1
|
Lieschke E, Thomas AF, Kueh A, Atkin-Smith GK, Baldoni PL, La Marca JE, Young S, Huang AS, Ross AM, Whelan L, Kaloni D, Tai L, Smyth GK, Herold MJ, Hawkins ED, Strasser A, Kelly GL. Mouse models to investigate in situ cell fate decisions induced by p53. EMBO J 2024; 43:4406-4436. [PMID: 39160273 PMCID: PMC11445477 DOI: 10.1038/s44318-024-00189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Investigating how transcription factors control complex cellular processes requires tools that enable responses to be visualised at the single-cell level and their cell fate to be followed over time. For example, the tumour suppressor p53 (also called TP53 in humans and TRP53 in mice) can initiate diverse cellular responses by transcriptional activation of its target genes: Puma to induce apoptotic cell death and p21 to induce cell cycle arrest/cell senescence. However, it is not known how these processes are regulated and initiated in different cell types. Also, the context-dependent interaction partners and binding loci of p53 remain largely elusive. To be able to examine these questions, we here developed knock-in mice expressing triple-FLAG-tagged p53 to facilitate p53 pull-down and two p53 response reporter mice, knocking tdTomato and GFP into the Puma/Bbc3 and p21 gene loci, respectively. By crossing these reporter mice into a p53-deficient background, we show that the new reporters reliably inform on p53-dependent and p53-independent initiation of both apoptotic or cell cycle arrest/senescence programs, respectively, in vitro and in vivo.
Collapse
Affiliation(s)
- Elizabeth Lieschke
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Oncogene Biology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Annabella F Thomas
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Georgia K Atkin-Smith
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Pedro L Baldoni
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - John E La Marca
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Savannah Young
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Aisling M Ross
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- School of Medicine, Bernal Institute, Limerick Digital Cancer Research Centre & Health Research Institute, University of Limerick, Limerick, Ireland
| | - Lauren Whelan
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
| | - Deeksha Kaloni
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute (WEHI), Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Xiao R, Hu S, Du X, Wang Y, Fang K, Zhu Y, Lou N, Yuan C, Yang J. Revolutionizing Senescence Detection: Advancements from Traditional Methods to Cutting-Edge Techniques. Aging Dis 2024; 16:1285-1301. [PMID: 39012669 PMCID: PMC12096929 DOI: 10.14336/ad.202.0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
The accumulation of senescent cells is an important factor in the complex progression of aging, with significant implications for the development of numerous diseases. Thus, understanding the fundamental mechanisms of senescence is paramount for advancing preventive and therapeutic approaches to age-related conditions. Important to this pursuit is the precise identification and examination of senescent cells, contingent upon the recognition of specific biomarkers. Historically, detection methods relied on assessing molecular protein and mRNA levels and various staining techniques. While these conventional approaches have contributed substantially to the field, they possess limitations in capturing the dynamic evolution of cellular aging in real time. The emergence of novel technologies has led to a paradigm shift in senescence research. Gene-edited mouse models and the application of advanced probes have revolutionized our ability to detect senescent cells. These cutting-edge methodologies provide a more detailed and accurate means of dynamically monitoring, characterizing and potentially eliminating senescent cells, thus enhancing our understanding of the complex mechanisms of aging. This review comprehensively explores both traditional and innovative senescent cell detection methods, elucidating their advantages, limitations and implications for future investigations and could serve as a comprehensive guide and catalyst for further advancements in the understanding of aging and associated pathologies.
Collapse
Affiliation(s)
| | | | - Xiaohui Du
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yiwen Wang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Ke Fang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yibin Zhu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chunhui Yuan
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Trauernicht M, Rastogi C, Manzo S, Bussemaker H, van Steensel B. Optimisation of TP53 reporters by systematic dissection of synthetic TP53 response elements. Nucleic Acids Res 2023; 51:9690-9702. [PMID: 37650627 PMCID: PMC10570033 DOI: 10.1093/nar/gkad718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
TP53 is a transcription factor that controls multiple cellular processes, including cell cycle arrest, DNA repair and apoptosis. The relation between TP53 binding site architecture and transcriptional output is still not fully understood. Here, we systematically examined in three different cell lines the effects of binding site affinity and copy number on TP53-dependent transcriptional output, and also probed the impact of spacer length and sequence between adjacent binding sites, and of core promoter identity. Paradoxically, we found that high-affinity TP53 binding sites are less potent than medium-affinity sites. TP53 achieves supra-additive transcriptional activation through optimally spaced adjacent binding sites, suggesting a cooperative mechanism. Optimally spaced adjacent binding sites have a ∼10-bp periodicity, suggesting a role for spatial orientation along the DNA double helix. We leveraged these insights to construct a log-linear model that explains activity from sequence features, and to identify new highly active and sensitive TP53 reporters.
Collapse
Affiliation(s)
- Max Trauernicht
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stefano G Manzo
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Biosciences, University of Milan “La Statale”, 20133 Milan, Italy
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
4
|
Ayaz G, Yan H, Malik N, Huang J. An Updated View of the Roles of p53 in Embryonic Stem Cells. Stem Cells 2022; 40:883-891. [PMID: 35904997 PMCID: PMC9585900 DOI: 10.1093/stmcls/sxac051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022]
Abstract
The TP53 gene is unarguably one of the most studied human genes. Its encoded protein, p53, is a tumor suppressor and is often called the "guardian of the genome" due to its pivotal role in maintaining genome stability. Historically, most studies of p53 have focused on its roles in somatic cells and tissues, but in the last two decades, its functions in embryonic stem cells (ESCs) and induced pluripotent stem cells have attracted increasing attention. Recent studies have identified p53 as a critical regulator of pluripotency, self-renewal, differentiation, proliferation, and genome stability in mouse and human embryonic stem cells. In this article, we systematically review the studies on the functions of p53 in ESCs, provide an updated overview, attempt to reconcile controversial results described in the literature, and discuss the relevance of these cellular functions of p53 to its roles in tumor suppression.
Collapse
Affiliation(s)
- Gamze Ayaz
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hualong Yan
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Navdeep Malik
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jing Huang
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Raj S, Jaiswal SK, DePamphilis ML. Cell Death and the p53 Enigma During Mammalian Embryonic Development. Stem Cells 2022; 40:227-238. [PMID: 35304609 PMCID: PMC9199838 DOI: 10.1093/stmcls/sxac003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023]
Abstract
Twelve forms of programmed cell death (PCD) have been described in mammalian cells, but which of them occurs during embryonic development and the role played by the p53 transcription factor and tumor suppressor remains enigmatic. Although p53 is not required for mouse embryonic development, some studies conclude that PCD in pluripotent embryonic stem cells from mice (mESCs) or humans (hESCs) is p53-dependent whereas others conclude that it is not. Given the importance of pluripotent stem cells as models of embryonic development and their applications in regenerative medicine, resolving this enigma is essential. This review reconciles contradictory results based on the facts that p53 cannot induce lethality in mice until gastrulation and that experimental conditions could account for differences in results with ESCs. Consequently, activation of the G2-checkpoint in mouse ESCs is p53-independent and generally, if not always, results in noncanonical apoptosis. Once initiated, PCD occurs at equivalent rates and to equivalent extents regardless of the presence or absence of p53. However, depending on experimental conditions, p53 can accelerate initiation of PCD in ESCs and late-stage blastocysts. In contrast, DNA damage following differentiation of ESCs in vitro or formation of embryonic fibroblasts in vivo induces p53-dependent cell cycle arrest and senescence.
Collapse
Affiliation(s)
- Sonam Raj
- National Cancer Institute, Bethesda, MD 20892, USA
| | - Sushil K Jaiswal
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Wang Y, Zhang G, Meng Q, Huang S, Guo P, Leng Q, Sun L, Liu G, Huang X, Liu J. Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors. Nat Commun 2022; 13:1454. [PMID: 35304449 PMCID: PMC8933567 DOI: 10.1038/s41467-022-29120-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Reinvigoration of antitumor immunity has recently become the central theme for the development of cancer therapies. Nevertheless, the precise delivery of immunotherapeutic activities to the tumors remains challenging. Here, we explore a synthetic gene circuit-based strategy for specific tumor identification, and for subsequently engaging immune activation. By design, these circuits are assembled from two interactive modules, i.e., an oncogenic TF-driven CRISPRa effector, and a corresponding p53-inducible off-switch (NOT gate), which jointly execute an AND-NOT logic for accurate tumor targeting. In particular, two forms of the NOT gate are developed, via the use of an inhibitory sgRNA or an anti-CRISPR protein, with the second form showing a superior performance in gating CRISPRa by p53 loss. Functionally, the optimized AND-NOT logic circuit can empower a highly specific and effective tumor recognition/immune rewiring axis, leading to therapeutic effects in vivo. Taken together, our work presents an adaptable strategy for the development of precisely delivered immunotherapy. “Reinvigoration of antitumor immunity has recently become the central theme for the development of cancer therapies. Here the authors present an adaptable gene circuit to harness the CRISPRa for tumorlocalized immune activation.”
Collapse
Affiliation(s)
- Yafeng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China.,Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Guiquan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China
| | - Qingzhou Meng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Geng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Zhejiang Laboratory, Hangzhou, 311100, China.
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
7
|
Humpton TJ, Hock AK, Kiourtis C, Donatis MD, Fercoq F, Nixon C, Bryson S, Strathdee D, Carlin LM, Bird TG, Blyth K, Vousden KH. A noninvasive iRFP713 p53 reporter reveals dynamic p53 activity in response to irradiation and liver regeneration in vivo. Sci Signal 2022; 15:eabd9099. [PMID: 35133863 PMCID: PMC7612476 DOI: 10.1126/scisignal.abd9099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetically encoded probes are widely used to visualize cellular processes in vitro and in vivo. Although effective in cultured cells, fluorescent protein tags and reporters are suboptimal in vivo because of poor tissue penetration and high background signal. Luciferase reporters offer improved signal-to-noise ratios but require injections of luciferin that can lead to variable responses and that limit the number and timing of data points that can be gathered. Such issues in studying the critical transcription factor p53 have limited insight on its activity in vivo during development and tissue injury responses. Here, by linking the expression of the near-infrared fluorescent protein iRFP713 to a synthetic p53-responsive promoter, we generated a knock-in reporter mouse that enabled noninvasive, longitudinal analysis of p53 activity in vivo in response to various stimuli. In the developing embryo, this model revealed the timing and localization of p53 activation. In adult mice, the model monitored p53 activation in response to irradiation and paracetamol- or CCl4-induced liver regeneration. After irradiation, we observed potent and sustained activation of p53 in the liver, which limited the production of reactive oxygen species (ROS) and promoted DNA damage resolution. We propose that this new reporter may be used to further advance our understanding of various physiological and pathophysiological p53 responses.
Collapse
Affiliation(s)
- Timothy J Humpton
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Andreas K Hock
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Marco De Donatis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Frederic Fercoq
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Sheila Bryson
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Thomas G. Bird
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, EH164TJ, United Kingdom
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Karen H Vousden
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| |
Collapse
|
8
|
Jaiswal SK, Raj S, DePamphilis ML. Developmental Acquisition of p53 Functions. Genes (Basel) 2021; 12:genes12111675. [PMID: 34828285 PMCID: PMC8622856 DOI: 10.3390/genes12111675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Remarkably, the p53 transcription factor, referred to as “the guardian of the genome”, is not essential for mammalian development. Moreover, efforts to identify p53-dependent developmental events have produced contradictory conclusions. Given the importance of pluripotent stem cells as models of mammalian development, and their applications in regenerative medicine and disease, resolving these conflicts is essential. Here we attempt to reconcile disparate data into justifiable conclusions predicated on reports that p53-dependent transcription is first detected in late mouse blastocysts, that p53 activity first becomes potentially lethal during gastrulation, and that apoptosis does not depend on p53. Furthermore, p53 does not regulate expression of genes required for pluripotency in embryonic stem cells (ESCs); it contributes to ESC genomic stability and differentiation. Depending on conditions, p53 accelerates initiation of apoptosis in ESCs in response to DNA damage, but cell cycle arrest as well as the rate and extent of apoptosis in ESCs are p53-independent. In embryonic fibroblasts, p53 induces cell cycle arrest to allow repair of DNA damage, and cell senescence to prevent proliferation of cells with extensive damage.
Collapse
Affiliation(s)
- Sushil K. Jaiswal
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Sonam Raj
- National Cancer Institute, Bethesda, MD 20892, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|
9
|
Ter Huurne M, Stunnenberg HG. G1-phase progression in pluripotent stem cells. Cell Mol Life Sci 2021; 78:4507-4519. [PMID: 33884444 PMCID: PMC8195903 DOI: 10.1007/s00018-021-03797-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 11/10/2022]
Abstract
During early embryonic development both the rapid increase in cell number and the expression of genes that control developmental decisions are tightly regulated. Accumulating evidence has indicated that these two seemingly independent processes are mechanistically intertwined. The picture that emerges from studies on the cell cycle of embryonic stem cells is one in which proteins that promote cell cycle progression prevent differentiation and vice versa. Here, we review which transcription factors and signalling pathways play a role in both maintenance of pluripotency as well as cell cycle progression. We will not only describe the mechanism behind their function but also discuss the role of these regulators in different states of mouse pluripotency. Finally, we elaborate on how canonical cell cycle regulators impact on the molecular networks that control the maintenance of pluripotency and lineage specification.
Collapse
Affiliation(s)
- Menno Ter Huurne
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands.
- Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Sabol M, Akbudak MA, Fricova D, Beck I, Sedlacek R. Novel TALEN-generated mCitrine-FANCD2 fusion reporter mouse model for in vivo research of DNA damage response. DNA Repair (Amst) 2020; 94:102936. [PMID: 32717583 DOI: 10.1016/j.dnarep.2020.102936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/20/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022]
Abstract
Reporter gene mouse lines are routinely used for studies related to functional genomics, proteomics, cell biology or cell-based drug screenings, and represent a crucial platform for in vivo research. In the generation of knock-in reporter lines, new gene targeting methods provide several advantages over the standard transgenic techniques. First of all, specific targeting of the genome allows expression of the reporter gene under controlled conditions, whether in a specific locus in the genome or in a "safe harbor" locus. Historically, the ROSA26 locus is used for gene knock-in strategies by homologous recombination in mouse embryonic stem cells. The other preferred place for integration of the reporter transgene in the mouse genome is the endogenous promoter of a target gene. In this study, we employed TALENs to generate a reporter fusion protein expressed from its native promoter. For monitoring DNA damage response, we generated a mouse line expressing a mCitrine-tagged version of the FANCD2 protein, involved in DNA damage response and repair, and the Fanconi anemia (FA) pathway. This model could be a valuable tool for in vivo investigation of DNA damage.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic; Laboratory for Hereditary Cancer, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - M Aydın Akbudak
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic; Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey.
| | - Dominika Fricova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Inken Beck
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| |
Collapse
|
11
|
Koifman G, Aloni-Grinstein R, Rotter V. p53 balances between tissue hierarchy and anarchy. J Mol Cell Biol 2020; 11:553-563. [PMID: 30925590 PMCID: PMC6735948 DOI: 10.1093/jmcb/mjz022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Normal tissues are organized in a hierarchical model, whereas at the apex of these hierarchies reside stem cells (SCs) capable of self-renewal and of producing differentiated cellular progenies, leading to normal development and homeostasis. Alike, tumors are organized in a hierarchical manner, with cancer SCs residing at the apex, contributing to the development and nourishment of tumors. p53, the well-known ‘guardian of the genome’, possesses various roles in embryonic development as well as in adult SC life and serves as the ‘guardian of tissue hierarchy’. Moreover, p53 serves as a barrier for dedifferentiation and reprogramming by constraining the cells to a somatic state and preventing their conversion to SCs. On the contrary, the mutant forms of p53 that lost their tumor suppressor activity and gain oncogenic functions serve as ‘inducers of tissue anarchy’ and promote cancer development. In this review, we discuss these two sides of the p53 token that sentence a tissue either to an ordered hierarchy and life or to anarchy and death. A better understanding of these processes may open new horizons for the development of new cancer therapies.
Collapse
Affiliation(s)
- Gabriela Koifman
- Department of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel.,Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Jaiswal SK, Oh JJ, DePamphilis ML. Cell cycle arrest and apoptosis are not dependent on p53 prior to p53-dependent embryonic stem cell differentiation. Stem Cells 2020; 38:1091-1106. [PMID: 32478947 DOI: 10.1002/stem.3199] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022]
Abstract
Previous efforts to determine whether or not the transcription factor and tumor suppressor protein p53 is required for DNA damage-induced apoptosis in pluripotent embryonic stem cells (ESCs) produced contradictory conclusions. To resolve this issue, p53+/+ and p53-/- ESCs derived by two different methods were used to quantify time-dependent changes in nuclear DNA content; annexin-V binding; cell permeabilization; and protein expression, modification, and localization. The results revealed that doxorubicin (Adriamycin [ADR]) concentrations 10 to 40 times less than commonly used in previous studies induced the DNA damage-dependent G2-checkpoint and completed apoptosis within the same time frame, regardless of the presence or absence of p53, p21, and PUMA. Increased ADR concentrations delayed initiation of apoptosis in p53-/- ESCs, but the rates of apoptosis remained equivalent. Similar results were obtained by inducing apoptosis with either staurosporine inhibition of kinase activities or WX8 disruption of lysosome homeostasis. Differentiation of ESCs by LIF deprivation revealed p53-dependent formation of haploid cells, increased genomic stability, and suppression of the G2-checkpoint. Minimal induction of DNA damage now resulted in p53-facilitated apoptosis, but regulation of pluripotent gene expression remained p53-independent. Primary embryonic fibroblasts underwent p53-dependent total cell cycle arrest (a prelude to cell senescence), and p53-independent apoptosis occurred in the presence of 10-fold higher levels of ADR, consistent with previous studies. Taken together, these results reveal that the multiple roles of p53 in cell cycle regulation and apoptosis are first acquired during pluripotent stem cell differentiation.
Collapse
Affiliation(s)
- Sushil K Jaiswal
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - John J Oh
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Critical Role for P53 in Regulating the Cell Cycle of Ground State Embryonic Stem Cells. Stem Cell Reports 2020; 14:175-183. [PMID: 32004494 PMCID: PMC7013234 DOI: 10.1016/j.stemcr.2020.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) grown in serum-supplemented conditions are characterized by an extremely short G1 phase due to the lack of G1-phase control. Concordantly, the G1-phase-specific P53-P21 pathway is compromised in serum ESCs. Here, we provide evidence that P53 is activated upon transition of serum ESCs to their pluripotent ground state using serum-free 2i conditions and that is required for the elongated G1 phase characteristic of ground state ESCs. RNA sequencing and chromatin immunoprecipitation sequencing analyses reveal that P53 directly regulates the expression of the retinoblastoma (RB) protein and that the hypo-phosphorylated, active RB protein plays a key role in G1-phase control. Our findings suggest that the P53-P21 pathway is active in ground state 2i ESCs and that its role in the G1-checkpoint is abolished in serum ESCs. Taken together, the data reveal a mechanism by which inactivation of P53 can lead to loss of RB and uncontrolled cell proliferation. The P53-P21 pathway is activated upon adaptation of ESCs to their pluripotent ground state. P53 is required for the elongated G1-phase characteristic to 2i ESCs. P53 binds the promoter and activates Rb1 expression.
Collapse
|
14
|
Lim CY, Solter D, Knowles BB, Damjanov I. Development of Teratocarcinomas and Teratomas in Severely Immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/Szj (NSG) Mice. Stem Cells Dev 2015; 24:1515-20. [DOI: 10.1089/scd.2015.0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Chin Yan Lim
- Epithelial Epigenetics and Development Lab, Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Davor Solter
- Epithelial Epigenetics and Development Lab, Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Barbara B. Knowles
- Epithelial Epigenetics and Development Lab, Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Ivan Damjanov
- Department of Pathology, The University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
15
|
Blattner C. New tricks for p53 regulation - restraint by protein coding RNAs. Cell Biosci 2015; 5:30. [PMID: 26075053 PMCID: PMC4465304 DOI: 10.1186/s13578-015-0022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 11/10/2022] Open
Abstract
P53 is most well-known for its tumor suppressive function in differentiated cells. Its activities in embryonic stem cells (ESCs) are, however, less well understood. For many years it was thought that p53 is not active at all in ESCs and unable to elicit a DNA damage response in this cell type. In the last few years, it emerged that p53 may have some functions in ESCs. Nevertheless, it remained a mystery how its activity is controlled in ESCs. A recent report demonstrates that p53 activity is regulated by a novel RNA-containing negative feedback loop that promotes apoptosis specifically in ESCs. This study not only demonstrates unequivocally that p53 is active in ESCs, it further illustrates a novel mechanism of gene regulation–by protein coding RNAs.
Collapse
Affiliation(s)
- Christine Blattner
- ITG-Institute of Toxicology and Genetics, Karlsruher Institut für Technologie (KIT), PO Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
16
|
An Apela RNA-Containing Negative Feedback Loop Regulates p53-Mediated Apoptosis in Embryonic Stem Cells. Cell Stem Cell 2015; 16:669-83. [PMID: 25936916 DOI: 10.1016/j.stem.2015.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/11/2014] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
Maintaining genomic integrity is of paramount importance to embryonic stem cells (ESCs), as mutations are readily propagated to daughter cells. ESCs display hypersensitivity to DNA damage-induced apoptosis (DIA) to prevent such propagation, although the molecular mechanisms underlying this apoptotic response are unclear. Here, we report that the regulatory RNA Apela positively regulates p53-mediated DIA. Apela is highly expressed in mouse ESCs and is repressed by p53 activation, and Apela depletion compromises p53-dependent DIA. Although Apela contains a coding region, this coding ability is dispensable for Apela's role in p53-mediated DIA. Instead, Apela functions as a regulatory RNA and interacts with hnRNPL, which prevents the mitochondrial localization and activation of p53. Together, these results describe a tri-element negative feedback loop composed of p53, Apela, and hnRNPL that regulates p53-mediated DIA, and they further demonstrate that regulatory RNAs add a layer of complexity to the apoptotic response of ESCs after DNA damage.
Collapse
|
17
|
Horii T, Yamamoto M, Morita S, Kimura M, Nagao Y, Hatada I. p53 suppresses tetraploid development in mice. Sci Rep 2015; 5:8907. [PMID: 25752699 PMCID: PMC4354145 DOI: 10.1038/srep08907] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/09/2015] [Indexed: 11/09/2022] Open
Abstract
Mammalian tetraploid embryos die in early development because of defects in the epiblast. Experiments with diploid/tetraploid chimeric mice, obtained via the aggregation of embryonic stem cells, clarified that while tetraploid cells are excluded from epiblast derivatives, diploid embryos with tetraploid extraembryonic tissues can develop to term. Today, this method, known as tetraploid complementation, is usually used for rescuing extraembryonic defects or for obtaining completely embryonic stem (ES) cell-derived pups. However, it is still unknown why defects occur in the epiblast during mammalian development. Here, we demonstrated that downregulation of p53, a tumour suppressor protein, rescued tetraploid development in the mammalian epiblast. Tetraploidy in differentiating epiblast cells triggered p53-dependent cell-cycle arrest and apoptosis, suggesting the activation of a tetraploidy checkpoint during early development. Finally, we found that p53 downregulation rescued tetraploid embryos later in gestation.
Collapse
Affiliation(s)
- Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Masamichi Yamamoto
- Advanced Scientific Research Leaders Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Yasumitsu Nagao
- Medical Research Center, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
18
|
Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. JOURNAL OF INFLAMMATION-LONDON 2014; 11:23. [PMID: 25152696 PMCID: PMC4142057 DOI: 10.1186/1476-9255-11-23] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/28/2014] [Indexed: 12/13/2022]
Abstract
Activation of nuclear factor-kappa B (NF- κB) as a mechanism of host defense against infection and stress is the central mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF- κB favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various independent investigations that a down regulation of NF- κB activity directly, or indirectly through the activation of the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to understand the NF- κB signaling pathways to intervene the function of this crucial player in inflammation and tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on the role of NF- κB in chronic inflammation and cancer, highlighting mutual antagonism between NF- κB and p53 pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including those that were already tested to affect this mutual antagonism.
Collapse
Affiliation(s)
- Srabani Pal
- Pharmacognosy and Phytotherapy laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur-713209, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | | | - Subhash C Mandal
- Pharmacognosy and Phytotherapy laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
19
|
Zhu Y, Demidov ON, Goh AM, Virshup DM, Lane DP, Bulavin DV. Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging. J Clin Invest 2014; 124:3263-73. [PMID: 24911145 DOI: 10.1172/jci73015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/29/2014] [Indexed: 12/21/2022] Open
Abstract
The number of newly formed neurons declines rapidly during aging, and this decrease in neurogenesis is associated with decreased function of neural stem/progenitor cells (NPCs). Here, we determined that a WIP1-dependent pathway regulates NPC differentiation and contributes to the age-associated decline of neurogenesis. Specifically, we found that WIP1 is expressed in NPCs of the mouse subventricular zone (SVZ) and aged animals with genetically enhanced WIP1 expression exhibited higher NPC numbers and neuronal differentiation compared with aged WT animals. Additionally, augmenting WIP1 expression in aged animals markedly improved neuron formation and rescued a functional defect in fine odor discrimination in aged mice. We identified the WNT signaling pathway inhibitor DKK3 as a key downstream target of WIP1 and found that expression of DKK3 in the SVZ is restricted to NPCs. Using murine reporter strains, we determined that DKK3 inhibits neuroblast formation by suppressing WNT signaling and Dkk3 deletion or pharmacological activation of the WNT pathway improved neuron formation and olfactory function in aged mice. We propose that WIP1 controls DKK3-dependent inhibition of neuronal differentiation during aging and suggest that regulating WIP1 levels could prevent certain aspects of functional decline of the aging brain.
Collapse
|
20
|
Brown CJ, Quah ST, Jong J, Goh AM, Chiam PC, Khoo KH, Choong ML, Lee MA, Yurlova L, Zolghadr K, Joseph TL, Verma CS, Lane DP. Stapled peptides with improved potency and specificity that activate p53. ACS Chem Biol 2013; 8:506-12. [PMID: 23214419 DOI: 10.1021/cb3005148] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By using a phage display derived peptide as an initial template, compounds have been developed that are highly specific against Mdm2/Mdm4. These compounds exhibit greater potency in p53 activation and protein-protein interaction assays than a compound derived from the p53 wild-type sequence. Unlike Nutlin, a small molecule inhibitor of Mdm2/Mdm4, the phage derived compounds can arrest cells resistant to p53 induced apoptosis over a wide concentration range without cellular toxicity, suggesting they are highly suitable for cyclotherapy.
Collapse
Affiliation(s)
- Christopher J. Brown
- p53 Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos,
Singapore 138648
| | - Soo T. Quah
- p53 Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos,
Singapore 138648
| | - Janice Jong
- p53 Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos,
Singapore 138648
| | - Amanda M. Goh
- p53 Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos,
Singapore 138648
| | - Poh C. Chiam
- p53 Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos,
Singapore 138648
| | - Kian H. Khoo
- p53 Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos,
Singapore 138648
| | - Meng L. Choong
- Experimental Therapeutics Centre (ETC), 31 Biopolis Way, Nanos Level 3, Singapore
138669
| | - May A. Lee
- Experimental Therapeutics Centre (ETC), 31 Biopolis Way, Nanos Level 3, Singapore
138669
| | - Larisa Yurlova
- ChromoTek GmbH, Am Klopferspitz 19, 82152 Planegg, Germany
| | | | - Thomas L. Joseph
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01, Matrix,
Singapore 138671
| | - Chandra S. Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01, Matrix,
Singapore 138671
- Department
of Biological Sciences, National University of Singapore, 14 Science Drive
4, Singapore 117543
- School of
Biological Sciences, Nanyang Technological University, 60 Nayang Drive,
Singapore 637551
| | - David P. Lane
- p53 Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos,
Singapore 138648
| |
Collapse
|
21
|
Wassman CD, Baronio R, Demir Ö, Wallentine BD, Chen CK, Hall LV, Salehi F, Lin DW, Chung BP, Wesley Hatfield G, Richard Chamberlin A, Luecke H, Lathrop RH, Kaiser P, Amaro RE. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat Commun 2013; 4:1407. [PMID: 23360998 PMCID: PMC3562459 DOI: 10.1038/ncomms2361] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 12/06/2012] [Indexed: 12/22/2022] Open
Abstract
The tumour suppressor p53 is the most frequently mutated gene in human cancer. Reactivation of mutant p53 by small molecules is an exciting potential cancer therapy. Although several compounds restore wild-type function to mutant p53, their binding sites and mechanisms of action are elusive. Here computational methods identify a transiently open binding pocket between loop L1 and sheet S3 of the p53 core domain. Mutation of residue Cys124, located at the centre of the pocket, abolishes p53 reactivation of mutant R175H by PRIMA-1, a known reactivation compound. Ensemble-based virtual screening against this newly revealed pocket selects stictic acid as a potential p53 reactivation compound. In human osteosarcoma cells, stictic acid exhibits dose-dependent reactivation of p21 expression for mutant R175H more strongly than does PRIMA-1. These results indicate the L1/S3 pocket as a target for pharmaceutical reactivation of p53 mutants.
Collapse
Affiliation(s)
- Christopher D. Wassman
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- These authors contributed equally to this work
- Present address: Google Inc., 1600 Amphitheatre Parkway Mountain View, California 94043, USA
| | - Roberta Baronio
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, USA
- These authors contributed equally to this work
| | - Özlem Demir
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, USA
- These authors contributed equally to this work
- Present addresses: Department of Chemistry and Biochemistry, University of California, San Diego; La Jolla, California 92093, USA
| | - Brad D. Wallentine
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, USA
| | - Chiung-Kuang Chen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, USA
| | - Linda V. Hall
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, USA
| | - Faezeh Salehi
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
| | - Da-Wei Lin
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, USA
| | - Benjamin P. Chung
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, USA
| | - G. Wesley Hatfield
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697, USA
| | - A. Richard Chamberlin
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California 92697, USA
| | - Hartmut Luecke
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, USA
- Center for Biomembrane Systems, University of California, Irvine, Irvine, California 92697, USA
| | - Richard H. Lathrop
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA
| | - Peter Kaiser
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California 92697, USA
| | - Rommie E. Amaro
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA
- Present addresses: Department of Chemistry and Biochemistry, University of California, San Diego; La Jolla, California 92093, USA
| |
Collapse
|
22
|
Abstract
Understanding how the tumor suppressor p53 induces cell cycle arrest or apoptosis is critical for developing chemotherapeutic strategies. We have generated targeted transgenic reporter mice with which we can study p53 activity at specific promoters, and propose a model in which p53 protein conformation is key to target gene selection.
Collapse
Affiliation(s)
- Amanda M Goh
- p53 Laboratory, Agency for Science, Technology and Research, Singapore
| | | |
Collapse
|