1
|
Fujiwara N, Ueno T, Yamazaki T, Hirose T. Unraveling architectural RNAs: Structural and functional blueprints of membraneless organelles and strategies for genome-scale identification. Biochim Biophys Acta Gen Subj 2025; 1869:130815. [PMID: 40348038 DOI: 10.1016/j.bbagen.2025.130815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Architectural RNAs (arcRNAs) are long noncoding RNAs that serve as structural scaffolds for membraneless organelles (MLOs), facilitating cellular organization and dynamic responses to stimuli. Acting as blueprints for MLO assembly, arcRNAs recruit specific proteins and nucleic acids to establish and maintain the internal structure of MLOs while coordinating their spatial relationships with other organelles. This organized framework enables precise spatiotemporal regulation, allowing for targeted control of transcription, RNA processing, and cellular responses to stress. Notably, arcRNAs exhibit the "semi-extractable" feature, a property derived from their stable binding to cellular structures, making them partially resistant to conventional RNA extraction methods. This unique feature serves as a useful criterion for identifying novel arcRNAs, providing an opportunity to accelerate research in long noncoding RNAs and deepen our understanding of their functional roles in cellular processes.
Collapse
Affiliation(s)
- Naoko Fujiwara
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tsuyoshi Ueno
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan.
| |
Collapse
|
2
|
Tani H. Biomolecules Interacting with Long Noncoding RNAs. BIOLOGY 2025; 14:442. [PMID: 40282307 PMCID: PMC12025117 DOI: 10.3390/biology14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
This review explores the complex interactions between long noncoding RNAs (lncRNAs) and other biomolecules, highlighting their pivotal roles in gene regulation and cellular function. LncRNAs, defined as RNA transcripts exceeding 200 nucleotides without encoding proteins, are involved in diverse biological processes, from embryogenesis to pathogenesis. They interact with DNA through mechanisms like triplex structure formation, influencing chromatin organization and gene expression. LncRNAs also modulate RNA-mediated processes, including mRNA stability, translational control, and splicing regulation. Their versatility stems from their forming of complex structures that enable interactions with various biomolecules. This review synthesizes current knowledge on lncRNA functions, discusses emerging roles in development and disease, and evaluates potential applications in diagnostics and therapeutics. By examining lncRNA interactions, it provides insights into the intricate regulatory networks governing cellular processes, underscoring the importance of lncRNAs in molecular biology. Unlike the majority of previous reviews that primarily focused on individual aspects of lncRNA biology, this comprehensive review uniquely integrates structural, functional, and mechanistic perspectives on lncRNA interactions across diverse biomolecules. Additionally, this review critically evaluates cutting-edge methodologies for studying lncRNA interactions, bridges fundamental molecular mechanisms with potential clinical applications, and highlights their potential.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama 245-0066, Japan
| |
Collapse
|
3
|
Chen Y, Chen Y, Qin W. Mapping RNA-Protein Interactions via Proximity Labeling-Based Approaches. Chem Asian J 2025:e202500118. [PMID: 40249647 DOI: 10.1002/asia.202500118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
RNA-protein interactions are fundamental to a wide range of biological processes, and understanding these interactions in their native cellular context is both vital and challenging. Traditional methods for studying RNA-protein interactions rely on crosslinking, which can introduce artifacts. Recently, proximity labeling-based techniques have emerged as powerful alternatives, offering a crosslinking-free approach to investigate these interactions. This review highlights recent advancements in the development and application of proximity labeling methods, focusing on both RNA-centric and protein-centric strategies for profiling cellular RNA-protein interactions. By examining these innovative approaches, we aim to provide insights into their potential for enhancing our understanding of RNA-protein dynamics in various biological settings.
Collapse
Affiliation(s)
- Yongzuo Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuxin Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Khlebnikov D, Nikolskaya A, Zharikova A, Mironov A. Comprehensive analysis of RNA-chromatin, RNA-, and DNA-protein interactions. NAR Genom Bioinform 2025; 7:lqaf010. [PMID: 40007725 PMCID: PMC11850300 DOI: 10.1093/nargab/lqaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
RNA-chromatin interactome data are considered to be one of the noisiest types of data in biology. This is due to protein-coding RNA contacts and nonspecific interactions between RNA and chromatin caused by protocol specifics. Therefore, finding regulatory interactions between certain transcripts and genome loci requires a wide range of filtering techniques to obtain significant results. Using data on pairwise interactions between these molecules, we propose a concept of triad interaction involving RNA, protein, and a DNA locus. The constructed triads show significantly less noise contacts and are more significant when compared to a background model for generating pairwise interactions. RNA-chromatin contacts data can be used to validate the proposed triad object as positive (Red-ChIP experiment) or negative (RADICL-seq NPM) controls. Our approach also filters RNA-chromatin contacts in chromatin regions associated with protein functions based on ChromHMM annotation.
Collapse
Affiliation(s)
- Daniil A Khlebnikov
- RTC Bioinformatics, Kharkevich Institute for Information Transmission Problems of RAS, Bolshoy Karetny per. 19, build.1, 127051 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, 119991 Moscow, Russia
| | - Arina I Nikolskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, 119991 Moscow, Russia
| | - Anastasia A Zharikova
- RTC Bioinformatics, Kharkevich Institute for Information Transmission Problems of RAS, Bolshoy Karetny per. 19, build.1, 127051 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, 119991 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia
| | - Andrey A Mironov
- RTC Bioinformatics, Kharkevich Institute for Information Transmission Problems of RAS, Bolshoy Karetny per. 19, build.1, 127051 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
5
|
Bujisic B, Lee HG, Xu L, Weissbein U, Rivera C, Topisirovic I, Lee JT. 7SL RNA and signal recognition particle orchestrate a global cellular response to acute thermal stress. Nat Commun 2025; 16:1630. [PMID: 39952919 PMCID: PMC11828898 DOI: 10.1038/s41467-025-56351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025] Open
Abstract
Non-coding 7SL RNA is an ancestor to mammalian Alu and B1 SINE RNAs and is thought to function exclusively within the Signal Recognition Particle (SRP), aiding in the translocation of secretory proteins into the endoplasmic reticulum for export. Here, we discover a function of 7SL/SRP unrelated to protein secretion. Under acute heat shock, 7SL and SRP together selectively arrest cellular transcription and translation machineries during early response to stress. Under thermal stress, 7SL is upregulated, accumulates in the nucleus, and binds to target genes repressed by heat shock. Concurrently, in the cytosol, SRP binds to ribosomes and inhibits new protein synthesis. Translational suppression occurs independently of the signal peptide and is abrogated by depleting SRP. Translation inhibition extends to the mitochondria, as nuclear-encoded genes with mitochondrial functions are enriched among SRP targets. Thus, apart from its role in protein export, 7SL/SRP orchestrates a global response to acute stress that encompasses the nucleus, cytosol, and mitochondria across transcription and translation.
Collapse
Affiliation(s)
- Bojan Bujisic
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Hun-Goo Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Lilei Xu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Carlos Rivera
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Zvezdin DS, Tyukaev AA, Zharikova AA, Mironov AA. A Joint Analysis of RNA-DNA and DNA-DNA Interactomes Reveals Their Strong Association. Int J Mol Sci 2025; 26:1137. [PMID: 39940904 PMCID: PMC11817408 DOI: 10.3390/ijms26031137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
At the moment, many non-coding RNAs that perform a variety of functions in the regulation of chromatin processes are known. An increasing number of protocols allow researchers to study RNA-DNA interactions and shed light on new aspects of the RNA-chromatin interactome. The Hi-C protocol, which enables the study of chromatin's three-dimensional organization, has already led to numerous discoveries in the field of genome 3D organization. We conducted a comprehensive joint analysis of the RNA-DNA interactome and chromatin structure across different human and mouse cell lines. We show that these two phenomena are closely related in many respects, with the nature of this relationship being both tissue specific and conserved across humans and mice.
Collapse
Affiliation(s)
- Dmitry S. Zvezdin
- RSC Bioinformatics, Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny Per. 19, 127051 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-7-3 Leninskie Gory, 119991 Moscow, Russia;
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
| | - Artyom A. Tyukaev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-7-3 Leninskie Gory, 119991 Moscow, Russia;
| | - Anastasia A. Zharikova
- RSC Bioinformatics, Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny Per. 19, 127051 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-7-3 Leninskie Gory, 119991 Moscow, Russia;
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky Per. 10, 101000 Moscow, Russia
| | - Andrey A. Mironov
- RSC Bioinformatics, Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny Per. 19, 127051 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-7-3 Leninskie Gory, 119991 Moscow, Russia;
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
| |
Collapse
|
7
|
Shu X, Kato M, Takizawa S, Suzuki Y, Carninci P. RADIP technology comprehensively identifies H3K27me3-associated RNA-chromatin interactions. Nucleic Acids Res 2024; 52:e104. [PMID: 39558168 DOI: 10.1093/nar/gkae1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
Many RNAs associate with chromatin, either directly or indirectly. Several technologies for mapping regions where RNAs interact across the genome have been developed to investigate the function of these RNAs. Obtaining information on the proteins involved in these RNA-chromatin interactions is critical for further analysis. Here, we developed RADIP [RNA and DNA interacting complexes ligated and sequenced (RADICL-seq) with immunoprecipitation], a novel technology that combines RADICL-seq technology with chromatin immunoprecipitation to characterize RNA-chromatin interactions mediated by individual proteins. Building upon the foundational principles of RADICL-seq, RADIP extends its advantages by increasing genomic coverage and unique mapping rate efficiency compared to existing methods. To demonstrate its effectiveness, we applied an anti-H3K27me3 antibody to the RADIP technology and generated libraries from mouse embryonic stem cells (mESCs). We identified a multitude of RNAs, including RNAs from protein-coding genes and non-coding RNAs, that are associated with chromatin via H3K27me3 and that likely facilitate the spread of Polycomb repressive complexes over broad regions of the mammalian genome, thereby affecting gene expression, chromatin structures and pluripotency of mESCs. Our study demonstrates the applicability of RADIP to investigations of the functions of chromatin-associated RNAs.
Collapse
Affiliation(s)
- Xufeng Shu
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masaki Kato
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoshi Takizawa
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Human Technopole, Milan 20157, Italy
| |
Collapse
|
8
|
Xiang JS, Schafer DM, Rothamel KL, Yeo GW. Decoding protein-RNA interactions using CLIP-based methodologies. Nat Rev Genet 2024; 25:879-895. [PMID: 38982239 DOI: 10.1038/s41576-024-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Protein-RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA - in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) - have helped to map the RNA interactome, yielding transcriptome-wide protein-RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein-RNA interactions.
Collapse
Affiliation(s)
- Joy S Xiang
- Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA
| | - Danielle M Schafer
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA.
| |
Collapse
|
9
|
Mishra A, Mishra S. Metastasis-Associated Lung Adenocarcinoma Transcript 1 ( MALAT1) lncRNA Conformational Dynamics in Complex with RNA-Binding Protein with Serine-Rich Domain 1 (RNPS1) in the Pan-cancer Splicing and Gene Expression. ACS OMEGA 2024; 9:42212-42226. [PMID: 39431102 PMCID: PMC11483381 DOI: 10.1021/acsomega.4c04467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
Alternative splicing events increase the transcriptomic and proteomic complexity in cancers. Overexpression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a highly conserved lncRNA, is widely known to promote cancer development, one mechanism for which may be through the regulation of alternative splicing and, thereby, gene expression. Its regulatory interactions with proteins have been a subject of much interest, yet little research has been carried out on the mechanisms adopted. It has been observed that MALAT1 binds to RNA-binding protein with serine-rich domain 1 (RNPS1), being colocalized in the nuclear speckles, and together, these two binding partners may regulate alternative splicing. Upregulated RNPS1 is predicted to play a key role in the pan-cancer development. Experimental tertiary structure of full-length MALAT1 is currently lacking despite the availability of the 3D structure of 3' expression and nuclear retention element. We hypothesize that the computationally modeled tertiary structures of the specific binding motifs in the M-region, E-region, and full-length structures of MALAT1 may adopt a modular structure and bind to the RNPS1 loop region of RS/P domain involved in exon skipping, interacting in a manner fully consistent with the biochemical experiments. Extensive observations using the powerful molecular dynamics (MD) simulations of MALAT1 regions bound to RNPS1 suggested that all three regions form interactive, yet stable complexes. The ranking of the MM-GBSA- and MM-PBSA-derived binding free energies between these complexes corroborated well in the MD simulations and experiments. Energy decomposition analyses suggested that arginines in the RNPS1 protein are among the major contributors toward the binding free energies as calculated by MM-GBSA present in the Amber package; while among the nucleotides, the major contributors were nucleotides with G and A nucleobases, with more contributory effect in comparison to arginines, across the bound M-region, E-region, and full-length MALAT1. This suggests that specific purines play a greater role in the complex formation, in a loop-specific manner, and the more proactive approach in complexation tilts toward MALAT1. To the best of our knowledge, our studies are the first studies taking a unique approach, utilizing the binding motifs to deduce a tertiary structure of MALAT1, toward our understanding of the lncRNA-protein interactions, stability, and binding on a structural basis. The therapeutic implications of targeting this complex formation to regulate splicing and hence, oncogenesis, is further envisaged.
Collapse
Affiliation(s)
- Aanchal Mishra
- Department of Biochemistry, School
of Life Sciences, University of Hyderabad-500046 Hyderabad, India
| | - Seema Mishra
- Department of Biochemistry, School
of Life Sciences, University of Hyderabad-500046 Hyderabad, India
| |
Collapse
|
10
|
Tenorio M, Cruz-Ruiz S, Encarnación-Guevara S, Hernández M, Corona-Gomez JA, Sheccid-Santiago F, Serwatowska J, López-Perdomo S, Flores-Aguirre CD, Arenas-Moreno DM, Ossiboff RJ, Méndez-de-la-Cruz F, Fernandez-Valverde SL, Zurita M, Oktaba K, Cortez D. MAYEX is an old long noncoding RNA recruited for X chromosome dosage compensation in a reptile. Science 2024; 385:1347-1354. [PMID: 39298575 DOI: 10.1126/science.adp1932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Long noncoding RNAs (lncRNAs) are essential regulatory elements of sex chromosomes that act to equalize gene expression levels between males and females. XIST, RSX, and roX2 regulate X chromosomes in placental mammals, marsupials, and Drosophila, respectively. Because the green anole (Anolis carolinensis) shows complete dosage compensation of its X chromosome, we tested whether a lncRNA was involved. We found an ancient lncRNA, MAYEX, that gained male-specific expression more than 89 million years ago. MAYEX evolved a notable association with the acetylated histone 4 lysine 16 (H4K16ac) epigenetic mark and the ability to loop its locus to the totality of the X chromosome to increase expression levels. MAYEX is the first lncRNA in reptiles linked to a dosage compensation mechanism that balances the expression of sex chromosomes.
Collapse
Affiliation(s)
- Mariela Tenorio
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), CP62210 Cuernavaca, México
| | - Samantha Cruz-Ruiz
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), CP62210 Cuernavaca, México
| | - Sergio Encarnación-Guevara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), CP62210 Cuernavaca, México
| | - Magdalena Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), CP62210 Cuernavaca, México
| | - Jose Antonio Corona-Gomez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México
| | - Fania Sheccid-Santiago
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), CP62210 Cuernavaca, México
| | - Joanna Serwatowska
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México
| | - Sinai López-Perdomo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), CP62210 Cuernavaca, México
| | - Cynthia D Flores-Aguirre
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), CU, CP04510 Ciudad de México, México
| | - Diego M Arenas-Moreno
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), CU, CP04510 Ciudad de México, México
| | - Robert J Ossiboff
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Fausto Méndez-de-la-Cruz
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), CU, CP04510 Ciudad de México, México
| | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México
| | - Mario Zurita
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), CP62210 Cuernavaca, México
| | - Katarzyna Oktaba
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México
| | - Diego Cortez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), CP62210 Cuernavaca, México
| |
Collapse
|
11
|
Tiwari P, Tripathi LP. Long Non-Coding RNAs, Nuclear Receptors and Their Cross-Talks in Cancer-Implications and Perspectives. Cancers (Basel) 2024; 16:2920. [PMID: 39199690 PMCID: PMC11352509 DOI: 10.3390/cancers16162920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various epigenetic and post-transcriptional events in the cell, thereby significantly influencing cellular processes including gene expression, development and diseases such as cancer. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that typically regulate transcription of genes involved in a broad spectrum of cellular processes, immune responses and in many diseases including cancer. Owing to their many overlapping roles as modulators of gene expression, the paths traversed by lncRNA and NR-mediated signaling often cross each other; these lncRNA-NR cross-talks are being increasingly recognized as important players in many cellular processes and diseases such as cancer. Here, we review the individual roles of lncRNAs and NRs, especially growth factor modulated receptors such as androgen receptors (ARs), in various types of cancers and how the cross-talks between lncRNAs and NRs are involved in cancer progression and metastasis. We discuss the challenges involved in characterizing lncRNA-NR associations and how to overcome them. Furthering our understanding of the mechanisms of lncRNA-NR associations is crucial to realizing their potential as prognostic features, diagnostic biomarkers and therapeutic targets in cancer biology.
Collapse
Affiliation(s)
- Prabha Tiwari
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Lokesh P. Tripathi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Kanagawa, Japan
- AI Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Kento Innovation Park NK Building, 3-17 Senrioka Shinmachi, Settsu 566-0002, Osaka, Japan
| |
Collapse
|
12
|
Ito S, Ueno A, Ueda T, Ogura R, Sako S, Gabata Y, Murashita J, Takahashi H, Ukimura O. A testis-specific lncRNA functions as a post-transcriptional regulator of MDM2 and stimulates apoptosis of testicular germ cell tumor cells. Cell Death Discov 2024; 10:348. [PMID: 39097584 PMCID: PMC11297958 DOI: 10.1038/s41420-024-02119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Germ cells preferentially induce apoptosis in response to DNA damage to avoid genomic mutations. Apoptosis of germ cells is closely related to cancer development and chemotherapy resistance; however, its regulatory mechanism is unclear. Here, we suggest that testis-specific lncRNA LINC03074 is involved in male germ cell apoptosis by regulating the expression of the proto-oncogene MDM2. LINC03074 is highly expressed in the sperm of healthy adult testes and cancer cells of testes with testicular germ cell tumors (TGCTs). LINC03074 binds to MDM2 mRNA via an Alu element, thereby reducing MDM2 protein levels. LINC03074 stimulates STAU1-mediated nuclear export of MDM2 mRNA by increasing STAU1 binding to MDM2 mRNA in the cell nucleus, thereby promoting PKR-mediated translational repression in the cytoplasm. The induction of apoptosis in TGCT cells and their responsiveness to the anticancer drug cisplatin is enhanced by LINC03074. Notably, LINC03074 increased E2F1 expression without increasing p53, the primary target of MDM2, and upregulated the apoptotic gene p73, the target gene of E2F1. LINC03074-mediated regulation of apoptosis contributes to the responsiveness of TGCTs to anticancer drug-induced DNA damage.
Collapse
Affiliation(s)
- Saya Ito
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan.
| | - Akihisa Ueno
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Takashi Ueda
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Ryota Ogura
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Satoshi Sako
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Yusuke Gabata
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Junki Murashita
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Hikaru Takahashi
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Osamu Ukimura
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| |
Collapse
|
13
|
Tian SZ, Yang Y, Ning D, Fang K, Jing K, Huang G, Xu Y, Yin P, Huang H, Chen G, Deng Y, Zhang S, Zhang Z, Chen Z, Gao T, Chen W, Li G, Tian R, Ruan Y, Li Y, Zheng M. 3D chromatin structures associated with ncRNA roX2 for hyperactivation and coactivation across the entire X chromosome. SCIENCE ADVANCES 2024; 10:eado5716. [PMID: 39058769 PMCID: PMC11277285 DOI: 10.1126/sciadv.ado5716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
The three-dimensional (3D) organization of chromatin within the nucleus is crucial for gene regulation. However, the 3D architectural features that coordinate the activation of an entire chromosome remain largely unknown. We introduce an omics method, RNA-associated chromatin DNA-DNA interactions, that integrates RNA polymerase II (RNAPII)-mediated regulome with stochastic optical reconstruction microscopy to investigate the landscape of noncoding RNA roX2-associated chromatin topology for gene equalization to achieve dosage compensation. Our findings reveal that roX2 anchors to the target gene transcription end sites (TESs) and spreads in a distinctive boot-shaped configuration, promoting a more open chromatin state for hyperactivation. Furthermore, roX2 arches TES to transcription start sites to enhance transcriptional loops, potentially facilitating RNAPII convoying and connecting proximal promoter-promoter transcriptional hubs for synergistic gene regulation. These TESs cluster as roX2 compartments, surrounded by inactive domains for coactivation of multiple genes within the roX2 territory. In addition, roX2 structures gradually form and scaffold for stepwise coactivation in dosage compensation.
Collapse
Affiliation(s)
- Simon Zhongyuan Tian
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yang Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Duo Ning
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ke Fang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kai Jing
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guangyu Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yewen Xu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Pengfei Yin
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haibo Huang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Gengzhan Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuqing Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shaohong Zhang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhimin Zhang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhenxia Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tong Gao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ruilin Tian
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yijun Ruan
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Meizhen Zheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
14
|
Meza-Menchaca T, Albores-Medina A, Heredia-Mendez AJ, Ruíz-May E, Ricaño-Rodríguez J, Gallegos-García V, Esquivel A, Vettoretti-Maldonado G, Campos-Parra AD. Revisiting Epigenetics Fundamentals and Its Biomedical Implications. Int J Mol Sci 2024; 25:7927. [PMID: 39063168 PMCID: PMC11276703 DOI: 10.3390/ijms25147927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In light of the post-genomic era, epigenetics brings about an opportunity to better understand how the molecular machinery works and is led by a complex dynamic set of mechanisms, often intricate and complementary in many aspects. In particular, epigenetics links developmental biology and genetics, as well as many other areas of knowledge. The present work highlights substantial scopes and relevant discoveries related to the development of the term from its first notions. To our understanding, the concept of epigenetics needs to be revisited, as it is one of the most relevant and multifaceted terms in human knowledge. To redirect future novel experimental or theoretical efforts, it is crucial to compile all significant issues that could impact human and ecological benefit in the most precise and accurate manner. In this paper, the reader can find one of the widest compilations of the landmarks and epistemic considerations of the knowledge of epigenetics across the history of biology from the earliest epigenetic formulation to genetic determinism until the present. In the present work, we link the current body of knowledge and earlier pre-genomic concepts in order to propose a new definition of epigenetics that is faithful to its regulatory nature.
Collapse
Affiliation(s)
- Thuluz Meza-Menchaca
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico;
| | - Alma Jaqueline Heredia-Mendez
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Cluster BioMimic®, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Mexico;
| | - Jorge Ricaño-Rodríguez
- Centro de Eco-Alfabetización y Diálogo de Saberes, Universidad Veracruzana, Zona Universitaria, Xalapa 91090, Mexico;
| | - Verónica Gallegos-García
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico;
| | - Adriana Esquivel
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Giancarlo Vettoretti-Maldonado
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | | |
Collapse
|
15
|
Reichel M, Schmidt O, Rettel M, Stein F, Köster T, Butter F, Staiger D. Revealing the Arabidopsis AtGRP7 mRNA binding proteome by specific enhanced RNA interactome capture. BMC PLANT BIOLOGY 2024; 24:552. [PMID: 38877390 PMCID: PMC11177498 DOI: 10.1186/s12870-024-05249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The interaction of proteins with RNA in the cell is crucial to orchestrate all steps of RNA processing. RNA interactome capture (RIC) techniques have been implemented to catalogue RNA- binding proteins in the cell. In RIC, RNA-protein complexes are stabilized by UV crosslinking in vivo. Polyadenylated RNAs and associated proteins are pulled down from cell lysates using oligo(dT) beads and the RNA-binding proteome is identified by quantitative mass spectrometry. However, insights into the RNA-binding proteome of a single RNA that would yield mechanistic information on how RNA expression patterns are orchestrated, are scarce. RESULTS Here, we explored RIC in Arabidopsis to identify proteins interacting with a single mRNA, using the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) transcript, one of the most abundant transcripts in Arabidopsis, as a showcase. Seedlings were treated with UV light to covalently crosslink RNA and proteins. The AtGRP7 transcript was captured from cell lysates with antisense oligonucleotides directed against the 5'untranslated region (UTR). The efficiency of RNA capture was greatly improved by using locked nucleic acid (LNA)/DNA oligonucleotides, as done in the enhanced RIC protocol. Furthermore, performing a tandem capture with two rounds of pulldown with the 5'UTR oligonucleotide increased the yield. In total, we identified 356 proteins enriched relative to a pulldown from atgrp7 mutant plants. These were benchmarked against proteins pulled down from nuclear lysates by AtGRP7 in vitro transcripts immobilized on beads. Among the proteins validated by in vitro interaction we found the family of Acetylation Lowers Binding Affinity (ALBA) proteins. Interaction of ALBA4 with the AtGRP7 RNA was independently validated via individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP). The expression of the AtGRP7 transcript in an alba loss-of-function mutant was slightly changed compared to wild-type, demonstrating the functional relevance of the interaction. CONCLUSION We adapted specific RNA interactome capture with LNA/DNA oligonucleotides for use in plants using AtGRP7 as a showcase. We anticipate that with further optimization and up scaling the protocol should be applicable for less abundant transcripts.
Collapse
Affiliation(s)
- Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
- Department of Biology, University of Copenhagen, København N, 2200, Denmark.
| | - Olga Schmidt
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Mandy Rettel
- Proteomics Core Facility, EMBL, 69117, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL, 69117, Heidelberg, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
16
|
Leisegang MS, Warwick T, Stötzel J, Brandes RP. RNA-DNA triplexes: molecular mechanisms and functional relevance. Trends Biochem Sci 2024; 49:532-544. [PMID: 38582689 DOI: 10.1016/j.tibs.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Interactions of RNA with DNA are principles of gene expression control that have recently gained considerable attention. Among RNA-DNA interactions are R-loops and RNA-DNA hybrid G-quadruplexes, as well as RNA-DNA triplexes. It is proposed that RNA-DNA triplexes guide RNA-associated regulatory proteins to specific genomic locations, influencing transcription and epigenetic decision making. Although triplex formation initially was considered solely an in vitro event, recent progress in computational, biochemical, and biophysical methods support in vivo functionality with relevance for gene expression control. Here, we review the central methodology and biology of triplexes, outline paradigms required for triplex function, and provide examples of physiologically important triplex-forming long non-coding RNAs.
Collapse
Affiliation(s)
- Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany.
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Julia Stötzel
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
17
|
Hussain MS, Agrawal M, Shaikh NK, Saraswat N, Bahl G, Maqbool Bhat M, Khurana N, Bisht AS, Tufail M, Kumar R. Beyond the Genome: Deciphering the Role of MALAT1 in Breast Cancer Progression. Curr Genomics 2024; 25:343-357. [PMID: 39323624 PMCID: PMC11420562 DOI: 10.2174/0113892029305656240503045154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 09/27/2024] Open
Abstract
The MALAT1, a huge non-coding RNA, recently came to light as a multifaceted regulator in the intricate landscape of breast cancer (BC) progression. This review explores the multifaceted functions and molecular interactions of MALAT1, shedding light on its profound implications for understanding BC pathogenesis and advancing therapeutic strategies. The article commences by acknowledging the global impact of BC and the pressing need for insights into its molecular underpinnings. It is stated that the core lncRNA MALAT1 has a range of roles in both healthy and diseased cell functions. The core of this review unravels MALAT1's multifaceted role in BC progression, elucidating its participation in critical processes like resistance, invasion, relocation, and proliferating cells to therapy. It explores the intricate mechanisms through which MALAT1 modulates gene expression, interacts with other molecules, and influences signalling pathways. Furthermore, the paper emphasizes MALAT1's clinical significance as a possible prognostic and diagnostic biomarker. Concluding on a forward-looking note, the review highlights the broader implications of MALAT1 in BC biology, such as its connections to therapy resistance and metastasis. It underscores the significance of deeper investigations into these intricate molecular interactions to pave the way for precision medicine approaches. This review highlights the pivotal role of MALAT1 in BC progression by deciphering its multifaceted functions beyond the genome, offering profound insights into its implications for disease understanding and the potential for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan (302017), India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Nusratbanu K. Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, 382210, Gujarat, India
| | - Nikita Saraswat
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan (302017), India
| | - Gurusha Bahl
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan (302017), India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand (248001), India
| | - Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
18
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
19
|
Ghorbani A, Hosseinie F, Khorshid Sokhangouy S, Islampanah M, Khojasteh-Leylakoohi F, Maftooh M, Nassiri M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Nazari E, Avan A. The prognostic, diagnostic, and therapeutic impact of Long noncoding RNAs in gastric cancer. Cancer Genet 2024; 282-283:14-26. [PMID: 38157692 DOI: 10.1016/j.cancergen.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Gastric cancer (GC), ranking as the third deadliest cancer globally, faces challenges of late diagnosis and limited treatment efficacy. Long non-coding RNAs (lncRNAs) emerge as valuable treasured targets for cancer prognosis, diagnosis, and therapy, given their high specificity, convenient non-invasive detection in body fluids, and crucial roles in diverse physiological and pathological processes. Research indicates the significant involvement of lncRNAs in various aspects of GC pathogenesis, including initiation, metastasis, and recurrence, underscoring their potential as novel diagnostic and prognostic biomarkers, as well as therapeutic targets for GC. Despite existing challenges in the clinical application of lncRNAs in GC, the evolving landscape of lncRNA molecular biology holds promise for advancing the survival and treatment outcomes of gastric cancer patients. This review provides insights into recent studies on lncRNAs in gastric cancer, elucidating their molecular mechanisms and exploring the potential clinical applications in GC.
Collapse
Affiliation(s)
- Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Hosseinie
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Saeideh Khorshid Sokhangouy
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Bailey MA, Martyr JG, Hargrove AE, Fitzgerald MC. Stability-Based Proteomics for Investigation of Structured RNA-Protein Interactions. Anal Chem 2024:10.1021/acs.analchem.3c04978. [PMID: 38341805 PMCID: PMC11316846 DOI: 10.1021/acs.analchem.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
RNA-protein interactions are essential to RNA function throughout biology. Identifying the protein interactions associated with a specific RNA, however, is currently hindered by the need for RNA labeling or costly tiling-based approaches. Conventional strategies, which commonly rely on affinity pull-down approaches, are also skewed to the detection of high affinity interactions and frequently miss weaker interactions that may be biologically important. Reported here is the first adaptation of stability-based mass spectrometry methods for the global analysis of RNA-protein interactions. The stability of proteins from rates of oxidation (SPROX) and thermal protein profiling (TPP) methods are used to identify the protein targets of three RNA ligands, the MALAT1 triple helix (TH), a viral stem loop (SL), and an unstructured RNA (PolyU), in LNCaP nuclear lysate. The 315 protein hits with RNA-induced conformational and stability changes detected by TPP and/or SPROX were enriched in previously annotated RNA-binding proteins and included new proteins for hypothesis generation. Also demonstrated are the orthogonality of the SPROX and TPP approaches and the utility of the domain-specific information available with SPROX. This work establishes a novel platform for the global discovery and interrogation of RNA-protein interactions that is generalizable to numerous biological contexts and RNA targets.
Collapse
Affiliation(s)
- Morgan A Bailey
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Justin G Martyr
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
21
|
Li Y, Li C, Liu M, Liu S, Liu F, Wang L. The RNA-binding protein CSDE1 promotes hematopoietic stem and progenitor cell generation via translational control of Wnt signaling. Development 2023; 150:dev201890. [PMID: 37874038 PMCID: PMC10652045 DOI: 10.1242/dev.201890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
In vertebrates, the earliest hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of specialized endothelial cells, hemogenic endothelial cells, in the aorta-gonad-mesonephros region through endothelial-to-hematopoietic transition. HSPC generation is efficiently and accurately regulated by a variety of factors and signals; however, the precise control of these signals remains incompletely understood. Post-transcriptional regulation is crucial for gene expression, as the transcripts are usually bound by RNA-binding proteins (RBPs) to regulate RNA metabolism. Here, we report that the RBP protein Csde1-mediated translational control is essential for HSPC generation during zebrafish early development. Genetic mutants and morphants demonstrated that depletion of csde1 impaired HSPC production in zebrafish embryos. Mechanistically, Csde1 regulates HSPC generation through modulating Wnt/β-catenin signaling activity. We demonstrate that Csde1 binds to ctnnb1 mRNAs (encoding β-catenin, an effector of Wnt signaling) and regulates translation but not stability of ctnnb1 mRNA, which further enhances β-catenin protein level and Wnt signal transduction activities. Together, we identify Csde1 as an important post-transcriptional regulator and provide new insights into how Wnt/β-catenin signaling is precisely regulated at the post-transcriptional level.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Can Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shicheng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
22
|
Tao S, Hou Y, Diao L, Hu Y, Xu W, Xie S, Xiao Z. Long noncoding RNA study: Genome-wide approaches. Genes Dis 2023; 10:2491-2510. [PMID: 37554208 PMCID: PMC10404890 DOI: 10.1016/j.gendis.2022.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to play a crucial role in various biological processes across several species. Though many efforts have been devoted to the expansion of the lncRNAs landscape, much about lncRNAs is still unknown due to their great complexity. The development of high-throughput technologies and the constantly improved bioinformatic methods have resulted in a rapid expansion of lncRNA research and relevant databases. In this review, we introduced genome-wide research of lncRNAs in three parts: (i) novel lncRNA identification by high-throughput sequencing and computational pipelines; (ii) functional characterization of lncRNAs by expression atlas profiling, genome-scale screening, and the research of cancer-related lncRNAs; (iii) mechanism research by large-scale experimental technologies and computational analysis. Besides, primary experimental methods and bioinformatic pipelines related to these three parts are summarized. This review aimed to provide a comprehensive and systemic overview of lncRNA genome-wide research strategies and indicate a genome-wide lncRNA research system.
Collapse
Affiliation(s)
- Shuang Tao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yarui Hou
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Liting Diao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yanxia Hu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Wanyi Xu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Shujuan Xie
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
- Institute of Vaccine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhendong Xiao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
23
|
Lv G, Xia Y, Qi Z, Zhao Z, Tang L, Chen C, Yang S, Wang Q, Gu L. LncRNA-protein interaction prediction with reweighted feature selection. BMC Bioinformatics 2023; 24:410. [PMID: 37904080 PMCID: PMC10617115 DOI: 10.1186/s12859-023-05536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
LncRNA-protein interactions are ubiquitous in organisms and play a crucial role in a variety of biological processes and complex diseases. Many computational methods have been reported for lncRNA-protein interaction prediction. However, the experimental techniques to detect lncRNA-protein interactions are laborious and time-consuming. Therefore, to address this challenge, this paper proposes a reweighting boosting feature selection (RBFS) method model to select key features. Specially, a reweighted apporach can adjust the contribution of each observational samples to learning model fitting; let higher weights are given more influence samples than those with lower weights. Feature selection with boosting can efficiently rank to iterate over important features to obtain the optimal feature subset. Besides, in the experiments, the RBFS method is applied to the prediction of lncRNA-protein interactions. The experimental results demonstrate that our method achieves higher accuracy and less redundancy with fewer features.
Collapse
Affiliation(s)
- Guohao Lv
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yingchun Xia
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhao Qi
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zihao Zhao
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lianggui Tang
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Cheng Chen
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Shuai Yang
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qingyong Wang
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lichuan Gu
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
24
|
Barr J, Colpaert G, Cadoni E, Madder A. Furan-based (photo)oxidation reactions and their application in nucleic acid and protein targeting. Methods 2023; 218:189-197. [PMID: 37597698 DOI: 10.1016/j.ymeth.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Oligonucleotides (ODNs) find applications as diagnostic and therapeutic tools due to their unique ability to interact, thanks to Watson-Crick base pairing, with a specific DNA or RNA target strand. Although most of the tools available today rely on mere hydrogen bond formation, chemical modifications to enable covalent interstrand-crosslinking (ICL) have been reported, and are gaining a place under the spotlight as they potentially offer a series of advantages over the state of the art, including a higher potency and selectivity. This methodological paper focuses on the use of a pro-reactive furan moiety and its subsequent oxidation for applications in ODN targeting. The design of effective capture and targeting probes to ensure high ICL yields is discussed and the mechanisms underlying the (photo)chemical oxidation of furan are explained. Furthermore, examples of furan-containing DNAs designed for different applications, including DNA-DNA or DNA-RNA ICL and DNA-peptide/protein targeting, are provided. The paper highlights the advantages of using different oxidative chemical triggers, such as N-bromosuccinimide or singlet oxygen, to offer additional selectivity control over the ICL reaction.
Collapse
Affiliation(s)
- Jack Barr
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Gertjan Colpaert
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| |
Collapse
|
25
|
De Paepe L, Cadoni E, Manicardi A, Madder A. Furan-modified PNA probes for covalent targeting and ligation of nucleic acids. Methods 2023; 218:210-223. [PMID: 37604247 DOI: 10.1016/j.ymeth.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
While natural oligonucleotides (ONs) are increasingly used as therapeutic and diagnostic tools, they still face certain challenges such as low resistance to enzymatic degradation, potential immunogenicity, and delivery issues, which can limit their applications. Peptide Nucleic Acids (PNAs) are promising alternatives due to their high affinity for DNA and RNA, the high resistance to enzymatic degradation, and the easy introduction of a wide range of potential modifications. Chemical modifications that enable the covalent targeting of specific DNA and RNA strands offer additional advantages, including enhanced potency. The current study focuses on the utilization of furan-PNAs as pro-reactive probe systems and their applications to DNA and RNA targeting. Specifically, in this methodological paper, we provide practical insights into the design, synthesis, and application of furan-containing PNA probes for achieving efficient PNA-DNA and PNA-RNA interstrand crosslinking (ICL), as well as ON-templated PNA-PNA ligation systems. Furthermore, we discuss the applications of these probes in targeting DNA secondary structures, such as G-quadruplexes and i-motifs, target pull-down assays, and on-surface detection.
Collapse
Affiliation(s)
- Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 17/A, I-43124 Parma, Italy.
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| |
Collapse
|
26
|
Hou W, Zong M, Zhao Q, Yang X, Zhang J, Liu S, Li X, Chen L, Tang C, Wang X, Dong Z, Gao M, Su J, Kong Q. Network characterization linc1393 in the maintenance of pluripotency provides the principles for lncRNA targets prediction. iScience 2023; 26:107469. [PMID: 37588167 PMCID: PMC10425947 DOI: 10.1016/j.isci.2023.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in diverse biological processes. However, the functional mechanisms have not yet been fully explored. Characterizing the interactions of lncRNAs with chromatin is central to determining their functions but, due to precise and efficient approaches lacking, our understanding of their functional mechanisms has progressed slowly. In this study, we demonstrate that a nuclear lncRNA linc1393 maintains mouse ESC pluripotency by recruiting SET1A near its binding sites, to establish H3K4me3 status and activate the expression of specific pluripotency-related genes. Moreover, we characterized the principles of lncRNA-chromatin interaction and transcriptional regulation. Accordingly, we developed a computational framework based on the XGBoost model, LncTargeter, to predict the targets of a given lncRNA, and validated its reliability in various cellular contexts. Together, these findings elucidate the roles and mechanisms of lncRNA on pluripotency maintenance, and provide a promising tool for predicting the regulatory networks of lncRNAs.
Collapse
Affiliation(s)
- Weibo Hou
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Zong
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qi Zhao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Yang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaming Zhang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuanghui Liu
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanwen Li
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Chen
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chun Tang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhixiong Dong
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meiling Gao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianzhong Su
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
27
|
Ryabykh GK, Kuznetsov SV, Korostelev YD, Sigorskikh AI, Zharikova AA, Mironov AA. RNA-Chrom: a manually curated analytical database of RNA-chromatin interactome. Database (Oxford) 2023; 2023:baad025. [PMID: 37221043 PMCID: PMC10205464 DOI: 10.1093/database/baad025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 04/01/2023] [Indexed: 05/25/2023]
Abstract
Every year there is more and more evidence that non-coding RNAs play an important role in biological processes affecting various levels of organization of living systems: from the cellular (regulation of gene expression, remodeling and maintenance of chromatin structure, co-transcriptional suppression of transposons, splicing, post-transcriptional RNA modifications, etc.) to cell populations and even organismal ones (development, aging, cancer, cardiovascular and many other diseases). The development and creation of mutually complementary databases that will aggregate, unify and structure different types of data can help to reach the system level of studying non-coding RNAs. Here we present the RNA-Chrom manually curated analytical database, which contains the coordinates of billions of contacts of thousands of human and mouse RNAs with chromatin. Through the user-friendly web interface (https://rnachrom2.bioinf.fbb.msu.ru/), two approaches to the analysis of the RNA-chromatin interactome were implemented. Firstly, to find out whether the RNA of interest to a user contacts with chromatin, and if so, with which genes or DNA loci? Secondly, to find out which RNAs are in contact with the DNA locus of interest to a user (and probably participate in its regulation), and if there are such, what is the nature of their interaction? For a more detailed study of contact maps and their comparison with other data, the web interface allows a user to view them in the UCSC Genome Browser. Database URL https://genome.ucsc.edu/.
Collapse
Affiliation(s)
- G K Ryabykh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| | - S V Kuznetsov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
| | - Y D Korostelev
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| | - A I Sigorskikh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
| | - A A Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., Moscow, 101000, Russia
| | - A A Mironov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119234, Russia
- Kharkevich Institute for Information Transmission Problems RAS, Bolshoy Karetny per., Moscow 127051, Russia
| |
Collapse
|
28
|
Shi H, Nguyen T, Zhao Q, Cheng P, Sharma D, Kim HJ, Kim JB, Wirka R, Weldy CS, Monteiro JP, Quertermous T. Discovery of Transacting Long Noncoding RNAs That Regulate Smooth Muscle Cell Phenotype. Circ Res 2023; 132:795-811. [PMID: 36852690 PMCID: PMC11056793 DOI: 10.1161/circresaha.122.321960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Smooth muscle cells (SMC), the major cell type in atherosclerotic plaques, are vital in coronary artery diseases (CADs). SMC phenotypic transition, which leads to the formation of various cell types in atherosclerotic plaques, is regulated by a network of genetic and epigenetic mechanisms and governs the risk of disease. The involvement of long noncoding RNAs (lncRNAs) has been increasingly identified in cardiovascular disease. However, SMC lncRNAs have not been comprehensively characterized, and their regulatory role in SMC state transition remains unknown. METHODS A discovery pipeline was constructed and applied to deeply strand-specific RNA sequencing from perturbed human coronary artery SMC with different disease-related stimuli, to allow for the detection of novel lncRNAs. The functional relevance of a select few novel lncRNAs were verified in vitro. RESULTS We identified 4579 known and 13 655 de novo lncRNAs in human coronary artery SMC. Consistent with previous long noncoding RNA studies, these lncRNAs overall have fewer exons, are shorter in length than protein-coding genes (pcGenes), and have relatively low expression level. Genomic location of these long noncoding RNA is disproportionately enriched near CAD-related TFs (transcription factors), genetic loci, and gene regulators of SMC identity, suggesting the importance of their function in disease. Two de novo lncRNAs, ZIPPOR (ZEB-interacting suppressor) and TNS1-AS2 (TNS1-antisense 2), were identified by our screen. Combining transcriptional data and in silico modeling along with in vitro validation, we identified CAD gene ZEB2 as a target through which these lncRNAs exert their function in SMC phenotypic transition. CONCLUSIONS Expression of a large and diverse set of lncRNAs in human coronary artery SMC are highly dynamic in response to CAD-related stimuli. The dynamic changes in expression of these lncRNAs correspond to alterations in transcriptional programs that are relevant to CAD, suggesting a critical role for lncRNAs in SMC phenotypic transition and human atherosclerotic disease.
Collapse
Affiliation(s)
- Huitong Shi
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Paul Cheng
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Disha Sharma
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Hyun-Jung Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Robert Wirka
- Departments of Medicine and Cell Biology and Physiology, and McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Chad S Weldy
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - João P. Monteiro
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| |
Collapse
|
29
|
Constructing discriminative feature space for LncRNA-protein interaction based on deep autoencoder and marginal fisher analysis. Comput Biol Med 2023; 157:106711. [PMID: 36924738 DOI: 10.1016/j.compbiomed.2023.106711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) play important roles by regulating proteins in many biological processes and life activities. To uncover molecular mechanisms of lncRNA, it is very necessary to identify interactions of lncRNA with proteins. Recently, some machine learning methods were proposed to detect lncRNA-protein interactions according to the distribution of known interactions. The performances of these methods were largely dependent upon: (1) how exactly the distribution of known interactions was characterized by feature space; (2) how discriminative the feature space was for distinguishing lncRNA-protein interactions. Because the known interactions may be multiple and complex model, it remains a challenge to construct discriminative feature space for lncRNA-protein interactions. To resolve this problem, a novel method named DFRPI was developed based on deep autoencoder and marginal fisher analysis in this paper. Firstly, some initial features of lncRNA-protein interactions were extracted from the primary sequences and secondary structures of lncRNA and protein. Secondly, a deep autoencoder was exploited to learn encode parameters of the initial features to describe the known interactions precisely. Next, the marginal fisher analysis was employed to optimize the encode parameters of features to characterize a discriminative feature space of the lncRNA-protein interactions. Finally, a random forest-based predictor was trained on the discriminative feature space to detect lncRNA-protein interactions. Verified by a series of experiments, the results showed that our predictor achieved the precision of 0.920, recall of 0.916, accuracy of 0.918, MCC of 0.836, specificity of 0.920, sensitivity of 0.916 and AUC of 0.906 respectively, which outperforms the concerned methods for predicting lncRNA-protein interaction. It may be suggested that the proposed method can generate a reasonable and effective feature space for distinguishing lncRNA-protein interactions accurately. The code and data are available on https://github.com/D0ub1e-D/DFRPI.
Collapse
|
30
|
Bekkouche I, Shishonin AY, Vetcher AA. Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability. Polymers (Basel) 2023; 15:858. [PMID: 36850142 PMCID: PMC9964087 DOI: 10.3390/polym15040858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes.
Collapse
Affiliation(s)
- Incherah Bekkouche
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| |
Collapse
|
31
|
Zhao L, Xin S, Wu Y, Huang S, Xu K, Xu Y, Ruan D, Wu B, Chen D, He X. Global DNA and protein interactomes of FLT1P1 (Fms-related tyrosine kinase 1 pseudogene 1) revealed its molecular regulatory functions associated with preeclampsia. Mol Biol Rep 2023; 50:1267-1279. [PMID: 36451001 DOI: 10.1007/s11033-022-08070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Preeclampsia (PE) is one of the most serious pregnancy complications with unknown pathogenesis. Emerging evidence has demonstrated that Fms-related tyrosine kinase 1 (FLT1) is highly involved in PE development. As a pseudogene of FLT1, FLT1P1 increased in PE samples. However, its functions remain largely unknown. METHODS AND RESULTS In this study, co-expression analysis was performed to identify the potential target genes of FTL1P1. Then chromatin isolation using RNA purification (ChIRP) method was employed to explore the interactomes of FLT1P1, including interacting with DNA fragments and proteins. We found that in PE samples, both FLT1P1 and FLT1 were highly expressed and closely correlated. ChIRP-protein data revealed that FLT1P1 interacts with translation- and transcription-related proteins, including 4 transcription factors (TFs). ChIRP-DNA analysis revealed that FLT1P1 preferentially interacted with DNA fragments downstream of transcription start sites (TSSs). Functional analysis of its interacting genes revealed that they were enriched in transcriptional regulation and apoptosis-related pathways. Twenty-six TFs, including CREB1 and SRF, were extracted from the potential FLT1P1-interacting gene sets and were potential targets of FLT1P1. CREB1 could bind to FLT1 promoter, and was negatively correlated with FLT1 at the expression level, making it a potential regulator of FLT1. CONCLUSIONS Our study extensively investigated the interactome profiles of FLT1P1, especially the prompter region of TF gene CREB1, and revealed the potential molecular regulatory mechanisms of FLT1 expression in PE samples. Our results provide a novel view of PE pathogenesis, and suggest that FLT1P1 could serve as a potential therapeutic target in PE diagnosis and treatment.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Siming Xin
- Department of Obstetrics, Maternal, Child Health Hospital Afflicted to Nanchang University, Nanchang, People's Republic of China
| | - Yunfei Wu
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, People's Republic of China
| | - Shaofang Huang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Kangxiang Xu
- Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Yuqi Xu
- Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Dong Ruan
- Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Bingqi Wu
- Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, People's Republic of China
| | - Xiaoju He
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
32
|
Tsue AF, Kania EE, Lei DQ, Fields R, McGann CD, Hershberg E, Deng X, Kihiu M, Ong SE, Disteche CM, Kugel S, Beliveau BJ, Schweppe DK, Shechner DM. Oligonucleotide-directed proximity-interactome mapping (O-MAP): A unified method for discovering RNA-interacting proteins, transcripts and genomic loci in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524825. [PMID: 36711823 PMCID: PMC9882335 DOI: 10.1101/2023.01.19.524825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Throughout biology, RNA molecules form complex networks of molecular interactions that are central to their function, but remain challenging to investigate. Here, we introduce Oligonucleotide-mediated proximity-interactome MAPping (O-MAP), a straightforward method for elucidating the biomolecules near an RNA of interest, within its native cellular context. O-MAP uses programmable oligonucleotide probes to deliver proximity-biotinylating enzymes to a target RNA, enabling nearby molecules to be enriched by streptavidin pulldown. O-MAP induces exceptionally precise RNA-localized in situ biotinylation, and unlike alternative methods it enables straightforward optimization of its targeting accuracy. Using the 47S pre-ribosomal RNA and long noncoding RNA Xist as models, we develop O-MAP workflows for unbiased discovery of RNA-proximal proteins, transcripts, and genomic loci. This revealed unexpected co-compartmentalization of Xist and other chromatin-regulatory RNAs and enabled systematic characterization of nucleolar-chromatin interactions across multiple cell lines. O-MAP is portable to cultured cells, organoids, and tissues, and to RNAs of various lengths, abundances, and sequence composition. And, O-MAP requires no genetic manipulation and uses exclusively off-the-shelf parts. We therefore anticipate its application to a broad array of RNA phenomena.
Collapse
|
33
|
Sriram K, Luo Y, Malhi NK, Chen AT, Chen ZB. Methods to Study RNA-Chromatin Interactions. Methods Mol Biol 2023; 2666:279-297. [PMID: 37166672 DOI: 10.1007/978-1-0716-3191-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
RNA plays a fundamental role in the organization of chromatin as well as the regulation of gene expression. Although the chromatin is pervasively attached by both coding and noncoding RNAs, the impact of these chromatin-associated RNAs (caRNAs) on gene expression and cellular functions and their underlying mechanisms have just begun to be unraveled. One approach to understand the potential mechanism of gene regulation by caRNAs is to identify the caRNA-associated genomic regions. Several groups have developed methods to capture RNA-chromatin interactions in either one RNA vs the whole genome, i.e., "one-to-all" or all RNAs vs the whole genome, i.e., "all-to-all" manner. In this chapter, we discuss several state-of-the-art methods highlighting the principles behind them, the experimental procedures, the advantages and limitations, and their applications. Our goal is to provide an overview and guide to researchers interested in exploring caRNAs using these techniques.
Collapse
Affiliation(s)
- Kiran Sriram
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes Metabolism Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes Metabolism Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb K Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes Metabolism Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aleysha T Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes Metabolism Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes Metabolism Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
34
|
Zheng Y, Luo H, Teng X, Hao X, Yan X, Tang Y, Zhang W, Wang Y, Zhang P, Li Y, Zhao Y, Chen R, He S. NPInter v5.0: ncRNA interaction database in a new era. Nucleic Acids Res 2022; 51:D232-D239. [PMID: 36373614 PMCID: PMC9825547 DOI: 10.1093/nar/gkac1002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Noncoding RNAs (ncRNAs) play key regulatory roles in biological processes by interacting with other biomolecules. With the development of high-throughput sequencing and experimental technologies, extensive ncRNA interactions have been accumulated. Therefore, we updated the NPInter database to a fifth version to document these interactions. ncRNA interaction entries were doubled from 1 100 618 to 2 596 695 by manual literature mining and high-throughput data processing. We integrated global RNA-DNA interactions from iMARGI, ChAR-seq and GRID-seq, greatly expanding the number of RNA-DNA interactions (from 888 915 to 8 329 382). In addition, we collected different types of RNA interaction between SARS-CoV-2 virus and its host from recently published studies. Long noncoding RNA (lncRNA) expression specificity in different cell types from tumor single cell RNA-seq (scRNA-seq) data were also integrated to provide a cell-type level view of interactions. A new module named RBP was built to display the interactions of RNA-binding proteins with annotations of localization, binding domains and functions. In conclusion, NPInter v5.0 (http://bigdata.ibp.ac.cn/npinter5/) provides informative and valuable ncRNA interactions for biological researchers.
Collapse
Affiliation(s)
| | | | | | - Xinpei Hao
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Yan
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiheng Tang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanyu Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanxin Wang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhao
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Runsheng Chen
- Correspondence may also be addressed to Runsheng Chen. Tel: +86 10 64888543; Fax: +86 10 64871293
| | - Shunmin He
- To whom correspondence should be addressed. Tel: +86 10 64887032; Fax: +86 10 64887032;
| |
Collapse
|
35
|
Zheng M, Lin Y, Wang W, Zhao Y, Bao X. Application of nucleoside or nucleotide analogues in RNA dynamics and RNA-binding protein analysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1722. [PMID: 35218164 DOI: 10.1002/wrna.1722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cellular RNAs undergo dynamic changes during RNA biological processes, which are tightly orchestrated by RNA-binding proteins (RBPs). Yet, the investigation of RNA dynamics is hurdled by highly abundant steady-state RNAs, which make the signals of dynamic RNAs less detectable. Notably, the exert of nucleoside or nucleotide analogue-based RNA technologies has provided a remarkable platform for RNA dynamics research, revealing diverse unnoticed features in RNA metabolism. In this review, we focus on the application of two types of analogue-based RNA sequencing, antigen-/antibody- and click chemistry-based methodologies, and summarize the RNA dynamics features revealed. Moreover, we discuss emerging single-cell newly transcribed RNA sequencing methodologies based on nucleoside analogue labeling, which provides novel insights into RNA dynamics regulation at single-cell resolution. On the other hand, we also emphasize the identification of RBPs that interact with polyA, non-polyA RNAs, or newly transcribed RNAs and also their associated RNA-binding domains at genomewide level through ultraviolet crosslinking and mass spectrometry in different contexts. We anticipated that further modification and development of these analogue-based RNA and RBP capture technologies will aid in obtaining an unprecedented understanding of RNA biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Meifeng Zheng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Lin
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangming Science City, Shenzhen, China
| | - Wei Wang
- Center for Biosafety, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xichen Bao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
36
|
Wanowska E, Samorowska K, Szcześniak MW. Emerging Roles of Long Noncoding RNAs in Breast Cancer Epigenetics and Epitranscriptomics. Front Cell Dev Biol 2022; 10:922351. [PMID: 35865634 PMCID: PMC9294602 DOI: 10.3389/fcell.2022.922351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Breast carcinogenesis is a multistep process that involves both genetic and epigenetic changes. Epigenetics refers to reversible changes in gene expression that are not accompanied by changes in gene sequence. In breast cancer (BC), dysregulated epigenetic changes, such as DNA methylation and histone modifications, are accompanied by epitranscriptomic changes, in particular adenine to inosine modifications within RNA molecules. Factors that trigger these phenomena are largely unknown, but there is evidence for widespread participation of long noncoding RNAs (lncRNAs) that already have been linked to virtually any aspect of BC biology, making them promising biomarkers and therapeutic targets in BC patients. Here, we provide a systematic review of known and possible roles of lncRNAs in epigenetic and epitranscriptomic processes, along with methods and tools to study them, followed by a brief overview of current challenges regarding the use of lncRNAs in medical applications.
Collapse
Affiliation(s)
- Elżbieta Wanowska
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
- *Correspondence: Elżbieta Wanowska, ; Michał Wojciech Szcześniak,
| | - Klaudia Samorowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Michał Wojciech Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
- *Correspondence: Elżbieta Wanowska, ; Michał Wojciech Szcześniak,
| |
Collapse
|
37
|
Ross CJ, Ulitsky I. Discovering functional motifs in long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1708. [PMID: 34981665 DOI: 10.1002/wrna.1708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are products of pervasive transcription that closely resemble messenger RNAs on the molecular level, yet function through largely unknown modes of action. The current model is that the function of lncRNAs often relies on specific, typically short, conserved elements, connected by linkers in which specific sequences and/or structures are less important. This notion has fueled the development of both computational and experimental methods focused on the discovery of functional elements within lncRNA genes, based on diverse signals such as evolutionary conservation, predicted structural elements, or the ability to rescue loss-of-function phenotypes. In this review, we outline the main challenges that the different methods need to overcome, describe the recently developed approaches, and discuss their respective limitations. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Caroline Jane Ross
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
Dai X, Shen L. Advances and Trends in Omics Technology Development. Front Med (Lausanne) 2022; 9:911861. [PMID: 35860739 PMCID: PMC9289742 DOI: 10.3389/fmed.2022.911861] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
The human history has witnessed the rapid development of technologies such as high-throughput sequencing and mass spectrometry that led to the concept of “omics” and methodological advancement in systematically interrogating a cellular system. Yet, the ever-growing types of molecules and regulatory mechanisms being discovered have been persistently transforming our understandings on the cellular machinery. This renders cell omics seemingly, like the universe, expand with no limit and our goal toward the complete harness of the cellular system merely impossible. Therefore, it is imperative to review what has been done and is being done to predict what can be done toward the translation of omics information to disease control with minimal cell perturbation. With a focus on the “four big omics,” i.e., genomics, transcriptomics, proteomics, metabolomics, we delineate hierarchies of these omics together with their epiomics and interactomics, and review technologies developed for interrogation. We predict, among others, redoxomics as an emerging omics layer that views cell decision toward the physiological or pathological state as a fine-tuned redox balance.
Collapse
|
39
|
Zakutansky PM, Feng Y. The Long Non-Coding RNA GOMAFU in Schizophrenia: Function, Disease Risk, and Beyond. Cells 2022; 11:1949. [PMID: 35741078 PMCID: PMC9221589 DOI: 10.3390/cells11121949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Neuropsychiatric diseases are among the most common brain developmental disorders, represented by schizophrenia (SZ). The complex multifactorial etiology of SZ remains poorly understood, which reflects genetic vulnerabilities and environmental risks that affect numerous genes and biological pathways. Besides the dysregulation of protein-coding genes, recent discoveries demonstrate that abnormalities associated with non-coding RNAs, including microRNAs and long non-coding RNAs (lncRNAs), also contribute to the pathogenesis of SZ. lncRNAs are an actively evolving family of non-coding RNAs that harbor greater than 200 nucleotides but do not encode for proteins. In general, lncRNA genes are poorly conserved. The large number of lncRNAs specifically expressed in the human brain, together with the genetic alterations and dysregulation of lncRNA genes in the SZ brain, suggests a critical role in normal cognitive function and the pathogenesis of neuropsychiatric diseases. A particular lncRNA of interest is GOMAFU, also known as MIAT and RNCR2. Growing evidence suggests the function of GOMAFU in governing neuronal development and its potential roles as a risk factor and biomarker for SZ, which will be reviewed in this article. Moreover, we discuss the potential mechanisms through which GOMAFU regulates molecular pathways, including its subcellular localization and interaction with RNA-binding proteins, and how interruption to GOMAFU pathways may contribute to the pathogenesis of SZ.
Collapse
Affiliation(s)
- Paul M. Zakutansky
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA;
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
40
|
Santoleri D, Lim HW, Emmett MJ, Stoute J, Gavin MJ, Sostre-Colón J, Uehara K, Welles JE, Liu KF, Lazar MA, Titchenell PM. Global-run on sequencing identifies Gm11967 as an Akt-dependent long noncoding RNA involved in insulin sensitivity. iScience 2022; 25:104410. [PMID: 35663017 PMCID: PMC9156944 DOI: 10.1016/j.isci.2022.104410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023] Open
Abstract
The insulin responsive Akt and FoxO1 signaling axis is a key regulator of the hepatic transcriptional response to nutrient intake. Here, we used global run-on sequencing (GRO-seq) to measure the nascent transcriptional response to fasting and refeeding as well as define the specific role of hepatic Akt and FoxO1 signaling in mediating this response. We identified 599 feeding-regulated transcripts, as well as over 6,000 eRNAs, and mapped their dependency on Akt and FoxO1 signaling. Further, we identified several feeding-regulated lncRNAs, including the lncRNA Gm11967, whose expression was dependent upon the liver Akt-FoxO1 axis. Restoring Gm11967 expression in mice lacking liver Akt improved insulin sensitivity and induced glucokinase protein expression, indicating that Akt-dependent control of Gm11967 contributes to the translational control of glucokinase. More broadly, we have generated a unique genome-wide dataset that defines the feeding and Akt/FoxO1-dependent transcriptional changes in response to nutrient availability.
Collapse
Affiliation(s)
- Dominic Santoleri
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Matthew J. Emmett
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julian Stoute
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew J. Gavin
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Jaimarie Sostre-Colón
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Kahealani Uehara
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Jaclyn E. Welles
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mitchell A. Lazar
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M. Titchenell
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Kerr AG, Wang Z, Wang N, Kwok KHM, Jalkanen J, Ludzki A, Lecoutre S, Langin D, Bergo MO, Dahlman I, Mim C, Arner P, Gao H. The long noncoding RNA ADIPINT regulates human adipocyte metabolism via pyruvate carboxylase. Nat Commun 2022; 13:2958. [PMID: 35618718 PMCID: PMC9135762 DOI: 10.1038/s41467-022-30620-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2022] [Indexed: 12/27/2022] Open
Abstract
The pleiotropic function of long noncoding RNAs is well recognized, but their direct role in governing metabolic homeostasis is less understood. Here, we describe a human adipocyte-specific lncRNA, ADIPINT, that regulates pyruvate carboxylase, a pivotal enzyme in energy metabolism. We developed an approach, Targeted RNA-protein identification using Orthogonal Organic Phase Separation, which identifies that ADIPINT binds to pyruvate carboxylase and validated the interaction with electron microscopy. ADIPINT knockdown alters the interactome and decreases the abundance and enzymatic activity of pyruvate carboxylase in the mitochondria. Reduced ADIPINT or pyruvate carboxylase expression lowers adipocyte lipid synthesis, breakdown, and lipid content. In human white adipose tissue, ADIPINT expression is increased in obesity and linked to fat cell size, adipose insulin resistance, and pyruvate carboxylase activity. Thus, we identify ADIPINT as a regulator of lipid metabolism in human white adipocytes, which at least in part is mediated through its interaction with pyruvate carboxylase. Adipocyte-expressed long non-coding RNAs (lncRNAs) have been shown to regulate the transcription of genes involved in lipid metabolism. Here the authors describe a human adipocyte-specific lncRNA, ADIPINT, which regulates lipid metabolism in white adipocytes in part through its interaction with the metabolic enzyme pyruvate carboxylase.
Collapse
Affiliation(s)
- Alastair G Kerr
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Zuoneng Wang
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute, Stockholm, Sweden
| | - Na Wang
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Kelvin H M Kwok
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden
| | - Jutta Jalkanen
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Alison Ludzki
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Simon Lecoutre
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), Université de Toulouse, UPS, UMR1297, Toulouse, France.,Department of Biochemistry, Toulouse University Hospitals, CHU Toulouse, Toulouse, France
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden.
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden.
| |
Collapse
|
42
|
Ryabykh GK, Mylarshchikov DE, Kuznetsov SV, Sigorskikh AI, Ponomareva TY, Zharikova AA, Mironov AA. RNA–Chromatin Interactome: What? Where? When? Mol Biol 2022. [DOI: 10.1134/s0026893322020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Tay DJW, Lew ZZR, Chu JJH, Tan KS. Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us? Front Microbiol 2022; 13:844447. [PMID: 35401477 PMCID: PMC8984613 DOI: 10.3389/fmicb.2022.844447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic has tested the capabilities of public health and scientific community. Since the dawn of the twenty-first century, viruses have caused several outbreaks, with coronaviruses being responsible for 2: SARS-CoV in 2007 and MERS-CoV in 2013. As the border between wildlife and the urban population continue to shrink, it is highly likely that zoonotic viruses may emerge more frequently. Furthermore, it has been shown repeatedly that these viruses are able to efficiently evade the innate immune system through various strategies. The strong and abundant antiviral innate immunity evasion strategies shown by SARS-CoV-2 has laid out shortcomings in our approach to quickly identify and modulate these mechanisms. It is thus imperative that there be a systematic framework for the study of the immune evasion strategies of these viruses, to guide development of therapeutics and curtail transmission. In this review, we first provide a brief overview of general viral evasion strategies against the innate immune system. Then, we utilize SARS-CoV-2 as a case study to highlight the methods used to identify the mechanisms of innate immune evasion, and pinpoint the shortcomings in the current paradigm with its focus on overexpression and protein-protein interactions. Finally, we provide a recommendation for future work to unravel viral innate immune evasion strategies and suitable methods to aid in the study of virus-host interactions. The insights provided from this review may then be applied to other viruses with outbreak potential to remain ahead in the arms race against viral diseases.
Collapse
Affiliation(s)
- Douglas Jie Wen Tay
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhe Zhang Ryan Lew
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kai Sen Tan
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Kai Sen Tan,
| |
Collapse
|
44
|
Cao H, Kapranov P. Methods to Analyze the Non-Coding RNA Interactome—Recent Advances and Challenges. Front Genet 2022; 13:857759. [PMID: 35368711 PMCID: PMC8969105 DOI: 10.3389/fgene.2022.857759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Most of the human genome is transcribed to generate a multitude of non-coding RNAs. However, while these transcripts have generated an immense amount of scientific interest, their biological function remains a subject of an intense debate. Understanding mechanisms of action of non-coding RNAs is a key to addressing the issue of biological relevance of these transcripts. Based on some well-understood non-coding RNAs that function inside the cell by interacting with other molecules, it is generally believed many other non-coding transcripts could also function in a similar fashion. Therefore, development of methods that can map RNA interactome is the key to understanding functionality of the extensive cellular non-coding transcriptome. Here, we review the vast progress that has been made in the past decade in technologies that can map RNA interactions with different sites in DNA, proteins or other RNA molecules; the general approaches used to validate the existence of novel interactions; and the challenges posed by interpreting the data obtained using the interactome mapping methods.
Collapse
|
45
|
Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front Cell Dev Biol 2022; 10:866820. [PMID: 35356276 PMCID: PMC8959342 DOI: 10.3389/fcell.2022.866820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Ribonucleic acid (RNA) and proteins play critical roles in gene expression and regulation. The relevant study increases the understanding of various life processes and contributes to the diagnosis and treatment of different diseases. RNA imaging and mapping RNA-protein interactions expand the understanding of RNA biology. However, the existing methods have some limitations. Recently, precise RNA targeting of CRISPR-Cas13 in cells has been reported, which is considered a new promising platform for RNA imaging in living cells and recognition of RNA-protein interactions. In this review, we first described the current findings on Cas13. Furthermore, we introduced current tools of RNA real-time imaging and mapping RNA-protein interactions and highlighted the latest advances in Cas13-mediated tools. Finally, we discussed the advantages and disadvantages of Cas13-based methods, providing a set of new ideas for the optimization of Cas13-mediated methods.
Collapse
Affiliation(s)
- Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Yinan Du, ; Juan Du,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Juan Du,
| |
Collapse
|
46
|
Xiao Q, Huang X, Zhang Y, Xu W, Yang Y, Zhang Q, Hu Z, Xing F, Sun Q, Li G, Li X. The landscape of promoter-centred RNA-DNA interactions in rice. NATURE PLANTS 2022; 8:157-170. [PMID: 35115727 DOI: 10.1038/s41477-021-01089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
Chromatin-associated RNAs play key roles in various biological processes. However, both their repository and conjugation genomic loci and potential functions remain largely unclear. Here, we develop an effective method for mapping of chromatin-associated RNA-DNA interactions, followed by paired-end-tag sequencing (ChRD-PET) in rice. We present a comprehensive interaction map between RNAs and H3K4me3-marked regions based on H3K4me3 ChRD-PET data, showing three types of RNA-DNA interactions-local, proximal and distal. We further characterize the origin and composition of the RNA strand in R-loop RNA-DNA hybrids and identify that extensive cis and trans RNAs, including trans-non-coding RNAs, are prevalently involved in the R-loop. Integrative analysis of rice epigenome and three-dimensional genome data suggests that both coding and non-coding RNAs engage extensively in the formation of chromatin loops and chromatin-interacting domains. In summary, ChRD-PET is an efficient method for studying the features of RNA-chromatin interactions, and the resulting datasets constitute a valuable resource for the study of RNAs and their biological functions.
Collapse
Affiliation(s)
- Qin Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xingyu Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Yongqing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Feng Xing
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
47
|
Faber MW, Vo TV. Long RNA-Mediated Chromatin Regulation in Fission Yeast and Mammals. Int J Mol Sci 2022; 23:968. [PMID: 35055152 PMCID: PMC8778201 DOI: 10.3390/ijms23020968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
As part of a complex network of genome control, long regulatory RNAs exert significant influences on chromatin dynamics. Understanding how this occurs could illuminate new avenues for disease treatment and lead to new hypotheses that would advance gene regulatory research. Recent studies using the model fission yeast Schizosaccharomyces pombe (S. pombe) and powerful parallel sequencing technologies have provided many insights in this area. This review will give an overview of key findings in S. pombe that relate long RNAs to multiple levels of chromatin regulation: histone modifications, gene neighborhood regulation in cis and higher-order chromosomal ordering. Moreover, we discuss parallels recently found in mammals to help bridge the knowledge gap between the study systems.
Collapse
Affiliation(s)
| | - Tommy V. Vo
- Department of Biochemistry and Molecular Biology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
48
|
Spiniello M, Scalf M, Casamassimi A, Abbondanza C, Smith LM. Towards an Ideal In Cell Hybridization-Based Strategy to Discover Protein Interactomes of Selected RNA Molecules. Int J Mol Sci 2022; 23:ijms23020942. [PMID: 35055128 PMCID: PMC8779001 DOI: 10.3390/ijms23020942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
RNA-binding proteins are crucial to the function of coding and non-coding RNAs. The disruption of RNA–protein interactions is involved in many different pathological states. Several computational and experimental strategies have been developed to identify protein binders of selected RNA molecules. Amongst these, ‘in cell’ hybridization methods represent the gold standard in the field because they are designed to reveal the proteins bound to specific RNAs in a cellular context. Here, we compare the technical features of different ‘in cell’ hybridization approaches with a focus on their advantages, limitations, and current and potential future applications.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, 80131 Naples, Italy
- Correspondence: (M.S.); (A.C.)
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.S.); (L.M.S.)
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Correspondence: (M.S.); (A.C.)
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.S.); (L.M.S.)
| |
Collapse
|
49
|
Abstract
Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion's share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions-that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead-as was the case for better-studied ncRNAs in the past-researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.
Collapse
|
50
|
Sarkar D, Diermeier SD. LncRNA-Chromatin Pull-Down Using Biotin-Conjugated DNA Probes. Methods Mol Biol 2022; 2458:345-357. [PMID: 35103977 DOI: 10.1007/978-1-0716-2140-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNA molecules that have been associated with several important biological processes and linked to numerous diseases. Due to their cell type- and tissue specific expression, lncRNAs are involved in a wide range of molecular pathways. To fully understand how a lncRNA is linked to a biological process, its mechanism of action needs to be uncovered. Nuclear retained lncRNAs have been described to modulate gene expression directly or indirectly by interacting with chromatin and associated factors. Described here is an RNA pull-down strategy, which enables the identification of chromatin regions directly bound by a lncRNA of interest. This method is an important step toward investigating how lncRNAs regulate gene expression and/or chromatin states.
Collapse
Affiliation(s)
- Debina Sarkar
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sarah D Diermeier
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|