1
|
Lopes E, Semedo M, Tomasino MP, Mendes R, de Sousa JB, Magalhães C. Horizontal distribution of marine microbial communities in the North Pacific Subtropical Front. Front Microbiol 2024; 15:1455196. [PMID: 39777143 PMCID: PMC11703956 DOI: 10.3389/fmicb.2024.1455196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Microbial communities are crucial for important ecosystem functions in the open ocean, such as primary production and nutrient cycling. However, few studies have addressed the distribution of microplankton communities in the remote oligotrophic region of the Pacific Ocean. Moreover, the biogeochemical and physical drivers of microbial community structure are not fully understood in these areas. This research aims to investigate the patterns of prokaryotic and protists communities' distribution in the North Pacific Subtropical Front (NPSF). The NPSF is a vast oligotrophic region with layered surface water and strong ocean currents. Despite its considerable size, its community distribution and function are poorly studied. We used a 16S and 18S rRNA gene sequencing approach to identify and characterize the water column microbial communities at two depths, the surface (3-5 m) and the deep chlorophyll maximum (DCM, 108-130 m). We aimed to elucidate the horizontal distribution patterns of these communities and to dissect the factors intricately shaping their distribution in the NPSF. Results showed that the community structure of both prokaryotes and protists was significantly influenced by depth, temperature, and longitude. Regarding alpha diversity, both communities presented a higher diversity at the surface. The prokaryotes also demonstrated to have a higher diversity in samples placed further east. The prokaryotes were dominated by Proteobacteria and Cyanobacteria, and the eukaryotic communities were dominated by Syndiniales. Combining biological and hydrographic data analysis showed the influence of vertical currents near the frontal jet in shaping the vertical distribution of both prokaryotic and protist communities. Even though most studies do not consider anomalies that emerge at each depth, these occurrences are capable of having a strong impact and influence on community structure. This study marks a significant advance in unraveling the intricate community structure and distribution dynamics of marine microbial communities within the North Pacific Ocean.
Collapse
Affiliation(s)
- Eva Lopes
- Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel Semedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Maria Paola Tomasino
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Renato Mendes
- +ATLANTIC CoLAB, Lisbon, Portugal
- Underwater Systems and Technology Laboratory (LSTS), LAETA, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João Borges de Sousa
- Underwater Systems and Technology Laboratory (LSTS), LAETA, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Catarina Magalhães
- Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| |
Collapse
|
2
|
Edwards KF, Rii YM, Li Q, Peoples LM, Church MJ, Steward GF. Trophic strategies of picoeukaryotic phytoplankton vary over time and with depth in the North Pacific Subtropical Gyre. Environ Microbiol 2024; 26:e16689. [PMID: 39168489 DOI: 10.1111/1462-2920.16689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
In oligotrophic oceans, the smallest eukaryotic phytoplankton are both significant primary producers and predators of abundant bacteria such as Prochlorococcus. However, the drivers and consequences of community dynamics among these diverse protists are not well understood. Here, we investigated how trophic strategies along the autotrophy-mixotrophy spectrum vary in importance over time and across depths at Station ALOHA in the North Pacific Subtropical Gyre. We combined picoeukaryote community composition from a 28-month time-series with traits of diverse phytoplankton isolates from the same location, to examine trophic strategies across 13 operational taxonomic units and 8 taxonomic classes. We found that autotrophs and slower-grazing mixotrophs tended to prevail deeper in the photic zone, while the most voracious mixotrophs were relatively abundant near the surface. Within the mixed layer, there was greater phagotrophy when conditions were most stratified and when Chl a concentrations were lowest, although the greatest temporal variation in trophic strategy occurred at intermediate depths (45-100 m). Dynamics at this site are consistent with previously described spatial patterns of trophic strategies. The success of relatively phagotrophic phytoplankton at shallower depths in the most stratified waters suggests that phagotrophy is a competitive strategy for acquiring nutrients when energy from light is plentiful.
Collapse
Affiliation(s)
- Kyle F Edwards
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Yoshimi M Rii
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Qian Li
- School of Oceanography, Shanghai Jiao Tong University, Shanghai Shi, China
| | - Logan M Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Grieg F Steward
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, and Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
3
|
Zehr JP, Capone DG. Unsolved mysteries in marine nitrogen fixation. Trends Microbiol 2024; 32:532-545. [PMID: 37658011 DOI: 10.1016/j.tim.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
Biological nitrogen (N2) fixation is critical in global biogeochemical cycles and in sustaining the productivity of the oceans. There remain many unanswered questions, unresolved hypotheses, and unchallenged paradigms. The fundamental balance of N input and losses has not been fully resolved. One of the major N2-fixers, Trichodesmium, remains an enigma with intriguing biological and ecological secrets. Cyanobacterial N2 fixation, once thought to be primarily due to free-living cyanobacteria, now also appears to be dependent on microbial interactions, from microbiomes to unicellular symbioses, which remain poorly characterized. Nitrogenase genes associated with diverse non-cyanobacterial diazotrophs (NCDs) are prevalent, but their significance remains a huge knowledge gap. Answering questions, new and old, such as those discussed here, is needed to understand the ocean's N and C cycles and their responses to environmental change.
Collapse
Affiliation(s)
- Jonathan P Zehr
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Douglas G Capone
- Marine and Environmental Biology Section of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Thompson AW, Nyerges G, Lamberson KM, Sutherland KR. Ubiquitous filter feeders shape open ocean microbial community structure and function. PNAS NEXUS 2024; 3:pgae091. [PMID: 38505693 PMCID: PMC10949910 DOI: 10.1093/pnasnexus/pgae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
The mechanism of mortality plays a large role in how microorganisms in the open ocean contribute to global energy and nutrient cycling. Salps are ubiquitous pelagic tunicates that are a well-known mortality source for large phototrophic microorganisms in coastal and high-latitude systems, but their impact on the immense populations of smaller prokaryotes in the tropical and subtropical open ocean gyres is not well quantified. We used robustly quantitative techniques to measure salp clearance and enrichment of specific microbial functional groups in the North Pacific Subtropical Gyre, one of the largest ecosystems on Earth. We discovered that salps are a previously unknown predator of the globally abundant nitrogen fixer Crocosphaera; thus, salps restrain new nitrogen delivery to the marine ecosystem. We show that the ocean's two numerically dominant cells, Prochlorococcus and SAR11, are not consumed by salps, which offers a new explanation for the dominance of small cells in open ocean systems. We also identified a double bonus for Prochlorococcus, wherein it not only escapes salp predation but the salps also remove one of its major mixotrophic predators, the prymnesiophyte Chrysochromulina. When we modeled the interaction between salp mesh and particles, we found that cell size alone could not account for these prey selection patterns. Instead, the results suggest that alternative mechanisms, such as surface property, shape, nutritional quality, or even prey behavior, determine which microbial cells are consumed by salps. Together, these results identify salps as a major factor in shaping the structure, function, and ecology of open ocean microbial communities.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Györgyi Nyerges
- Department of Biology, Pacific University, Forest Grove, OR 97116, USA
| | - Kylee M Lamberson
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
5
|
Abresch H, Bell T, Miller SR. Diurnal transcriptional variation is reduced in a nitrogen-fixing diatom endosymbiont. THE ISME JOURNAL 2024; 18:wrae064. [PMID: 38637300 PMCID: PMC11131595 DOI: 10.1093/ismejo/wrae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/29/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Many organisms have formed symbiotic relationships with nitrogen (N)-fixing bacteria to overcome N limitation. Diatoms in the family Rhopalodiaceae host unicellular, N-fixing cyanobacterial endosymbionts called spheroid bodies (SBs). Although this relationship is relatively young, SBs share many key features with older endosymbionts, including coordinated cell division and genome reduction. Unlike free-living relatives that fix N exclusively at night, SBs fix N largely during the day; however, how SB metabolism is regulated and coordinated with the host is not yet understood. We compared four SB genomes, including those from two new host species (Rhopalodia gibba and Epithemia adnata), to build a genome-wide phylogeny which provides a better understanding of SB evolutionary origins. Contrary to models of endosymbiotic genome reduction, the SB chromosome is unusually stable for an endosymbiont genome, likely due to the early loss of all mobile elements. Transcriptomic data for the R. gibba SB and host organelles addressed whether and how the allocation of transcriptional resources depends on light and nitrogen availability. Although allocation to the SB was high under all conditions, relative expression of chloroplast photosynthesis genes increased in the absence of nitrate, but this pattern was suppressed by nitrate addition. SB expression of catabolism genes was generally greater during daytime rather than at night, although the magnitude of diurnal changes in expression was modest compared to free-living Cyanobacteria. We conclude that SB daytime catabolism likely supports N-fixation by linking the process to host photosynthetic carbon fixation.
Collapse
Affiliation(s)
- Heidi Abresch
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Tisza Bell
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Scott R Miller
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
6
|
Setta SP, Lerch S, Jenkins BD, Dyhrman ST, Rynearson TA. Oligotrophic waters of the Northwest Atlantic support taxonomically diverse diatom communities that are distinct from coastal waters. JOURNAL OF PHYCOLOGY 2023; 59:1202-1216. [PMID: 37737069 DOI: 10.1111/jpy.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023]
Abstract
Diatoms are important components of the marine food web and one of the most species-rich groups of phytoplankton. The diversity and composition of diatoms in eutrophic nearshore habitats have been well documented due to the outsized influence of diatoms on coastal ecosystem functioning. In contrast, patterns of both diatom diversity and community composition in offshore oligotrophic regions where diatom biomass is low have been poorly resolved. To compare the diatom diversity and community composition in oligotrophic and eutrophic waters, diatom communities were sampled along a 1,250 km transect from the oligotrophic Sargasso Sea to the coastal waters of the northeast US shelf. Diatom community composition was determined by amplifying and sequencing the 18S rDNA V4 region. Of the 301 amplicon sequence variants (ASVs) identified along the transect, the majority (70%) were sampled exclusively from oligotrophic waters of the Gulf Stream and Sargasso Sea and included the genera Bacteriastrum, Haslea, Hemiaulus, Pseudo-nitzschia, and Nitzschia. Diatom ASV richness did not vary along the transect, indicating that the oligotrophic Sargasso Sea and Gulf Stream are occupied by a diverse diatom community. Although ASV richness was similar between oligotrophic and coastal waters, diatom community composition in these regions differed significantly and was correlated with temperature and phosphate, two environmental variables known to influence diatom metabolism and geographic distribution. In sum, oligotrophic waters of the western North Atlantic harbor diverse diatom assemblages that are distinct from coastal regions, and these open ocean diatoms warrant additional study, as they may play critical roles in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Samantha P Setta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Sarah Lerch
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Bethany D Jenkins
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
- College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
7
|
Li F, Burger A, Eppley JM, Poff KE, Karl DM, DeLong EF. Planktonic microbial signatures of sinking particle export in the open ocean's interior. Nat Commun 2023; 14:7177. [PMID: 37935690 PMCID: PMC10630432 DOI: 10.1038/s41467-023-42909-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
A considerable amount of particulate carbon produced by oceanic photosynthesis is exported to the deep-sea by the "gravitational pump" (~6.8 to 7.7 Pg C/year), sequestering it from the atmosphere for centuries. How particulate organic carbon (POC) is transformed during export to the deep sea however is not well understood. Here, we report that dominant suspended prokaryotes also found in sinking particles serve as informative tracers of particle export processes. In a three-year time series from oceanographic campaigns in the Pacific Ocean, upper water column relative abundances of suspended prokaryotes entrained in sinking particles decreased exponentially from depths of 75 to 250 m, conforming to known depth-attenuation patterns of carbon, energy, and mass fluxes in the epipelagic zone. Below ~250 m however, the relative abundance of suspended prokaryotes entrained in sinking particles increased with depth. These results indicate that microbial entrainment, colonization, and sinking particle formation are elevated at mesopelagic and bathypelagic depths. Comparison of suspended and sinking particle-associated microbes provides information about the depth-variability of POC export and biotic processes, that is not evident from biogeochemical data alone.
Collapse
Affiliation(s)
- Fuyan Li
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Andrew Burger
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - John M Eppley
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Kirsten E Poff
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- McDonogh School, Owings Mills, MD, USA
| | - David M Karl
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Edward F DeLong
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA.
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
8
|
Llamas A, Leon-Miranda E, Tejada-Jimenez M. Microalgal and Nitrogen-Fixing Bacterial Consortia: From Interaction to Biotechnological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2476. [PMID: 37447037 PMCID: PMC10346606 DOI: 10.3390/plants12132476] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Microalgae are used in various biotechnological processes, such as biofuel production due to their high biomass yields, agriculture as biofertilizers, production of high-value-added products, decontamination of wastewater, or as biological models for carbon sequestration. The number of these biotechnological applications is increasing, and as such, any advances that contribute to reducing costs and increasing economic profitability can have a significant impact. Nitrogen fixing organisms, often called diazotroph, also have great biotechnological potential, mainly in agriculture as an alternative to chemical fertilizers. Microbial consortia typically perform more complex tasks than monocultures and can execute functions that are challenging or even impossible for individual strains or species. Interestingly, microalgae and diazotrophic organisms are capable to embrace different types of symbiotic associations. Certain corals and lichens exhibit this symbiotic relationship in nature, which enhances their fitness. However, this relationship can also be artificially created in laboratory conditions with the objective of enhancing some of the biotechnological processes that each organism carries out independently. As a result, the utilization of microalgae and diazotrophic organisms in consortia is garnering significant interest as a potential alternative for reducing production costs and increasing yields of microalgae biomass, as well as for producing derived products and serving biotechnological purposes. This review makes an effort to examine the associations of microalgae and diazotrophic organisms, with the aim of highlighting the potential of these associations in improving various biotechnological processes.
Collapse
Affiliation(s)
- Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain; (E.L.-M.); (M.T.-J.)
| | | | | |
Collapse
|
9
|
Nieves-Morión M, Camargo S, Bardi S, Ruiz MT, Flores E, Foster RA. Heterologous expression of genes from a cyanobacterial endosymbiont highlights substrate exchanges with its diatom host. PNAS NEXUS 2023; 2:pgad194. [PMID: 37383020 PMCID: PMC10299089 DOI: 10.1093/pnasnexus/pgad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
A few genera of diatoms are widespread and thrive in low-nutrient waters of the open ocean due to their close association with N2-fixing, filamentous heterocyst-forming cyanobacteria. In one of these symbioses, the symbiont, Richelia euintracellularis, has penetrated the cell envelope of the host, Hemiaulus hauckii, and lives inside the host cytoplasm. How the partners interact, including how the symbiont sustains high rates of N2 fixation, is unstudied. Since R. euintracellularis has evaded isolation, heterologous expression of genes in model laboratory organisms was performed to identify the function of proteins from the endosymbiont. Gene complementation of a cyanobacterial invertase mutant and expression of the protein in Escherichia coli showed that R. euintracellularis HH01 possesses a neutral invertase that splits sucrose producing glucose and fructose. Several solute-binding proteins (SBPs) of ABC transporters encoded in the genome of R. euintracellularis HH01 were expressed in E. coli, and their substrates were characterized. The selected SBPs directly linked the host as the source of several substrates, e.g. sugars (sucrose and galactose), amino acids (glutamate and phenylalanine), and a polyamine (spermidine), to support the cyanobacterial symbiont. Finally, transcripts of genes encoding the invertase and SBPs were consistently detected in wild populations of H. hauckii collected from multiple stations and depths in the western tropical North Atlantic. Our results support the idea that the diatom host provides the endosymbiotic cyanobacterium with organic carbon to fuel N2 fixation. This knowledge is key to understanding the physiology of the globally significant H. hauckii-R. euintracellularis symbiosis.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE-106 91, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | - Sergio Camargo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | - Sepehr Bardi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE-106 91, Sweden
| | - María Teresa Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | | | | |
Collapse
|
10
|
Bonnet S, Guieu C, Taillandier V, Boulart C, Bouruet-Aubertot P, Gazeau F, Scalabrin C, Bressac M, Knapp AN, Cuypers Y, González-Santana D, Forrer HJ, Grisoni JM, Grosso O, Habasque J, Jardin-Camps M, Leblond N, Le Moigne FAC, Lebourges-Dhaussy A, Lory C, Nunige S, Pulido-Villena E, Rizzo AL, Sarthou G, Tilliette C. Natural iron fertilization by shallow hydrothermal sources fuels diazotroph blooms in the ocean. Science 2023; 380:812-817. [PMID: 37228198 DOI: 10.1126/science.abq4654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown. In this work, we show that fluids emitted along the Tonga volcanic arc (South Pacific) have a substantial impact on iron concentrations in the photic layer through vertical diffusion. This enrichment stimulates biological activity, resulting in an extensive patch of chlorophyll (360,000 square kilometers). Diazotroph activity is two to eight times higher and carbon export fluxes are two to three times higher in iron-enriched waters than in adjacent unfertilized waters. Such findings reveal a previously undescribed mechanism of natural iron fertilization in the ocean that fuels regional hotspot sinks for atmospheric CO2.
Collapse
Affiliation(s)
- Sophie Bonnet
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO Marseille, France
| | - Cécile Guieu
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Vincent Taillandier
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Cédric Boulart
- Adaptation et Diversité en Milieu Marin, UMR 7144 AD2M CNRS-Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Pascale Bouruet-Aubertot
- Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques (LOCEAN-IPSL), Sorbonne University, CNRS-IRD-MNHN, 75005 Paris, France
| | - Frédéric Gazeau
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Carla Scalabrin
- Ifremer, Univ Brest, CNRS, UMR 6538 Geo-Ocean, F-29280 Plouzané, France
| | - Matthieu Bressac
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Angela N Knapp
- Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Yannis Cuypers
- Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques (LOCEAN-IPSL), Sorbonne University, CNRS-IRD-MNHN, 75005 Paris, France
| | - David González-Santana
- CNRS, Univ Brest, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas, Spain
| | - Heather J Forrer
- Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jean-Michel Grisoni
- Institut de la Mer de Villefranche, IMEV, Sorbonne Université, Villefranche-sur-Mer, France
| | - Olivier Grosso
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO Marseille, France
| | - Jérémie Habasque
- CNRS, Univ Brest, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | | | - Nathalie Leblond
- Institut de la Mer de Villefranche, IMEV, Sorbonne Université, Villefranche-sur-Mer, France
| | - Frédéric A C Le Moigne
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO Marseille, France
- CNRS, Univ Brest, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | | | - Caroline Lory
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO Marseille, France
| | - Sandra Nunige
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO Marseille, France
| | | | - Andrea L Rizzo
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Milano, Via Alfonso Corti 12, 20133 Milano, Italy
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
| | | | - Chloé Tilliette
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
11
|
Jiang Z, Zhu Y, Sun Z, Zhai H, Zhou F, Yan X, Chen Q, Chen J, Zeng J. Size-fractionated N 2 fixation off the Changjiang Estuary during summer. Front Microbiol 2023; 14:1189410. [PMID: 37228373 PMCID: PMC10203160 DOI: 10.3389/fmicb.2023.1189410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Recent evidence has shown active N2 fixation in coastal eutrophic waters, yet the rate and controlling factors remain poorly understood, particularly in large estuaries. The Changjiang Estuary (CE) and adjacent shelf are characterized by fresh, nitrogen-replete Changjiang Diluted Water (CDW) and saline, nitrogen-depletion intruded Kuroshio water (Taiwan Warm Current and nearshore Kuroshio Branch Current), where N2 fixation may be contributed by different groups (i.e., Trichodesmium and heterotrophic diazotrophs). Here, for the first time, we provide direct measurement of size-fractionated N2 fixation rates (NFRs) off the CE during summer 2014 using the 15N2 bubble tracer method. The results demonstrated considerable spatial variations (southern > northern; offshore > inshore) in surface and depth-integrated NFRs, averaging 0.83 nmol N L-1 d-1 and 24.3 μmol N m-2 d-1, respectively. The highest bulk NFR (99.9 μmol N m-2 d-1; mostly contributed by >10 μm fraction) occurred in the southeastern East China Sea, where suffered from strong intrusion of the Kuroshio water characterized by low N/P ratio (<10) and abundant Trichodesmium (up to 10.23 × 106 trichomes m-2). However, low NFR (mostly contributed by <10 μm fraction) was detected in the CE controlled by the CDW, where NOx concentration (up to 80 μmol L-1) and N/P ratio (>100) were high and Trichodesmium abundance was low. The >10 μm fraction accounted for 60% of depth-integrated bulk NFR over the CE and adjacent shelf. We speculated that the present NFR of >10 μm fraction was mostly supported by Trichodesmium. Spearman rank correlation indicated that the NFR was significantly positively correlated with Trichodesmium abundance, salinity, temperature and Secchi depth, but was negatively with turbidity, N/P ratio, NOx, and chlorophyll a concentration. Our study suggests that distribution and size structure of N2 fixation off the CE are largely regulated by water mass (intruded Kuroshio water and CDW) movement and associated diazotrophs (particularly Trichodesmium) and nutrient conditions.
Collapse
Affiliation(s)
- Zhibing Jiang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resource, Hangzhou, China
- Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, Hangzhou, China
| | - Yuanli Zhu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resource, Hangzhou, China
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, Hangzhou, China
| | - Zhenhao Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Hongchang Zhai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Feng Zhou
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, Hangzhou, China
| | - Xiaojun Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Quanzhen Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resource, Hangzhou, China
| |
Collapse
|
12
|
Genome Sequence of the Euphotic Hawaiian Gammaproteobacterium HetDA_MAG_MS8, in the Order Nevskiales, Family Oceanococcaceae, Genus Oceanococcus. Microbiol Resour Announc 2023; 12:e0059222. [PMID: 36515538 PMCID: PMC9872600 DOI: 10.1128/mra.00592-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We present a metagenome-assembled genome (MAG), HetDA_MAG_MS8, that was determined to be unique via relative evolutionary divergence (RED) scores and average nucleotide identity (ANI) values. HetDA_MAG_MS8 is in the order Nevskiales, genus Oceanococcus, and was assembled from a heterocytous cyanobiont enrichment from the Hawaii Ocean Time Series. HetDA_MAG_MS8 is predicted to be a facultative, aerobic, anoxygenic photolithoheterotroph that has the potential for sulfide oxidation and dimethylsulfoniopropionate (DMSP) synthesis.
Collapse
|
13
|
Abstract
Lipids are structurally diverse biomolecules that serve multiple roles in cells. As such, they are used as biomarkers in the modern ocean and as paleoproxies to explore the geological past. Here, I review lipid geochemistry, biosynthesis, and compartmentalization; the varied uses of lipids as biomarkers; and the evolution of analytical techniques used to measure and characterize lipids. Advancements in high-resolution accurate-mass mass spectrometry have revolutionized the lipidomic and metabolomic fields, both of which are quickly being integrated into marine meta-omic studies. Lipidomics allows us to analyze tens of thousands of features, providing an open analytical window and the ability to quantify unknown compounds that can be structurally elucidated later. However, lipidome annotation is not a trivial matter and represents one of the biggest challenges for oceanographers, owing in part to the lack of marine lipids in current in silico databases and data repositories. A case study reveals the gaps in our knowledge and open opportunities to answer fundamental questions about molecular-level control of chemical reactions and global-scale patterns in the lipidscape.
Collapse
Affiliation(s)
- Bethanie R Edwards
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
| |
Collapse
|
14
|
Bonnet S, Benavides M, Le Moigne FAC, Camps M, Torremocha A, Grosso O, Dimier C, Spungin D, Berman-Frank I, Garczarek L, Cornejo-Castillo FM. Diazotrophs are overlooked contributors to carbon and nitrogen export to the deep ocean. THE ISME JOURNAL 2023; 17:47-58. [PMID: 36163270 PMCID: PMC9750961 DOI: 10.1038/s41396-022-01319-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Diazotrophs are widespread microorganisms that alleviate nitrogen limitation in 60% of our oceans, thereby regulating marine productivity. Yet, the group-specific contribution of diazotrophs to organic matter export has not been quantified, which so far has impeded an accurate assessment of their impact on the biological carbon pump. Here, we examine the fate of five groups of globally-distributed diazotrophs by using an original combination of mesopelagic particle sampling devices across the subtropical South Pacific Ocean. We demonstrate that cyanobacterial and non-cyanobacterial diazotrophs are exported down to 1000 m depth. Surprisingly, group-specific export turnover rates point to a more efficient export of small unicellular cyanobacterial diazotrophs (UCYN) relative to the larger and filamentous Trichodesmium. Phycoerythrin-containing UCYN-B and UCYN-C-like cells were recurrently found embedded in large (>50 µm) organic aggregates or organized into clusters of tens to hundreds of cells linked by an extracellular matrix, presumably facilitating their export. Beyond the South Pacific, our data are supported by analysis of the Tara Oceans metagenomes collected in other ocean basins, extending the scope of our results globally. We show that, when diazotrophs are found in the euphotic zone, they are also systematically present in mesopelagic waters, suggesting their transport to the deep ocean. We thus conclude that diazotrophs are a significant part of the carbon sequestered in the deep ocean and, therefore, they need to be accounted in regional and global estimates of export.
Collapse
Affiliation(s)
- Sophie Bonnet
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
| | - Mar Benavides
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France ,grid.5399.60000 0001 2176 4817Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Frédéric A. C. Le Moigne
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France ,grid.463763.30000 0004 0638 0577LEMAR, Laboratoire des sciences de l’environnement marin, UMR6539, CNRS, UBO, IFREMER, IRD, 29280 Plouzané, Technopôle Brest-Iroise France
| | - Mercedes Camps
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Antoine Torremocha
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Olivier Grosso
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Céline Dimier
- grid.499565.20000 0004 0366 8890Laboratoire d’Océanographie de Villefranche (LOV), Sorbonne Université, CNRS, 06230 Villefranche sur mer, France
| | - Dina Spungin
- grid.18098.380000 0004 1937 0562University of Haifa, The Leon H. Charney School of Marine Sciences, Haifa, 3498838 Israel
| | - Ilana Berman-Frank
- grid.18098.380000 0004 1937 0562University of Haifa, The Leon H. Charney School of Marine Sciences, Haifa, 3498838 Israel
| | - Laurence Garczarek
- grid.464101.60000 0001 2203 0006Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Francisco M. Cornejo-Castillo
- grid.464101.60000 0001 2203 0006Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France ,grid.418218.60000 0004 1793 765XInstitut de Ciènces del Mar (ICM-CSIC), E08003 Barcelona, Spain
| |
Collapse
|
15
|
Benavides M, Bonnet S, Le Moigne FAC, Armin G, Inomura K, Hallstrøm S, Riemann L, Berman-Frank I, Poletti E, Garel M, Grosso O, Leblanc K, Guigue C, Tedetti M, Dupouy C. Sinking Trichodesmium fixes nitrogen in the dark ocean. THE ISME JOURNAL 2022; 16:2398-2405. [PMID: 35835942 PMCID: PMC9478103 DOI: 10.1038/s41396-022-01289-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 01/04/2023]
Abstract
The photosynthetic cyanobacterium Trichodesmium is widely distributed in the surface low latitude ocean where it contributes significantly to N2 fixation and primary productivity. Previous studies found nifH genes and intact Trichodesmium colonies in the sunlight-deprived meso- and bathypelagic layers of the ocean (200-4000 m depth). Yet, the ability of Trichodesmium to fix N2 in the dark ocean has not been explored. We performed 15N2 incubations in sediment traps at 170, 270 and 1000 m at two locations in the South Pacific. Sinking Trichodesmium colonies fixed N2 at similar rates than previously observed in the surface ocean (36-214 fmol N cell-1 d-1). This activity accounted for 40 ± 28% of the bulk N2 fixation rates measured in the traps, indicating that other diazotrophs were also active in the mesopelagic zone. Accordingly, cDNA nifH amplicon sequencing revealed that while Trichodesmium accounted for most of the expressed nifH genes in the traps, other diazotrophs such as Chlorobium and Deltaproteobacteria were also active. Laboratory experiments simulating mesopelagic conditions confirmed that increasing hydrostatic pressure and decreasing temperature reduced but did not completely inhibit N2 fixation in Trichodesmium. Finally, using a cell metabolism model we predict that Trichodesmium uses photosynthesis-derived stored carbon to sustain N2 fixation while sinking into the mesopelagic. We conclude that sinking Trichodesmium provides ammonium, dissolved organic matter and biomass to mesopelagic prokaryotes.
Collapse
Affiliation(s)
- Mar Benavides
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
- Turing Center for Living Systems, Aix-Marseille University, 13009, Marseille, France.
| | - Sophie Bonnet
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Frédéric A C Le Moigne
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
- LEMAR, Laboratoire des Sciences de l'Environnement Marin, UMR6539, CNRS, UBO, IFREMER, IRD, 29280, Plouzané, Technopôle Brest-Iroise, France
| | - Gabrielle Armin
- Graduate School of Oceanography, University of Rhode Island, South Kingstown, RI, USA
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, South Kingstown, RI, USA
| | - Søren Hallstrøm
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Ilana Berman-Frank
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt, Carmel, Haifa, Israel
| | - Emilie Poletti
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Marc Garel
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Olivier Grosso
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Karine Leblanc
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Catherine Guigue
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Marc Tedetti
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Cécile Dupouy
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| |
Collapse
|
16
|
Diverse Genomic Traits Differentiate Sinking-Particle-Associated versus Free-Living Microbes throughout the Oligotrophic Open Ocean Water Column. mBio 2022; 13:e0156922. [PMID: 35862780 PMCID: PMC9426571 DOI: 10.1128/mbio.01569-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteria and archaea are central to the production, consumption, and remineralization of dissolved and particulate organic matter and contribute critically to carbon delivery, nutrient availability, and energy transformations in the deep ocean. To explore environmentally relevant genomic traits of sinking-particle-associated versus free-living microbes, we compared habitat-specific metagenome-assembled genomes recovered throughout the water column in the North Pacific Subtropical Gyre. The genomic traits of sinking-particle-associated versus free-living prokaryotes were compositionally, functionally, and phylogenetically distinct. Substrate-specific transporters and extracellular peptidases and carbohydrate-active enzymes were more enriched and diverse in particle-associated microbes at all depths than in free-living counterparts. These data indicate specific roles for particle-attached microbes in particle substrate hydrolysis, uptake, and remineralization. Shallow-water particle-associated microbes had elevated genomic GC content and proteome nitrogen content and reduced proteome carbon content in comparison to abyssal particle-associated microbes. An inverse trend was observed for their sympatric free-living counterparts. These different properties of attached microbes are postulated to arise in part due to elevated organic and inorganic nitrogen availability inside sinking particles. Particle-attached microbes also were enriched in genes for environmental sensing via two-component regulatory systems, and cell-cell interactions via extracellular secretion systems, reflecting their surface-adapted lifestyles. Finally, particle-attached bacteria had greater predicted maximal growth efficiencies than free-living bacterioplankton at all depths. All of these particle-associated specific genomic and proteomic features appear to be driven by microhabitat-specific elevated nutrient and energy availability as well as surface-associated competitive and synergistic ecological interactions. Although some of these characteristics have been previously postulated or observed individually, we report them together here in aggregate via direct comparisons of cooccurring free-living and sinking-particle-attached microbial genomes from the open ocean.
Collapse
|
17
|
Luo E, Leu AO, Eppley JM, Karl DM, DeLong EF. Diversity and origins of bacterial and archaeal viruses on sinking particles reaching the abyssal ocean. THE ISME JOURNAL 2022; 16:1627-1635. [PMID: 35236926 PMCID: PMC9122931 DOI: 10.1038/s41396-022-01202-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/15/2022]
Abstract
Sinking particles and particle-associated microbes influence global biogeochemistry through particulate matter export from the surface to the deep ocean. Despite ongoing studies of particle-associated microbes, viruses in these habitats remain largely unexplored. Whether, where, and which viruses might contribute to particle production and export remain open to investigation. In this study, we analyzed 857 virus population genomes associated with sinking particles collected over three years in sediment traps moored at 4000 m in the North Pacific Subtropical Gyre. Particle-associated viruses here were linked to cellular hosts through matches to bacterial and archaeal metagenome-assembled genome (MAG)-encoded prophages or CRISPR spacers, identifying novel viruses infecting presumptive deep-sea bacteria such as Colwellia, Moritella, and Shewanella. We also identified lytic viruses whose abundances correlated with particulate carbon flux and/or were exported from the photic to abyssal ocean, including cyanophages. Our data are consistent with some of the predicted outcomes of the viral shuttle hypothesis, and further suggest that viral lysis of both autotrophic and heterotrophic prokaryotes may play a role in carbon export. Our analyses revealed the diversity and origins of prevalent viruses found on deep-sea sinking particles and identified prospective viral groups for future investigation into processes that govern particle export in the open ocean.
Collapse
Affiliation(s)
- Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS 51, Woods Hole MA, 02543, Falmouth, USA.
| | - Andy O Leu
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
- Australia Center for Ecogenomics, University of Queensland, St. Lucia QLD, 4072, Australia
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
18
|
Linney MD, Eppley JM, Romano AE, Luo E, DeLong EF, Karl DM. Microbial Sources of Exocellular DNA in the Ocean. Appl Environ Microbiol 2022; 88:e0209321. [PMID: 35311515 PMCID: PMC9004351 DOI: 10.1128/aem.02093-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Exocellular DNA is operationally defined as the fraction of the total DNA pool that passes through a membrane filter (0.1 μm). It is composed of DNA-containing vesicles, viruses, and free DNA and is ubiquitous in all aquatic systems, although the sources, sinks, and ecological consequences are largely unknown. Using a method that provides separation of these three fractions, we compared open ocean depth profiles of DNA associated with each fraction. Pelagibacter-like DNA dominated the vesicle fractions for all samples examined over a depth range of 75 to 500 m. Viral DNA consisted predominantly of myovirus-like and podovirus-like DNA and contained the highest proportion of unannotated sequences. Euphotic zone free DNA (75 to 125 m) contained primarily bacterial and viral sequences, with bacteria dominating samples from the mesopelagic zone (500 to 1,000 m). A high proportion of mesopelagic zone free DNA sequences appeared to originate from surface waters, including a large amount of DNA contributed by high-light Prochlorococcus ecotypes. Throughout the water column, but especially in the mesopelagic zone, the composition of free DNA sequences was not always reflective of cooccurring microbial communities that inhabit the same sampling depth. These results reveal the composition of free DNA in different regions of the water column (euphotic and mesopelagic zones), with implications for dissolved organic matter cycling and export (by way of sinking particles and/or migratory zooplankton) as a delivery mechanism. IMPORTANCE With advances in metagenomic sequencing, the microbial composition of diverse environmental systems has been investigated, providing new perspectives on potential ecological dynamics and dimensions for experimental investigations. Here, we characterized exocellular free DNA via metagenomics, using a newly developed method that separates free DNA from cells, viruses, and vesicles, and facilitated the independent characterization of each fraction. The fate of this free DNA has both ecological consequences as a nutrient (N and P) source and potential evolutionary consequences as a source of genetic transformation. Here, we document different microbial sources of free DNA at the surface (0 to 200 m) versus depths of 250 to 1,000 m, suggesting that distinct free DNA production mechanisms may be present throughout the oligotrophic water column. Examining microbial processes through the lens of exocellular DNA provides insights into the production of labile dissolved organic matter (i.e., free DNA) at the surface (likely by viral lysis) and processes that influence the fate of sinking, surface-derived organic matter.
Collapse
Affiliation(s)
- Morgan D. Linney
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - John M. Eppley
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Anna E. Romano
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Elaine Luo
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Edward F. DeLong
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - David M. Karl
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| |
Collapse
|
19
|
Flores E, Romanovicz DK, Nieves-Morión M, Foster RA, Villareal TA. Adaptation to an Intracellular Lifestyle by a Nitrogen-Fixing, Heterocyst-Forming Cyanobacterial Endosymbiont of a Diatom. Front Microbiol 2022; 13:799362. [PMID: 35369505 PMCID: PMC8969518 DOI: 10.3389/fmicb.2022.799362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between the diatom Hemiaulus hauckii and the heterocyst-forming cyanobacterium Richelia intracellularis makes an important contribution to new production in the world's oceans, but its study is limited by short-term survival in the laboratory. In this symbiosis, R. intracellularis fixes atmospheric dinitrogen in the heterocyst and provides H. hauckii with fixed nitrogen. Here, we conducted an electron microscopy study of H. hauckii and found that the filaments of the R. intracellularis symbiont, typically composed of one terminal heterocyst and three or four vegetative cells, are located in the diatom's cytoplasm not enclosed by a host membrane. A second prokaryotic cell was also detected in the cytoplasm of H. hauckii, but observations were infrequent. The heterocysts of R. intracellularis differ from those of free-living heterocyst-forming cyanobacteria in that the specific components of the heterocyst envelope seem to be located in the periplasmic space instead of outside the outer membrane. This specialized arrangement of the heterocyst envelope and a possible association of the cyanobacterium with oxygen-respiring mitochondria may be important for protection of the nitrogen-fixing enzyme, nitrogenase, from photosynthetically produced oxygen. The cell envelope of the vegetative cells of R. intracellularis contained numerous membrane vesicles that resemble the outer-inner membrane vesicles of Gram-negative bacteria. These vesicles can export cytoplasmic material from the bacterial cell and, therefore, may represent a vehicle for transfer of fixed nitrogen from R. intracellularis to the diatom's cytoplasm. The specific morphological features of R. intracellularis described here, together with its known streamlined genome, likely represent specific adaptations of this cyanobacterium to an intracellular lifestyle.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC, Universidad de Sevilla, Seville, Spain
| | - Dwight K Romanovicz
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC, Universidad de Sevilla, Seville, Spain
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Tracy A Villareal
- Department of Marine Science and Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, United States
| |
Collapse
|
20
|
Nguyen TTH, Zakem EJ, Ebrahimi A, Schwartzman J, Caglar T, Amarnath K, Alcolombri U, Peaudecerf FJ, Hwa T, Stocker R, Cordero OX, Levine NM. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat Commun 2022; 13:1657. [PMID: 35351873 PMCID: PMC8964765 DOI: 10.1038/s41467-022-29297-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
Sinking particulate organic carbon out of the surface ocean sequesters carbon on decadal to millennial timescales. Predicting the particulate carbon flux is therefore critical for understanding both global carbon cycling and the future climate. Microbes play a crucial role in particulate organic carbon degradation, but the impact of depth-dependent microbial dynamics on ocean-scale particulate carbon fluxes is poorly understood. Here we scale-up essential features of particle-associated microbial dynamics to understand the large-scale vertical carbon flux in the ocean. Our model provides mechanistic insight into the microbial contribution to the particulate organic carbon flux profile. We show that the enhanced transfer of carbon to depth can result from populations struggling to establish colonies on sinking particles due to diffusive nutrient loss, cell detachment, and mortality. These dynamics are controlled by the interaction between multiple biotic and abiotic factors. Accurately capturing particle-microbe interactions is essential for predicting variability in large-scale carbon cycling. Micro-scale microbial community dynamics can substantially alter the fate of sinking particulates in the ocean thus playing a key role in setting the vertical flux of particulate carbon in the ocean.
Collapse
|
21
|
Foster RA, Tienken D, Littmann S, Whitehouse MJ, Kuypers MMM, White AE. The rate and fate of N 2 and C fixation by marine diatom-diazotroph symbioses. THE ISME JOURNAL 2022; 16:477-487. [PMID: 34429522 PMCID: PMC8776783 DOI: 10.1038/s41396-021-01086-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
N2 fixation constitutes an important new nitrogen source in the open sea. One group of filamentous N2 fixing cyanobacteria (Richelia intracellularis, hereafter Richelia) form symbiosis with a few genera of diatoms. High rates of N2 fixation and carbon (C) fixation have been measured in the presence of diatom-Richelia symbioses. However, it is unknown how partners coordinate C fixation and how the symbiont sustains high rates of N2 fixation. Here, both the N2 and C fixation in wild diatom-Richelia populations are reported. Inhibitor experiments designed to inhibit host photosynthesis, resulted in lower estimated growth and depressed C and N2 fixation, suggesting that despite the symbionts ability to fix their own C, they must still rely on their respective hosts for C. Single cell analysis indicated that up to 22% of assimilated C in the symbiont is derived from the host, whereas 78-91% of the host N is supplied from their symbionts. A size-dependent relationship is identified where larger cells have higher N2 and C fixation, and only N2 fixation was light dependent. Using the single cell measures, the N-rich phycosphere surrounding these symbioses was estimated and contributes directly and rapidly to the surface ocean rather than the mesopelagic, even at high estimated sinking velocities (<10 m d-1). Several eco-physiological parameters necessary for incorporating symbiotic N2 fixing populations into larger basin scale biogeochemical models (i.e., N and C cycles) are provided.
Collapse
Affiliation(s)
- Rachel A Foster
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA.
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | - Daniela Tienken
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Angelicque E White
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
22
|
Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nat Ecol Evol 2022; 6:218-229. [DOI: 10.1038/s41559-021-01606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2021] [Indexed: 12/20/2022]
|
23
|
Ford BA, Sullivan GJ, Moore L, Varkey D, Zhu H, Ostrowski M, Mabbutt BC, Paulsen IT, Shah BS. Functional characterisation of substrate-binding proteins to address nutrient uptake in marine picocyanobacteria. Biochem Soc Trans 2021; 49:2465-2481. [PMID: 34882230 PMCID: PMC8786288 DOI: 10.1042/bst20200244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/05/2022]
Abstract
Marine cyanobacteria are key primary producers, contributing significantly to the microbial food web and biogeochemical cycles by releasing and importing many essential nutrients cycled through the environment. A subgroup of these, the picocyanobacteria (Synechococcus and Prochlorococcus), have colonised almost all marine ecosystems, covering a range of distinct light and temperature conditions, and nutrient profiles. The intra-clade diversities displayed by this monophyletic branch of cyanobacteria is indicative of their success across a broad range of environments. Part of this diversity is due to nutrient acquisition mechanisms, such as the use of high-affinity ATP-binding cassette (ABC) transporters to competitively acquire nutrients, particularly in oligotrophic (nutrient scarce) marine environments. The specificity of nutrient uptake in ABC transporters is primarily determined by the peripheral substrate-binding protein (SBP), a receptor protein that mediates ligand recognition and initiates translocation into the cell. The recent availability of large numbers of sequenced picocyanobacterial genomes indicates both Synechococcus and Prochlorococcus apportion >50% of their transport capacity to ABC transport systems. However, the low degree of sequence homology among the SBP family limits the reliability of functional assignments using sequence annotation and prediction tools. This review highlights the use of known SBP structural representatives for the uptake of key nutrient classes by cyanobacteria to compare with predicted SBP functionalities within sequenced marine picocyanobacteria genomes. This review shows the broad range of conserved biochemical functions of picocyanobacteria and the range of novel and hypothetical ABC transport systems that require further functional characterisation.
Collapse
Affiliation(s)
- Benjamin A. Ford
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Lisa Moore
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Deepa Varkey
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Hannah Zhu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Martin Ostrowski
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Bridget C. Mabbutt
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bhumika S. Shah
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
24
|
Walworth NG, Saito MA, Lee MD, McIlvin MR, Moran DM, Kellogg RM, Fu FX, Hutchins DA, Webb EA. Why Environmental Biomarkers Work: Transcriptome-Proteome Correlations and Modeling of Multistressor Experiments in the Marine Bacterium Trichodesmium. J Proteome Res 2021; 21:77-89. [PMID: 34855411 DOI: 10.1021/acs.jproteome.1c00517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium Trichodesmium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO2, we observed robust correlations of stress-induced proteins and RNAs (i.e., involved in transport and homeostasis) that yield useful information on the nutrient status under low and/or high CO2. Conversely, transcriptional and translational correlations of many other central metabolism pathways exhibit broad discordance. A cellular RNA and protein production/degradation model demonstrates how biomolecules with small initial inventories, such as environmentally responsive proteins, achieve large increases in fold-change units as opposed to those with a higher basal expression and inventory such as metabolic systems. Microbial cells, due to their immersion in the environment, tend to show large adaptive responses in both RNA and protein that result in transcript-protein correlations. These observations and model results demonstrate multi-omic coherence for environmental biomarkers and provide the underlying mechanism for those observations, supporting the promise for global application in detecting responses to environmental stimuli in a changing ocean.
Collapse
Affiliation(s)
- Nathan G Walworth
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, Washington 98104, United States.,Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Dawn M Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Riss M Kellogg
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Fei-Xue Fu
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - David A Hutchins
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Eric A Webb
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
25
|
Li L, Wu C, Huang D, Ding C, Wei Y, Sun J. Integrating Stochastic and Deterministic Process in the Biogeography of N 2-Fixing Cyanobacterium Candidatus Atelocyanobacterium Thalassa. Front Microbiol 2021; 12:654646. [PMID: 34745020 PMCID: PMC8566894 DOI: 10.3389/fmicb.2021.654646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
UCYN-A is one of the most widespread and important marine diazotrophs. Its unusual distribution in both cold/warm and coastal/oceanic waters challenges current understanding about what drives the biogeography of diazotrophs. This study assessed the community assembly processes of the nitrogen-fixing cyanobacterium UCYN-A, developing a framework of assembly processes underpinning the microbial biogeography and diversity. High-throughput sequencing and a qPCR approach targeting the nifH gene were used to investigate three tropical seas: the Bay of Bengal, the Western Pacific Ocean, and the South China Sea. Based on the neutral community model and two types of null models calculating the β-nearest taxon index and the normalized stochasticity ratio, we found that stochastic assembly processes could explain 66-92% of the community assembly; thus, they exert overwhelming influence on UCYN-A biogeography and diversity. Among the deterministic processes, temperature and coastal/oceanic position appeared to be the principal environmental factors driving UCYN-A diversity. In addition, a close linkage between assembly processes and UCYN-A abundance/diversity/drivers can provide clues for the unusual global distribution of UCYN-A.
Collapse
Affiliation(s)
- Liuyang Li
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Wu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Danyue Huang
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Changling Ding
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
26
|
Decelle J, Veronesi G, LeKieffre C, Gallet B, Chevalier F, Stryhanyuk H, Marro S, Ravanel S, Tucoulou R, Schieber N, Finazzi G, Schwab Y, Musat N. Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae. Environ Microbiol 2021; 23:6569-6586. [PMID: 34499794 DOI: 10.1111/1462-2920.15766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 11/28/2022]
Abstract
Photosymbiosis is widespread and ecologically important in the oceanic plankton but remains poorly studied. Here, we used multimodal subcellular imaging to investigate the photosymbiosis between colonial Collodaria and their microalga dinoflagellate (Brandtodinium). We showed that this symbiosis is very dynamic whereby symbionts interact with different host cells via extracellular vesicles within the colony. 3D electron microscopy revealed that the photosynthetic apparatus of the microalgae was more voluminous in symbiosis compared to free-living while the mitochondria volume was similar. Stable isotope probing coupled with NanoSIMS showed that carbon and nitrogen were stored in the symbiotic microalga in starch granules and purine crystals respectively. Nitrogen was also allocated to the algal nucleolus. In the host, low 13 C transfer was detected in the Golgi. Metal mapping revealed that intracellular iron concentration was similar in free-living and symbiotic microalgae (c. 40 ppm) and twofold higher in the host, whereas copper concentration increased in symbionts and was detected in the host cell and extracellular vesicles. Sulfur concentration was around two times higher in symbionts (chromatin and pyrenoid) than their host. This study improves our understanding on the functioning of this oceanic photosymbiosis and paves the way for more studies to further assess its biogeochemical significance.
Collapse
Affiliation(s)
- Johan Decelle
- Univ. Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, Grenoble, France.,Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Giulia Veronesi
- CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), UMR 5249 CNRS-CEA-UGA, F-38054, Grenoble, France.,CEA, LCBM, F-38054, Grenoble, France.,Université Grenoble Alpes, LCBM, F-38054, Grenoble, France.,ESRF, The European Synchrotron, 71, Avenue des Martyrs, 38043, Grenoble, France
| | | | - Benoit Gallet
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France
| | - Fabien Chevalier
- Univ. Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, Grenoble, France
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sophie Marro
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), UMR 7093, Observatoire Océanologique, 06230, Villefranche-sur-Mer, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, Grenoble, France
| | - Rémi Tucoulou
- ESRF, The European Synchrotron, 71, Avenue des Martyrs, 38043, Grenoble, France
| | - Nicole Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, Grenoble, France
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
27
|
Harke MJ, Frischkorn KR, Hennon GMM, Haley ST, Barone B, Karl DM, Dyhrman ST. Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre. Environ Microbiol 2021; 23:4807-4822. [PMID: 34309154 DOI: 10.1111/1462-2920.15677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
The physical and biological dynamics that influence phytoplankton communities in the oligotrophic ocean are complex, changing across broad temporal and spatial scales. Eukaryotic phytoplankton (e.g., diatoms), despite their relatively low abundance in oligotrophic waters, are responsible for a large component of the organic matter flux to the ocean interior. Mesoscale eddies can impact both microbial community structure and function, enhancing primary production and carbon export, but the mechanisms that underpin these dynamics are still poorly understood. Here, mesoscale eddy influences on the taxonomic diversity and expressed functional profiles of surface communities of microeukaryotes and particle-associated heterotrophic bacteria from the North Pacific Subtropical Gyre were assessed over 2 years (spring 2016 and summer 2017). The taxonomic diversity of the microeukaryotes significantly differed by eddy polarity (cyclonic versus anticyclonic) and between sampling seasons/years and was significantly correlated with the taxonomic diversity of particle-associated heterotrophic bacteria. The expressed functional profile of these taxonomically distinct microeukaryotes varied consistently as a function of eddy polarity, with cyclones having a different expression pattern than anticyclones, and between sampling seasons/years. These data suggest that mesoscale forcing, and associated changes in biogeochemistry, could drive specific physiological responses in the resident microeukaryote community, independent of species composition.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Gloucester Marine Genomics Institute, Gloucester, MA, USA
| | - Kyle R Frischkorn
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Gwenn M M Hennon
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK, USA
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Benedetto Barone
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
28
|
Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nat Commun 2021; 12:4160. [PMID: 34230473 PMCID: PMC8260585 DOI: 10.1038/s41467-021-24299-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/08/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen fixation has a critical role in marine primary production, yet our understanding of marine nitrogen-fixers (diazotrophs) is hindered by limited observations. Here, we report a quantitative image analysis pipeline combined with mapping of molecular markers for mining >2,000,000 images and >1300 metagenomes from surface, deep chlorophyll maximum and mesopelagic seawater samples across 6 size fractions (<0.2–2000 μm). We use this approach to characterise the diversity, abundance, biovolume and distribution of symbiotic, colony-forming and particle-associated diazotrophs at a global scale. We show that imaging and PCR-free molecular data are congruent. Sequence reads indicate diazotrophs are detected from the ultrasmall bacterioplankton (<0.2 μm) to mesoplankton (180–2000 μm) communities, while images predict numerous symbiotic and colony-forming diazotrophs (>20 µm). Using imaging and molecular data, we estimate that polyploidy can substantially affect gene abundances of symbiotic versus colony-forming diazotrophs. Our results support the canonical view that larger diazotrophs (>10 μm) dominate the tropical belts, while unicellular cyanobacterial and non-cyanobacterial diazotrophs are globally distributed in surface and mesopelagic layers. We describe co-occurring diazotrophic lineages of different lifestyles and identify high-density regions of diazotrophs in the global ocean. Overall, we provide an update of marine diazotroph biogeographical diversity and present a new bioimaging-bioinformatic workflow. Nitrogen fixation by diazotrophs is critical for marine primary production. Using Tara Oceans datasets, this study combines a quantitative image analysis pipeline with metagenomic mining to provide an improved global overview of diazotroph abundance, diversity and distribution.
Collapse
|
29
|
Behrenfeld MJ, Halsey KH, Boss E, Karp‐Boss L, Milligan AJ, Peers G. Thoughts on the evolution and ecological niche of diatoms. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Michael J. Behrenfeld
- Department of Botany and Plant Pathology Oregon State University 4575 SW Research Way Corvallis Oregon 97333 USA
| | - Kimberly H. Halsey
- Department of Microbiology Oregon State University Nash Hall 226 Corvallis Oregon 97331 USA
| | - Emmanuel Boss
- School of Marine Sciences University of Maine 5706 Aubert Hall Orono Maine 04469‐5706 USA
| | - Lee Karp‐Boss
- School of Marine Sciences University of Maine 5706 Aubert Hall Orono Maine 04469‐5706 USA
| | - Allen J. Milligan
- Department of Botany and Plant Pathology Oregon State University 4575 SW Research Way Corvallis Oregon 97333 USA
| | - Graham Peers
- Department of Biology Colorado State University Biology Building, Room 111, 1878 Campus Delivery Fort Collins Colorado 80523‐1878 USA
| |
Collapse
|
30
|
Jabir T, Vipindas PV, Jesmi Y, Divya PS, Adarsh BM, Nafeesathul Miziriya HS, Mohamed Hatha AA. Influence of environmental factors on benthic nitrogen fixation and role of sulfur reducing diazotrophs in a eutrophic tropical estuary. MARINE POLLUTION BULLETIN 2021; 165:112126. [PMID: 33667934 DOI: 10.1016/j.marpolbul.2021.112126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 05/20/2023]
Abstract
Benthic nitrogen fixation in the tropical estuaries plays a major role in marine nitrogen cycle, its contribution to nitrogen budget and players behind process is not well understood. The present study was estimated the benthic nitrogen fixation rate in a tropical estuary (Cochin) and also evaluated the contribution of various diazotrophic bacterial communities. Nitrogen fixation was detected throughout year (0.1-1.11 nmol N g-1 h-1); higher activity was observed in post-monsoon. The nifH gene abundance was varied from 0.8 × 104 to 0.6 × 108 copies g-1dry sediment; highest was detected in post-monsoon. The Cluster I and Cluster III were the dominant diazotrophs. Sulfur reducing bacterial phylotypes (Deltaproteobacteria) contributed up to 2-72% of total nitrogen fixation. These bacteria may provide new nitrogen to these systems, counteracting nitrogen loss via denitrification and anammox. Overall, the study explained the importance of benthic nitrogen fixation and role of diazotrophs in a monsoon influenced tropical estuarine environments.
Collapse
Affiliation(s)
- T Jabir
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India; National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco-da-Gama, Goa 403 804, India.
| | - P V Vipindas
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India; National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco-da-Gama, Goa 403 804, India
| | - Y Jesmi
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - P S Divya
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - B M Adarsh
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - H S Nafeesathul Miziriya
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - A A Mohamed Hatha
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India; CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682 016, India.
| |
Collapse
|
31
|
Dutkiewicz S, Boyd PW, Riebesell U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. GLOBAL CHANGE BIOLOGY 2021; 27:1196-1213. [PMID: 33342048 PMCID: PMC7986797 DOI: 10.1111/gcb.15493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/01/2023]
Abstract
Climate-change-induced alterations of oceanic conditions will lead to the ecological niches of some marine phytoplankton species disappearing, at least regionally. How will such losses affect the ecosystem and the coupled biogeochemical cycles? Here, we couch this question in terms of ecological redundancy (will other species be able to fill the ecological roles of the extinct species) and biogeochemical redundancy (can other species replace their biogeochemical roles). Prior laboratory and field studies point to a spectrum in the degree of redundancy. We use a global three-dimensional computer model with diverse planktonic communities to explore these questions further. The model includes 35 phytoplankton types that differ in size, biogeochemical function and trophic strategy. We run two series of experiments in which single phytoplankton types are either partially or fully eliminated. The niches of the targeted types were not completely reoccupied, often with a reduction in the transfer of matter from autotrophs to heterotrophs. Primary production was often decreased, but sometimes increased due to reduction in grazing pressure. Complex trophic interactions (such as a decrease in the stocks of a predator's grazer) led to unexpected reshuffling of the community structure. Alterations in resource utilization may cause impacts beyond the regions where the type went extinct. Our results suggest a lack of redundancy, especially in the 'knock on' effects on higher trophic levels. Redundancy appeared lowest for types on the edges of trait space (e.g. smallest) or with unique competitive strategies. Though highly idealized, our modelling findings suggest that the results from laboratory or field studies often do not adequately capture the ramifications of functional redundancy. The modelled, often counterintuitive, responses-via complex food web interactions and bottom-up versus top-down controls-indicate that changes in planktonic community will be key determinants of future ocean global change ecology and biogeochemistry.
Collapse
Affiliation(s)
- Stephanie Dutkiewicz
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Global Change ScienceMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Philip W. Boyd
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| |
Collapse
|
32
|
Messer LF, Brown MV, Van Ruth PD, Doubell M, Seymour JR. Temperate southern Australian coastal waters are characterised by surprisingly high rates of nitrogen fixation and diversity of diazotrophs. PeerJ 2021; 9:e10809. [PMID: 33717676 PMCID: PMC7931716 DOI: 10.7717/peerj.10809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/30/2020] [Indexed: 11/20/2022] Open
Abstract
Biological dinitrogen (N2) fixation is one mechanism by which specific microorganisms (diazotrophs) can ameliorate nitrogen (N) limitation. Historically, rates of N2 fixation were believed to be limited outside of the low nutrient tropical and subtropical open ocean; however, emerging evidence suggests that N2 fixation is also a significant process within temperate coastal waters. Using a combination of amplicon sequencing, targeting the nitrogenase reductase gene (nifH), quantitative nifH PCR, and 15N2 stable isotope tracer experiments, we investigated spatial patterns of diazotroph assemblage structure and N2 fixation rates within the temperate coastal waters of southern Australia during Austral autumn and summer. Relative to previous studies in open ocean environments, including tropical northern Australia, and tropical and temperate estuaries, our results indicate that high rates of N2 fixation (10-64 nmol L-1 d-1) can occur within the large inverse estuary Spencer Gulf, while comparatively low rates of N2 fixation (2 nmol L-1 d-1) were observed in the adjacent continental shelf waters. Across the dataset, low concentrations of NO3/NO2 were significantly correlated with the highest N2 fixation rates, suggesting that N2 fixation could be an important source of new N in the region as dissolved inorganic N concentrations are typically limiting. Overall, the underlying diazotrophic community was dominated by nifH sequences from Cluster 1 unicellular cyanobacteria of the UCYN-A clade, as well as non-cyanobacterial diazotrophs related to Pseudomonas stutzeri, and Cluster 3 sulfate-reducing deltaproteobacteria. Diazotroph community composition was significantly influenced by salinity and SiO4 concentrations, reflecting the transition from UCYN-A-dominated assemblages in the continental shelf waters, to Cluster 3-dominated assemblages in the hypersaline waters of the inverse estuary. Diverse, transitional diazotrophic communities, comprised of a mixture of UCYN-A and putative heterotrophic bacteria, were observed at the mouth and southern edge of Spencer Gulf, where the highest N2 fixation rates were observed. In contrast to observations in other environments, no seasonal patterns in N2 fixation rates and diazotroph community structure were apparent. Collectively, our findings are consistent with the emerging view that N2 fixation within temperate coastal waters is a previously overlooked dynamic and potentially important component of the marine N cycle.
Collapse
Affiliation(s)
- Lauren F Messer
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Paul D Van Ruth
- Aquatic Sciences, South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - Mark Doubell
- Aquatic Sciences, South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Benavides M, Duhamel S, Van Wambeke F, Shoemaker KM, Moisander PH, Salamon E, Riemann L, Bonnet S. Dissolved organic matter stimulates N2 fixation and nifH gene expression in Trichodesmium. FEMS Microbiol Lett 2021; 367:5743415. [PMID: 32083662 DOI: 10.1093/femsle/fnaa034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Mixotrophy, the combination of heterotrophic and autotrophic nutrition modes, is emerging as the rule rather than the exception in marine photosynthetic plankton. Trichodesmium, a prominent diazotroph ubiquitous in the (sub)tropical oceans, is generally considered to obtain energy via autotrophy. While the ability of Trichodesmium to use dissolved organic phosphorus when deprived of inorganic phosphorus sources is well known, the extent to which this important cyanobacterium may benefit from other dissolved organic matter (DOM) resources is unknown. Here we provide evidence of carbon-, nitrogen- and phosphorus-rich DOM molecules enhancing N2 fixation rates and nifH gene expression in natural Trichodesmium colonies collected at two stations in the western tropical South Pacific. Sampling at a third station located in the oligotrophic South Pacific Gyre revealed no Trichodesmium but showed presence of UCYN-B, although no nifH expression was detected. Our results suggest that Trichodesmium behaves mixotrophically in response to certain environmental conditions, providing them with metabolic plasticity and adding up to the view that mixotrophy is widespread among marine microbes.
Collapse
Affiliation(s)
- Mar Benavides
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Solange Duhamel
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
| | - France Van Wambeke
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Katyanne M Shoemaker
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Ellen Salamon
- Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Lasse Riemann
- Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Sophie Bonnet
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| |
Collapse
|
34
|
Abstract
The ocean’s “biological pump” exports sinking particles containing carbon, nutrients, and energy to the deep sea, contributing centrally to the global carbon cycle. Here, we identify key organisms and biological processes associated with elevated carbon flux to the abyss. Our analyses reveal that, during summer export, specific populations of photosynthetic algae, heterotrophic protists, and bacteria reach the abyss on sinking particles. Deep-sea bacteria respond rapidly to this elevated nutrient delivery to the abyss in summer. During other seasons, different organisms and processes appear responsible for particle export to the deep sea. Our analyses reveal key biota and biological processes that interconnect surface productivity, particle export, and the deep-sea ecosystem, thereby influencing the function and efficiency of the ocean’s biological pump. In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean’s biological pump and help sustain deep-sea ecosystems.
Collapse
|
35
|
Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean. iScience 2020; 24:102002. [PMID: 33490910 PMCID: PMC7811142 DOI: 10.1016/j.isci.2020.102002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
The biological carbon pump, in which carbon fixed by photosynthesis is exported to the deep ocean through sinking, is a major process in Earth's carbon cycle. The proportion of primary production that is exported is termed the carbon export efficiency (CEE). Based on in-lab or regional scale observations, viruses were previously suggested to affect the CEE (i.e., viral “shunt” and “shuttle”). In this study, we tested associations between viral community composition and CEE measured at a global scale. A regression model based on relative abundance of viral marker genes explained 67% of the variation in CEE. Viruses with high importance in the model were predicted to infect ecologically important hosts. These results are consistent with the view that the viral shunt and shuttle functions at a large scale and further imply that viruses likely act in this process in a way dependent on their hosts and ecosystem dynamics. Eukaryotic virus community composition is shown to predict carbon export efficiency Tens of viruses are highly important in the prediction of the efficiency These viruses are inferred to infect ecologically important hosts
Collapse
|
36
|
Inomura K, Deutsch C, Masuda T, Prášil O, Follows MJ. Quantitative models of nitrogen-fixing organisms. Comput Struct Biotechnol J 2020; 18:3905-3924. [PMID: 33335688 PMCID: PMC7733014 DOI: 10.1016/j.csbj.2020.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 10/26/2022] Open
Abstract
Nitrogen-fixing organisms are of importance to the environment, providing bioavailable nitrogen to the biosphere. Quantitative models have been used to complement the laboratory experiments and in situ measurements, where such evaluations are difficult or costly. Here, we review the current state of the quantitative modeling of nitrogen-fixing organisms and ways to enhance the bridge between theoretical and empirical studies.
Collapse
Affiliation(s)
- Keisuke Inomura
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Michael J. Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
37
|
Pyle AE, Johnson AM, Villareal TA. Isolation, growth, and nitrogen fixation rates of the Hemiaulus-Richelia (diatom-cyanobacterium) symbiosis in culture. PeerJ 2020; 8:e10115. [PMID: 33083143 PMCID: PMC7548074 DOI: 10.7717/peerj.10115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixers (diazotrophs) are often an important nitrogen source to phytoplankton nutrient budgets in N-limited marine environments. Diazotrophic symbioses between cyanobacteria and diatoms can dominate nitrogen-fixation regionally, particularly in major river plumes and in open ocean mesoscale blooms. This study reports the successful isolation and growth in monocultures of multiple strains of a diatom-cyanobacteria symbiosis from the Gulf of Mexico using a modified artificial seawater medium. We document the influence of light and nutrients on nitrogen fixation and growth rates of the host diatom Hemiaulus hauckii Grunow together with its diazotrophic endosymbiont Richelia intracellularis Schmidt, as well as less complete results on the Hemiaulus membranaceus-R. intracellularis symbiosis. The symbioses rates reported here are for the joint diatom-cyanobacteria unit. Symbiont diazotrophy was sufficient to support both the host diatom and cyanobacteria symbionts, and the entire symbiosis replicated and grew without added nitrogen. Maximum growth rates of multiple strains of H. hauckii symbioses in N-free medium with N2 as the sole N source were 0.74-0.93 div d-1. Growth rates followed light saturation kinetics in H. hauckii symbioses with a growth compensation light intensity (EC) of 7-16 µmol m-2s-1and saturation light level (EK) of 84-110 µmol m-2s-1. Nitrogen fixation rates by the symbiont while within the host followed a diel pattern where rates increased from near-zero in the scotophase to a maximum 4-6 h into the photophase. At the onset of the scotophase, nitrogen-fixation rates declined over several hours to near-zero values. Nitrogen fixation also exhibited light saturation kinetics. Maximum N2 fixation rates (84 fmol N2 heterocyst-1h-1) in low light adapted cultures (50 µmol m-2s-1) were approximately 40-50% of rates (144-154 fmol N2 heterocyst-1h-1) in high light (150 and 200 µmol m-2s-1) adapted cultures. Maximum laboratory N2 fixation rates were ~6 to 8-fold higher than literature-derived field rates of the H. hauckii symbiosis. In contrast to published results on the Rhizosolenia-Richelia symbiosis, the H. hauckii symbiosis did not use nitrate when added, although ammonium was consumed by the H. hauckii symbiosis. Symbiont-free host cell cultures could not be established; however, a symbiont-free H. hauckii strain was isolated directly from the field and grown on a nitrate-based medium that would not support DDA growth. Our observations together with literature reports raise the possibility that the asymbiotic H. hauckii are lines distinct from an obligately symbiotic H. hauckii line. While brief descriptions of successful culture isolation have been published, this report provides the first detailed description of the approaches, handling, and methodologies used for successful culture of this marine symbiosis. These techniques should permit a more widespread laboratory availability of these important marine symbioses.
Collapse
Affiliation(s)
- Amy E Pyle
- Department of Marine Science and Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| | | | - Tracy A Villareal
- Department of Marine Science and Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| |
Collapse
|
38
|
Kuznecova J, Šulčius S, Vogts A, Voss M, Jürgens K, Šimoliūnas E. Nitrogen Flow in Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Is Altered by Cyanophage Infection. Front Microbiol 2020; 11:2010. [PMID: 32973727 PMCID: PMC7466765 DOI: 10.3389/fmicb.2020.02010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/29/2020] [Indexed: 12/03/2022] Open
Abstract
Viruses can significantly influence cyanobacteria population dynamics and activity, and through this the biogeochemical cycling of major nutrients. However, surprisingly little attention has been given to understand how viral infections alter the ability of diazotrophic cyanobacteria for atmospheric nitrogen fixation and its release to the environment. This study addressed the importance of cyanophages for net 15N2 assimilation rate, expression of nitrogenase reductase gene (nifH) and changes in nitrogen enrichment (15N/14N) in the diazotrophic cyanobacterium Aphanizomenon flos-aquae during infection by the cyanophage vB_AphaS-CL131. We found that while the growth of A. flos-aquae was inhibited by cyanophage addition (decreased from 0.02 h–1 to 0.002 h–1), there were no significant differences in nitrogen fixation rates (control: 22.7 × 10–7 nmol N heterocyte–1; infected: 23.9 × 10–7 nmol N heterocyte–1) and nifH expression level (control: 0.6–1.6 transcripts heterocyte–1; infected: 0.7–1.1 transcripts heterocyte–1) between the infected and control A. flos-aquae cultures. This implies that cyanophage genome replication and progeny production within the vegetative cells does not interfere with the N2 fixation reactions in the heterocytes of these cyanobacteria. However, higher 15N enrichment at the poles of heterocytes of the infected A. flos-aquae, revealed by NanoSIMS analysis indicates the accumulation of fixed nitrogen in response to cyanophage addition. This suggests reduced nitrogen transport to vegetative cells and the alterations in the flow of fixed nitrogen within the filaments. In addition, we found that cyanophage lysis resulted in a substantial release of ammonium into culture medium. Cyanophage infection seems to substantially redirect N flow from cyanobacterial biomass to the production of N storage compounds and N release.
Collapse
Affiliation(s)
- Jolita Kuznecova
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Angela Vogts
- Section Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Maren Voss
- Section Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Klaus Jürgens
- Section Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
39
|
Intriguing size distribution of the uncultured and globally widespread marine non-cyanobacterial diazotroph Gamma-A. ISME JOURNAL 2020; 15:124-128. [PMID: 32918066 DOI: 10.1038/s41396-020-00765-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023]
Abstract
Non-cyanobacterial diazotrophs (NCDs) have recently emerged as potentially important contributors to marine nitrogen fixation. One of the most widely distributed NCDs is Gamma-A, yet information about its autecology is still scarce and solely relies on the PCR-based detection of its nitrogenase (nifH) gene in seawater, since previous metagenomic surveys targeting free-living planktonic size fractions (<3 μm) have not detected it. Here, we explore the diversity, biogeography, size-distribution, and nitrogenase gene expression of Gamma-A across four larger planktonic size-fractions (0.8-5, 5-20, 20-180, and 180-2000 μm) using metagenomes and metatranscriptomes from the Tara Oceans. We detected a single variant of a complete Gamma-A nifH gene along with other nitrogenase-related genes (nifKDT) within a metatranscriptomic-based contig of the Marine Atlas of Tara Ocean Unigenes. Gamma-A was detected in tropical and subtropical oceanic regions across all the size-fractions. However, the highest gene and transcript abundances were found in the 0.8-5 and 5-20 μm size-fractions at the surface, whereas abundances at the deep chlorophyll maximum were lower and similar across all size-fractions. The ubiquitous presence of active Gamma-A in large planktonic size-fractions suggests a filamentous or particle-attached lifestyle and places its potential to fix nitrogen in larger planktonic compartments.
Collapse
|
40
|
Kurian S, Chndrasekhararao AV, Vidya PJ, Shenoy DM, Gauns M, Uskaikar H, Aparna SG. Role of oceanic fronts in enhancing phytoplankton biomass in the eastern Arabian Sea during an oligotrophic period. MARINE ENVIRONMENTAL RESEARCH 2020; 160:105023. [PMID: 32907734 DOI: 10.1016/j.marenvres.2020.105023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
In the present study, using in-situ and satellite observations, we investigate the influence of physical processes on the enhancement of phytoplankton biomass in the eastern Arabian Sea (EAS). Water column measurements were carried out from 9⁰N to 21⁰N (stations II-2 to II-14) along 68⁰E transect in the EAS during the beginning of fall intermonsoon (FIM) of 2014. Both in-situ and satellite-derived chlorophyll a (Chl a) showed higher biomass at 15⁰N (station II-8) compared to northern and southern stations. We explored the possible physical processes which can lead to high biological productivity at this station. Our study shows that nearly two times enhancement in Chl a at station II-8 was contributed by an open-ocean front, which occurred two days before the measurement. Based on phytoplankton marker pigments, it was evident that haptophytes were abundant at II-8 with a minor contribution from diatoms and dinoflagellates. This condition also led to a high concentration (4.9 nM) of dimethylsulphide (DMS), an anti-green house gas with a net flux of 3.76 μmol m-2d-1 at this site. Among the picophytoplankton, Synechococcus were abundant at this station, however Prochlorococcus were absent as confirmed by both marker pigment and flow cytometric counts. The case study presented here demonstrates the dynamic nature of open ocean fronts and their overall contribution to the productivity of the eastern Arabian Sea during the oligotrophic inter-monsoon period.
Collapse
Affiliation(s)
- Siby Kurian
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| | - A V Chndrasekhararao
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India; Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - P J Vidya
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Damodar M Shenoy
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Mangesh Gauns
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Hema Uskaikar
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - S G Aparna
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| |
Collapse
|
41
|
Foster RA, Zehr JP. Diversity, Genomics, and Distribution of Phytoplankton-Cyanobacterium Single-Cell Symbiotic Associations. Annu Rev Microbiol 2020; 73:435-456. [PMID: 31500535 DOI: 10.1146/annurev-micro-090817-062650] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyanobacteria are common in symbiotic relationships with diverse multicellular organisms (animals, plants, fungi) in terrestrial environments and with single-celled heterotrophic, mixotrophic, and autotrophic protists in aquatic environments. In the sunlit zones of aquatic environments, diverse cyanobacterial symbioses exist with autotrophic taxa in phytoplankton, including dinoflagellates, diatoms, and haptophytes (prymnesiophytes). Phototrophic unicellular cyanobacteria related to Synechococcus and Prochlorococcus are associated with a number of groups. N2-fixing cyanobacteria are symbiotic with diatoms and haptophytes. Extensive genome reduction is involved in the N2-fixing endosymbionts, most dramatically in the unicellular cyanobacteria associated with haptophytes, which have lost most of the photosynthetic apparatus, the ability to fix C, and the tricarboxylic acid cycle. The mechanisms involved in N2-fixing symbioses may involve more interactions beyond simple exchange of fixed C for N. N2-fixing cyanobacterial symbioses are widespread in the oceans, even more widely distributed than the best-known free-living N2-fixing cyanobacteria, suggesting they may be equally or more important in the global ocean biogeochemical cycle of N.Despite their ubiquitous nature and significance in biogeochemical cycles, cyanobacterium-phytoplankton symbioses remain understudied and poorly understood.
Collapse
Affiliation(s)
- Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden;
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
42
|
Nieves-Morión M, Flores E, Foster RA. Predicting substrate exchange in marine diatom-heterocystous cyanobacteria symbioses. Environ Microbiol 2020; 22:2027-2052. [PMID: 32281201 DOI: 10.1111/1462-2920.15013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/27/2022]
Abstract
In the open ocean, some phytoplankton establish symbiosis with cyanobacteria. Some partnerships involve diatoms as hosts and heterocystous cyanobacteria as symbionts. Heterocysts are specialized cells for nitrogen fixation, and a function of the symbiotic cyanobacteria is to provide the host with nitrogen. However, both partners are photosynthetic and capable of carbon fixation, and the possible metabolites exchanged and mechanisms of transfer are poorly understood. The symbiont cellular location varies from internal to partial to fully external, and this is reflected in the symbiont genome size and content. In order to identify the membrane transporters potentially involved in metabolite exchange, we compare the draft genomes of three differently located symbionts with known transporters mainly from model free-living heterocystous cyanobacteria. The types and numbers of transporters are directly related to the symbiont cellular location: restricted in the endosymbionts and wider in the external symbiont. Three proposed models of metabolite exchange are suggested which take into account the type of transporters in the symbionts and the influence of their cellular location on the available nutrient pools. These models provide a basis for several hypotheses that given the importance of these symbioses in global N and C budgets, warrant future testing.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
43
|
Baker LJ, Kemp PF. Bacterial inoculations can perturb the growth trajectory of diatoms with an existing microbiome. PeerJ 2020; 8:e8352. [PMID: 32025366 PMCID: PMC6991125 DOI: 10.7717/peerj.8352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
Inoculation of axenic diatom monocultures with individual bacterial strains has been used effectively to examine the relationship between bacteria and a diatom host. Both beneficial and harmful effects on diatom fitness have been observed. Yet, diatoms commonly host a consortium of bacteria that could influence their response to perturbation by bacterial inoculations. In this study, diatom cultures with an existing microbiome were inoculated with individual bacterial strains. Strains of two genera of bacteria commonly found associated with diatoms (Alteromonas and Marinobacter) were isolated from a culture of the diatom Chaetoceros sp. KBDT20. To evaluate whether bacterial inoculations can impact the growth, peak abundance, or decline of diatoms with an intact microbiome, individual bacterial strains were inoculated into batch cultures of the original host as well as two non-origin diatom hosts (Chaetoceros sp. KBDT32 and Amphiprora sp. KBDT35). Inoculations were repeated under vitamin-replete and vitamin-deficient conditions to assess whether vitamin concentration modulates the impact of bacterial inoculations on the host. The origin Chaetoceros culture was largely unperturbed by bacterial inoculations. In contrast, non-origin hosts experienced long-term impacts on their growth trajectory, and those impacts were found to be dependent on the concentration of vitamins in the growth medium. For the non-origin Chaetoceros, all positive impacts were observed in vitamin-replete conditions and all negative impacts were observed in vitamin-deficient conditions. Amphiprora was only impacted by inoculation with Marinobacter strains in vitamin-deficient conditions, and the effect was negative. Neither individual bacterial strains nor genera resulted in exclusively beneficial nor detrimental impacts, and the magnitude of effect varied among bacterial strains. This study demonstrates that bacterial inoculations can have long-lasting impacts on the growth trajectory of diatoms with an existing microbiome, that this impact can differ even between congeneric diatoms, and that the impact can be significantly modulated by vitamin concentration.
Collapse
Affiliation(s)
- Lydia J Baker
- Microbiology, Cornell University, Ithaca, NY, United States of America.,Oceanography Department, University of Hawai'i Mānoa, Honolulu, HI, United States of America
| | - Paul F Kemp
- Oceanography Department, University of Hawai'i Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
44
|
Hernández Limón MD, Hennon GMM, Harke MJ, Frischkorn KR, Haley ST, Dyhrman ST. Transcriptional patterns of
Emiliania huxleyi
in the North Pacific Subtropical Gyre reveal the daily rhythms of its metabolic potential. Environ Microbiol 2019; 22:381-396. [DOI: 10.1111/1462-2920.14855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/04/2023]
Affiliation(s)
- María D. Hernández Limón
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Gwenn M. M. Hennon
- University of Alaska Fairbanks College of Fisheries and Ocean Sciences Fairbanks AK USA
| | - Matthew J. Harke
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Kyle R. Frischkorn
- Department of Earth and Environmental Science Columbia University New York NY USA
| | - Sheean T. Haley
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Sonya T. Dyhrman
- Department of Earth and Environmental Science Columbia University New York NY USA
| |
Collapse
|
45
|
Yu J, Wang X, Fan H, Zhang RH. Impacts of Physical and Biological Processes on Spatial and Temporal Variability of Particulate Organic Carbon in the North Pacific Ocean during 2003-2017. Sci Rep 2019; 9:16493. [PMID: 31712742 PMCID: PMC6848136 DOI: 10.1038/s41598-019-53025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
The North Pacific Ocean is a significant carbon sink region, but little is known about the dynamics of particulate organic carbon (POC) and the influences of physical and biological processes in this region at the basin scale. Here, we analysed high-resolution surface POC data derived from MODIS-Aqua during 2003-2017, together with satellite-derived sea surface chlorophyll and temperature (SST). There are large spatial and temporal variations in surface POC in the North Pacific. Surface POC is much lower in the subtropical region (<50 mg m-3) than in the subarctic region (>100 mg m-3), primarily resulting from the south-to-north variability in biological production. Our analyses show significant seasonal and interannual variability in surface POC. In particular, there is one peak in winter-spring in the western subtropical region and two peaks in late spring and fall in the western subarctic region. Surface POC is positively correlated with chlorophyll (r = ~1) and negatively correlated with SST (r = ~-0.45, P < 0.001) south of 45°N, indicating the strong influence of physically driven biological activity on the temporal variability of POC in the subtropical region. There is a significantly positive but relatively lower correlation coefficient (0.6-0.8) between POC and chlorophyll and an overall non-significantly positive correlation between POC and SST north of 45°N, reflecting the reduction in the POC standing stock due to the fast sinking of large particles. The climate modes of the Pacific Decadal Oscillation, El Niño-Southern Oscillation and North Pacific Gyre Oscillation have large impacts on POC in various seasons in the subtropical region and weak influences in the subarctic region. Surface POC was anomalously high after 2013 (increased by ~15%) across the basin, which might be the result of complex interactions of physical and biological processes associated with an anomalous warming event (the Blob).
Collapse
Affiliation(s)
- Jun Yu
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Xiujun Wang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China.
| | - Hang Fan
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Rong-Hua Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 10029, China
| |
Collapse
|
46
|
Marine nitrogen fixers mediate a low latitude pathway for atmospheric CO 2 drawdown. Nat Commun 2019; 10:4611. [PMID: 31601810 PMCID: PMC6787065 DOI: 10.1038/s41467-019-12549-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/16/2019] [Indexed: 02/02/2023] Open
Abstract
Roughly a third (~30 ppm) of the carbon dioxide (CO2) that entered the ocean during ice ages is attributed to biological mechanisms. A leading hypothesis for the biological drawdown of CO2 is iron (Fe) fertilisation of the high latitudes, but modelling efforts attribute at most 10 ppm to this mechanism, leaving ~20 ppm unexplained. We show that an Fe-induced stimulation of dinitrogen (N2) fixation can induce a low latitude drawdown of 7–16 ppm CO2. This mechanism involves a closer coupling between N2 fixers and denitrifiers that alleviates widespread nitrate limitation. Consequently, phosphate utilisation and carbon export increase near upwelling zones, causing deoxygenation and deeper carbon injection. Furthermore, this low latitude mechanism reproduces the regional patterns of organic δ15N deposited in glacial sediments. The positive response of marine N2 fixation to dusty ice age conditions, first proposed twenty years ago, therefore compliments high latitude changes to amplify CO2 drawdown. Iron fertilisation of the high latitude oceans is a well-established biological mechanism to explain the ice age drawdown of atmospheric CO2, yet modelling has so far struggled to account for a sufficient drawdown via this mechanism. Here, the authors propose that N2 fixers, which inhabit the lower latitude ocean, made a significant contribution to CO2 drawdown and so amplified the global response to iron fertilisation during ice ages.
Collapse
|
47
|
Yang QS, Dong JD, Ahmad M, Ling J, Zhou WG, Tan YH, Zhang YZ, Shen DD, Zhang YY. Analysis of nifH DNA and RNA reveals a disproportionate contribution to nitrogenase activities by rare plankton-associated diazotrophs. BMC Microbiol 2019; 19:188. [PMID: 31416417 PMCID: PMC6694519 DOI: 10.1186/s12866-019-1565-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Holobionts comprising nitrogen-fixing diazotrophs and phytoplankton or zooplankton are ubiquitous in the pelagic sea. However, neither the community structure of plankton-associated diazotrophs (PADs) nor their nitrogenase transcriptional activity are well-understood. In this study, we used nifH gene Illumina sequencing and quantitative PCR to characterize the community composition and nifH expression profile of PADs with > 100 μm size fraction in the euphotic zone of the northern South China Sea. RESULTS The results of DNA- and RNA-derived nifH gene revealed a higher alpha-diversity in the active than in the total community. Moreover, the compositional resemblance among different sites was less for active than for total communities of PADs. We characterized the 20 most abundant OTUs by ranking the sum of sequence reads across 9 sampling stations for individual OTUs in both nifH DNA and RNA libraries, and then assessed their phylogenetic relatedness. Eight of the 20 abundant OTUs were phylogenetically affiliated with Trichodesmium and occurred in approximately equal proportion in both the DNA and RNA libraries. The analysis of nifH gene expression level showed uneven attribute of the abundance and nitrogenase activities by the remaining 12 OTUs. Taxa belonging to cluster III and Betaproteobacteria were present at moderate abundance but exhibited negligible nitrogenase transcription activity. Whereas, the abundances of Richelia, Deltaproteobacteria and Gammaproteobacteria were low but the contribution of these groups to nitrogenase transcription was disproportionately high. CONCLUSIONS The substantial variation in community structure among active dizatrophic fractions compared to the total communities suggests that the former are better indicators of biological response to environmental changes. Altogether, our study highlights the importance of rare PADs groups in nitrogen fixation in plankton holobionts, evidenced by their high level of nitrogenase transcription.
Collapse
Affiliation(s)
- Qing-Song Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-De Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Tropical Marine Biological Research Station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China
| | - Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Wei-Guo Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Hui Tan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yuan-Zhou Zhang
- State Oceanic Administration Sansha Marine Environmental Monitoring Center Station, Haikou, 570311, China
| | - Dan-Dan Shen
- Section of Biological Oceanography, Leibniz Institute for Baltic Sea Research, 18119, Warnemünde, Germany.
| | - Yan-Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Tropical Marine Biological Research Station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
48
|
Li D, Liu J, Zhang R, Chen M, Yang W, Li J, Fang Z, Wang B, Qiu Y, Zheng M. N 2 fixation impacted by carbon fixation via dissolved organic carbon in the changing Daya Bay, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:592-602. [PMID: 31022548 DOI: 10.1016/j.scitotenv.2019.04.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We present the first concurrent measurements of N2 fixation rates (15N2 uptake), primary production (14C uptake), dissolved organic carbon (DOC) concentrations, and diazotrophic community composition derived from nitrogenase (nifH) abundance in the subtropical Daya Bay (DB) of the coastal northern South China Sea (NSCS) from 2015 to 2017. N2 fixation rates ranged from n.d. - 4.51 nmol N L-1 h-1. Such values were generally higher than those reported in the neighbouring NSCS open waters and several well-studied oligotrophic waters, thereby suggesting that N-replete conditions do not prevent N2 fixation in coastal waters. N2 fixation rates were positively and significantly correlated with the primary production and the concentration of DOC in DB in the spring and summer. Combined with other lines of evidence, we suggest that N2 fixation may be facilitated by non-diazotrophic phytoplankton via a probable regulation of the quantity and quality (bioavailability) of DOC in DB. Since DB represents a suitable site that has experienced dramatic human-induced changes in environmental conditions, our results likely provide insights in understanding how N2 fixation and relevant biogeochemical processes may respond to intensified global anthropogenic forcing in similar coastal settings.
Collapse
Affiliation(s)
- Danyang Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jiaxing Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Guangzhou 510301, China
| | - Run Zhang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Min Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weifeng Yang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Junjie Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ziming Fang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Bo Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yusheng Qiu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minfang Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
49
|
Romero‐Romero S, Choy CA, Hannides CCS, Popp BN, Drazen JC. Differences in the trophic ecology of micronekton driven by diel vertical migration. LIMNOLOGY AND OCEANOGRAPHY 2019; 64:1473-1483. [PMID: 31598007 PMCID: PMC6774321 DOI: 10.1002/lno.11128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 05/26/2023]
Abstract
Many species of micronekton perform diel vertical migrations (DVMs), which ultimately contributes to carbon export to the deep sea. However, not all micronekton species perform DVM, and the nonmigrators, which are often understudied, have different energetic requirements that might be reflected in their trophic ecology. We analyze bulk tissue and whole animal stable nitrogen isotopic compositions (δ 15N values) of micronekton species collected seasonally between 0 and 1250 m depth to explore differences in the trophic ecology of vertically migrating and nonmigrating micronekton in the central North Pacific. Nonmigrating species exhibit depth-related increases in δ 15N values mirroring their main prey, zooplankton. Higher variance in δ 15N values of bathypelagic species points to the increasing reliance of deeper dwelling micronekton on microbially reworked, very small suspended particles. Migrators have higher δ 15N values than nonmigrators inhabiting the epipelagic zone, suggesting the consumption of material during the day at depth, not only at night when they migrate closer to the surface. Migrating species also appear to eat larger prey and exhibit a higher range of variation in δ 15N values seasonally than nonmigrators, likely because of their higher energy needs. The dependence on material at depth enriched in 15N relative to surface particles is higher in migratory fish that ascend only to the lower epipelagic zone. Our results confirm that stark differences in the food habits and dietary sources of micronekton species are driven by vertical migrations.
Collapse
Affiliation(s)
| | - C. Anela Choy
- Integrative Oceanography DivisionScripps Institution of Oceanography, University of California San DiegoSan DiegoCalifornia
| | | | - Brian N. Popp
- Department of Earth SciencesUniversity of Hawaii at ManoaHonoluluHawaii
| | - Jeffrey C. Drazen
- Department of OceanographyUniversity of Hawaii at ManoaHonoluluHawaii
| |
Collapse
|
50
|
Phosphate availability affects fixed nitrogen transfer from diazotrophs to their epibionts. ISME JOURNAL 2019; 13:2701-2713. [PMID: 31249392 PMCID: PMC6794295 DOI: 10.1038/s41396-019-0453-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/20/2019] [Accepted: 05/17/2019] [Indexed: 12/02/2022]
Abstract
Dinitrogen (N2) fixation is a major source of external nitrogen (N) to aquatic ecosystems and therefore exerts control over productivity. Studies have shown that N2 -fixers release freshly fixed N into the environment, but the causes for this N release are largely unclear. Here, we show that the availability of phosphate can directly affect the transfer of freshly fixed N to epibionts in filamentous, diazotrophic cyanobacteria. Stable-isotope incubations coupled to single-cell analyses showed that <1% and ~15% of freshly fixed N was transferred to epibionts of Aphanizomenon and Nodularia, respectively, at phosphate scarcity during a summer bloom in the Baltic Sea. When phosphate was added, the transfer of freshly fixed N to epibionts dropped to about half for Nodularia, whereas the release from Aphanizomenon increased slightly. At the same time, the growth rate of Nodularia roughly doubled, indicating that less freshly fixed N was released and was used for biomass production instead. Phosphate scarcity and the resulting release of freshly fixed N could explain the heavy colonization of Nodularia filaments by microorganisms during summer blooms. As such, the availability of phosphate may directly affect the partitioning of fixed N2 in colonies of diazotrophic cyanobacteria and may impact the interactions with their microbiome.
Collapse
|