1
|
Wang Y, Huang J, Song Z, Zhang S, Guo H, Leng Q, Fang N, Ji S, Yang J. c-Jun promotes neuroblastoma cell differentiation by inhibiting APC formation via CDC16 and reduces neuroblastoma malignancy. Biol Direct 2025; 20:37. [PMID: 40149013 PMCID: PMC11948754 DOI: 10.1186/s13062-025-00630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Neuroblastoma is a pediatric embryonal malignancy characterized by impaired neuronal differentiation. Differentiation status in neuroblastoma strongly affects the clinical outcome, thus, enforcement of differentiation becomes a treatment strategy for this disease. However, the molecular mechanisms that control neuroblastoma differentiation are poorly understood. As an extensively studied protein of the activator protein-1 (AP-1) complex, c-Jun is involved in numerous cell regulations such as proliferation, survival and differentiation. In the current study, we demonstrated that c-Jun expression was upregulated by retinoic acid (RA) and flow cytometry assay indicated c-Jun overexpression arrested cell cycle to G1 phase, which, in turn, promoted the initiation of neuroblastoma cell differentiation. Co-immunoprecipitation (co-IP) assay showed that c-Jun competitively interacted with CDC16, a key subunit in anaphase-promoting complex (APC), resulting in reduced APC formation and inhibition of cell cycle progression. Furthermore, EdU proliferation assay and transwell experiment showed that c-Jun overexpression inhibited neuroblastoma cell proliferation and migration via interacting and sequestering CDC16. These findings identify c-Jun as a key regulator of neuroblastoma cell cycle and differentiation and may represent a promising therapeutic target to induce neuroblastoma differentiation via the interaction between c-Jun and CDC16.
Collapse
Affiliation(s)
- Yunyun Wang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Science, Henan University, Kaifeng, Henan Province, 475004, China.
| | - Jingjing Huang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Science, Henan University, Kaifeng, Henan Province, 475004, China
| | - Zhenhua Song
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Science, Henan University, Kaifeng, Henan Province, 475004, China
| | - Shuo Zhang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Science, Henan University, Kaifeng, Henan Province, 475004, China
| | - Haojie Guo
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Science, Henan University, Kaifeng, Henan Province, 475004, China
| | - Qi Leng
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Science, Henan University, Kaifeng, Henan Province, 475004, China
| | - Na Fang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Science, Henan University, Kaifeng, Henan Province, 475004, China
| | - Shaoping Ji
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Science, Henan University, Kaifeng, Henan Province, 475004, China.
- Zhengzhou Shuqing Medical College, Zhengzhou, Henan Province, 450064, China.
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
2
|
Kaestner K, Zhu G, Lahori D, Schug J. Villification of the intestinal epithelium is driven by Foxl1. RESEARCH SQUARE 2024:rs.3.rs-4882679. [PMID: 39184090 PMCID: PMC11343282 DOI: 10.21203/rs.3.rs-4882679/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The primitive gut tube of mammals initially forms as a simple cylinder consisting of the endoderm-derived, pseudostratified epithelium and the mesoderm-derived surrounding mesenchyme. During mid-gestation a dramatic transformation occurs in which the epithelium is both restructured into its final cuboidal form and simultaneously folded and refolded to create intestinal villi and intervillus regions, the incipient crypts. Here we show that the mesenchymal winged helix transcription factor Foxl1, itself induced by epithelial hedgehog signaling, controls villification by activating BMP and PDGFRa as well as planar cell polarity genes in epithelial-adjacent telocyte progenitors, both directly and in a feed- forward loop with Foxo3. In the absence of Foxl1-dependent mesenchymal signaling, villus formation is delayed, the separation of epithelial cells into mitotic intervillus and postmitotic villus cells impaired, and the differentiation of secretory progenitors blocked. Thus, Foxl1 orchestrates key events during the epithelial transition of the fetal mammalian gut.
Collapse
|
3
|
Simpson JE, Muir MT, Lee M, Naughton C, Gilbert N, Pollard SM, Gammoh N. Autophagy supports PDGFRA-dependent brain tumor development by enhancing oncogenic signaling. Dev Cell 2024; 59:228-243.e7. [PMID: 38113891 DOI: 10.1016/j.devcel.2023.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Autophagy is a conserved cellular degradation process. While autophagy-related proteins were shown to influence the signaling and trafficking of some receptor tyrosine kinases, the relevance of this during cancer development is unclear. Here, we identify a role for autophagy in regulating platelet-derived growth factor receptor alpha (PDGFRA) signaling and levels. We find that PDGFRA can be targeted for autophagic degradation through the activity of the autophagy cargo receptor p62. As a result, short-term autophagy inhibition leads to elevated levels of PDGFRA but an unexpected defect in PDGFA-mediated signaling due to perturbed receptor trafficking. Defective PDGFRA signaling led to its reduced levels during prolonged autophagy inhibition, suggesting a mechanism of adaptation. Importantly, PDGFA-driven gliomagenesis in mice was disrupted when autophagy was inhibited in a manner dependent on Pten status, thus highlighting a genotype-specific role for autophagy during tumorigenesis. In summary, our data provide a mechanism by which cells require autophagy to drive tumor formation.
Collapse
Affiliation(s)
- Joanne E Simpson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Morwenna T Muir
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Martin Lee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Steven M Pollard
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Noor Gammoh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
4
|
Tan J, Wang C, Jin Y, Xia Y, Gong B, Zhao Q. Optimal combination of MYCN differential gene and cellular senescence gene predicts adverse outcomes in patients with neuroblastoma. Front Immunol 2023; 14:1309138. [PMID: 38035110 PMCID: PMC10687280 DOI: 10.3389/fimmu.2023.1309138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Neuroblastoma (NB) is a common extracranial tumor in children and is highly heterogeneous. The factors influencing the prognosis of NB are not simple. Methods To investigate the effect of cell senescence on the prognosis of NB and tumor immune microenvironment, 498 samples of NB patients and 307 cellular senescence-related genes were used to construct a prediction signature. Results A signature based on six optimal candidate genes (TP53, IL-7, PDGFRA, S100B, DLL3, and TP63) was successfully constructed and proved to have good prognostic ability. Through verification, the signature had more advantages than the gene expression level alone in evaluating prognosis was found. Further T cell phenotype analysis displayed that exhausted phenotype PD-1 and senescence-related phenotype CD244 were highly expressed in CD8+ T cell in MYCN-amplified group with higher risk-score. Conclusion A signature constructed the six MYCN-amplified differential genes and aging-related genes can be used to predict the prognosis of NB better than using each high-risk gene individually and to evaluate immunosuppressed and aging tumor microenvironment.
Collapse
Affiliation(s)
- Jiaxiong Tan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chaoyu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yan Jin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yuren Xia
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Baocheng Gong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qiang Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
5
|
Che J, Bing S, Lu J, Jin Z, Gao J, Sheng H, Li D, Yang B, He Q, Ying M, Dong X. Discovery of Novel Oxazepine Derivatives as Akt/ROCK Inhibitors for Growth Arrest and Differentiation Induction in Neuroblastoma Treatment. J Med Chem 2023; 66:13530-13555. [PMID: 37749892 DOI: 10.1021/acs.jmedchem.3c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Patients with high-risk neuroblastoma face limited treatment choices, typically involving a combination of cytotoxic and differentiation maintenance therapies due to a scarcity of drugs. Evidence suggests that targeted inhibitors may provide opportunities for inducing neuroblastoma differentiation while inhibiting proliferation. Here, we demonstrate the synergistic effect of inhibiting Akt and ROCK in antineuroblastoma and present the design and discovery of a new Akt/ROCK inhibitor, B12. It displays strong antiproliferative effects and excellent differentiation inducing activity against Neuro2a cells. Treatment with B12 results in the arrest of G0/G1 cell cycles, a significant decrease in N-myc protein level, and an increase in differentiation markers. The administration of B12 effectively suppresses xenograft tumor growth and promotes differentiation. Overall, the discovery of B12 based on the Akt/ROCK dual inhibition strategy may provide hope for the development of more effective and targeted therapies for this challenging disease.
Collapse
Affiliation(s)
- Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shaowei Bing
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zegao Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haichao Sheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dan Li
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
6
|
Karapurkar JK, Kim MS, Colaco JC, Suresh B, Sarodaya N, Kim DH, Park CH, Hong SH, Kim KS, Ramakrishna S. CRISPR/Cas9-based genome-wide screening of the deubiquitinase subfamily identifies USP3 as a protein stabilizer of REST blocking neuronal differentiation and promotes neuroblastoma tumorigenesis. J Exp Clin Cancer Res 2023; 42:121. [PMID: 37170124 PMCID: PMC10176696 DOI: 10.1186/s13046-023-02694-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The repressor element-1 silencing transcription factor (REST), a master transcriptional repressor, is essential for maintenance, self-renewal, and differentiation in neuroblastoma. An elevated expression of REST is associated with impaired neuronal differentiation, which results in aggressive neuroblastoma formation. E3 ligases are known to regulate REST protein abundance through the 26 S proteasomal degradation pathway in neuroblastoma. However, deubiquitinating enzymes (DUBs), which counteract the function of E3 ligase-mediated REST protein degradation and their impact on neuroblastoma tumorigenesis have remained unexplored. METHODS We employed a CRISPR/Cas9 system to perform a genome-wide knockout of ubiquitin-specific proteases (USPs) and used western blot analysis to screen for DUBs that regulate REST protein abundance. The interaction between USP3 and REST was confirmed by immunoprecipitation and Duolink in situ proximity assays. The deubiquitinating effect of USP3 on REST protein degradation, half-life, and neuronal differentiation was validated by immunoprecipitation, in vitro deubiquitination, protein-turnover, and immunostaining assays. The correlation between USP3 and REST expression was assessed using patient neuroblastoma datasets. The USP3 gene knockout in neuroblastoma cells was performed using CRISPR/Cas9, and the clinical relevance of USP3 regulating REST-mediated neuroblastoma tumorigenesis was confirmed by in vitro and in vivo oncogenic experiments. RESULTS We identified a deubiquitinase USP3 that interacts with, stabilizes, and increases the half-life of REST protein by counteracting its ubiquitination in neuroblastoma. An in silico analysis showed a correlation between USP3 and REST in multiple neuroblastoma cell lines and identified USP3 as a prognostic marker for overall survival in neuroblastoma patients. Silencing of USP3 led to a decreased self-renewal capacity and promoted retinoic acid-induced differentiation in neuroblastoma. A loss of USP3 led to attenuation of REST-mediated neuroblastoma tumorigenesis in a mouse xenograft model. CONCLUSION The findings of this study indicate that USP3 is a critical factor that blocks neuronal differentiation, which can lead to neuroblastoma. We envision that targeting USP3 in neuroblastoma tumors might provide an effective therapeutic differentiation strategy for improved survival rates of neuroblastoma patients.
Collapse
Affiliation(s)
| | - Min-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Dong-Ho Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
- College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
7
|
Moazeny M, Salari A, Hojati Z, Esmaeili F. Comparative analysis of protein-protein interaction networks in neural differentiation mechanisms. Differentiation 2022; 126:1-9. [DOI: 10.1016/j.diff.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
|
8
|
Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett 2022; 540:215724. [DOI: 10.1016/j.canlet.2022.215724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
|
9
|
Chen J, Xu Y, Wu P, Chen X, Weng W, Li D. Transcription Factor FOXO3a Overexpression Inhibits the Progression of Neuroblastoma by Regulating the miR-21/SPRY2/ERK Axis. World Neurosurg 2022; 164:e99-e112. [DOI: 10.1016/j.wneu.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
|
10
|
Rozen EJ, Shohet JM. Systematic review of the receptor tyrosine kinase superfamily in neuroblastoma pathophysiology. Cancer Metastasis Rev 2022; 41:33-52. [PMID: 34716856 PMCID: PMC8924100 DOI: 10.1007/s10555-021-10001-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroblastoma is a devastating disease accounting for 15% of all childhood cancer deaths. Yet, our understanding of key molecular drivers such as receptor tyrosine kinases (RTKs) in this pathology remains poorly clarified. Here, we provide a systematic analysis of the RTK superfamily in the context of neuroblastoma pathogenesis. METHODS Statistical correlations for all RTK family members' expression to neuroblastoma patient survival across 10 independent patient cohorts were annotated, synthesized, and ranked using the R2: Genomics Analysis and Visualization Platform. Gene expression of selected members across different cancer cell lines was further analyzed in the Cancer Cell Line Encyclopedia, part of the Cancer Dependency Map portal (depmap portal ( http://depmap.org )). Finally, we provide a detailed literature review for highly ranked candidates. RESULTS Our analysis defined two subsets of RTKs showing robust associations with either better or worse survival, constituting potential novel players in neuroblastoma pathophysiology, diagnosis, and therapy. We review the available literature regarding the oncogenic functions of these RTKs, their roles in neuroblastoma pathophysiology, and potential utility as therapeutic targets. CONCLUSIONS Our systematic analysis and review of the RTK superfamily in neuroblastoma pathogenesis provides a new resource to guide the research community towards focused efforts investigating signaling pathways that contribute to neuroblastoma tumor establishment, growth, and/or aggressiveness and targeting these druggable molecules in novel therapeutic strategies.
Collapse
Affiliation(s)
- Esteban Javier Rozen
- Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Jason Matthew Shohet
- Division of Hematology/Oncology, Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
11
|
Pan M, Liu J, Huang D, Guo Y, Luo K, Yang M, Gao W, Xu Q, Zhang W, Mai K. FoxO3 Modulates LPS-Activated Hepatic Inflammation in Turbot ( Scophthalmus maximus L.). Front Immunol 2021; 12:679704. [PMID: 34276667 PMCID: PMC8281027 DOI: 10.3389/fimmu.2021.679704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, forkhead box O3 (foxo3) plays important roles in liver immune system. The foxo3 can regulate cell cycle, DNA repair, hypoxia, apoptosis and so on. However, as such an important transcription factor, few studies on foxo3 in fish have been reported. The present study characterized the foxo3 in turbot (Scophthalmus maximus L.). Lipopolysaccharide (LPS) incubated in vitro (hepatocytes) and injected in vivo (turbot liver) were used to construct inflammatory models. The foxo3 was interfered and overexpressed to investigate its functions in liver inflammation. The open reading frame (ORF) of foxo3 was 1998 bp (base pair), encoding 665 amino acids. Sequence analysis showed that foxo3 of turbot was highly homologous to other fishes. Tissue distribution analysis revealed that the highest expression of foxo3 was in muscle. Immunofluorescence result showed that foxo3 was expressed in cytoplasm and nucleus. Knockdown of foxo3 significantly increased mRNA levels of tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β), interleukin-6 (il-6), myeloid-differentiation factor 88 (myd88), cd83, toll-like receptor 2 (tlr-2) and protein level of c-Jun N-terminal kinase (JNK) in sifoxo3 + LPS (siRNA of foxo3+ LPS) group compared with NC + LPS (negative control + LPS) group in turbot hepatocytes. Overexpressed foxo3 significantly decreased mRNA levels of tnf-α, il-6, nuclear transcription factor-kappa B (nf-κb), cd83, tlr-2 and the protein level of JNK in vitro. In vivo analysis, foxo3 knockdown significantly increased levels of GOT in serum after LPS injection compared with NC+LPS group. Overexpressed foxo3 significantly decreased levels of GPT and GOT in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in vivo. Foxo3 knockdown significantly increased mRNA levels of tnf-α, il-1β, il-6, nf-κb, myd88 and protein level of JNK in vivo in sifoxo3+LPS group compared with NC+LPS group in turbot liver. Overexpressed foxo3 significantly decreased mRNA levels of il-1β, il-6, myd88, cd83, jnk and protein level of JNK in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in turbot liver. The results indicated that foxo3 might modulate LPS-activated hepatic inflammation in turbot by decreasing the proinflammatory cytokines, the levels of GOT and GPT as well as activating JNK/caspase-3 and tlr-2/myd88/nf-κb pathways. Taken together, these findings indicated that FoxO3 may play important roles in liver immune responses to LPS in turbot and the research of FoxO3 in liver immunity enriches the studies on immune regulation, and provides theoretical basis and molecular targets for solving liver inflammation and liver injury in fish.
Collapse
Affiliation(s)
- Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Yanlin Guo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Kai Luo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Weihua Gao
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Qiaoqing Xu
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
12
|
Wan X, Zhou M, Huang F, Zhao N, Chen X, Wu Y, Zhu W, Ni Z, Jin F, Wang Y, Hu Z, Chen X, Ren M, Zhang H, Zha X. AKT1-CREB stimulation of PDGFRα expression is pivotal for PTEN deficient tumor development. Cell Death Dis 2021; 12:172. [PMID: 33568640 PMCID: PMC7876135 DOI: 10.1038/s41419-021-03433-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
As evidenced by the behavior of loss-of-function mutants of PTEN in the context of a gain-of-function mutation of AKT1, the PTEN-AKT1 signaling pathway plays a critical role in human cancers. In this study, we demonstrated that a deficiency in PTEN or activation of AKT1 potentiated the expression of platelet-derived growth factor receptor α (PDGFRα) based on studies on Pten-/- mouse embryonic fibroblasts, human cancer cell lines, the hepatic tissues of Pten conditional knockout mice, and human cancer tissues. Loss of PTEN enhanced PDGFRα expression via activation of the AKT1-CREB signaling cascade. CREB transactivated PDGFRα expression by direct binding of the promoter of the PDGFRα gene. Depletion of PDGFRα attenuated the tumorigenicity of Pten-null cells in nude mice. Moreover, the PI3K-AKT signaling pathway has been shown to positively correlate with PDGFRα expression in multiple cancers. Augmented PDGFRα was associated with poor survival of cancer patients. Lastly, combination treatment with the AKT inhibitor MK-2206 and the PDGFR inhibitor CP-673451 displayed synergistic anti-tumor effects. Therefore, activation of the AKT1-CREB-PDGFRα signaling pathway contributes to the tumor growth induced by PTEN deficiency and should be targeted for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Wan
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Laboratory, Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Meng Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Fuqiang Huang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yuncui Wu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Wanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhaofei Ni
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Fuquan Jin
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yani Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Ren
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| |
Collapse
|
13
|
Jin Z, Lu Y, Wu Y, Che J, Dong X. Development of differentiation modulators and targeted agents for treating neuroblastoma. Eur J Med Chem 2020; 207:112818. [PMID: 32937281 DOI: 10.1016/j.ejmech.2020.112818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) is one of the most common pediatric malignancies. Easy metastasis, poor prognosis, and a high degree of heterogeneity of NB hinder its successful treatment. Several different therapeutic strategies have been developed to overcome these problems, including differentiation and targeted therapy. In this review, we summarize the recent development of differentiation modulators and targeted agents for treating NB. Several promising targets of NB were also discussed.
Collapse
Affiliation(s)
- Zegao Jin
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yizhe Wu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, PR China; Cancer Center of Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
14
|
Gong C, Ai J, Fan Y, Gao J, Liu W, Feng Q, Liao W, Wu L. NCAPG Promotes The Proliferation Of Hepatocellular Carcinoma Through PI3K/AKT Signaling. Onco Targets Ther 2019; 12:8537-8552. [PMID: 31802891 PMCID: PMC6801502 DOI: 10.2147/ott.s217916] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Studies show that high expression of non-SMC condensin I complex subunit G (NCAPG) is associated with many tumors. In this study, we explore the mechanism by which NCAPG promotes proliferation in hepatocellular carcinoma (HCC). Patients and methods Liver cancer and paracancerous tissue specimens of 90 HCC patients were collected, and expression levels of NCAPG in these tissues and cell lines were evaluated by Western blotting and immunohistochemistry. HCC cells were transfected with siRNAs and plasmids, and pathway activators or inhibitors were added. The 5-ethynyl-2ʹ-deoxyuridine (EdU) proliferation assay was used to measure cell proliferation. Flow cytometry was used to evaluate cell apoptosis. Western blot assays were performed as a standard procedure to detect total protein expression. Treated HCC cells were subcutaneously injected into nude mice. Results Analysis using the Oncomine database showed that NCAPG was upregulated in HCC and immunohistochemistry and Western blot assays showed it was upregulated in both HCC tissues and HCC cell lines. The overexpression of NCAPG could promote HCC cell proliferation and reduce HCC cell apoptosis. More importantly, RNA-sequencing analysis predicted that NCAPG plays a role in the HCC via PI3K-AKT signaling pathway. The PI3K/AKT/FOXO4 pathway was aberrantly activated, and the expressions of apoptosis-related protein were altered when NCAPG was overexpressed or silenced both in vitro and in vivo. LY294002, a PI3K inhibitor, could eliminate the NCAPG role of promoting HCC cell proliferation and reducing HCC cell apoptosis, while 740Y-P, a PI3K activator, contributed to the opposite effect. Conclusion NCAPG functions as an oncogene in HCC and plays a role in promoting cell proliferation and antiapoptosis through activating the PI3K/AKT/FOXO4 pathway.
Collapse
Affiliation(s)
- Chengwu Gong
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jiyuan Ai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Yun Fan
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430000, People's Republic of China
| | - Jun Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Weiwei Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Qian Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wenjun Liao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
15
|
Lu C, Yang Z, Jiang S, Yang Y, Han Y, Lv J, Li T, Chen F, Yu Y. Forkhead box O4 transcription factor in human neoplasms: Cannot afford to lose the novel suppressor. J Cell Physiol 2019; 234:8647-8658. [PMID: 30515801 DOI: 10.1002/jcp.27853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Forkhead box O4 (FOXO4), a member of FOXO family, has been highlighted as an essential transcriptional regulator in many diverse carcinomas. Accumulated studies have demonstrated that FOXO4 is downregulated and associated with tumorigenesis, invasiveness, and metastasis of most human cancer. FOXO4 alteration is also closely linked to the prognosis of various types of cancer. The aim of this review is to comprehensively present the clinical and pathological significance of FOXO4 in human cancer. Additionally, the potential clinical applications of future FOXO4 research are discussed. Collectively, the information reviewed here should increase the potential of FOXO4 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Yang
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianjun Lv
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuan Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
16
|
Tang H, Wu K, Wang J, Vinjamuri S, Gu Y, Song S, Wang Z, Zhang Q, Balistrieri A, Ayon RJ, Rischard F, Vanderpool R, Chen J, Zhou G, Desai AA, Black SM, Garcia JGN, Yuan JXJ, Makino A. Pathogenic Role of mTORC1 and mTORC2 in Pulmonary Hypertension. JACC Basic Transl Sci 2018; 3:744-762. [PMID: 30623134 PMCID: PMC6314964 DOI: 10.1016/j.jacbts.2018.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/23/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023]
Abstract
G protein-coupled receptors and tyrosine kinase receptors signal through the phosphoinositide 3-kinase/Akt/mTOR pathway to induce cell proliferation, survival, and growth. mTOR is a kinase present in 2 functionally distinct complexes, mTORC1 and mTORC2. Functional disruption of mTORC1 by knockout of Raptor (regulatory associated protein of mammalian target of rapamycin) in smooth muscle cells ameliorated the development of experimental PH. Functional disruption of mTORC2 by knockout of Rictor (rapamycin insensitive companion of mammalian target of rapamycin) caused spontaneous PH by up-regulating platelet-derived growth factor receptors. Use of mTOR inhibitors (e.g., rapamycin) to treat PH should be accompanied by inhibitors of platelet-derived growth factor receptors (e.g., imatinib).
Concentric lung vascular wall thickening due to enhanced proliferation of pulmonary arterial smooth muscle cells is an important pathological cause for the elevated pulmonary vascular resistance reported in patients with pulmonary arterial hypertension. We identified a differential role of mammalian target of rapamycin (mTOR) complex 1 and complex 2, two functionally distinct mTOR complexes, in the development of pulmonary hypertension (PH). Inhibition of mTOR complex 1 attenuated the development of PH; however, inhibition of mTOR complex 2 caused spontaneous PH, potentially due to up-regulation of platelet-derived growth factor receptors in pulmonary arterial smooth muscle cells, and compromised the therapeutic effect of the mTOR inhibitors on PH. In addition, we describe a promising therapeutic strategy using combination treatment with the mTOR inhibitors and the platelet-derived growth factor receptor inhibitors on PH and right ventricular hypertrophy. The data from this study provide an important mechanism-based perspective for developing novel therapies for patients with pulmonary arterial hypertension and right heart failure.
Collapse
Key Words
- EC, endothelial cell
- FOXO3a, Forkhead box O3a
- GPCR, G protein-coupled receptor
- HPH, hypoxia-induced pulmonary hypertension
- PA, pulmonary artery
- PAEC, pulmonary arterial endothelial cell
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary arterial smooth muscle cell
- PDGF, platelet-derived growth factor
- PDGFR, platelet-derived growth factor receptor
- PH, pulmonary hypertension
- PI3K, phosphoinositide 3-kinase
- PTEN, phosphatase and tensin homolog
- PVR, pulmonary vascular resistance
- RVH, right ventricular hypertrophy
- RVSP, right ventricular systolic pressure
- Raptor
- Raptor, regulatory associated protein of mammalian target of rapamycin
- Rictor
- Rictor, rapamycin insensitive companion of mammalian target of rapamycin
- SM, smooth muscle
- TKR, tyrosine kinase receptor
- WT, wild-type
- mTOR
- mTORC1, mammalian target of rapamycin complex 1
- mTORC2, mammalian target of rapamycin complex 2
- pAKT, phosphorylated AKT
- pulmonary hypertension
- right ventricle
Collapse
Affiliation(s)
- Haiyang Tang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kang Wu
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sujana Vinjamuri
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Yali Gu
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ziyi Wang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Zhang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Angela Balistrieri
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Franz Rischard
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Rebecca Vanderpool
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Jiwang Chen
- Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois
| | - Guofei Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois
| | - Ankit A Desai
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Division of Cardiology, Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Joe G N Garcia
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
17
|
Kasemeier-Kulesa JC, Schnell S, Woolley T, Spengler JA, Morrison JA, McKinney MC, Pushel I, Wolfe LA, Kulesa PM. Predicting neuroblastoma using developmental signals and a logic-based model. Biophys Chem 2018; 238:30-38. [PMID: 29734136 PMCID: PMC6016551 DOI: 10.1016/j.bpc.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/18/2022]
Abstract
Genomic information from human patient samples of pediatric neuroblastoma cancers and known outcomes have led to specific gene lists put forward as high risk for disease progression. However, the reliance on gene expression correlations rather than mechanistic insight has shown limited potential and suggests a critical need for molecular network models that better predict neuroblastoma progression. In this study, we construct and simulate a molecular network of developmental genes and downstream signals in a 6-gene input logic model that predicts a favorable/unfavorable outcome based on the outcome of the four cell states including cell differentiation, proliferation, apoptosis, and angiogenesis. We simulate the mis-expression of the tyrosine receptor kinases, trkA and trkB, two prognostic indicators of neuroblastoma, and find differences in the number and probability distribution of steady state outcomes. We validate the mechanistic model assumptions using RNAseq of the SHSY5Y human neuroblastoma cell line to define the input states and confirm the predicted outcome with antibody staining. Lastly, we apply input gene signatures from 77 published human patient samples and show that our model makes more accurate disease outcome predictions for early stage disease than any current neuroblastoma gene list. These findings highlight the predictive strength of a logic-based model based on developmental genes and offer a better understanding of the molecular network interactions during neuroblastoma disease progression.
Collapse
Affiliation(s)
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas Woolley
- School of Mathematics, Cardiff University, Cathays, Cardiff CF24, UK
| | | | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mary C McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Lauren A Wolfe
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS 66160, USA.
| |
Collapse
|
18
|
Jiang S, Yang Z, Di S, Hu W, Ma Z, Chen F, Yang Y. Novel role of forkhead box O 4 transcription factor in cancer: Bringing out the good or the bad. Semin Cancer Biol 2018; 50:1-12. [DOI: 10.1016/j.semcancer.2018.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
|
19
|
Zhang Z, Yan C, Li B, Li L. Potential biological functions of microvesicles derived from adenoid cystic carcinoma. Oncol Lett 2018; 15:7900-7908. [PMID: 29725477 PMCID: PMC5920383 DOI: 10.3892/ol.2018.8296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/28/2017] [Indexed: 02/05/2023] Open
Abstract
Microvesicles (MVs) are secreted by multiple types of tumor cell and are involved in tumor progression and metastasis. The aim of the present study was to explore the effects of MVs derived from salivary adenoid cystic carcinoma (SACC) and to investigate their potential involvement in the pathogenesis of perineural invasion of SACC. MVs were isolated from ACCs cells, and differential gene expression profiles of these MVs were compared with their donor cells to speculate on their biological functions. Several candidate genes were validated using reverse transcription-quantitative polymerase chain reaction analysis. The effects of ACCs MVs on rat Schwann cells (RSC96 cells), which are the principal glia of the peripheral nervous system, were then evaluated by phospho-antibody array performed on RSC96 cells transduced with ACCs MVs. The results indicated that ACCs cells may produce MVs. Microarray-based expression profiles between ACCs cells and their MVs identified 1,355 genes involved in cell adhesion, development and the regulation of apoptosis. In addition, the extracellular signal-regulated protein kinase signal pathway in RSC96 cells may be induced by ACCs-derived MVs. These results may help to elucidate the mechanisms underlying perineural invasion in SACC, and to determine a promising anti-tumor biological therapeutic target.
Collapse
Affiliation(s)
- Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chaoran Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
20
|
Nikolic I, Elsworth B, Dodson E, Wu SZ, Gould CM, Mestdagh P, Marshall GM, Horvath LG, Simpson KJ, Swarbrick A. Discovering cancer vulnerabilities using high-throughput micro-RNA screening. Nucleic Acids Res 2018; 45:12657-12670. [PMID: 29156009 PMCID: PMC5728403 DOI: 10.1093/nar/gkx1072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
Micro-RNAs (miRNAs) are potent regulators of gene expression and cellular phenotype. Each miRNA has the potential to target hundreds of transcripts within the cell thus controlling fundamental cellular processes such as survival and proliferation. Here, we exploit this important feature of miRNA networks to discover vulnerabilities in cancer phenotype, and map miRNA-target relationships across different cancer types. More specifically, we report the results of a functional genomics screen of 1280 miRNA mimics and inhibitors in eight cancer cell lines, and its presentation in a sophisticated interactive data portal. This resource represents the most comprehensive survey of miRNA function in oncology, incorporating breast cancer, prostate cancer and neuroblastoma. A user-friendly web portal couples this experimental data with multiple tools for miRNA target prediction, pathway enrichment analysis and visualization. In addition, the database integrates publicly available gene expression and perturbation data enabling tailored and context-specific analysis of miRNA function in a particular disease. As a proof-of-principle, we use the database and its innovative features to uncover novel determinants of the neuroblastoma malignant phenotype.
Collapse
Affiliation(s)
- Iva Nikolic
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW 2010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Benjamin Elsworth
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW 2010, Australia
| | - Eoin Dodson
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW 2010, Australia
| | - Sunny Z Wu
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW 2010, Australia
| | - Cathryn M Gould
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Pieter Mestdagh
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent B-9000, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent B-9000, Belgium
| | - Glenn M Marshall
- Sydney Children's Hospital and Children's Cancer Institute, Sydney, NSW 2750, Australia
| | - Lisa G Horvath
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia.,University of Sydney, Camperdown, NSW 2050, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
21
|
PDGFRα Regulated by miR-34a and FoxO1 Promotes Adipogenesis in Porcine Intramuscular Preadipocytes through Erk Signaling Pathway. Int J Mol Sci 2017; 18:ijms18112424. [PMID: 29140299 PMCID: PMC5713392 DOI: 10.3390/ijms18112424] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/04/2017] [Accepted: 11/11/2017] [Indexed: 12/27/2022] Open
Abstract
Suitable intramuscular fat (IMF) content improves porcine meat quality. The vital genes regulating IMF deposition are necessary for the selection and breeding of an IMF trait. However, the effect and mechanism of PDGFRα on IMF deposition are still unclear. Here, PDGFRα is moderately expressed in porcine longissimus dorsi muscle (LD), whereas it highly expressed in white adipose tissue (WAT). Moreover, PDGFRα-positive cells were located in the gaps of LD fibers which there were IMF adipocytes. Compared with 180-day-old and lean-type pigs, the levels of PDGFRα were much higher in one-day-old and fat-type pigs. Meanwhile the levels of PDGFRα gradually decreased during IMF preadipocyte differentiation. Furthermore, PDGFRα promoted adipogenic differentiation through activating Erk signaling pathway. Based on PDGFRα upstream regulation analysis, we found that the knockdown of FoxO1 repressed lipogenesis by downregulating PDGFRα, and miR-34a inhibited adipogenesis through targeting PDGFRα. Collectively, PDGFRα is a positive regulator of IMF deposition. Therefore, we suggest that PDGFRα is a possible target to improve meat quality.
Collapse
|
22
|
Wang L, Ni Z, Liu Y, Ji S, Jin F, Jiang K, Ma J, Ren C, Zhang H, Hu Z, Zha X. Hyperactivated mTORC1 downregulation of FOXO3a/PDGFRα/AKT cascade restrains tuberous sclerosis complex-associated tumor development. Oncotarget 2017; 8:54858-54872. [PMID: 28903387 PMCID: PMC5589626 DOI: 10.18632/oncotarget.18963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1), caused by loss-of-function mutations in either the TSC1 or TSC2 gene, leads to the development of tuberous sclerosis complex (TSC), a benign tumor syndrome with multiple affected organs. mTORC1-mediated inhibition of AKT constrains the tumor progression of TSC, but the exact mechanisms remain unclear. Herein we showed that loss of TSC1 or TSC2 downregulation of platelet-derived growth factor receptor α (PDGFRα) expression was mediated by mTORC1. Moreover, mTORC1 inhibited PDGFRα expression via suppression of forkhead box O3a (FOXO3a)-mediated PDGFRα gene transcription. In addition, ectopic expression of PDGFRα promoted AKT activation and enhanced proliferation and tumorigenic capacity of Tsc1- or Tsc2-null mouse embryonic fibroblasts (MEFs), and vice versa. Most importantly, rapamycin in combination with AG1295, a PDGFR inhibitor, significantly inhibited growth of TSC1/TSC2 complex-deficient cells in vitro and in vivo. Therefore, downregulated FOXO3a/PDGFRα/AKT pathway exerts a protective effect against hyperactivated mTORC1-induced tumorigenesis caused by loss of TSC1/TSC2 complex, and the combination of rapamycin and AG1295 may be a new effective strategy for TSC-associated tumors treatment.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhaofei Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yujie Liu
- The First Clinical Medical School, Anhui Medical University, Hefei, China
| | - Shuang Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Fuquan Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Keguo Jiang
- Department of Nephrology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junfang Ma
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Cuiping Ren
- Department of Parasitology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojun Zha
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Garon G, Bergeron F, Brousseau C, Robert NM, Tremblay JJ. FOXA3 Is Expressed in Multiple Cell Lineages in the Mouse Testis and Regulates Pdgfra Expression in Leydig Cells. Endocrinology 2017; 158:1886-1897. [PMID: 28379539 DOI: 10.1210/en.2016-1736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
The three FOXA transcription factors are mainly known for their roles in the liver. However, Foxa3-deficient mice become progressively sub/infertile due to germ cell loss. Because no data were available regarding the localization of the FOXA3 protein in the testis, immunohistochemistry was performed on mouse testis sections. In the fetal testis, a weak but consistent staining for FOXA3 is detected in the nucleus of Sertoli cells. In prepubertal and adult life, FOXA3 remains present in Sertoli cells of some but not all seminiferous tubules. FOXA3 is also detected in the nucleus of some peritubular cells. From postnatal day 20 onward, FOXA3 is strongly expressed in the nucleus of Leydig cells. To identify FOXA3 target genes in Leydig cells, MLTC-1 Leydig cells were transfected with a series of Leydig cell gene reporters in the presence of a FOXA3 expression vector. The platelet-derived growth factor receptor α (Pdgfra) promoter was significantly activated by FOXA3. The Pdgfra promoter contains three potential FOX elements and progressive 5' deletions and site-directed mutagenesis revealed that the most proximal element at -78 bp was sufficient to confer FOXA3 responsiveness. FOXA3 from Leydig cells could bind to this element in vitro (electrophoretic mobility shift assay) and was recruited to the proximal Pdgfra promoter in vivo (chromatin immunoprecipitation). Finally, endogenous Pdgfra messenger RNA levels were reduced in FOXA3-deficient MLTC-1 Leydig cells. Taken together, our data identify FOXA3 as a marker of the Sertoli cell lineage and of the adult Leydig cell population, and as a regulator of Pdgfra transcription in Leydig cells.
Collapse
Affiliation(s)
- Gabriel Garon
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Catherine Brousseau
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Nicholas M Robert
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
- Centre for Research in Reproduction, Development, and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
24
|
Zhang L, Cai M, Gong Z, Zhang B, Li Y, Guan L, Hou X, Li Q, Liu G, Xue Z, Yang MH, Ye J, Chin YE, You H. Geminin facilitates FoxO3 deacetylation to promote breast cancer cell metastasis. J Clin Invest 2017; 127:2159-2175. [PMID: 28436938 DOI: 10.1172/jci90077] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/21/2017] [Indexed: 01/29/2023] Open
Abstract
Geminin expression is essential for embryonic development and the maintenance of chromosomal integrity. In spite of this protective role, geminin is also frequently overexpressed in human cancers and the molecular mechanisms underlying its role in tumor progression remain unclear. The histone deacetylase HDAC3 modulates transcription factors to activate or suppress transcription. Little is known about how HDAC3 specifies substrates for modulation among highly homologous transcription factor family members. Here, we have demonstrated that geminin selectively couples the transcription factor forkhead box O3 (FoxO3) to HDAC3, thereby specifically facilitating FoxO3 deacetylation. We determined that geminin-associated HDAC3 deacetylates FoxO3 to block its transcriptional activity, leading to downregulation of the downstream FoxO3 target Dicer, an RNase that suppresses metastasis. Breast cancer cells depleted of geminin or HDAC3 exhibited poor metastatic potential that was attributed to reduced suppression of the FoxO3-Dicer axis. Moreover, elevated levels of geminin, HDAC3, or both together with decreased FoxO3 acetylation and reduced Dicer expression were detected in aggressive human breast cancer specimens. These results underscore a prominent role for geminin in promoting breast cancer metastasis via the enzyme-substrate-coupling mechanism in HDAC3-FoxO3 complex formation.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Meizhen Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Zhicheng Gong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Bingchang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Yuanpei Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Li Guan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Xiaonan Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Qing Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zengfu Xue
- Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Muh-Hua Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Han You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| |
Collapse
|
25
|
MiR-132 plays an oncogenic role in laryngeal squamous cell carcinoma by targeting FOXO1 and activating the PI3K/AKT pathway. Eur J Pharmacol 2016; 792:1-6. [DOI: 10.1016/j.ejphar.2016.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 11/23/2022]
|
26
|
SUN YUJIA, XUE JING, GUO WENJIAO, LI MENJIAO, HUANG YONGZHEN, LAN XIANYONG, LEI CHUZHAO, ZHANG CHUNLEI, CHEN HONG. Haplotypes of bovine FoxO1 gene sequence variants and association with growth traits in Qinchuan cattle. J Genet 2016. [DOI: 10.1007/s12041-013-0209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Chen TH, Sun W, Fine JP. Designing penalty functions in high dimensional problems: The role of tuning parameters. Electron J Stat 2016; 10:2312-2328. [PMID: 28989558 DOI: 10.1214/16-ejs1169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Various forms of penalty functions have been developed for regularized estimation and variable selection. Screening approaches are often used to reduce the number of covariate before penalized estimation. However, in certain problems, the number of covariates remains large after screening. For example, in genome-wide association (GWA) studies, the purpose is to identify Single Nucleotide Polymorphisms (SNPs) that are associated with certain traits, and typically there are millions of SNPs and thousands of samples. Because of the strong correlation of nearby SNPs, screening can only reduce the number of SNPs from millions to tens of thousands and the variable selection problem remains very challenging. Several penalty functions have been proposed for such high dimensional data. However, it is unclear which class of penalty functions is the appropriate choice for a particular application. In this paper, we conduct a theoretical analysis to relate the ranges of tuning parameters of various penalty functions with the dimensionality of the problem and the minimum effect size. We exemplify our theoretical results in several penalty functions. The results suggest that a class of penalty functions that bridges L0 and L1 penalties requires less restrictive conditions on dimensionality and minimum effect sizes in order to attain the two fundamental goals of penalized estimation: to penalize all the noise to be zero and to obtain unbiased estimation of the true signals. The penalties such as SICA and Log belong to this class, but they have not been used often in applications. The simulation and real data analysis using GWAS data suggest the promising applicability of such class of penalties.
Collapse
Affiliation(s)
- Ting-Huei Chen
- Department of Mathematics and Statistics, Laval University, Quebec, QC G1V0A6, Canada
| | - Wei Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jason P Fine
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Wicki A, Mandalà M, Massi D, Taverna D, Tang H, Hemmings BA, Xue G. Acquired Resistance to Clinical Cancer Therapy: A Twist in Physiological Signaling. Physiol Rev 2016; 96:805-29. [DOI: 10.1152/physrev.00024.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although modern therapeutic strategies have brought significant progress to cancer care in the last 30 years, drug resistance to targeted monotherapies has emerged as a major challenge. Aberrant regulation of multiple physiological signaling pathways indispensable for developmental and metabolic homeostasis, such as hyperactivation of pro-survival signaling axes, loss of suppressive regulations, and impaired functionalities of the immune system, have been extensively investigated aiming to understand the diversity of molecular mechanisms that underlie cancer development and progression. In this review, we intend to discuss the molecular mechanisms of how conventional physiological signal transduction confers to acquired drug resistance in cancer patients. We will particularly focus on protooncogenic receptor kinase inhibition-elicited tumor cell adaptation through two major core downstream signaling cascades, the PI3K/Akt and MAPK pathways. These pathways are crucial for cell growth and differentiation and are frequently hyperactivated during tumorigenesis. In addition, we also emphasize the emerging roles of the deregulated host immune system that may actively promote cancer progression and attenuate immunosurveillance in cancer therapies. Understanding these mechanisms may help to develop more effective therapeutic strategies that are able to keep the tumor in check and even possibly turn cancer into a chronic disease.
Collapse
Affiliation(s)
- Andreas Wicki
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Mario Mandalà
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Daniela Massi
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Daniela Taverna
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Huifang Tang
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Brian A. Hemmings
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Gongda Xue
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| |
Collapse
|
29
|
Guan L, Zhang L, Gong Z, Hou X, Xu Y, Feng X, Wang H, You H. FoxO3 inactivation promotes human cholangiocarcinoma tumorigenesis and chemoresistance through Keap1-Nrf2 signaling. Hepatology 2016; 63:1914-27. [PMID: 26857210 DOI: 10.1002/hep.28496] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED FoxO transcription factors have been reported to play pivotal roles in tumorigenesis and drug resistance. The mechanisms underlying the tumor suppression function of FoxOs in human cancers remain largely unknown. Aberrant expression and activation of Nrf2 often correlate with chemoresistance and poor prognosis. Here, we report that FoxO3 directs the basal transcription of Kelch-like ECH-associated protein 1 (Keap1), an adaptor protein that bridges Nrf2 to Cul3 for degradation. FoxO3 depletion resulted in Keap1 down-regulation, thereby activating Nrf2 signaling. We further demonstrated that inhibition of the FoxO3-Keap1 axis accounts for Nrf2 induction and activation induced by constitutively active AKT signaling or tumor necrosis factor α treatment. Unlike previous findings, FoxO3 silencing led to decreased reactive oxygen species production, therefore protecting cells from oxidative stress-induced killing in an Nrf2-dependent manner. Importantly, FoxO3 deficiency strongly potentiated tumor formation in nude mice and rendered cholangiocarcinoma xenografts resistant to cisplatin-induced cell death by activating Nrf2. Additionally, we found that clinical cholangiocarcinoma samples displayed FoxO3-Keap1 down-regulation and Nrf2 hyperactivation, underscoring the essential roles of these proteins in cholangiocarcinoma development. CONCLUSION Our results unravel a unique mechanism underlying the tumor suppressor function of FoxO3 through constraining Nrf2 signaling. (Hepatology 2016;63:1914-1927).
Collapse
Affiliation(s)
- Li Guan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhicheng Gong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaonan Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuxiu Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xinhua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, 225 Changhai Road Shanghai 200438, China
| | - Han You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
30
|
Go H, Jang JY, Kim PJ, Kim YG, Nam SJ, Paik JH, Kim TM, Heo DS, Kim CW, Jeon YK. MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in diffuse large B-cell lymphoma. Oncotarget 2016; 6:15035-49. [PMID: 25909227 PMCID: PMC4558134 DOI: 10.18632/oncotarget.3729] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
The prognostic implications of miR-21, miR-17-92 and miR-155 were evaluated in diffuse large B-cell lymphoma (DLBCL) patients, and novel mechanism by which miR-21 contributes to the oncogenesis of DLBCL by regulating FOXO1 and PI3K/AKT/mTOR pathway was investigated. The expressions of miR-21, miR-17-92 and miR-155 measured by quantitative reverse-transcription-PCR were significantly up-regulated in DLBCL tissues (n=200) compared to control tonsils (P=0.012, P=0.001 and P<0.0001). Overexpression of miR-21 and miR-17-92 was significantly associated with shorter progression-free survival (P=0.003 and P=0.014) and overall survival (P=0.004 and P=0.012). High miR-21 was an independent prognostic factor in DLBCL patients treated with rituximab-combined chemotherapy. MiR-21 level was inversely correlated with the levels of FOXO1 and PTEN in DLBCL cell lines. Reporter-gene assay showed that miR-21 directly targeted and suppressed the FOXO1 expression, and subsequently inhibited Bim transcription in DLBCL cells. MiR-21 also down-regulated PTEN expression and consequently activated the PI3K/AKT/mTOR pathway, which further decreased FOXO1 expression. Moreover, miR-21 inhibitor suppressed the expression and activity of MDR1, thereby sensitizing DLBCL cells to doxorubicin. These data demonstrated that miR-21 plays an important oncogenic role in DLBCL by modulating the PI3K/AKT/mTOR/FOXO1 pathway at multiple levels resulting in strong prognostic implication. Therefore, targeting miR-21 may have therapeutic relevance in DLBCL.
Collapse
Affiliation(s)
- Heounjeong Go
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Young Jang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| | - Pil-Jong Kim
- Biomedical Knowledge Engineering Laboratory, Seoul National University School of Denistry, Seoul, South Korea
| | - Young-Goo Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| | - Soo Jeong Nam
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, South Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dae Seog Heo
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Chul-Woo Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,The Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
31
|
Kos A, Olde Loohuis N, Meinhardt J, van Bokhoven H, Kaplan BB, Martens GJ, Aschrafi A. MicroRNA-181 promotes synaptogenesis and attenuates axonal outgrowth in cortical neurons. Cell Mol Life Sci 2016; 73:3555-67. [PMID: 27017280 DOI: 10.1007/s00018-016-2179-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/13/2016] [Accepted: 03/10/2016] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRs) are non-coding gene transcripts abundantly expressed in both the developing and adult mammalian brain. They act as important modulators of complex gene regulatory networks during neuronal development and plasticity. miR-181c is highly abundant in cerebellar cortex and its expression is increased in autism patients as well as in an animal model of autism. To systematically identify putative targets of miR-181c, we repressed this miR in growing cortical neurons and found over 70 differentially expressed target genes using transcriptome profiling. Pathway analysis showed that the miR-181c-modulated genes converge on signaling cascades relevant to neurite and synapse developmental processes. To experimentally examine the significance of these data, we inhibited miR-181c during rat cortical neuronal maturation in vitro; this loss-of miR-181c function resulted in enhanced neurite sprouting and reduced synaptogenesis. Collectively, our findings suggest that miR-181c is a modulator of gene networks associated with cortical neuronal maturation.
Collapse
Affiliation(s)
- Aron Kos
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Nikkie Olde Loohuis
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Julia Meinhardt
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Barry B Kaplan
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gerard J Martens
- Department of Molecular Animal Physiology, Radboud University, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Armaz Aschrafi
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands.
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
32
|
Palacios-Moreno J, Foltz L, Guo A, Stokes MP, Kuehn ED, George L, Comb M, Grimes ML. Neuroblastoma tyrosine kinase signaling networks involve FYN and LYN in endosomes and lipid rafts. PLoS Comput Biol 2015; 11:e1004130. [PMID: 25884760 PMCID: PMC4401789 DOI: 10.1371/journal.pcbi.1004130] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
Protein phosphorylation plays a central role in creating a highly dynamic network of interacting proteins that reads and responds to signals from growth factors in the cellular microenvironment. Cells of the neural crest employ multiple signaling mechanisms to control migration and differentiation during development. It is known that defects in these mechanisms cause neuroblastoma, but how multiple signaling pathways interact to govern cell behavior is unknown. In a phosphoproteomic study of neuroblastoma cell lines and cell fractions, including endosomes and detergent-resistant membranes, 1622 phosphorylated proteins were detected, including more than half of the receptor tyrosine kinases in the human genome. Data were analyzed using a combination of graph theory and pattern recognition techniques that resolve data structure into networks that incorporate statistical relationships and protein-protein interaction data. Clusters of proteins in these networks are indicative of functional signaling pathways. The analysis indicates that receptor tyrosine kinases are functionally compartmentalized into distinct collaborative groups distinguished by activation and intracellular localization of SRC-family kinases, especially FYN and LYN. Changes in intracellular localization of activated FYN and LYN were observed in response to stimulation of the receptor tyrosine kinases, ALK and KIT. The results suggest a mechanism to distinguish signaling responses to activation of different receptors, or combinations of receptors, that govern the behavior of the neural crest, which gives rise to neuroblastoma. Neuroblastoma is a childhood cancer for which therapeutic progress has been slow. We analyzed a large number phosphorylated proteins in neuroblastoma cells to discern patterns that indicate functional signal transduction pathways. To analyze the data, we developed novel techniques that resolve data structure and visualize that structure as networks that represent both protein interactions and statistical relationships. We also fractionated neuroblastoma cells to examine the location of signaling proteins in different membrane fractions and organelles. The analysis revealed that signaling pathways are functionally and physically compartmentalized into distinct collaborative groups distinguished by phosphorylation patterns and intracellular localization. We found that two related proteins (FYN and LYN) act like central hubs in the tyrosine kinase signaling network that change intracellular localization and activity in response to activation of different receptors.
Collapse
Affiliation(s)
- Juan Palacios-Moreno
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Lauren Foltz
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Ailan Guo
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Matthew P. Stokes
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Emily D. Kuehn
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States of America
| | - Michael Comb
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Mark L. Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
33
|
Gao SB, Xu B, Ding LH, Zheng QL, Zhang L, Zheng QF, Li SH, Feng ZJ, Wei J, Yin ZY, Hua X, Jin GH. The functional and mechanistic relatedness of EZH2 and menin in hepatocellular carcinoma. J Hepatol 2014; 61:832-9. [PMID: 24845612 DOI: 10.1016/j.jhep.2014.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The alterations of histone modification may serve as a promising diagnostic biomarker of hepatocellular carcinoma (HCC), but the clinical and mechanistic relatedness of the histone H3 lysine 27 and 4 trimethylation (H3K27me3 and H3K4me3) in HCC remains poorly understood. Here we propose that the combination of H3K27me3 and H3K4me3 is a more precise predictive/prognostic value for outcome of HCC patients. METHODS We used chromatin immunoprecipitation (ChIP) assays and a ChIP-on-chip screen to analyse HCC. RESULTS We found that the EZH2 occupancy coincides with the H3K27me3 at promoters and directly silences the transcription of target genes in HCC. The H3K27me3-related gene network of EZH2 contains well-established genes, such as CDKN2A, as well as previously unappreciated genes, including FOXO3, E2F1, and NOTCH2, among others. We further observed independently increasing profiles of H3K27me3 and H3K4me3 at the promoters of certain target genes in HCC specimens. Importantly, Kaplan-Meier analysis reveals that 3-year overall and tumour-free survival rates are dramatically reduced in patients that simultaneously express EZH2 and menin, compared to rates in the EZH2 or menin under expressing patients. Furthermore, an inhibitor of H3K27me3 alone, or in combination with an H3K4me3 inhibitor, effectively blocked the aggressive phenotype of HCC cells. CONCLUSIONS Our results indicate that a combined analysis of both H3K27me3 and H3K4me3 may serve as powerful diagnostic biomarkers of HCC, and targeting both might benefit anti-HCC therapy.
Collapse
Affiliation(s)
- Shu-Bin Gao
- Department of Basic Medical Sciences, Medical College, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China
| | - Bin Xu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China
| | - Li-Hong Ding
- Department of Basic Medical Sciences, Medical College, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China
| | - Qi-Lin Zheng
- Department of Basic Medical Sciences, Medical College, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China
| | - Li Zhang
- Department of Basic Medical Sciences, Medical College, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China
| | - Qi-Fan Zheng
- Department of Basic Medical Sciences, Medical College, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China
| | - Shan-Hua Li
- Department of Basic Medical Sciences, Medical College, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China
| | - Zi-Jie Feng
- Department of Basic Medical Sciences, Medical College, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China
| | - Jie Wei
- Department of Basic Medical Sciences, Medical College, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China
| | - Zhen-Yu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; Department of Hepatobiliary Surgery, Affiliated Zhongshan Hospital of Xiamen University, Hubin South Road 201-209, 361004, PR China
| | - Xianxin Hua
- Department of Cancer Biology, University of Pennsylvania, BRBII/III, Room 412, 421 Curie Blvd, Philadelphia, PA 19096, USA
| | - Guang-Hui Jin
- Department of Basic Medical Sciences, Medical College, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Chengzhi Building 110, Xiang'an South Road, Xiamen 361102, PR China.
| |
Collapse
|
34
|
Shiomi T, Sklepkiewicz P, Bodine PVN, D'Armiento JM. Maintenance of the bronchial alveolar stem cells in an undifferentiated state by secreted frizzled-related protein 1. FASEB J 2014; 28:5242-9. [PMID: 25212222 DOI: 10.1096/fj.13-242735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bronchoalveolar stem cells (BASCs) are mobilized during injury and identified as lung progenitor cells, but the molecular regulation of this population of cells has not been elucidated. Secreted frizzled-related protein 1 (SFRP1) is a critical molecule involved in alveolar duct formation in the lung and here we demonstrate its importance in controlling cell differentiation during lung injury. Mice lacking SFRP1 exhibited a rapid repair response leading to aberrant proliferation of differentiated cells. Furthermore, SFRP1 treatment of BASCs maintained these cells in a quiescent state. In vivo overexpression of SFRP1 after injury suppressed differentiation and resulted in the accumulation of BASCs correlating with in vitro studies. These findings suggest that SFRP1 expression in the adult maintains progenitor cells within their undifferentiated state and suggests that manipulation of this pathway is a potential target to augment the lung repair process during disease.
Collapse
Affiliation(s)
- Takayuki Shiomi
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| | - Piotr Sklepkiewicz
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| | | | - Jeanine M D'Armiento
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| |
Collapse
|
35
|
Lubanska D, Porter LA. The atypical cell cycle regulator Spy1 suppresses differentiation of the neuroblastoma stem cell population. Oncoscience 2014; 1:336-48. [PMID: 25594028 PMCID: PMC4278303 DOI: 10.18632/oncoscience.36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/04/2014] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma is an aggressive pediatric cancer originating embryonically from the neural crest. The heterogeneity of the disease, as most solid tumors, complicates diagnosis and treatment. In neuroblastoma this heterogeneity is well represented in both primary tumours and derived cell lines and has been shown to be driven by a population of stem-like tumour initiating cells. Resolving the molecular mediators driving the division of this population of cells may indicate effective therapeutic options for neuroblastoma patients. This study has determined that the atypical cyclin-like protein Spy1, recently indicated in driving symmetric division of glioma stem cells, is a critical factor in the stem-like properties of neuroblastoma tumor initiating cell populations. Spy1 activates Cyclin Dependent Kinases (CDK) in a manner that is unique from classical cyclins. Hence this discovery may represent an important opportunity to design CDK inhibitor drugs to uniquely target subpopulations of cells within these aggressive neural tumours.
Collapse
Affiliation(s)
- Dorota Lubanska
- Department of Biological Sciences University of Windsor OntarioWindsor, ON
| | - Lisa A. Porter
- Department of Biological Sciences University of Windsor OntarioWindsor, ON
| |
Collapse
|
36
|
Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis. Leukemia 2014; 28:2197-205. [PMID: 24699302 DOI: 10.1038/leu.2014.123] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 12/24/2022]
Abstract
Acute myeloid leukemia (AML) primary cells express high levels of phosphorylated Akt, a master regulator of cellular functions regarded as a promising drug target. By means of reverse phase protein arrays, we examined the response of 80 samples of primary cells from AML patients to selective inhibitors of the phosphatidylinositol 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis. We confirm that >60% of the samples analyzed are characterized by high pathway phosphorylation. Unexpectedly, however, we show here that targeting Akt and mTOR with the specific inhibitors Akti 1/2 and Torin1, alone or in combination, result in paradoxical Akt phosphorylation and activation of downstream signaling in 70% of the samples. Indeed, we demonstrate that cropping Akt or mTOR activity can stabilize the Akt/mTOR downstream effectors Forkhead box O and insulin receptor substrate-1, which in turn potentiate signaling through upregulation of the expression/phosphorylation of selected growth factor receptor tyrosine kinases (RTKs). Activation of RTKs in turn reactivates PI3K and downstream signaling, thus overruling the action of the drugs. We finally demonstrate that dual inhibition of Akt and RTKs displays strong synergistic cytotoxic effects in AML cells and downmodulates Akt signaling to a much greater extent than either drug alone, and should therefore be explored in AML clinical setting.
Collapse
|
37
|
Parmentier F, Lejeune FX, Neri C. Pathways to decoding the clinical potential of stress response FOXO-interaction networks for Huntington's disease: of gene prioritization and context dependence. Front Aging Neurosci 2013; 5:22. [PMID: 23781200 PMCID: PMC3680703 DOI: 10.3389/fnagi.2013.00022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/27/2013] [Indexed: 01/06/2023] Open
Abstract
The FOXO family of transcription factors is central to the regulation of organismal longevity and cellular survival. Several studies have indicated that FOXO factors lie at the center of a complex network of upstream pathways, cofactors and downstream targets (FOXO-interaction networks), which may have developmental and post-developmental roles in the regulation of chronic-stress response in normal and diseased cells. Noticeably, FOXO factors are important for the regulation of proteotoxicity and neuron survival in several models of neurodegenerative disease, suggesting that FOXO-interaction networks may have therapeutic potential. However, the status of FOXO-interaction networks in neurodegenerative disease remains largely unknown. Systems modeling is anticipated to provide a comprehensive assessment of this question. In particular, interrogating the context-dependent variability of FOXO-interaction networks could predict the clinical potential of cellular-stress response genes and aging regulators for tackling brain and peripheral pathology in neurodegenerative disease. Using published transcriptomic data obtained from murine models of Huntington's disease (HD) and post-mortem brains, blood samples and induced-pluripotent-stem cells from HD carriers as a case example, this review briefly highlights how the biological status and clinical potential of FOXO-interaction networks for HD may be decoded by developing network and entropy based feature selection across heterogeneous datasets.
Collapse
Affiliation(s)
- Frédéric Parmentier
- Laboratory of Neuronal Cell biology and Pathology, INSERM Unit 894, CNRS UMR 7102, University Pierre and Marie Curie Paris, France
| | | | | |
Collapse
|
38
|
Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R, Westerhout EM. FOXO3a Is a Major Target of Inactivation by PI3K/AKT Signaling in Aggressive Neuroblastoma. Cancer Res 2013; 73:2189-98. [DOI: 10.1158/0008-5472.can-12-3767] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Ehnman M, Missiaglia E, Folestad E, Selfe J, Strell C, Thway K, Brodin B, Pietras K, Shipley J, Östman A, Eriksson U. Distinct effects of ligand-induced PDGFRα and PDGFRβ signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res 2013; 73:2139-49. [PMID: 23338608 DOI: 10.1158/0008-5472.can-12-1646] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platelet-derived growth factor receptors (PDGFR) α and β have been suggested as potential targets for treatment of rhabdomyosarcoma, the most common soft tissue sarcoma in children. This study identifies biologic activities linked to PDGF signaling in rhabdomyosarcoma models and human sample collections. Analysis of gene expression profiles of 101 primary human rhabdomyosarcomas revealed elevated PDGF-C and -D expression in all subtypes, with PDGF-D as the solely overexpressed PDGFRβ ligand. By immunohistochemistry, PDGF-CC, PDGF-DD, and PDGFRα were found in tumor cells, whereas PDGFRβ was primarily detected in vascular stroma. These results are concordant with the biologic processes and pathways identified by data mining. While PDGF-CC/PDGFRα signaling associated with genes involved in the reactivation of developmental programs, PDGF-DD/PDGFRβ signaling related to wound healing and leukocyte differentiation. Clinicopathologic correlations further identified associations between PDGFRβ in vascular stroma and the alveolar subtype and with presence of metastases. Functional validation of our findings was carried out in molecularly distinct model systems, where therapeutic targeting reduced tumor burden in a PDGFR-dependent manner with effects on cell proliferation, vessel density, and macrophage infiltration. The PDGFR-selective inhibitor CP-673,451 regulated cell proliferation through mechanisms involving reduced phosphorylation of GSK-3α and GSK-3β. Additional tissue culture studies showed a PDGFR-dependent regulation of rhabdosphere formation/cancer cell stemness, differentiation, senescence, and apoptosis. In summary, the study shows a clinically relevant distinction in PDGF signaling in human rhabdomyosarcoma and also suggests continued exploration of the influence of stromal PDGFRs on sarcoma progression.
Collapse
Affiliation(s)
- Monika Ehnman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fransson S, Abel F, Kogner P, Martinsson T, Ejeskär K. Stage-dependent expression of PI3K/Akt‑pathway genes in neuroblastoma. Int J Oncol 2012; 42:609-16. [PMID: 23232578 DOI: 10.3892/ijo.2012.1732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/05/2012] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide-3 kinase (PI3K) pathway plays a critical role in cancer cell growth and survival and has also been implicated in the development of the childhood cancer neuroblastoma. In neuroblastoma high mRNA expression of the PI3K catalytic isoform PIK3CD is associated to favorable disease. Yet, activation of Akt is associated with poor prognosis. Since the contribution of the numerous members of this pathway to neuroblastoma pathogenesis is mainly unknown, genes of the PI3K/Akt pathway were analyzed at the mRNA level through microarrays and quantitative real-time RT-PCR (TaqMan) and at the protein level using western blot analysis. Five genes showed lower mRNA expression in aggressive compared to more favorable neuroblastomas (PRKCZ, PRKCB1, EIF4EBP1, PIK3RI and PIK3CD) while the opposite was seen for PDGFRA. Clustering analysis shows that the expression levels of these six genes can predict aggressive disease. At the protein level, p110δ (encoded by PIK3CD) and p85α isomers (encoded by PIK3R1) were more highly expressed in favorable compared to aggressive neuroblastoma. Evaluation of the expression of these PI3K genes can predict aggressive disease, and indicates stage-dependent involvement of PI3K-pathway members in neuroblastoma.
Collapse
Affiliation(s)
- Susanne Fransson
- Department of Medical and Clinical Genetics, Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|