-37 group exhibited the most obvious improvement in inflammatory reaction against the liver granuloma. The number and ratio of M2 macrophages in the liver and peritoneal cavity were significantly higher in the three IL-37 protein groups, especially in the CPP-IgG2Fc-IL-37 group, compared to the controls. Similar results were also found regarding liver function damage. IL-37 induced macrophage M2 polarization by promoting AMP-activated protein kinase (AMPK) phosphorylation in vitro. Among all groups, the activation of AMPK was most significant in the CPP-IgG2Fc-IL-37 group, and it was found that SMAD3 could enhance the anti-inflammatory function of IL-37. Conclusions The results show that IL-37 was able to promote the polarization of macrophages to the M2 phenotype, thereby inhibiting the development of schistosomiasis. In comparison to the rIL-37 protein, the CPP-IgG2Fc-IL-37 protein has the advantages of being effective in small doses and having fewer side effects and a better efficacy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05420-6.
Collapse
Affiliation(s)
- Cuiping Ren
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology; Anhui Provincial Laboratory of Zoonoses; Laboratory of Tropical and Parasitic Diseases Control; School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fengchun Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology; Anhui Provincial Laboratory of Zoonoses; Laboratory of Tropical and Parasitic Diseases Control; School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Anhui Provincial Center for Clinical Laboratories, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230032, China
| | - Chen Xing
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology; Anhui Provincial Laboratory of Zoonoses; Laboratory of Tropical and Parasitic Diseases Control; School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ruyu Zhao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology; Anhui Provincial Laboratory of Zoonoses; Laboratory of Tropical and Parasitic Diseases Control; School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaoxue Tang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology; Anhui Provincial Laboratory of Zoonoses; Laboratory of Tropical and Parasitic Diseases Control; School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Miao Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology; Anhui Provincial Laboratory of Zoonoses; Laboratory of Tropical and Parasitic Diseases Control; School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, MA, 02118, USA.
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology; Anhui Provincial Laboratory of Zoonoses; Laboratory of Tropical and Parasitic Diseases Control; School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
34
|
Qin YF, Ren SH, Shao B, Qin H, Wang HD, Li GM, Zhu YL, Sun CL, Li C, Zhang JY, Wang H. The intellectual base and research fronts of IL-37: A bibliometric review of the literature from WoSCC. Front Immunol 2022; 13:931783. [PMID: 35935954 PMCID: PMC9354626 DOI: 10.3389/fimmu.2022.931783] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background IL-37 is a recently identified cytokine with potent immunosuppressive functions. The research fronts of IL-37 are worth investigating, and there is no bibliometric analysis in this field. The purpose of this study is to construct the intellectual base and predict research hotspots of IL-37 research both quantitatively and qualitatively according to bibliometric analysis. Methods The articles were downloaded from the Web of Science Core Collection (WoSCC) database from the inception of the database to 1 April 2022. CiteSpace 5.8.R3 (64-bit, Drexel University, Philadelphia, PA, USA) and Online Analysis Platform of Literature Metrology (https://bibliometric.com/) were used to perform bibliometric and knowledge-map analyses. Results A total of 534 papers were included in 200 academic journals by 2,783 authors in 279 institutions from 50 countries/regions. The journal Cytokine published the most papers on IL-37, while Nature Immunology was the most co-cited journal. The publications belonged mainly to two categories of Immunology and Cell Biology. USA and China were the most productive countries. Meanwhile, the University of Colorado Denver in USA produced the highest number of publications followed by Radboud University Nijmegen in the Netherlands and Monash University in Australia. Charles A. Dinarello published the most papers, while Marcel F. Nold had the most co-citations. Top 10 co-citations on reviews, mechanisms, and diseases were regarded as the knowledge base. The keyword co-occurrence and co-citations of references revealed that the mechanisms and immune-related disorders were the main aspects of IL-37 research. Notably, the involvement of IL-37 in various disorders and the additional immunomodulatory mechanisms were two emerging hotspots in IL-37 research. Conclusions The research on IL-37 was thoroughly reviewed using bibliometrics and knowledge-map analyses. The present study is a benefit for academics to master the dynamic evolution of IL-37 and point out the direction for future research.
Collapse
Affiliation(s)
- Ya-fei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-ming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Hao Wang, ;
| |
Collapse
|
35
|
Qin H, Sun C, Zhu Y, Qin Y, Ren S, Wang Z, Li C, Li X, Zhang B, Hao J, Li G, Wang H, Shao B, Zhang J, Wang H. IL-37 overexpression promotes endometrial regenerative cell-mediated inhibition of cardiac allograft rejection. Stem Cell Res Ther 2022; 13:302. [PMID: 35841010 PMCID: PMC9284885 DOI: 10.1186/s13287-022-02982-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endometrial regenerative cells (ERCs) play an important role in attenuation of acute allograft rejection, while their effects are limited. IL-37, a newly discovered immunoregulatory cytokine of the IL-1 family, can regulate both innate and adaptive immunity. Whether IL-37 overexpression can enhance the therapeutic effects of ERCs in inhibition of acute cardiac allograft rejection remains unknown and will be explored in this study. METHODS C57BL/6 mice recipients receiving BALB/c mouse heterotopic heart allografts were randomly divided into the phosphate-buffered saline (untreated), ERC treated, negative lentiviral control ERC (NC-ERC) treated, and IL-37 overexpressing ERC (IL-37-ERC) treated groups. Graft pathological changes were assessed by H&E staining. The intra-graft cell infiltration and splenic immune cell populations were analyzed by immunohistochemistry and flow cytometry, respectively. The stimulatory property of recipient DCs was tested by an MLR assay. Furthermore, serum cytokine profiles of recipients were measured by ELISA assay. RESULTS Mice treated with IL-37-ERCs achieved significantly prolonged allograft survival compared with the ERC-treated group. Compared with all the other control groups, IL-37-ERC-treated group showed mitigated inflammatory response, a significant increase in tolerogenic dendritic cells (Tol-DCs), regulatory T cells (Tregs) in the grafts and spleens, while a reduction of Th1 and Th17 cell population. Additionally, there was a significant upregulation of immunoregulatory IL-10, while a reduction of IFN-γ, IL-17A, IL-12 was detected in the sera of IL-37-ERC-treated recipients. CONCLUSION IL-37 overexpression can promote the therapeutic effects of ERCs to inhibit acute allograft rejection and further prolong graft survival. This study suggests that gene-modified ERCs overexpressing IL-37 may pave the way for novel therapeutic options in the field of transplantation.
Collapse
Affiliation(s)
- Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Zhaobo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China.,Department of Anorectal Surgery, Tianjin Medical University Second Hospital, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
36
|
Elsaid DS, Elbedewy TAH, Soliman NA, Shalaby KA, Abdel-Hamid Haroun R. Interleukin-37, vascular endothelial growth factor A, and transforming growth factor-β1: promising biomarkers in primary immune thrombocytopenia. Expert Rev Hematol 2022; 15:757-768. [PMID: 35815383 DOI: 10.1080/17474086.2022.2099832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Immune thrombocytopenic purpura (ITP) is an acquired autoimmune hematologic disorder with heterogeneous bleeding manifestations. Many biomarkers such as interleukin-37 (IL-37), vascular endothelial growth factor A (VEGFA), and transforming growth factor-β1 (TGFß1) have a role in immunity, inflammation, and megakaryopoiesis. METHODS In the present study, immunoassay of interleukin-37 as well as the gene expression of vascular endothelial growth factor A and transforming growth factor-β1 were done in 60 primary ITP patients, 60 thrombocytopenia patients, and 60 healthy volunteers. RESULTS Increased IL-37 level and down regulation of VEGFA and TGFß1gene expression were detected in primary ITP patients when compared with other groups. A negative correlation was observed between IL-37 and platelet count. However, a positive correlation was observed between VEGFA and TGFß1 levels and platelet count. CONCLUSION Current results suggested that interleukin-37, vascular endothelial growth factor A, and transforming growth factor-β may be promising indicators in the diagnosis of ITP and detection of disease severity with inexpensive and cost-effectiveness compared to the benefits.
Collapse
Affiliation(s)
- Dina Samir Elsaid
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Nema Ali Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Kamal Ali Shalaby
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
37
|
A Splice Switch in SIGIRR Causes a Defect of IL-37-Dependent Anti-Inflammatory Activity in Cystic Fibrosis Airway Epithelial Cells. Int J Mol Sci 2022; 23:ijms23147748. [PMID: 35887095 PMCID: PMC9318995 DOI: 10.3390/ijms23147748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease typically characterized by infection-associated chronic lung inflammation. The persistent activation of toll-like receptor (TLR) signals is considered one of the mechanisms for the CF hyperinflammatory phenotype; however, how negative regulatory signals of TLRs associate with CF inflammation is still elusive. Here, we showed that the cell surface expression of a single immunoglobulin interleukin-1 receptor (IL-1R)-related molecule (SIGIRR), a membrane protein essential for suppressing TLRs- and IL-1R-dependent signals, was remarkably decreased in CF airway epithelial cells compared to non-CF cells. Notably, CF airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the SIGIRR that lacks exon 8 (Δ8-SIGIRR), which results in the production of a C-terminal truncated form of the SIGIRR. Δ8-SIGIRR was expressed intracellularly, and its over-expression abolished the cell surface expression and function of the full-length SIGIRR (WT-SIGIRR), indicating its dominant-negative effect leading to the deficiency of anti-inflammatory activity in CF cells. Consistently, IL-37, a ligand for the SIGIRR, failed to suppress viral dsRNA analogue poly(I:C)-dependent JNK activation and IL-8 production, confirming the reduction in the functional WT-SIGIRR expression in the CF cells. Together, our studies reveal that SIGIRR-dependent anti-inflammatory activity is defective in CF airway epithelial cells due to the unique splicing switch of the SIGIRR gene and provides the first evidence of IL-37-SIGIRR signaling as a target of CF airway inflammation.
Collapse
|
38
|
Cong J, Wu D, Dai H, Ma Y, Liao C, Li L, Ye L, Huang Z. Interleukin-37 exacerbates experimental colitis in an intestinal microbiome-dependent fashion. Theranostics 2022; 12:5204-5219. [PMID: 35836813 PMCID: PMC9274733 DOI: 10.7150/thno.69616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Inflammatory bowel disease (IBD) involves complicated crosstalk between host immunity and the gut microbiome, whereas the mechanics of how they govern intestinal inflammation remain poorly understood. In this study, we investigated the contribution of environmental factors to shaping gut microbiota composition in colitis mice that were transgenic for human IL-37, a natural anti-inflammatory cytokine possessing pathogenic and protective functions related to microbiota alterations. Methods: Mice transgenic expressing human IL-37 (IL-37tg) were housed under conventional and specific pathogen-free (SPF) conditions to develop a mouse model of dextran sulfate sodium (DSS)-induced colitis. 16S ribosomal RNA sequencing was used for analyzing fecal microbial communities. The efficacy of microbiota in the development of colitis in IL-37tg mice was investigated after antibiotic treatment and fecal microbiota transplantation (FMT). The mechanism by which IL-37 worsened colitis was studied by evaluating intestinal epithelial barrier function, immune cell infiltration, the expression of diverse cytokines and chemokines, as well as activated signaling pathways. Results: We found that IL-37 overexpression aggravated DSS-induced colitis in conventional mice but protected against colitis in SPF mice. These conflicting results from IL-37tg colitis mice are ascribed to a dysbiosis of the gut microbiota in which detrimental bacteria increased in IL-37tg conventional mice. We further identified that the outcome of IL-37-caused colon inflammation is strongly related to intestinal epithelial barrier impairment caused by pathogenic bacteria, neutrophils, and NK cells recruitment in colon lamina propria and mesenteric lymph node to enhance inflammatory responses in IL-37tg conventional mice. Conclusions: The immunoregulatory properties of IL-37 are detrimental in the face of dysbiosis of the intestinal microbiota, which contributes to exacerbated IBD occurrences that are uncontrollable by the immune system, suggesting that depleting gut pathogenic bacteria or maintaining intestinal microbial and immune homeostasis could be a promising therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Junxiao Cong
- Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Dandan Wu
- Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Hanying Dai
- Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yanmei Ma
- Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Chenghui Liao
- Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Lingyun Li
- Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Liang Ye
- Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,✉ Corresponding authors: Zhong Huang, Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, 518055 Shenzhen, China. Phone: +86-0755-86671943. . Liang Ye, Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, 518055 Shenzhen, China. Phone: +86-0755-26631420.
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,✉ Corresponding authors: Zhong Huang, Department of Immunology, Biological Therapy Institute of Shenzhen University, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, 518055 Shenzhen, China. Phone: +86-0755-86671943. . Liang Ye, Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, 518055 Shenzhen, China. Phone: +86-0755-26631420.
| |
Collapse
|
39
|
Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. The IL-1 cytokine family as custodians of barrier immunity. Cytokine 2022; 154:155890. [DOI: 10.1016/j.cyto.2022.155890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
|
40
|
Li X, Yan B, Du J, Xu S, Liu L, Pan C, Kang X, Zhu S. Recent Advances in Progresses and Prospects of IL-37 in Central Nervous System Diseases. Brain Sci 2022; 12:brainsci12060723. [PMID: 35741608 PMCID: PMC9221119 DOI: 10.3390/brainsci12060723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Interleukin-37 (IL-37) is an effective anti-inflammatory factor and acts through intracellular and extracellular pathways, inhibiting the effects of other inflammatory cytokines, such as IL-1β, IL-6, and tumor necrosis factor-α (TNF-α), thereby exerting powerful anti-inflammatory effects. In numerous recent studies, the anti-inflammatory effects of IL-37 have been described in many autoimmune diseases, colitis, and tumors. However, the current research on IL-37 in the field of the central nervous system (CNS) is not only less, but mainly for clinical research and little discussion of the mechanism. In this review, the role of IL-37 and its associated inflammatory factors in common CNS diseases are summarized, and their therapeutic potential in CNS diseases identified.
Collapse
Affiliation(s)
- Xinrui Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.L.); (J.D.); (S.X.); (L.L.); (C.P.)
| | - Bing Yan
- Department of Anesthesiology, Haining People’s Hospital, Haining 314499, China;
| | - Jin Du
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.L.); (J.D.); (S.X.); (L.L.); (C.P.)
- China Coast Guard Hospital of the People‘s Armed Police Force, Jiaxing 314000, China
| | - Shanshan Xu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.L.); (J.D.); (S.X.); (L.L.); (C.P.)
| | - Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.L.); (J.D.); (S.X.); (L.L.); (C.P.)
| | - Caifei Pan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.L.); (J.D.); (S.X.); (L.L.); (C.P.)
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.L.); (J.D.); (S.X.); (L.L.); (C.P.)
- Correspondence: (X.K.); (S.Z.)
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.L.); (J.D.); (S.X.); (L.L.); (C.P.)
- Correspondence: (X.K.); (S.Z.)
| |
Collapse
|
41
|
Cao Q, Mertens RT, Sivanathan KN, Cai X, Xiao P. Macrophage orchestration of epithelial and stromal cell homeostasis in the intestine. J Leukoc Biol 2022; 112:313-331. [PMID: 35593111 PMCID: PMC9543232 DOI: 10.1002/jlb.3ru0322-176r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022] Open
Abstract
The intestinal tract is a complex ecosystem where numerous cell types of epithelial, immune, neuronal, and endothelial origin coexist in an intertwined, highly organized manner. The functional equilibrium of the intestine relies heavily on the proper crosstalk and cooperation among each cell population. Furthermore, macrophages are versatile, innate immune cells that participate widely in the modulation of inflammation and tissue remodeling. Emerging evidence suggest that macrophages are central in orchestrating tissue homeostasis. Herein, we describe how macrophages interact with epithelial cells, neurons, and other types of mesenchymal cells under the context of intestinal inflammation, followed by the therapeutic implications of cellular crosstalk pertaining to the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Randall Tyler Mertens
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kisha Nandini Sivanathan
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xuechun Cai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
IL-37 isoform D acts as an inhibitor of soluble ST2 to boost type 2 immune homeostasis in white adipose tissue. Cell Death Dis 2022; 8:163. [PMID: 35383145 PMCID: PMC8983676 DOI: 10.1038/s41420-022-00960-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
White adipose tissue (WAT) homeostasis substantiated by type 2 immunity is indispensable to counteract obesity and metabolic disorders. IL-33/suppression of tumorigenicity (ST) 2 signaling promotes type 2 response in WAT, while potential regulators remain to be discovered. We identified human IL-37 isoform D (IL-37D) as an effective trigger for ST2-mediated type 2 immune homeostasis in WAT. IL-37D transgene amplified ST2+ immune cells, promoted M2 macrophage polarization and type 2 cytokine secretion in WAT that mediate beiging and inflammation resolution, thereby increasing energy expenditure, reducing obesity and insulin resistance in high-fat diet (HFD)-fed mice. Mechanistically, either endogenous or exogenous IL-37D inhibited soluble ST2 (sST2) production from WAT challenged with HFD or TNF-α. Recombinant sST2 impaired the beneficial effects of IL-37D transgene in HFD-fed mice, characterized by damaged weight loss, insulin action, and type 2 cytokine secretion from WAT. In adipose-derived stem cells, IL-37D inhibited TNF-α-stimulated sST2 expression through IL-1 receptor 8 (IL-1R8)-dependent NF-κB inactivation. Collectively, human IL-37D suppresses sST2 to boost type 2 immune homeostasis in WAT, which may be a promising therapy target for obesity and metabolic disorders.
Collapse
|
43
|
Interleukin-37 promotes colitis-associated carcinogenesis via SIGIRR-mediated cytotoxic T cells dysfunction. Signal Transduct Target Ther 2022; 7:19. [PMID: 35046386 PMCID: PMC8770466 DOI: 10.1038/s41392-021-00820-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Interleukin-37b (hereafter called IL-37) was identified as fundamental inhibitor of natural and acquired immunity. The molecular mechanism and function of IL-37 in colorectal cancer (CRC) has been elusive. Here, we found that IL-37 transgenic (IL-37tg) mice were highly susceptible to colitis-associated colorectal cancer (CAC) and suffered from dramatically increased tumor burdens in colon. Nevertheless, IL-37 is dispensable for intestinal mutagenesis, and CRC cell proliferation, apoptosis, and migration. Notably, IL-37 dampened protective cytotoxic T cell-mediated immunity in CAC and B16-OVA models. CD8+ T cell dysfunction is defined by reduced retention and activation as well as failure to proliferate and produce cytotoxic cytokines in IL-37tg mice, enabling tumor evasion of immune surveillance. The dysfunction led by IL-37 antagonizes IL-18-induced proliferation and effector function of CD8+ T cells, which was dependent on SIGIRR (single immunoglobulin interleukin-1 receptor-related protein). Finally, we observed that IL-37 levels were significantly increased in CRC patients, and positively correlated with serum CRC biomarker CEA levels, but negatively correlated with the CD8+ T cell infiltration in CRC patients. Our findings highlight the role of IL-37 in harnessing antitumor immunity by inactivation of cytotoxic T cells and establish a new defined inhibitory factor IL-37/SIGIRR in cancer-immunity cycle as therapeutic targets in CRC.
Collapse
|
44
|
Huang G, Li M, Tian X, Jin Q, Mao Y, Li Y. The emerging roles of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications. Endocr Metab Immune Disord Drug Targets 2022; 22:997-1008. [PMID: 35049442 DOI: 10.2174/1871530322666220113142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic disease caused by a combination of genetics and environmental factors. The importance of the inflammatory response occurring in the pancreas and adipose tissue in the occurrence and progression of diabetes has been gradually accepted. Excess blood glucose and free fatty acids produce large amounts of inflammatory cytokines and chemokines through oxidative stress and endoplasmic reticulum stress. There is sufficient evidence that proinflammatory mediators, such as interleukin (IL)-1β, IL-6, macrophage chemotactic protein-1, and tumor necrosis factor-α, are engaged in the insulin resistance in peripheral adipose tissue and the apoptosis of pancreatic β-cells. IL-36, IL-37, and IL-38, as new members of the IL-1 family, play an indispensable effect in the regulation of immune system homeostasis and are involved in the pathogenesis of inflammatory and autoimmune diseases. Recently, the abnormal expression of IL-36, IL-37, and IL-38 in diabetes has been reported. In this review, we discuss the emerging functions, potential mechanisms, and future research directions on the role of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Guoqing Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Mingcai Li
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaoqing Tian
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Qiankai Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yushan Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yan Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| |
Collapse
|
45
|
Wang M, Hou S, Lu X, Li J, Li R, Yan X. Interleukin-37 inhibits inflammation activation and disease severity of PM2.5-induced airway hyperresponsiveness. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112890. [PMID: 34649135 DOI: 10.1016/j.ecoenv.2021.112890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
We have shown in the past studies that fine particulate matter (PM2.5) exposure increases airway hyperresponsiveness and leads to lung inflammation damage. Interleukin (IL)-37 plays a inhibitory role in inflammation activation and maintenance. However, the function of IL-37 in the above processes keep unclear. We aim to explore the role of IL-37 in PM2.5-induced airway hyperresponsiveness in this study. A nose-only PM2.5 online concentration, enrichment and exposure instrument was also applied to generate mice model of airway hyperresponsiveness. A transgenic mice strain using a CMV promoter to express human IL-37b (hIL-37tg) was obtained. PM2.5 exposure was shown to increase airway resistance, followed by lung inflammation and IL-1β, TNFα, and IL-6 release, which was inhibited by IL-37tg mice and mice administrated recombinant human IL-37 intranasally (i.n). Moreover, expression of the proliferation-related protein PCNA and migration-related proteins MMP-2, MMP-9, and Vimentin was reduced in lung tissues of IL-37tg mice and mice given recombinant human IL-37 i.n. Abnormal cell contraction, proliferation, and migration of human airway smooth muscle cells (hASMCs) incubated with PM2.5 were also decreased by IL-37 treatment. In addition, IL-37 intervention of hASMCs before PM2.5 incubation decreased cytoplasmic calcium level and expression of PCNA, MMP-2, MMP-9 and Vimentin. Finally, knockdown of the IL-37 receptor IL-1R8 gene eliminated the protective effects of IL-37 in the above responses. We conclude that IL-37 inhibits inflammation activation and disease severity of airway hyperreactivity by PM2.5 induction.
Collapse
Affiliation(s)
- Min Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Shujie Hou
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xi Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jingwen Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
46
|
Bujotzek A, Tiefenthaler G, Lariviere L, D'Andrea L, Marquez EA, Rudloff I, Cho SX, Deen NS, Richter W, Regenass-Lechner F, Poehler A, Whisstock JC, Sydow-Andersen J, Reiser X, Schuster S, Neubauer J, Hoepfl S, Richter K, Nold MF, Nold-Petry CA, Schumacher F, Ellisdon AM. Protein engineering of a stable and potent anti-inflammatory IL-37-Fc fusion with enhanced therapeutic potential. Cell Chem Biol 2021; 29:586-596.e4. [PMID: 34699747 DOI: 10.1016/j.chembiol.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/31/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
Harnessing the immunomodulatory activity of cytokines is a focus of therapies targeting inflammatory disease. The interleukin (IL)-1 superfamily contains pro-inflammatory and anti-inflammatory members that help orchestrate the immune response in adaptive and innate immunity. Of these molecules, IL-37 has robust anti-inflammatory activity across a range of disease models through inhibition of pro-inflammatory signaling cascades downstream of tumor necrosis factor, IL-1, and toll-like receptor pathways. We find that IL-37 is unstable with a poor pharmacokinetic and manufacturing profile. Here, we present the engineering of IL-37 from an unstable cytokine into an anti-inflammatory molecule with an excellent therapeutic likeness. We overcame these shortcomings through site-directed mutagenesis, the addition of a non-native disulfide bond, and the engineering of IL-37 as an Fc-fusion protein. Our results provide a platform for preclinical testing of IL-37 Fc-fusion proteins. The engineering approaches undertaken herein will apply to the conversion of similar potent yet short-acting cytokines into therapeutics.
Collapse
Affiliation(s)
- Alexander Bujotzek
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Georg Tiefenthaler
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Laurent Lariviere
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Laura D'Andrea
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Elsa A Marquez
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Ina Rudloff
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia; Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Steven X Cho
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia; Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Nadia S Deen
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia; Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Wolfgang Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | | | - Alexander Poehler
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - James C Whisstock
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Jasmin Sydow-Andersen
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Xaver Reiser
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Sabine Schuster
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Jeannette Neubauer
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Sebastian Hoepfl
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Kirsten Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia; Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia; Monash Newborn, Monash Children's Hospital, Melbourne, VIC 3168, Australia
| | - Claudia A Nold-Petry
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia; Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.
| | - Felix Schumacher
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
47
|
Boersma B, Jiskoot W, Lowe P, Bourquin C. The interleukin-1 cytokine family members: Role in cancer pathogenesis and potential therapeutic applications in cancer immunotherapy. Cytokine Growth Factor Rev 2021; 62:1-14. [PMID: 34620560 DOI: 10.1016/j.cytogfr.2021.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
The interleukin-1 (IL-1) family is one of the first described cytokine families and consists of eight cytokines (IL-1β, IL-1α, IL-18, IL-33, IL-36α, IL-36β, IL-36γ and IL-37) and three receptor antagonists (IL-1Ra, IL-36Ra and IL-38). The family members are known to play an essential role in inflammation. The importance of inflammation in cancer has been well established in the past decades. This review sets out to give an overview of the role of each IL-1 family member in cancer pathogenesis and show their potential as potential anticancer drug candidates. First, the molecular structure is described. Next, both the pro- and anti-tumoral properties are highlighted. Additionally, a critical interpretation of current literature is given. To conclude, the IL-1 family is a toolbox with a collection of powerful tools that can be considered as potential drugs or drug targets.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland.
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Peter Lowe
- Department of Biomolecule Generation and Optimization, Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France.
| | - Carole Bourquin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
48
|
Ischemic stroke and infection: A brief update on mechanisms and potential therapies. Biochem Pharmacol 2021; 193:114768. [PMID: 34543657 DOI: 10.1016/j.bcp.2021.114768] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
Ischemic stroke triggers a multifaceted inflammatory response in the brain that contributes to secondary brain injury and infarct expansion. In parallel with brain inflammation, ischemic stroke also leads to post-stroke immunosuppression. Stroke-induced leukopenia then predisposes patients to opportunistic infections potentially leading to pneumonia or unrinary tract infections and a worsened stroke outcome. There is evidence that the hypothalamic-pituitaryadrenal axis plays an important role in the etiology of post-stroke immunosuppression, by which prolonged glucocorticoid signalling leads to changes in immune responses. While opportunistic microbes in hospitals have been thought to be the source of infection, recent studies have reported that gut flora may also be a cause of post-stroke infection as a consequence of compromised integrity of the gut barrier after stroke. While antimicrobial drugs would appear to be a rational form of treatment for bacterial infections in stroke patients, the rise in drug-resistant bacteria and possible adverse effects of disrupting beneficial gut flora represent major challenges with these drugs. Considering the prominent role of gut microbiota in modulating immune responses, protecting and restoring the post-stroke gut bacteriome may provide significant benefit in the context of post-stroke infection. With such broad aspects of post-stroke infection occurring together with an extensive inflammatory response in the brain, a carefully considered administration of therapies for ischemic stroke is warranted.
Collapse
|
49
|
Role of IL-37- and IL-37-Treated Dendritic Cells in Acute Coronary Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6454177. [PMID: 34471467 PMCID: PMC8405329 DOI: 10.1155/2021/6454177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
As a chronic inflammatory disease, atherosclerosis is a leading cause of morbidity and mortality in most countries. Inflammation is responsible for plaque instability and the subsequent onset of acute coronary syndrome (ACS), which is one of the leading causes of hospitalization. Therefore, exploring the potential mechanism underlying ACS is of considerable concern, and searching for alternative therapeutic targets is very urgent. Interleukin-37 (IL-37) inhibits the production of proinflammatory chemokines and cytokines and acts as a natural inhibitor of innate and adaptive immunity. Interestingly, our previous study with murine models showed that IL-37 alleviated cardiac remodeling and myocardial ischemia/reperfusion injury. Of note, our clinical study revealed that IL-37 is elevated and plays a beneficial role in patients with ACS. Moreover, dendritic cells (DCs) orchestrate both immunity and tolerance, and tolerogenic DCs (tDCs) are characterized by more secretion of immunosuppressive cytokines. As expected, IL-37-treated DCs are tolerogenic. Hence, we speculate that IL-37- or IL-37-treated DCs is a novel therapeutic possibility for ACS, and the precise mechanism of IL-37 requires further study.
Collapse
|
50
|
Law CC, Puranik R, Fan J, Fei J, Hambly BD, Bao S. Clinical Implications of IL-32, IL-34 and IL-37 in Atherosclerosis: Speculative Role in Cardiovascular Manifestations of COVID-19. Front Cardiovasc Med 2021; 8:630767. [PMID: 34422917 PMCID: PMC8377289 DOI: 10.3389/fcvm.2021.630767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis, which is a primary cause of cardiovascular disease (CVD) deaths around the world, is a chronic inflammatory disease that is characterised by the accumulation of lipid plaques in the arterial wall, triggering inflammation that is regulated by cytokines/chemokines that mediate innate and adaptive immunity. This review focuses on IL-32, -34 and -37 in the stable vs. unstable plaques from atherosclerotic patients. Dysregulation of the novel cytokines IL-32, -34 and -37 has been discovered in atherosclerotic plaques. IL-32 and -34 are pro-atherogenic and associated with an unstable plaque phenotype; whereas IL-37 is anti-atherogenic and maintains plaque stability. It is speculated that these cytokines may contribute to the explanation for the increased occurrence of atherosclerotic plaque rupture seen in patients with COVID-19 infection. Understanding the roles of these cytokines in atherogenesis may provide future therapeutic perspectives, both in the management of unstable plaque and acute coronary syndrome, and may contribute to our understanding of the COVID-19 cytokine storm.
Collapse
Affiliation(s)
- Ching Chee Law
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Rajesh Puranik
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jingchun Fan
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jian Fei
- Shanghai Engineering Research Centre for Model Organisms, SMOC, Shanghai, China
| | - Brett D Hambly
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Shisan Bao
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|