1
|
Benoit JB, Weaving H, McLellan C, Terblanche JS, Attardo GM, English S. Viviparity and obligate blood feeding: tsetse flies as a unique research system to study climate change. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101369. [PMID: 40122517 DOI: 10.1016/j.cois.2025.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Tsetse flies (Glossina species) are unique organisms that combine several remarkable traits: they are obligate blood feeders, serve as critical vectors for African trypanosomes, and reproduce through adenotrophic viviparity - a process in which offspring are nourished with milk-like secretions before being born live. Here, we explore how climate change will impact the physiological processes associated with live birth in tsetse. This includes considerations of how blood feeding, host-pathogen interactions, and host-symbiont dynamics are likely to be impacted by thermal shifts. The highly specialized biology of tsetse flies suggests that this system is likely to have a distinctive response to climate change. Thus, detailed empirical research into these unique features is paramount for predicting tsetse population dynamics under climate change, with caution required when generalizing from other well-studied vectors with contrasting ecology and life histories such as mosquitoes and ticks. At the same time, the reproductive biology of tsetse, as well as microbiome and feeding dynamics, allow for a powerful model to investigate climate change through the lens of pregnancy and associated physiological adaptations in an extensively researched invertebrate.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom; Department of Pathology, Microbiology & Immunology, University of California Davis, Davis, CA, United States
| | - Callum McLellan
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, United States
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
2
|
Shamjana U, Vasu DA, Hembrom PS, Nayak K, Grace T. The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation. Antonie Van Leeuwenhoek 2024; 117:71. [PMID: 38668783 DOI: 10.1007/s10482-024-01970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Insects are incredibly diverse, ubiquitous and have successfully flourished out of the dynamic and often unpredictable nature of evolutionary processes. The resident microbiome has accompanied the physical and biological adaptations that enable their continued survival and proliferation in a wide array of environments. The host insect and microbiome's bidirectional relationship exhibits their capability to influence each other's physiology, behavior and characteristics. Insects are reported to rely directly on the microbial community to break down complex food, adapt to nutrient-deficit environments, protect themselves from natural adversaries and control the expression of social behavior. High-throughput metagenomic approaches have enhanced the potential for determining the abundance, composition, diversity and functional activities of microbial fauna associated with insect hosts, enabling in-depth investigation into insect-microbe interactions. We undertook a review of some of the major advances in the field of metagenomics, focusing on insect-microbe interaction, diversity and composition of resident microbiota, the functional capability of endosymbionts and discussions on different symbiotic relationships. The review aims to be a valuable resource on insect gut symbiotic microbiota by providing a comprehensive understanding of how insect gut symbionts systematically perform a range of functions, viz., insecticide degradation, nutritional support and immune fitness. A thorough understanding of manipulating specific gut symbionts may aid in developing advanced insect-associated research to attain health and design strategies for pest management.
Collapse
Affiliation(s)
- U Shamjana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Karunakar Nayak
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
3
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
4
|
Luan JB. Insect Bacteriocytes: Adaptation, Development, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:81-98. [PMID: 38270981 DOI: 10.1146/annurev-ento-010323-124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Bacteriocytes are host cells specialized to harbor symbionts in certain insect taxa. The adaptation, development, and evolution of bacteriocytes underlie insect symbiosis maintenance. Bacteriocytes carry enriched host genes of insect and bacterial origin whose transcription can be regulated by microRNAs, which are involved in host-symbiont metabolic interactions. Recognition proteins of peptidoglycan, the bacterial cell wall component, and autophagy regulate symbiont abundance in bacteriocytes. Horizontally transferred genes expressed in bacteriocytes influence the metabolism of symbiont peptidoglycan, which may affect the bacteriocyte immune response against symbionts. Bacteriocytes release or transport symbionts into ovaries for symbiont vertical transmission. Bacteriocyte development and death, regulated by transcriptional factors, are variable in different insect species. The evolutionary origin of insect bacteriocytes remains unclear. Future research should elucidate bacteriocyte cell biology, the molecular interplay between bacteriocyte metabolic and immune functions, the genetic basis of bacteriocyte origin, and the coordination between bacteriocyte function and host biology in diverse symbioses.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China;
| |
Collapse
|
5
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Zhang Q, Zhou Q, Han S, Li Y, Wang Y, He H. The genome of sheep ked (Melophagus ovinus) reveals potential mechanisms underlying reproduction and narrower ecological niches. BMC Genomics 2023; 24:54. [PMID: 36717784 PMCID: PMC9887928 DOI: 10.1186/s12864-023-09155-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Melophagus ovinus is considered to be of great veterinary health significance. However, little is known about the information on genetic mechanisms of the specific biological characteristics and novel methods for controlling M. ovinus. RESULTS In total, the de novo genome assembly of M. ovinus was 188.421 Mb in size (330 scaffolds, N50 Length: 10.666 Mb), with a mean GC content of 27.74%. A total of 13,372 protein-coding genes were functionally annotated. Phylogenetic analysis indicated that the diversification of M. ovinus and Glossina fuscipes took place 72.76 Mya within the Late Cretaceous. Gene family expansion and contraction analysis revealed that M. ovinus has 65 rapidly-evolving families (26 expansion and 39 contractions) mainly involved DNA metabolic activity, transposases activity, odorant receptor 59a/67d-like, IMD domain-containing protein, and cuticle protein, etc. The universal and tightly conserved list of milk protein orthologues has been assembled from the genome of M. ovinus. Contractions and losses of sensory receptors and vision-associated Rhodopsin genes were significant in M. ovinus, which indicate that the M. ovinus has narrower ecological niches. CONCLUSIONS We sequenced, assembled, and annotated the whole genome sequence of M. ovinus, and launches into the preliminary genetic mechanisms analysis of the adaptive evolution characteristics of M. ovinus. These resources will provide insights to understand the biological underpinnings of this parasite and the disease control strategies.
Collapse
Affiliation(s)
- Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Qingsong Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Ye Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Li J, Li J, Jing Z, Yu Q, Zheng G, Zhang B, Xing L, Zhang H, Wan F, Li C. Antiviral function of peptidoglycan recognition protein in Spodoptera exigua (Lepidoptera: Noctuidae). INSECT SCIENCE 2022. [PMID: 36464632 DOI: 10.1111/1744-7917.13158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a class of molecules that play a critical role in insect immunity. Understanding the function of PGRPs is important to improve the efficiency of microbial insecticides. In this study, we investigated the role of PGRP-LB (a long type PGRP) in insect immunity against viruses using Spodoptera exigua and Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as an insect-virus model. We cloned and identified a PGRP-LB gene from S. exigua; the gene consisted of 7 exons that encoded a polypeptide of 234 amino acids with a signal peptide and a typical amidase domain. Expression analysis revealed that the abundance of SePGRP-LB transcripts in the fat body was greater than in other tissues. Overexpression of SePGRP-LB resulted in a significant decrease of 49% in the rate of SeMNPV-infected cells. In addition, the multiplication of SeMNPV was significantly decreased: a decrease of 79% in the production of occlusion-derived virion (ODV), and a maximum decrease of 50% in the production of budded virion (BV). In contrast, silencing of SePGRP-LB expression by RNA interference resulted in a significant 1.65-fold increase in the rate of SeMNPV-infected cells, a significant 0.54-fold increase in ODV production, a maximum 1.57-fold increase in BV production, and the larval survival dropped to 21%. Our findings show that SePGRP-LB has an antiviral function against SeMNPV, and therefore this gene may provide a target for lepidopteran pest control using virus insecticides.
Collapse
Affiliation(s)
- Jie Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhaohao Jing
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianlong Yu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Guiling Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Bin Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Longsheng Xing
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huan Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fanghao Wan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Changyou Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
8
|
Weiss BL, Rio RVM, Aksoy S. Microbe Profile: Wigglesworthia glossinidia: the tsetse fly's significant other. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001242. [PMID: 36129743 PMCID: PMC10723186 DOI: 10.1099/mic.0.001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Wigglesworthia glossinidia is an obligate, maternally transmitted endosymbiont of tsetse flies. The ancient association between these two organisms accounts for many of their unique physiological adaptations. Similar to other obligate mutualists, Wigglesworthia's genome is dramatically reduced in size, yet it has retained the capacity to produce many B-vitamins that are found at inadequate quantities in the fly's vertebrate blood-specific diet. These Wigglesworthia-derived B-vitamins play essential nutritional roles to maintain tsetse's physiological homeostasis as well as that of other members of the fly's microbiota. In addition to its nutritional role, Wigglesworthia contributes towards the development of tsetse's immune system during the larval period. Tsetse produce amidases that degrade symbiotic peptidoglycans and prevent activation of antimicrobial responses that can damage Wigglesworthia. These amidases in turn exhibit antiparasitic activity and decrease tsetse's ability to be colonized with parasitic trypanosomes, which reduce host fitness. Thus, the Wigglesworthia symbiosis represents a fine-tuned association in which both partners actively contribute towards achieving optimal fitness outcomes.
Collapse
Affiliation(s)
- Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Rita V. M. Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
9
|
Zhang P, Yao Z, Bai S, Zhang H. The Negative Regulative Roles of BdPGRPs in the Imd Signaling Pathway of Bactrocera dorsalis. Cells 2022; 11:cells11010152. [PMID: 35011714 PMCID: PMC8750024 DOI: 10.3390/cells11010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are key regulators in insects' immune response, functioning as sensors to detect invading pathogens and as scavengers of peptidoglycan (PGN) to reduce immune overreaction. However, the exact function of PGRPs in Bactrocera dorsalis is still unclear. In this study, we identified and functionally characterized the genes BdPGRP-LB, BdPGRP-SB1 and BdPGRP-SC2 in B. dorsalis. The results showed that BdPGRP-LB, BdPGRP-SB1 and BdPGRP-SC2 all have an amidase-2 domain, which has been shown to have N-Acetylmuramoyl-l-Alanine amidase activity. The transcriptional levels of BdPGRP-LB and BdPGRP-SC2 were both high in adult stages and midgut tissues; BdPGRP-SB1 was found most abundantly expressed in the 2nd instar larvae stage and adult fat body. The expression of BdPGRP-LB and BdPGRP-SB1 and AMPs were significantly up-regulated after injury infected with Escherichia coli at different time points; however, the expression of BdPGRP-SC2 was reduced at 9 h, 24 h and 48 h following inoculation with E. coli. By injection of dsRNA, BdPGRP-LB, BdPGRP-SB1 and BdPGRP-SC2 were knocked down by RNA-interference. Silencing of BdPGRP-LB, BdPGRP-SB1 and BdPGRP-SC2 separately in flies resulted in over-activation of the Imd signaling pathway after bacterial challenge. The survival rate of the ds-PGRPs group was significantly reduced compared with the ds-egfp group after bacterial infection. Taken together, our results demonstrated that three catalytic PGRPs family genes, BdPGRP-LB, BdPGRP-SB1 and BdPGRP-SC2, are important negative regulators of the Imd pathway in B. dorsalis.
Collapse
Affiliation(s)
| | | | | | - Hongyu Zhang
- Correspondence: ; Tel.: +86-27-87286962; Fax: +86-27-87384670
| |
Collapse
|
10
|
Prigot-Maurice C, Beltran-Bech S, Braquart-Varnier C. Why and how do protective symbionts impact immune priming with pathogens in invertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104245. [PMID: 34453995 DOI: 10.1016/j.dci.2021.104245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence demonstrates that invertebrates display adaptive-like immune abilities, commonly known as "immune priming". Immune priming is a process by which a host improves its immune defences following an initial pathogenic exposure, leading to better protection after a subsequent infection with the same - or different - pathogens. Nevertheless, beneficial symbionts can enhance similar immune priming processes in hosts, such as when they face repeated infections with pathogens. This "symbiotic immune priming" protects the host against pathogenic viruses, bacteria, fungi, or eukaryotic parasites. In this review, we explore the extent to which protective symbionts interfere and impact immune priming against pathogens from both a mechanical (proximal) and an evolutionary (ultimate) point of view. We highlight that the immune priming of invertebrates is the cornerstone of the tripartite interaction of hosts/symbionts/pathogens. The main shared mechanism of immune priming (induced by symbionts or pathogens) is the sustained immune response at the beginning of host-microbial interactions. However, the evolutionary outcome of immune priming leads to a specific discrimination, which provides enhanced tolerance or resistance depending on the type of microbe. Based on several studies testing immune priming against pathogens in the presence or absence of protective symbionts, we observed that both types of immune priming could overlap and affect each other inside the same hosts. As protective symbionts could be an evolutionary force that influences immune priming, they may help us to better understand the heterogeneity of pathogenic immune priming across invertebrate populations and species.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France.
| | - Sophie Beltran-Bech
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| | - Christine Braquart-Varnier
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| |
Collapse
|
11
|
Whittle M, Barreaux AMG, Bonsall MB, Ponton F, English S. Insect-host control of obligate, intracellular symbiont density. Proc Biol Sci 2021; 288:20211993. [PMID: 34814751 PMCID: PMC8611330 DOI: 10.1098/rspb.2021.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Many insects rely on intracellular bacterial symbionts to supplement their specialized diets with micronutrients. Using data from diverse and well-studied insect systems, we propose three lines of evidence suggesting that hosts have tight control over the density of their obligate, intracellular bacterial partners. First, empirical studies have demonstrated that the within-host symbiont density varies depending on the nutritional and developmental requirements of the host. Second, symbiont genomes are highly reduced and have limited capacity for self-replication or transcriptional regulation. Third, several mechanisms exist for hosts to tolerate, regulate and remove symbionts including physical compartmentalization and autophagy. We then consider whether such regulation is adaptive, by discussing the relationship between symbiont density and host fitness. We discuss current limitations of empirical studies for exploring fitness effects in host-symbiont relationships, and emphasize the potential for using mathematical models to formalize evolutionary hypotheses and to generate testable predictions for future work.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- St Peter's College, Oxford, OX1 2DL
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
12
|
Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021; 22:400. [PMID: 34058984 PMCID: PMC8166097 DOI: 10.1186/s12864-021-07729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. Results An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, ‘translation, ribosomal structure and biogenesis’ followed by ‘coenzyme transport and metabolism’ were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. Conclusions These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07729-5.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Caitlyn Brenner
- Department of Biology, Washington and Jefferson College, Washington, PA, 15301, USA
| | - Dylan Richmond
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
13
|
Orlans J, Vincent-Monegat C, Rahioui I, Sivignon C, Butryn A, Soulère L, Zaidman-Remy A, Orville AM, Heddi A, Aller P, Da Silva P. PGRP-LB: An Inside View into the Mechanism of the Amidase Reaction. Int J Mol Sci 2021; 22:4957. [PMID: 34066955 PMCID: PMC8124813 DOI: 10.3390/ijms22094957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/23/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are ubiquitous among animals and play pivotal functions in insect immunity. Non-catalytic PGRPs are involved in the activation of immune pathways by binding to the peptidoglycan (PGN), whereas amidase PGRPs are capable of cleaving the PGN into non-immunogenic compounds. Drosophila PGRP-LB belongs to the amidase PGRPs and downregulates the immune deficiency (IMD) pathway by cleaving meso-2,6-diaminopimelic (meso-DAP or DAP)-type PGN. While the recognition process is well analyzed for the non-catalytic PGRPs, little is known about the enzymatic mechanism for the amidase PGRPs, despite their essential function in immune homeostasis. Here, we analyzed the specific activity of different isoforms of Drosophila PGRP-LB towards various PGN substrates to understand their specificity and role in Drosophila immunity. We show that these isoforms have similar activity towards the different compounds. To analyze the mechanism of the amidase activity, we performed site directed mutagenesis and solved the X-ray structures of wild-type Drosophila PGRP-LB and its mutants, with one of these structures presenting a protein complexed with the tracheal cytotoxin (TCT), a muropeptide derived from the PGN. Only the Y78F mutation abolished the PGN cleavage while other mutations reduced the activity solely. Together, our findings suggest the dynamic role of the residue Y78 in the amidase mechanism by nucleophilic attack through a water molecule to the carbonyl group of the amide function destabilized by Zn2+.
Collapse
Affiliation(s)
- Julien Orlans
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (A.B.); (A.M.O.)
| | - Carole Vincent-Monegat
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| | - Isabelle Rahioui
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| | - Catherine Sivignon
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| | - Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (A.B.); (A.M.O.)
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Laurent Soulère
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 rue Victor Grignard, 69622 Villeurbanne, France;
| | - Anna Zaidman-Remy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (A.B.); (A.M.O.)
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (A.B.); (A.M.O.)
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Pedro Da Silva
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France; (J.O.); (C.V.-M.); (I.R.); (C.S.); (A.Z.-R.); (A.H.)
| |
Collapse
|
14
|
Bai S, Yao Z, Raza MF, Cai Z, Zhang H. Regulatory mechanisms of microbial homeostasis in insect gut. INSECT SCIENCE 2021; 28:286-301. [PMID: 32888254 DOI: 10.1111/1744-7917.12868] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Insects live in incredibly complex environments. The intestinal epithelium of insects is in constant contact with microorganisms, some of which are beneficial and some harmful to the host. Insect gut health and function are maintained through multidimensional mechanisms that can proficiently remove foreign pathogenic microorganisms while effectively maintaining local symbiotic microbial homeostasis. The basic immune mechanisms of the insect gut, such as the dual oxidase-reactive oxygen species (Duox-ROS) system and the immune deficiency (Imd)-signaling pathway, are involved in the maintenance of microbial homeostasis. This paper reviews the role of physical defenses, the Duox-ROS and Imd signaling pathways, the Janus kinase/signal transducers and activators of transcription signaling pathway, and intestinal symbiotic flora in the homeostatic maintenance of the insect gut microbiome.
Collapse
Affiliation(s)
- Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results Probl Cell Differ 2021; 69:497-536. [PMID: 33263885 DOI: 10.1007/978-3-030-51849-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.
Collapse
|
16
|
Husnik F, Hypsa V, Darby A. Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite. Genome Biol Evol 2020; 12:429-442. [PMID: 32068830 PMCID: PMC7197495 DOI: 10.1093/gbe/evaa032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Animals interact with a diverse array of both beneficial and detrimental microorganisms. In insects, these symbioses in many cases allow feeding on nutritionally unbalanced diets. It is, however, still not clear how are obligate symbioses maintained at the cellular level for up to several hundred million years. Exact mechanisms driving host-symbiont interactions are only understood for a handful of model species and data on blood-feeding hosts with intracellular bacteria are particularly scarce. Here, we analyzed interactions between an obligately blood-sucking parasite of sheep, the louse fly Melophagus ovinus, and its obligate endosymbiont, Arsenophonus melophagi. We assembled a reference transcriptome for the insect host and used dual RNA-Seq with five biological replicates to compare expression in the midgut cells specialized for housing symbiotic bacteria (bacteriocytes) to the rest of the gut (foregut-hindgut). We found strong evidence for the importance of zinc in the system likely caused by symbionts using zinc-dependent proteases when acquiring amino acids, and for different immunity mechanisms controlling the symbionts than in closely related tsetse flies. Our results show that cellular and nutritional interactions between this blood-sucking insect and its symbionts are less intimate than what was previously found in most plant-sap sucking insects. This finding is likely interconnected to several features observed in symbionts in blood-sucking arthropods, particularly their midgut intracellular localization, intracytoplasmic presence, less severe genome reduction, and relatively recent associations caused by frequent evolutionary losses and replacements.
Collapse
Affiliation(s)
- Filip Husnik
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Vaclav Hypsa
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alistair Darby
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
17
|
Abstract
Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbionts, routes of transmission, and the physiological and evolutionary outcomes for both hosts and microorganisms. We also identify areas in need of continuing research, to answer the fundamental questions that remain in fields within and beyond arthropod-microorganism associations. New opportunities for research in this area will drive a broader understanding of major concepts as well as the biodiversity, mechanisms and translational applications of microorganisms that interact with host reproductive tissues.
Collapse
|
18
|
Aksoy S. Tsetse peritrophic matrix influences for trypanosome transmission. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103919. [PMID: 31425686 PMCID: PMC6853167 DOI: 10.1016/j.jinsphys.2019.103919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Tsetse flies are important vectors of parasitic African trypanosomes, agents of human and animal trypanosomiasis. Easily administrable and effective tools for disease control in the mammalian host are still lacking but reduction of the tsetse vector populations can reduce disease. An alternative approach is to reduce the transmission of trypanosomes in the tsetse vector. The gut peritrophic matrix (PM) has emerged as an important regulator of parasite transmission success in tsetse. Tsetse has a Type II PM that is constitutively produced by cells in the cardia organ. Tsetse PM lines the entire gut and functions as an immunological barrier to prevent the gut epithelia from responding to commensal environmental microbes present in the gut lumen. Tsetse PM also functions as a physical barrier to trypanosome infections that enter into the gut lumen in an infective blood meal. For persistence in the gut, African trypanosomes have developed an adaptive manipulative process to transiently reduce PM efficacy. The process is mediated by mammalian trypanosome surface coat proteins, Variant Surface Glycoproteins (VSGs) which are shed in the gut lumen and taken up by cardia cells. The mechanism of PM reduction involves a tsetse microRNA (miR-275) which acts thru the Wnt signaling pathway. The PM efficacy is once again reduced later in the infection process to enable the gut established parasites to reenter into the gut lumen to colonize the salivary glands, an essential process for transmission. The ability to modulate PM integrity can lead to innovative approaches to reduce disease transmission.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, LEPH 624, New Haven, CT 06520, United States.
| |
Collapse
|
19
|
Matetovici I, De Vooght L, Van Den Abbeele J. Innate immunity in the tsetse fly (Glossina), vector of African trypanosomes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:181-188. [PMID: 31075296 DOI: 10.1016/j.dci.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Tsetse flies (Glossina sp.) are medically and veterinary important vectors of African trypanosomes, protozoan parasites that cause devastating diseases in humans and livestock in sub-Saharan Africa. These flies feed exclusively on vertebrate blood and harbor a limited diversity of obligate and facultative bacterial commensals. They have a well-developed innate immune system that plays a key role in protecting the fly against invading pathogens and in modulating the fly's ability to transmit African trypanosomes. In this review, we briefly summarize our current knowledge on the tsetse fly innate immune system and its interaction with the bacterial commensals and the trypanosome parasite.
Collapse
Affiliation(s)
- Irina Matetovici
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000, Antwerp, Belgium.
| |
Collapse
|
20
|
Microbial Communities in Different Developmental Stages of the Oriental Fruit Fly, Bactrocera dorsalis, Are Associated with Differentially Expressed Peptidoglycan Recognition Protein-Encoding Genes. Appl Environ Microbiol 2019; 85:AEM.00803-19. [PMID: 31028032 DOI: 10.1128/aem.00803-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 01/03/2023] Open
Abstract
The insect microbiota can change dramatically to enable adaptation of the host in different developmental stages and environments; however, little is known about how the host maintains its microbiota to achieve such adaptations. In this study, 16S rRNA sequencing revealed that the microorganisms in larvae and adults of the Oriental fruit fly, Bactrocera dorsalis, are primarily Gram-negative bacteria but that the major components in pupae are Gram-positive bacteria. Using suppression subtractive hybridization (SSH) and transcriptome analysis, we screened two specifically expressed genes encoding peptidoglycan recognition proteins (PGRP-LB and PGRP-SB1) and analyzed their relationship to B. dorsalis microbial communities. Knockdown of the PGRP-LB gene in larvae and adults led to increased ratios of Gram-positive bacteria; knockdown of the PGRP-SB1 gene in pupae led to increased ratios of Gram-negative bacteria. Our results suggest that maintenance of the microbiota in different developmental stages of B. dorsalis may be associated with the PGRP-LB and PGRP-SB1 genes.IMPORTANCE Microorganisms are ubiquitous in insects and have widespread impacts on multiple aspects of insect biology. However, the microorganisms present in insects can change dramatically in different developmental stages, and it is critical to maintain the appropriate microorganisms in specific host developmental stages. Therefore, analysis of the factors associated with the microbiota in specific development stages of the host is needed. In this study, we applied suppression subtractive hybridization (SSH) combined with transcriptome analysis to investigate whether the microbiota in development stages of the Oriental fruit fly, Bactrocera dorsalis, is associated with expression of PGRP genes. We found that two different PGRP genes were specifically expressed during development and that these genes may be associated with changes in microbial communities in different developmental stages of B. dorsalis.
Collapse
|
21
|
Abstract
Parasites elicit several physiological changes in their host to enhance transmission. Little is known about the functional association between parasitism and microbiota-provisioned resources typically dedicated to animal hosts and how these goods may be rerouted to optimize parasite development. This study is the first to identify a specific symbiont-generated metabolite that impacts insect vector competence by facilitating parasite establishment and, thus, eventual transmission. Specifically, we demonstrate that the tsetse fly obligate mutualist Wigglesworthia provisions folate (vitamin B9) that pathogenic African trypanosomes exploit in an effort to successfully establish an infection in the vector’s MG. This process is essential for the parasite to complete its life cycle and be transmitted to a new vertebrate host. Disrupting metabolic contributions provided by the microbiota of arthropod disease vectors may fuel future innovative control strategies while also offering minimal nontarget effects. Many symbionts supplement their host’s diet with essential nutrients. However, whether these nutrients also enhance parasitism is unknown. In this study, we investigated whether folate (vitamin B9) production by the tsetse fly (Glossina spp.) essential mutualist, Wigglesworthia, aids auxotrophic African trypanosomes in completing their life cycle within this obligate vector. We show that the expression of Wigglesworthia folate biosynthesis genes changes with the progression of trypanosome infection within tsetse. The disruption of Wigglesworthia folate production caused a reduction in the percentage of flies that housed midgut (MG) trypanosome infections. However, decreased folate did not prevent MG trypanosomes from migrating to and establishing an infection in the fly’s salivary glands, thus suggesting that nutrient requirements vary throughout the trypanosome life cycle. We further substantiated that trypanosomes rely on symbiont-generated folate by feeding this vitamin to Glossina brevipalpis, which exhibits low trypanosome vector competency and houses Wigglesworthia incapable of producing folate. Folate-supplemented G. brevipalpis flies were significantly more susceptible to trypanosome infection, further demonstrating that this vitamin facilitates parasite infection establishment. Our cumulative results provide evidence that Wigglesworthia provides a key metabolite (folate) that is “hijacked” by trypanosomes to enhance their infectivity, thus indirectly impacting tsetse species vector competency. Parasite dependence on symbiont-derived micronutrients, which likely also occurs in other arthropod vectors, represents a relationship that may be exploited to reduce disease transmission.
Collapse
|
22
|
Maire J, Vincent-Monégat C, Balmand S, Vallier A, Hervé M, Masson F, Parisot N, Vigneron A, Anselme C, Perrin J, Orlans J, Rahioui I, Da Silva P, Fauvarque MO, Mengin-Lecreulx D, Zaidman-Rémy A, Heddi A. Weevil pgrp-lb prevents endosymbiont TCT dissemination and chronic host systemic immune activation. Proc Natl Acad Sci U S A 2019; 116:5623-5632. [PMID: 30819893 PMCID: PMC6431197 DOI: 10.1073/pnas.1821806116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-term intracellular symbiosis (or endosymbiosis) is widely distributed across invertebrates and is recognized as a major driving force in evolution. However, the maintenance of immune homeostasis in organisms chronically infected with mutualistic bacteria is a challenging task, and little is known about the molecular processes that limit endosymbiont immunogenicity and host inflammation. Here, we investigated peptidoglycan recognition protein (PGRP)-encoding genes in the cereal weevil Sitophilus zeamais's association with Sodalis pierantonius endosymbiont. We discovered that weevil pgrp-lb generates three transcripts via alternative splicing and differential regulation. A secreted isoform is expressed in insect tissues under pathogenic conditions through activation of the PGRP-LC receptor of the immune deficiency pathway. In addition, cytosolic and transmembrane isoforms are permanently produced within endosymbiont-bearing organ, the bacteriome, in a PGRP-LC-independent manner. Bacteriome isoforms specifically cleave the tracheal cytotoxin (TCT), a peptidoglycan monomer released by endosymbionts. pgrp-lb silencing by RNAi results in TCT escape from the bacteriome to other insect tissues, where it chronically activates the host systemic immunity through PGRP-LC. While such immune deregulations did not impact endosymbiont load, they did negatively affect host physiology, as attested by a diminished sexual maturation of adult weevils. Whereas pgrp-lb was first described in pathogenic interactions, this work shows that, in an endosymbiosis context, specific bacteriome isoforms have evolved, allowing endosymbiont TCT scavenging and preventing chronic endosymbiont-induced immune responses, thus promoting host homeostasis.
Collapse
Affiliation(s)
- Justin Maire
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Carole Vincent-Monégat
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Séverine Balmand
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Agnès Vallier
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Mireille Hervé
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Florent Masson
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Nicolas Parisot
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Aurélien Vigneron
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Caroline Anselme
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Jackie Perrin
- Institut de Biosciences et Biotechnologies de Grenoble, Université Grenoble Alpes, INSERM U1038, Commissariat à l'Energie Atomique, 38054 Grenoble, France
| | - Julien Orlans
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Isabelle Rahioui
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Pedro Da Silva
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Marie-Odile Fauvarque
- Institut de Biosciences et Biotechnologies de Grenoble, Université Grenoble Alpes, INSERM U1038, Commissariat à l'Energie Atomique, 38054 Grenoble, France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Anna Zaidman-Rémy
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France;
| | - Abdelaziz Heddi
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Institut National de la Recherche Agronomique (INRA), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France;
| |
Collapse
|
23
|
Weiss BL, Maltz MA, Vigneron A, Wu Y, Walter KS, O'Neill MB, Wang J, Aksoy S. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLoS Pathog 2019; 15:e1007470. [PMID: 30817773 PMCID: PMC6394900 DOI: 10.1371/journal.ppat.1007470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) vector pathogenic trypanosomes (Trypanosoma spp.) in sub-Saharan Africa. These parasites cause human and animal African trypanosomiases, which are debilitating diseases that inflict an enormous socio-economic burden on inhabitants of endemic regions. Current disease control strategies rely primarily on treating infected animals and reducing tsetse population densities. However, relevant programs are costly, labor intensive and difficult to sustain. As such, novel strategies aimed at reducing tsetse vector competence require development. Herein we investigated whether Kosakonia cowanii Zambiae (Kco_Z), which confers Anopheles gambiae with resistance to Plasmodium, is able to colonize tsetse and induce a trypanosome refractory phenotype in the fly. Kco_Z established stable infections in tsetse's gut and exhibited no adverse effect on the fly's survival. Flies with established Kco_Z infections in their gut were significantly more refractory to infection with two distinct trypanosome species (T. congolense, 6% infection; T. brucei, 32% infection) than were age-matched flies that did not house the exogenous bacterium (T. congolense, 36% infected; T. brucei, 70% infected). Additionally, 52% of Kco_Z colonized tsetse survived infection with entomopathogenic Serratia marcescens, compared with only 9% of their wild-type counterparts. These parasite and pathogen refractory phenotypes result from the fact that Kco_Z acidifies tsetse's midgut environment, which inhibits trypanosome and Serratia growth and thus infection establishment. Finally, we determined that Kco_Z infection does not impact the fecundity of male or female tsetse, nor the ability of male flies to compete with their wild-type counterparts for mates. We propose that Kco_Z could be used as one component of an integrated strategy aimed at reducing the ability of tsetse to transmit pathogenic trypanosomes.
Collapse
Affiliation(s)
- Brian L Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michele A Maltz
- Southern Connecticut State University, New Haven, Connecticut, United States of America
| | - Aurélien Vigneron
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Yineng Wu
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Katharine S Walter
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michelle B O'Neill
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Jingwen Wang
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| |
Collapse
|
24
|
Wang Q, Ren M, Liu X, Xia H, Chen K. Peptidoglycan recognition proteins in insect immunity. Mol Immunol 2018; 106:69-76. [PMID: 30590209 DOI: 10.1016/j.molimm.2018.12.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
Abstract
Insects lack an acquired immune system and rely solely on the innate immune system to combat microbial infection. The innate immunity of insects mainly depends on the interaction between the host's pattern recognition receptor (PRR) and pathogen-associated molecular pattern (PAMP). The peptidoglycan recognition proteins (PGRPs) family is the most important pattern recognition receptor (PRR) for insects. It can recognize the main component of the cell wall of the pathogenic microorganism, peptidoglycan (PGN), and plays an important role in the innate immunity of insects. In this paper, the structure, classification, and function of PGRPs is summarized, and the role of PGRPs in the innate immunity of insects is also discussed.
Collapse
Affiliation(s)
- Qiang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Meijia Ren
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoyong Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
25
|
What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus. BMC Microbiol 2018; 18:150. [PMID: 30470176 PMCID: PMC6251153 DOI: 10.1186/s12866-018-1278-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program ‘Enhancing Vector Refractoriness to Trypanosome Infection’, in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host’s immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models.
Collapse
|
26
|
Griffith BC, Weiss BL, Aksoy E, Mireji PO, Auma JE, Wamwiri FN, Echodu R, Murilla G, Aksoy S. Analysis of the gut-specific microbiome from field-captured tsetse flies, and its potential relevance to host trypanosome vector competence. BMC Microbiol 2018; 18:146. [PMID: 30470178 PMCID: PMC6251097 DOI: 10.1186/s12866-018-1284-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The tsetse fly (Glossina sp.) midgut is colonized by maternally transmitted and environmentally acquired bacteria. Additionally, the midgut serves as a niche in which pathogenic African trypanosomes reside within infected flies. Tsetse’s bacterial microbiota impacts many aspects of the fly’s physiology. However, little is known about the structure of tsetse’s midgut-associated bacterial communities as they relate to geographically distinct fly habitats in east Africa and their contributions to parasite infection outcomes. We utilized culture dependent and independent methods to characterize the taxonomic structure and density of bacterial communities that reside within the midgut of tsetse flies collected at geographically distinct locations in Kenya and Uganda. Results Using culture dependent methods, we isolated 34 strains of bacteria from four different tsetse species (G. pallidipes, G. brevipalpis, G. fuscipes and G. fuscipleuris) captured at three distinct locations in Kenya. To increase the depth of this study, we deep sequenced midguts from individual uninfected and trypanosome infected G. pallidipes captured at two distinct locations in Kenya and one in Uganda. We found that tsetse’s obligate endosymbiont, Wigglesworthia, was the most abundant bacterium present in the midgut of G. pallidipes, and the density of this bacterium remained largely consistent regardless of whether or not its tsetse host was infected with trypanosomes. These fly populations also housed the commensal symbiont Sodalis, which was found at significantly higher densities in trypanosome infected compared to uninfected flies. Finally, midguts of field-captured G. pallidipes were colonized with distinct, low density communities of environmentally acquired microbes that differed in taxonomic structure depending on parasite infection status and the geographic location from which the flies were collected. Conclusions The results of this study will enhance our understanding of the tripartite relationship between tsetse, its microbiota and trypanosome vector competence. This information may be useful for developing novel disease control strategies or enhancing the efficacy of those already in use. Electronic supplementary material The online version of this article (10.1186/s12866-018-1284-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bridget C Griffith
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Present Address: Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Present Address: Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Paul O Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joana E Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Florence N Wamwiri
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
27
|
Geiger A, Malele I, Abd-Alla AM, Njiokou F. Blood feeding tsetse flies as hosts and vectors of mammals-pre-adapted African Trypanosoma: current and expected research directions. BMC Microbiol 2018; 18:162. [PMID: 30470183 PMCID: PMC6251083 DOI: 10.1186/s12866-018-1281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Research on the zoo-anthropophilic blood feeding tsetse flies' biology conducted, by different teams, in laboratory settings and at the level of the ecosystems- where also co-perpetuate African Trypanosoma- has allowed to unveil and characterize key features of tsetse flies' bacterial symbionts on which rely both (a) the perpetuation of the tsetse fly populations and (b) the completion of the developmental program of the African Trypanosoma. Transcriptomic analyses have already provided much information on tsetse fly genes as well as on genes of the fly symbiotic partners Sodalis glossinidius and Wigglesworthia, which account for the successful onset or not of the African Trypanosoma developmental program. In parallel, identification of the non- symbiotic bacterial communities hosted in the tsetse fly gut has recently been initiated: are briefly introduced those bacteria genera and species common to tsetse flies collected from distinct ecosystems, that could be further studied as potential biologicals preventing the onset of the African Trypanosoma developmental program. Finally, future work will need to concentrate on how to render tsetse flies refractory, and the best means to disseminate them in the field in order to establish an overall refractory fly population.
Collapse
Affiliation(s)
- Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Imna Malele
- Vector and Vector Borne Diseases Institute, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
| | - Adly M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
28
|
Dawadi B, Wang X, Xiao R, Muhammad A, Hou Y, Shi Z. PGRP-LB homolog acts as a negative modulator of immunity in maintaining the gut-microbe symbiosis of red palm weevil, Rhynchophorus ferrugineus Olivier. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:65-77. [PMID: 29715482 DOI: 10.1016/j.dci.2018.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 05/08/2023]
Abstract
Many notorious insect pests live in the symbiotic associations with gut microbiota. However, the mechanisms underlying how they host their gut microbiota are unknown. Most gut bacteria can release peptidoglycan (PGN) which is an important antigen to activate the immune response. Therefore, how to keep the appropriate gut immune intensity to host commensals while to efficiently remove enteropathogens is vital for insect health. This study is aimed at elucidating the roles of an amidase PGRP, Rf PGRP-LB, in maintaining the gut-microbe symbiosis of Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier. RfPGRP-LB is a secreted protein containing a typical PGRP domain. The existence of five conservative amino acid residues, being required for amidase activity, showed that RfPGRP-LB is a catalytic protein. Expression analysis revealed abundance of RfPGRP-LB transcripts in gut was dramatically higher than those in other tissues. RfPGRP-LB could be significantly induced against the infection of Escherichia coli. In vitro assays revealed that rRfPGRP-LB impaired the growth of E. coli and agglutinated bacteria cells obviously, suggesting RfPGRP-LB is a pathogen recognition receptor and bactericidal molecule. RfPGRP-LB knockdown reduced the persistence of E. coli in gut and load of indigenous gut microbiota significantly. Furthermore, the community structure of indigenous gut microbiota was also intensively altered by RfPGRP-LB silence. Higher levels of the antimicrobial peptide, attacin, were detected in guts of RfPGRP-LB silenced larvae than controls. Collectively, RfPGRP-LB plays multiple roles in modulating the homeostasis of RPW gut microbiota not only by acting as a negative regulator of mucosal immunity through PGN degradation but also as a bactericidal effector to prevent overgrowth of commensals and persistence of noncommensals.
Collapse
Affiliation(s)
- Bishnu Dawadi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinghong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rong Xiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
29
|
Ran R, Li T, Liu X, Ni H, Li W, Meng F. RNA interference-mediated silencing of genes involved in the immune responses of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Olethreutidae). PeerJ 2018; 6:e4931. [PMID: 29910977 PMCID: PMC6003399 DOI: 10.7717/peerj.4931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/17/2018] [Indexed: 02/03/2023] Open
Abstract
RNA interference (RNAi) technology may be useful for developing new crop protection strategies against the soybean pod borer (SPB; Leguminivora glycinivorella), which is a critical soybean pest in northeastern Asia. Immune-related genes have been recently identified as potential RNAi targets for controlling insects. However, little is known about these genes or mechanisms underlying their expression in the SPB. In this study, we completed a transcriptome-wide analysis of SPB immune-related genes. We identified 41 genes associated with SPB microbial recognition proteins, immune-related effectors or signalling molecules in immune response pathways (e.g., Toll and immune deficiency pathways). Eleven of these genes were selected for a double-stranded RNA artificial feeding assay. The down-regulated expression levels of LgToll-5-1a and LgPGRP-LB2a resulted in relatively high larval mortality rates and abnormal development. Our data represent a comprehensive genetic resource for immune-related SPB genes, and may contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera species. Furthermore, two immune-related SPB genes were identified as potential RNAi targets, which may be used in the development of RNAi-mediated SPB control methods.
Collapse
Affiliation(s)
- Ruixue Ran
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianyu Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xinxin Liu
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hejia Ni
- Colleges of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
30
|
Wang J, Song X, Wang M. Peptidoglycan recognition proteins in hematophagous arthropods. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:89-95. [PMID: 29269264 PMCID: PMC5889321 DOI: 10.1016/j.dci.2017.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 05/24/2023]
Abstract
Hematophagous arthropods are medically important disease vectors that transmit a variety of pathogens. Unlike mammals that employ both innate and adaptive immunity to clear invading pathogens, these vectors rely mainly on an innate immune system to combat pathogens. Peptidoglycan recognition proteins (PGRPs) are important components of innate immune signaling pathways and are responsible for recognizing microbe-associated molecular patterns (MAMPs), thus regulating host immune interactions with both harmful and helpful microbes. Here we review a number of recent studies in different vectors that address the function of PGRPs in immune regulation. Further, we discuss the variation of PGRPs between vectors and Drosophila.
Collapse
Affiliation(s)
- Jingwen Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China.
| | - Xiumei Song
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Mengfei Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| |
Collapse
|
31
|
Host-symbiont-pathogen interactions in blood-feeding parasites: nutrition, immune cross-talk and gene exchange. Parasitology 2018; 145:1294-1303. [PMID: 29642965 DOI: 10.1017/s0031182018000574] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Animals are common hosts of mutualistic, commensal and pathogenic microorganisms. Blood-feeding parasites feed on a diet that is nutritionally unbalanced and thus often rely on symbionts to supplement essential nutrients. However, they are also of medical importance as they can be infected by pathogens such as bacteria, protists or viruses that take advantage of the blood-feeding nutritional strategy for own transmission. Since blood-feeding evolved multiple times independently in diverse animals, it showcases a gradient of host-microbe interactions. While some parasitic lineages are possibly asymbiotic and manage to supplement their diet from other food sources, other lineages are either loosely associated with extracellular gut symbionts or harbour intracellular obligate symbionts that are essential for the host development and reproduction. What is perhaps even more diverse are the pathogenic lineages that infect blood-feeding parasites. This microbial diversity not only puts the host into a complicated situation - distinguishing between microorganisms that can greatly decrease or increase its fitness - but also increases opportunity for horizontal gene transfer to occur in this environment. In this review, I first introduce this diversity of mutualistic and pathogenic microorganisms associated with blood-feeding animals and then focus on patterns in their interactions, particularly nutrition, immune cross-talk and gene exchange.
Collapse
|
32
|
A fine-tuned vector-parasite dialogue in tsetse's cardia determines peritrophic matrix integrity and trypanosome transmission success. PLoS Pathog 2018; 14:e1006972. [PMID: 29614112 PMCID: PMC5898766 DOI: 10.1371/journal.ppat.1006972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/13/2018] [Accepted: 03/13/2018] [Indexed: 01/19/2023] Open
Abstract
Arthropod vectors have multiple physical and immunological barriers that impede the development and transmission of parasites to new vertebrate hosts. These barriers include the peritrophic matrix (PM), a chitinous barrier that separates the blood bolus from the midgut epithelia and modulates vector-pathogens interactions. In tsetse flies, a sleeve-like PM is continuously produced by the cardia organ located at the fore- and midgut junction. African trypanosomes, Trypanosoma brucei, must bypass the PM twice; first to colonize the midgut and secondly to reach the salivary glands (SG), to complete their transmission cycle in tsetse. However, not all flies with midgut infections develop mammalian transmissible SG infections—the reasons for which are unclear. Here, we used transcriptomics, microscopy and functional genomics analyses to understand the factors that regulate parasite migration from midgut to SG. In flies with midgut infections only, parasites fail to cross the PM as they are eliminated from the cardia by reactive oxygen intermediates (ROIs)—albeit at the expense of collateral cytotoxic damage to the cardia. In flies with midgut and SG infections, expression of genes encoding components of the PM is reduced in the cardia, and structural integrity of the PM barrier is compromised. Under these circumstances trypanosomes traverse through the newly secreted and compromised PM. The process of PM attrition that enables the parasites to re-enter into the midgut lumen is apparently mediated by components of the parasites residing in the cardia. Thus, a fine-tuned dialogue between tsetse and trypanosomes at the cardia determines the outcome of PM integrity and trypanosome transmission success. Insects are responsible for transmission of parasites that cause deadly diseases in humans and animals. Understanding the key factors that enhance or interfere with parasite transmission processes can result in new control strategies. Here, we report that a proportion of tsetse flies with African trypanosome infections in their midgut can prevent parasites from migrating to the salivary glands, albeit at the expense of collateral damage. In a subset of flies with gut infections, the parasites manipulate the integrity of a midgut barrier, called the peritrophic matrix, and reach the salivary glands for transmission to the next mammal. Either targeting parasite manipulative processes or enhancing peritrophic matrix integrity could reduce parasite transmission.
Collapse
|
33
|
Song X, Wang M, Dong L, Zhu H, Wang J. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis. PLoS Pathog 2018; 14:e1006899. [PMID: 29489896 PMCID: PMC5831637 DOI: 10.1371/journal.ppat.1006899] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/23/2018] [Indexed: 12/02/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) and commensal microbes mediate pathogen infection outcomes in insect disease vectors. Although PGRP-LD is retained in multiple vectors, its role in host defense remains elusive. Here we report that Anopheles stephensi PGRP-LD protects the vector from malaria parasite infection by regulating gut homeostasis. Specifically, knock down of PGRP-LD (dsLD) increased susceptibility to Plasmodium berghei infection, decreased the abundance of gut microbiota and changed their spatial distribution. This outcome resulted from a change in the structural integrity of the peritrophic matrix (PM), which is a chitinous and proteinaceous barrier that lines the midgut lumen. Reduction of microbiota in dsLD mosquitoes due to the upregulation of immune effectors led to dysregulation of PM genes and PM fragmentation. Elimination of gut microbiota in antibiotic treated mosquitoes (Abx) led to PM loss and increased vectorial competence. Recolonization of Abx mosquitoes with indigenous Enterobacter sp. restored PM integrity and decreased mosquito vectorial capacity. Silencing PGRP-LD in mosquitoes without PM didn’t influence their vector competence. Our results indicate that PGPR-LD protects the gut microbiota by preventing hyper-immunity, which in turn promotes PM structurally integrity. The intact PM plays a key role in limiting P. berghei infection. Malaria parasites must overcome several obstacles to complete their development in mosquito. Understanding the interactions between parasites and mosquitoes will provide potential targets to control malaria transmission. PGRP-LD is a peptidoglycan recognition protein, of which limit information is available in insects. Here we show that A. stephensi PGRP-LD mediates malaria parasite infection outcomes by influencing homeostasis of the gut microbiota. Reduction of the gut microbiota density, resulting from upregulation of immune activities in PGRP-LD knock down mosquitoes, changes expression of PM genes and causes PM fragmentation. The compromised PM leads to increasing susceptibility to parasite infection. We also discovered that the PM is lost in mosquitoes in which the gut microbiota is removed by antibiotic treatment. Knock down of PGRP-LD in these mosquitoes doesn’t increase their vector competence. Altogether, these results indicate that capacity of Anopheles mosquito to transmit parasites is determined by a finely tuned balance between host immunity, gut microbiota and peritrophic matrix. PGRP-LD is a key mediator in regulating this balance. Our results expand knowledge on interactions between immune system, gut microbiota and Plasmodium, and will shed light on equivalent processes in other disease transmitting vectors.
Collapse
Affiliation(s)
- Xiumei Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Mengfei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Li Dong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Huaimin Zhu
- The 2nd Military Medical University, Shanghai, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
34
|
Abstract
The Leishmania parasite is transmitted via the bite of a sand fly. In this issue of Cell Host & Microbe, Dey et al. (2018) report that sand fly gut microbiota are also transferred to the bite site, promoting neutrophil recruitment and parasite dissemination to distal organs.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA.
| |
Collapse
|
35
|
Charroux B, Capo F, Kurz CL, Peslier S, Chaduli D, Viallat-Lieutaud A, Royet J. Cytosolic and Secreted Peptidoglycan-Degrading Enzymes in Drosophila Respectively Control Local and Systemic Immune Responses to Microbiota. Cell Host Microbe 2018; 23:215-228.e4. [PMID: 29398649 DOI: 10.1016/j.chom.2017.12.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/10/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022]
Abstract
Gut-associated bacteria produce metabolites that both have a local influence on the intestinal tract and act at a distance on remote organs. In Drosophila, bacteria-derived peptidoglycan (PGN) displays such a dual role. PGN triggers local antimicrobial peptide production by enterocytes; it also activates systemic immune responses in fat-body cells and modulates fly behavior by acting on neurons. How these responses to a single microbiota-derived compound are simultaneously coordinated is not understood. We show here that the PGRP-LB locus generates both cytosolic and secreted PGN-cleaving enzymes. Through genetic analysis, we demonstrate that the cytosolic PGRP-LB isoforms cell-autonomously control the intensity of NF-κB activation in enterocytes, whereas the secreted isoform prevents massive and detrimental gut-derived PGN dissemination throughout the organism. This study explains how Drosophila are able to uncouple the modulation of local versus systemic responses to a single gut-bacteria-derived product by using isoform-specific enzymes.
Collapse
Affiliation(s)
| | - Florence Capo
- Aix Marseille Université, CNRS, IBDM, Marseille, France
| | | | | | | | | | - Julien Royet
- Aix Marseille Université, CNRS, IBDM, Marseille, France.
| |
Collapse
|
36
|
Maire J, Vincent-Monégat C, Masson F, Zaidman-Rémy A, Heddi A. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp. MICROBIOME 2018; 6:6. [PMID: 29310713 PMCID: PMC5759881 DOI: 10.1186/s40168-017-0397-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/28/2017] [Indexed: 05/08/2023]
Abstract
Many insects developing on nutritionally unbalanced diets have evolved symbiotic associations with vertically transmitted intracellular bacteria (endosymbionts) that provide them with metabolic components, thereby improving the host's abilities to thrive on such poor ecological niches. While host-endosymbiont coevolutionary constraints are known to entail massive genomic changes in the microbial partner, host's genomic evolution remains elusive, particularly with regard to the immune system. In the cereal weevil Sitophilus spp., which houses Sodalis pierantonius, endosymbionts are secluded in specialized host cells, the bacteriocytes that group together as an organ, the bacteriome. We previously reported that at standard conditions, the bacteriome highly expresses the coleoptericin A (colA) antimicrobial peptide (AMP), which was shown to prevent endosymbiont escape from the bacteriocytes. However, following the insect systemic infection by pathogens, the bacteriome upregulates a cocktail of AMP encoding genes, including colA. The regulations that allow these contrasted immune responses remain unknown. In this short report, we provide evidence that an IMD-like pathway is conserved in two sibling species of cereal weevils, Sitophilus oryzae and Sitophilus zeamais. RNA interference (RNAi) experiments showed that imd and relish genes are essential for (i) colA expression in the bacteriome under standard conditions, (ii) AMP up-regulation in the bacteriome following a systemic immune challenge, and (iii) AMP systemic induction following an immune challenge. Histological analyses also showed that relish inhibition by RNAi resulted in endosymbiont escape from the bacteriome, strengthening the involvement of an IMD-like pathway in endosymbiont control. We conclude that Sitophilus' IMD-like pathway mediates both the bacteriome immune program involved in endosymbiont seclusion within the bacteriocytes and the systemic and local immune responses to exogenous challenges. This work provides a striking example of how a conserved immune pathway, initially described as essential in pathogen clearance, also functions in the control of mutualistic associations.
Collapse
Affiliation(s)
- Justin Maire
- Univ Lyon, INSA-Lyon, INRA, BF2i, UMR0203, F-69621, Villeurbanne, France
| | | | - Florent Masson
- Univ Lyon, INSA-Lyon, INRA, BF2i, UMR0203, F-69621, Villeurbanne, France
- Present address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA-Lyon, INRA, BF2i, UMR0203, F-69621, Villeurbanne, France
| | - Abdelaziz Heddi
- Univ Lyon, INSA-Lyon, INRA, BF2i, UMR0203, F-69621, Villeurbanne, France.
| |
Collapse
|
37
|
Bing X, Attardo GM, Vigneron A, Aksoy E, Scolari F, Malacrida A, Weiss BL, Aksoy S. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proc Biol Sci 2017; 284:rspb.2017.0360. [PMID: 28659447 PMCID: PMC5489720 DOI: 10.1098/rspb.2017.0360] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/26/2017] [Indexed: 12/24/2022] Open
Abstract
Insects with restricted diets rely on obligate microbes to fulfil nutritional requirements essential for biological function. Tsetse flies, vectors of African trypanosome parasites, feed exclusively on vertebrate blood and harbour the obligate endosymbiont Wigglesworthia glossinidia. Without Wigglesworthia, tsetse are unable to reproduce. These symbionts are sheltered within specialized cells (bacteriocytes) that form the midgut-associated bacteriome organ. To decipher the core functions of this symbiosis essential for tsetse's survival, we performed dual-RNA-seq analysis of the bacteriome, coupled with metabolomic analysis of bacteriome and haemolymph collected from normal and symbiont-cured (sterile) females. Bacteriocytes produce immune regulatory peptidoglycan recognition protein (pgrp-lb) that protects Wigglesworthia, and a multivitamin transporter (smvt) that can aid in nutrient dissemination. Wigglesworthia overexpress a molecular chaperone (GroEL) to augment their translational/transport machinery and biosynthesize an abundance of B vitamins (specifically B1-, B2-, B3- and B6-associated metabolites) to supplement the host's nutritionally deficient diet. The absence of Wigglesworthia's contributions disrupts multiple metabolic pathways impacting carbohydrate and amino acid metabolism. These disruptions affect the dependent downstream processes of nucleotide biosynthesis and metabolism and biosynthesis of S-adenosyl methionine (SAM), an essential cofactor. This holistic fundamental knowledge of the symbiotic dialogue highlights new biological targets for the development of innovative vector control methods.
Collapse
Affiliation(s)
- XiaoLi Bing
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Geoffrey M Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Anna Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| |
Collapse
|
38
|
Awuoche EO, Weiss BL, Vigneron A, Mireji PO, Aksoy E, Nyambega B, Attardo GM, Wu Y, O’Neill M, Murilla G, Aksoy S. Molecular characterization of tsetse's proboscis and its response to Trypanosoma congolense infection. PLoS Negl Trop Dis 2017; 11:e0006057. [PMID: 29155830 PMCID: PMC5695773 DOI: 10.1371/journal.pntd.0006057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) transmit parasitic African trypanosomes (Trypanosoma spp.), including Trypanosoma congolense, which causes animal African trypanosomiasis (AAT). AAT detrimentally affects agricultural activities in sub-Saharan Africa and has negative impacts on the livelihood and nutrient availability for the affected communities. After tsetse ingests an infectious blood meal, T. congolense sequentially colonizes the fly’s gut and proboscis (PB) organs before being transmitted to new mammalian hosts during subsequent feedings. Despite the importance of PB in blood feeding and disease transmission, little is known about its molecular composition, function and response to trypanosome infection. To bridge this gap, we used RNA-seq analysis to determine its molecular characteristics and responses to trypanosome infection. By comparing the PB transcriptome to whole head and midgut transcriptomes, we identified 668 PB-enriched transcripts that encoded proteins associated with muscle tissue, organ development, chemosensation and chitin-cuticle structure development. Moreover, transcripts encoding putative mechanoreceptors that monitor blood flow during tsetse feeding and interact with trypanosomes were also expressed in the PB. Microscopic analysis of the PB revealed cellular structures associated with muscles and cells. Infection with T. congolense resulted in increased and decreased expression of 38 and 88 transcripts, respectively. Twelve of these differentially expressed transcripts were PB-enriched. Among the transcripts induced upon infection were those encoding putative proteins associated with cell division function(s), suggesting enhanced tissue renewal, while those suppressed were associated with metabolic processes, extracellular matrix and ATP-binding as well as immunity. These results suggest that PB is a muscular organ with chemosensory and mechanosensory capabilities. The mechanoreceptors may be point of PB-trypanosomes interactions. T. congolense infection resulted in reduced metabolic and immune capacity of the PB. The molecular knowledge on the composition and putative functions of PB forms the foundation to identify new targets to disrupt tsetse’s ability to feed and parasite transmission. Tsetse flies are economically important insects responsible for transmitting African trypanosomes, which cause debilitating and fatal diseases in humans and animals in sub-Saharan Africa. In the tsetse vector, trypanosomes undergo complex developmental processes in the midgut, culminating with the generation of mammalian infective forms in the salivary glands for Trypanosoma brucei spp. and in the proboscis (PB) for Trypanosoma congolense and Trypanosoma vivax. Molecular studies on tsetse’s PB, and its interactions with trypanosomes, are limited. We used RNA-seq analysis to obtain molecular information on the putative products associated with tsetse’s PB and characterized PB responses to infection with T. congolense. Based on the predicted putative protein profile, the PB appears to be a muscular organ with mechanoreceptors and may have the capacity to sense and respond to chemical cues. Parasite infections of the PB lead to decreased expression of genes whose products are associated with metabolic and immune functions. These data provide insights into tsetse-trypanosome interactions in the PB organ and identify potential candidate targets that can be further explored to develop biotechnological strategies to reduce transmission of trypanosomes by tsetse flies.
Collapse
Affiliation(s)
- Erick O. Awuoche
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu. Kenya
- Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Private Bag, Maseno, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
- Department of Agriculture, School of Agriculture and Food Science, Meru University of Science and Technology, Meru, Kenya
- * E-mail:
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Paul O. Mireji
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu. Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
- Centre for Geographic Medicine Research—Coast, Kenya Medical Research Institute, Kilifi. Kenya
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Benson Nyambega
- Department of Medical Biochemistry, School of Medicine, Maseno University, Private Bag, Maseno, Kenya
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Yineng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Michelle O’Neill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Grace Murilla
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu. Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| |
Collapse
|
39
|
Abstract
Several lineages of endoparasitoid wasps, which develop inside the body of other insects, have domesticated viruses, used as delivery tools of essential virulence factors for the successful development of their progeny. Virus domestications are major evolutionary transitions in highly diverse parasitoid wasps. Much progress has recently been made to characterize the nature of these ancestrally captured endogenous viruses that have evolved within the wasp genomes. Virus domestication from different viral families occurred at least three times in parasitoid wasps. This evolutionary convergence led to different strategies. Polydnaviruses (PDVs) are viral gene transfer agents and virus-like particles of the wasp Venturia canescens deliver proteins. Here, we take the standpoint of parasitoid wasps to review current knowledge on virus domestications by different parasitoid lineages. Then, based on genomic data from parasitoid wasps, PDVs and exogenous viruses, we discuss the different evolutionary steps required to transform viruses into vehicles for the delivery of the virulence molecules that we observe today. Finally, we discuss how endoparasitoid wasps manipulate host physiology and ensure parasitism success, to highlight the possible advantages of viral domestication as compared with other virulence strategies.
Collapse
|
40
|
Gendrin M, Turlure F, Rodgers FH, Cohuet A, Morlais I, Christophides GK. The Peptidoglycan Recognition Proteins PGRPLA and PGRPLB Regulate Anopheles Immunity to Bacteria and Affect Infection by Plasmodium. J Innate Immun 2017; 9:333-342. [PMID: 28494453 DOI: 10.1159/000452797] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) form a family of immune regulators that is conserved from insects to mammals. In the malaria vector mosquito Anophelescoluzzii, the peptidoglycan receptor PGRPLC activates the immune-deficiency (Imd) pathway limiting both the microbiota load and Plasmodium infection. Here, we carried out an RNA interference screen to examine the role of all 7 Anopheles PGRPs in infections with Plasmodium berghei and P. falciparum. We show that, in addition to PGRPLC, PGRPLA and PGRPS2/PGRPS3 also participate in antiparasitic defenses, and that PGRPLB promotes mosquito permissiveness to P. falciparum. We also demonstrate that following a mosquito blood feeding, which promotes growth of the gut microbiota, PGRPLA and PGRPLB positively and negatively regulate the activation of the Imd pathway, respectively. Our data demonstrate that PGRPs are important regulators of the mosquito epithelial immunity and vector competence.
Collapse
Affiliation(s)
- Mathilde Gendrin
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
41
|
Chen K, Zhou L, Chen F, Peng Y, Lu Z. Peptidoglycan recognition protein-S5 functions as a negative regulator of the antimicrobial peptide pathway in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:126-135. [PMID: 27012996 DOI: 10.1016/j.dci.2016.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Prophenoloxidase (proPO), immune deficiency (IMD), and Toll are the major signaling pathways leading to melanization and antimicrobial peptide production in insect hemolymph. Peptidoglycan recognition proteins (PGRPs) act as receptors and negative regulators in these pathways, and some PGRPs exhibit antimicrobial activity. Previously, we demonstrated that silkworm PGRP-S5 recognizes peptidoglycans (PGs) and triggers activation of the proPO pathway. It also acts as a bactericide, via its amidase activity (Chen et al., 2014). Here, we generated a C177S site-mutated silkworm PGRP-S5 protein that lacked amidase activity but retained its PG-binding capacity. Functional studies showed that the mutation caused loss of its receptor function for activation of the proPO pathway, suggesting that processing of PG by PGRP-S5 is necessary for formation of the pathway initiation complex. Further, we found that PGRP-S5 negatively regulates antimicrobial peptides generation in an amidase-dependent manner, likely through the IMD pathway. Thus, silkworm PGRP-S5 acts as a sensor, a modulator, and an effector in the silkworm humoral immune system.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lin Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yachun Peng
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
42
|
Peacock L, Bailey M, Gibson W. Dynamics of gamete production and mating in the parasitic protist Trypanosoma brucei. Parasit Vectors 2016; 9:404. [PMID: 27439767 PMCID: PMC4955137 DOI: 10.1186/s13071-016-1689-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual reproduction in Plasmodium falciparum and Trypanosoma brucei occurs in the insect vector and is important in generating hybrid strains with different combinations of parental characteristics. Production of hybrid parasite genotypes depends on the likelihood of co-infection of the vector with multiple strains. In mosquitoes, existing infection with Plasmodium facilitates the establishment of a second infection, although the asynchronicity of gamete production subsequently prevents mating. In the trypanosome/tsetse system, flies become increasingly refractory to infection as they age, so the likelihood of a fly acquiring a second infection also decreases. This effectively restricts opportunities for trypanosome mating to co-infections picked up by the fly on its first feed, unless an existing infection increases the chance of successful second infection as in the Plasmodium/mosquito system. RESULTS Using green and red fluorescent trypanosomes, we compared the rates of trypanosome infection and hybrid production in flies co-infected on the first feed, co-infected on a subsequent feed 18 days after emergence, or fed sequentially with each trypanosome clone 18 days apart. Infection rates were highest in the midguts and salivary glands (SG) of flies that received both trypanosome clones in their first feed, and were halved when the infected feed was delayed to day 18. In flies fed the two trypanosome clones sequentially, the second clone often failed to establish a midgut infection and consequently was not present in the SG. Nevertheless, hybrids were recovered from all three groups of infected flies. Meiotic stages and gametes were produced continuously from day 11 to 42 after the infective feed, and in sequentially infected flies, the co-occurrence of gametes led to hybrid formation. CONCLUSIONS We found that a second trypanosome strain can establish infection in the tsetse SG 18 days after the first infected feed, with co-mingling of gametes and production of trypanosome hybrids. Establishment of the second strain was severely compromised by the strong immune response of the fly to the existing infection. Although sequential infection provides an opportunity for trypanosome mating, the easiest way for a tsetse fly to acquire a mixed infection is by feeding on a co-infected host.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.,School of Clinical Veterinary Science, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Mick Bailey
- School of Clinical Veterinary Science, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
43
|
Aksoy E, Vigneron A, Bing X, Zhao X, O'Neill M, Wu YN, Bangs JD, Weiss BL, Aksoy S. Mammalian African trypanosome VSG coat enhances tsetse's vector competence. Proc Natl Acad Sci U S A 2016; 113:6961-6. [PMID: 27185908 PMCID: PMC4922192 DOI: 10.1073/pnas.1600304113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission. A major bottleneck to infection occurs as parasites attempt to colonize tsetse's midgut. One critical factor influencing this bottleneck is the fly's peritrophic matrix (PM), a semipermeable, chitinous barrier that lines the midgut. The mechanisms that enable trypanosomes to cross this barrier are currently unknown. Here, we determined that as parasites enter the tsetse's gut, VSG molecules released from trypanosomes are internalized by cells of the cardia-the tissue responsible for producing the PM. VSG internalization results in decreased expression of a tsetse microRNA (mir-275) and interferes with the Wnt-signaling pathway and the Iroquois/IRX transcription factor family. This interference reduces the function of the PM barrier and promotes parasite colonization of the gut early in the infection process. Manipulation of the insect midgut homeostasis by the mammalian parasite coat proteins is a novel function and indicates that VSG serves a dual role in trypanosome biology-that of facilitating transmission through its mammalian host and insect vector. We detail critical steps in the course of trypanosome infection establishment that can serve as novel targets to reduce the tsetse's vector competence and disease transmission.
Collapse
Affiliation(s)
- Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - XiaoLi Bing
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Xin Zhao
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Michelle O'Neill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Yi-Neng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - James D Bangs
- Department of Microbiology and Immunology, University at Buffalo (SUNY), Buffalo, NY 14214
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520;
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520;
| |
Collapse
|
44
|
Schwartzman JA, Ruby EG. Stress as a Normal Cue in the Symbiotic Environment. Trends Microbiol 2016; 24:414-424. [PMID: 27004825 DOI: 10.1016/j.tim.2016.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
All multicellular hosts form associations with groups of microorganisms. These microbial communities can be taxonomically diverse and dynamic, and their persistence is due to robust, and sometimes coevolved, host-microbe and microbe-microbe interactions. Chemical and physical sources of stress are prominently situated in this molecular exchange, as cues for cellular responses in symbiotic microbes. Stress in the symbiotic environment may arise from three sources: host tissues, microbe-induced immune responses, or other microbes in the host environment. The responses of microbes to these stresses can be general or highly specialized, and collectively may contribute to the stability of the symbiotic system. In this review, we highlight recent work that emphasizes the role of stress as a cue in the symbiotic environment of plants and animals.
Collapse
Affiliation(s)
- Julia A Schwartzman
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Edward G Ruby
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA; Kewalo Marine Laboratory, University of Hawaii, Manoa, Honolulu, HI, USA
| |
Collapse
|
45
|
Abstract
The development, existence, and functioning of numerous animals and plants depend on their symbiotic interactions with other organisms, mainly microorganisms. In return, the symbionts benefit from safe habitats and nutrient-rich environments provided by their hosts. In these interactions, genetic changes in either of the partners may provide fitness advantages and become subjects to natural selection. Recent findings suggest that epigenetic changes, heritable or within the organism's life time, in either of the partners play significant roles in the establishment of symbiotic relationships. In this review, a variety of epigenetic effects underlying the most common host-symbiont interactions will be examined to determine to what extent these effects are shared in various interactions and how the epigenetic pathways could possibly be manipulated to benefit the interacting symbionts.
Collapse
Affiliation(s)
- Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
46
|
Benoit JB, Attardo GM, Baumann AA, Michalkova V, Aksoy S. Adenotrophic viviparity in tsetse flies: potential for population control and as an insect model for lactation. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:351-71. [PMID: 25341093 PMCID: PMC4453834 DOI: 10.1146/annurev-ento-010814-020834] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tsetse flies (Glossina spp.), vectors of African trypanosomes, are distinguished by their specialized reproductive biology, defined by adenotrophic viviparity (maternal nourishment of progeny by glandular secretions followed by live birth). This trait has evolved infrequently among insects and requires unique reproductive mechanisms. A key event in Glossina reproduction involves the transition between periods of lactation and nonlactation (dry periods). Increased lipolysis, nutrient transfer to the milk gland, and milk-specific protein production characterize lactation, which terminates at the birth of the progeny and is followed by a period of involution. The dry stage coincides with embryogenesis of the progeny, during which lipid reserves accumulate in preparation for the next round of lactation. The obligate bacterial symbiont Wigglesworthia glossinidia is critical to tsetse reproduction and likely provides B vitamins required for metabolic processes underlying lactation and/or progeny development. Here we describe findings that utilized transcriptomics, physiological assays, and RNA interference-based functional analysis to understand different components of adenotrophic viviparity in tsetse flies.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Department of Biological Sciences, McMicken School of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio 45221
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| | - Aaron A. Baumann
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06 SR, Slovakia
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
47
|
|
48
|
Beschin A, Van Den Abbeele J, De Baetselier P, Pays E. African trypanosome control in the insect vector and mammalian host. Trends Parasitol 2014; 30:538-47. [DOI: 10.1016/j.pt.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
|
49
|
Aksoy S, Weiss BL, Attardo GM. Trypanosome Transmission Dynamics in Tsetse. CURRENT OPINION IN INSECT SCIENCE 2014; 3:43-49. [PMID: 25580379 PMCID: PMC4286356 DOI: 10.1016/j.cois.2014.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tsetse flies (Diptera:Glossinidae) are vectors of African trypanosomes. Tsetse undergo viviparous reproductive biology, and depend on their obligate endosymbiont (genus Wigglesworthia) for the maintenance of fecundity and immune system development. Trypanosomes establish infections in the midgut and salivary glands of the fly. Tsetse's resistance to trypanosome infection increases as a function of age. Among the factors that mediate resistance to parasites are antimicrobial peptides (AMPs) produced by the Immune deficiency (Imd) signaling pathway, peptidoglycan recognition protein (PGRP) LB, tsetse-EP protein and the integrity of the midgut peritrophic matrix (PM) barrier. The presence of obligate Wigglesworthia during larval development is essential for adult immune system maturation and PM development. Thus, Wigglesworthia prominently influences the vector competency of it's tsetse host.
Collapse
|
50
|
Sassera D, Epis S, Pajoro M, Bandi C. Microbial symbiosis and the control of vector-borne pathogens in tsetse flies, human lice, and triatomine bugs. Pathog Glob Health 2014; 107:285-92. [PMID: 24188239 DOI: 10.1179/2047773213y.0000000109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Symbiosis is a widespread biological phenomenon, and is particularly common in arthropods. Bloodsucking insects are among the organisms that rely on beneficial bacterial symbionts to complement their unbalanced diet. This review is focused on describing symbiosis, and possible strategies for the symbiont-based control of insects and insect-borne diseases, in three bloodsucking insects of medical importance: the flies of the genus Glossina, the lice of the genus Pediculus, and triatomine bugs of the subfamily Triatominae. Glossina flies are vector of Trypanosoma brucei, the causative agent of sleeping sickness and other pathologies. They are also associated with two distinct bacterial symbionts, the primary symbiont Wigglesworthia spp., and the secondary, culturable symbiont Sodalis glossinidius. The primary symbiont of human lice, Riesia pediculicola, has been shown to be fundamental for the host, due to its capacity to synthesize B-group vitamins. An antisymbiotic approach, with antibiotic treatment targeted on the lice symbionts, could represent an alternative strategy to control these ectoparasites. In the case of triatominae bugs, the genetic modification of their symbiotic Rhodococcus bacteria, for production of anti-Trypanosoma molecules, is an example of paratransgenesis, i.e. the use of symbiotic microorganism engineered in order to reduce the vector competence of the insect host.
Collapse
|