1
|
Pan PY, Ke CC, Wang YY, Lin YH, Ku WC, Au CF, Chan CC, Huang CY, Lin YH. Proteomic profiling of TBC1 domain family member 21-null sperms reveals the critical roles of TEKT 1 in their tail defects. Dev Dyn 2024; 253:1024-1035. [PMID: 38822685 DOI: 10.1002/dvdy.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Approximately 7% of the males exhibit reduced fertility; however, the regulatory genes and pathways involved remain largely unknown. TBC1 domain family member 21 (TBC1D21) contains a conserved RabGAP catalytic domain that induces GDP/GTP exchange to inactivate Rabs by interacting with microtubules. We previously reported that Tbc1d21-null mice exhibit severe sperm tail defects with a disrupted axoneme, and that TBC1D21 interacts with RAB10. However, the pathological mechanisms underlying the Tbc1d21 loss-induced sperm tail defects remain unknown. RESULTS Murine sperm from wild-type and Tbc1d21-null mice were comparatively analyzed using proteomic assays. Over 1600 proteins were identified, of which 15 were significantly up-regulated in Tbc1d21-null sperm. Notably, several tektin (TEKT) family proteins, belonging to a type of intermediate filament critical for stabilizing the microtubular structure of cilia and flagella, were significantly up-regulated in Tbc1d21-/- sperm. We also found that TBC1D21 interacts with TEKT1. In addition, TEKT1 co-localized with RAB10 during sperm tail formation. Finally, we found Tbc1d21-null sperm exhibited abnormal accumulation of TEKT1 in the midpiece region, accompanied by disrupted axonemal structures. CONCLUSIONS These results reveal that TBC1D21 modulates TEKTs protein localization in the axonemal transport system during sperm tail formation.
Collapse
Affiliation(s)
- Pei-Yi Pan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Chun Ke
- Department of Urology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Ya-Yun Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Yu-Hua Lin
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chin-Fong Au
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chying-Chyuan Chan
- Department of Obstetrics and Gynecology, Taipei City Hospital, Zhongxing Branch and Branch for Women and Children, Taipei, Taiwan
| | - Chia-Yen Huang
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
2
|
Suhaiman L, Belmonte SA. Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm. Front Cell Dev Biol 2024; 12:1457638. [PMID: 39376630 PMCID: PMC11456524 DOI: 10.3389/fcell.2024.1457638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
It has long been thought that exocytosis was driven exclusively by well-studied fusion proteins. Some decades ago, the role of lipids became evident and escalated interest in the field. Our laboratory chose a particular cell to face this issue: the human sperm. What makes this cell special? Sperm, as terminal cells, are characterized by their scarcity of organelles and the complete absence of transcriptional and translational activities. They are specialized for a singular membrane fusion occurrence: the exocytosis of the acrosome. This unique trait makes them invaluable for the study of exocytosis in isolation. We will discuss the lipids' role in human sperm acrosome exocytosis from various perspectives, with a primary emphasis on our contributions to the field. Sperm cells have a unique lipid composition, very rare and not observed in many cell types, comprising a high content of plasmalogens, long-chain, and very-long-chain polyunsaturated fatty acids that are particular constituents of some sphingolipids. This review endeavors to unravel the impact of membrane lipid composition on the proper functioning of the exocytic pathway in human sperm and how this lipid dynamic influences its fertilizing capability. Evidence from our and other laboratories allowed unveiling the role and importance of multiple lipids that drive exocytosis. This review highlights the role of cholesterol, diacylglycerol, and particular phospholipids like phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, and sphingolipids in driving sperm acrosome exocytosis. Furthermore, we provide a comprehensive overview of the factors and enzymes that regulate lipid turnover during the exocytic course. A more thorough grasp of the role played by lipids transferred from sperm can provide insights into certain causes of male infertility. It may lead to enhancements in diagnosing infertility and techniques like assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Laila Suhaiman
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Nhieu J, Wei CW, Ludwig M, Drake JM, Wei LN. CRABP1-complexes in exosome secretion. Cell Commun Signal 2024; 22:381. [PMID: 39075476 PMCID: PMC11285139 DOI: 10.1186/s12964-024-01749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Cellular retinoic acid binding protein 1 (CRABP1) mediates rapid, non-canonical activity of retinoic acid (RA) by forming signalosomes via protein-protein interactions. Two signalosomes have been identified previously: CRABP1-MAPK and CRABP1-CaMKII. Crabp1 knockout (CKO) mice exhibited altered exosome profiles, but the mechanism of CRABP1 action was unclear. This study aimed to screen for and identify novel CRABP1 signalosomes that could modulate exosome secretion by using a combinatorial approach involving biochemical, bioinformatic and molecular studies. METHODS Immunoprecipitation coupled with mass spectrometry (IP-MS) identified candidate CRABP1-interacting proteins which were subsequently analyzed using GO Term Enrichment, Functional Annotation Clustering; and Pathway Analysis. Gene expression analysis of CKO samples revealed altered expression of genes related to exosome biogenesis and secretion. The effect of CRABP1 on exosome secretion was then experimentally validated using CKO mice and a Crabp1 knockdown P19 cell line. RESULTS IP-MS identified CRABP1-interacting targets. Bioinformatic analyses revealed significant association with actin cytoskeletal dynamics, kinases, and exosome secretion. The effect of CRABP1 on exosome secretion was experimentally validated by comparing circulating exosome numbers of CKO and wild type (WT) mice, and secreted exosomes from WT and siCRABP1-P19 cells. Pathway analysis identified kinase signaling and Arp2/3 complex as the major pathways where CRABP1-signalosomes modulate exosome secretion, which was validated in the P19 system. CONCLUSION The combinatorial approach allowed efficient screening for and identification of novel CRABP1-signalosomes. The results uncovered a novel function of CRABP1 in modulating exosome secretion, and suggested that CRABP1 could play roles in modulating intercellular communication and signal propagation.
Collapse
Affiliation(s)
- Jennifer Nhieu
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Chin-Wen Wei
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Hashemi Karoii D, Azizi H, Skutella T. Altered G-Protein Transduction Protein Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia. DNA Cell Biol 2023; 42:617-637. [PMID: 37610843 DOI: 10.1089/dna.2023.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Recent studies have shown that several members of the G-protein-coupled receptors (GPCR) superfamily play crucial roles in the maintenance of ion-water homeostasis of the sperm and Sertoli cells, development of the germ cells, formation of the blood barrier, and maturation of sperm. The GPCR, guanyl-nucleotide exchange factor, membrane traffic protein, and small GTPase genes were analyzed by microarray and bioinformatics (3513 sperm and Sertoli cell genes). In the microarray analyses of three human cases with different nonobstructive azoospermia sperm, the expression of GOLGA8IP, OR2AT4, PHKA1, A2M, OR56A1, SEMA3G, LRRC17, APP, ARHGAP33, RABGEF1, NPY2R, GHRHR, LTB4R2, GRIK5, OR6K6, NAPG, OR6C65, VPS35, FPR3, and ARL4A was upregulated, while expression of MARS, SIRPG, OGFR, GPR150, LRRK1, and NGEF was downregulated. There was an increase in GBP3, GBP3, TNF, TGFB3, and CLTC expression in the Sertoli cells of three human cases with NOA, whereas expression of PAQR4, RRAGD, RAC2, SERPINB8, IRPB1, MRGPRF, RASA2, SIRPG, RGS2, RAP2A, RAB2B, ARL17, SERINC4, XIAP, DENND4C, ANKRA2, CSTA, STX18, and SNAP23 were downregulated. A combined analysis of Enrich Shiny Gene Ontology (GO), STRING, and Cytoscape was used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP), regulation of protein metabolic process, regulation of small GTPase-mediated signal transduction were significantly expressed in up-/downregulated differentially expressed genes (DEGs) in sperm. In molecular function (MF) experiments of DEGs that were up-/downregulated, it was found that GPCR activity, guanyl ribonucleotide binding, GTPase activity and nucleoside-triphosphatase activity were overexpressed. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. When these gene mutations have been validated, they can be used to create new GPCR antagonists or agonists that are receptor-selective.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Medical Faculty, Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Valdivia A, Duran C, Lee M, Williams HC, Lee MY, San Martin A. Nox1-based NADPH oxidase regulates the Par protein complex activity to control cell polarization. Front Cell Dev Biol 2023; 11:1231489. [PMID: 37635877 PMCID: PMC10457011 DOI: 10.3389/fcell.2023.1231489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Cell migration is essential for many biological and pathological processes. Establishing cell polarity with a trailing edge and forming a single lamellipodium at the leading edge of the cell is crucial for efficient directional cell migration and is a hallmark of mesenchymal cell motility. Lamellipodia formation is regulated by spatial-temporal activation of the small GTPases Rac and Cdc42 at the front edge, and RhoA at the rear end. At a molecular level, partitioning-defective (Par) protein complex comprising Par3, Par6, and atypical Protein Kinase (aPKC isoforms ζ and λ/ι) regulates front-rear axis polarization. At the front edge, integrin clustering activates Cdc42, prompting the formation of Par3/Par6/aPKC complexes to modulate MTOC positioning and microtubule stabilization. Consequently, the Par3/Par6/aPKC complex recruits Rac1-GEF Tiam to activate Rac1, leading to lamellipodium formation. At the rear end, RhoA-ROCK phosphorylates Par3 disrupting its interaction with Tiam and inactivating Rac1. RhoA activity at the rear end allows the formation of focal adhesions and stress fibers necessary to generate the traction forces that allow cell movement. Nox1-based NADPH oxidase is necessary for PDGF-induced migration in vitro and in vivo for many cell types, including fibroblasts and smooth muscle cells. Here, we report that Nox1-deficient cells failed to acquire a normal front-to-rear polarity, polarize MTOC, and form a single lamellipodium. Instead, these cells form multiple protrusions that accumulate Par3 and active Tiam. The exogenous addition of H2O2 rescues this phenotype and is associated with the hyperactivation of Par3, Tiam, and Rac1. Mechanistically, Nox1 deficiency induces the inactivation of PP2A phosphatase, leading to increased activation of aPKC. These results were validated in Nox1y/- primary mouse aortic smooth muscle cells (MASMCs), which also showed PP2A inactivation after PDGF-BB stimulation consistent with exacerbated activation of aPKC. Moreover, we evaluated the physiological relevance of this signaling pathway using a femoral artery wire injury model to generate neointimal hyperplasia. Nox1y/- mice showed increased staining for the inactive form of PP2A and increased signal for active aPKC, suggesting that PP2A and aPKC activities might contribute to reducing neointima formation observed in the arteries of Nox1y/- mice.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Charity Duran
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Mingyoung Lee
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Holly C. Williams
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Moo-Yeol Lee
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Alejandra San Martin
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
6
|
Martinez-Arroyo O, Flores-Chova A, Sanchez-Garcia B, Redon J, Cortes R, Ortega A. Rab3A/Rab27A System Silencing Ameliorates High Glucose-Induced Injury in Podocytes. BIOLOGY 2023; 12:biology12050690. [PMID: 37237503 DOI: 10.3390/biology12050690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Diabetic nephropathy is a major complication in diabetic patients. Podocytes undergo loss and detachment from the basal membrane. Intra- and intercellular communication through exosomes are key processes for maintaining function, and the Rab3A/Rab27A system is an important counterpart. Previously, we observed significant changes in the Rab3A/Rab27A system in podocytes under glucose overload, demonstrating its important role in podocyte injury. We investigated the implication of silencing the Rab3A/Rab27A system in high glucose-treated podocytes and analysed the effect on differentiation, apoptosis, cytoskeletal organisation, vesicle distribution, and microRNA expression in cells and exosomes. For this, we subjected podocytes to high glucose and transfection through siRNAs, and we isolated extracellular vesicles and performed western blotting, transmission electron microscopy, RT-qPCR, immunofluorescence and flow cytometry assays. We found that silencing RAB3A and RAB27A generally leads to a decrease in podocyte differentiation and cytoskeleton organization and an increase in apoptosis. Moreover, CD63-positive vesicles experienced a pattern distribution change. Under high glucose, Rab3A/Rab27A silencing ameliorates some of these detrimental processes, suggesting a differential influence depending on the presence or absence of cellular stress. We also observed substantial expression changes in miRNAs that were relevant in diabetic nephropathy upon silencing and glucose treatment. Our findings highlight the Rab3A/Rab27A system as a key participant in podocyte injury and vesicular traffic regulation in diabetic nephropathy.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, Biomedical Research Institute of Hospital Clinico de Valencia INCLIVA, 46010 Valencia, Spain
| | - Ana Flores-Chova
- Cardiometabolic and Renal Risk Research Group, Biomedical Research Institute of Hospital Clinico de Valencia INCLIVA, 46010 Valencia, Spain
| | - Belen Sanchez-Garcia
- Cardiometabolic and Renal Risk Research Group, Biomedical Research Institute of Hospital Clinico de Valencia INCLIVA, 46010 Valencia, Spain
| | - Josep Redon
- Cardiometabolic and Renal Risk Research Group, Biomedical Research Institute of Hospital Clinico de Valencia INCLIVA, 46010 Valencia, Spain
- CIBEROBN (CIBER of Obesity and Nutrition Physiopathology), Institute of Health Carlos III, Minister of Health, 28029 Madrid, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, Biomedical Research Institute of Hospital Clinico de Valencia INCLIVA, 46010 Valencia, Spain
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, Biomedical Research Institute of Hospital Clinico de Valencia INCLIVA, 46010 Valencia, Spain
- CIBERCV (CIBER of Cardiovascular Diseases), Institute of Health Carlos III, Minister of Health, 28029 Madrid, Spain
| |
Collapse
|
7
|
Chang YC, Li CH, Chan MH, Fang CY, Zhang ZX, Chen CL, Hsiao M. Overexpression of synaptic vesicle protein Rab GTPase 3C promotes vesicular exocytosis and drug resistance in colorectal cancer cells. Mol Oncol 2023; 17:422-444. [PMID: 36652260 PMCID: PMC9980308 DOI: 10.1002/1878-0261.13378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Rab GTPase 3C (RAB3C) is a peripheral membrane protein that is involved in membrane trafficking (vesicle formation) and cell movement. Recently, researchers have noted the exocytosis of RAB proteins, and their dysregulation is correlated with drug resistance and the altered tumor microenvironment in tumorigenesis. However, the molecular mechanisms of exocytotic RABs in the carcinogenicity of colorectal cancer (CRC) remain unknown. Researchers have used various in silico datasets to evaluate the expression profiles of RAB family members. We confirmed that RAB3C plays a key role in CRC progression. Its overexpression promotes exocytosis and is related to the resistance to several chemotherapeutic drugs. We established a proteomic dataset based on RAB3C, and found that dystrophin is one of the proteins that is upregulated with the overexpression of RAB3C. According to our results, RAB3C-induced dystrophin expression promotes vesicle formation and packaging. A connectivity map predicted that the cannabinoid receptor 2 (CB2) agonists reverse RAB3C-associated drug resistance, and that these agonists have synergistic effects when combined with standard chemotherapy regimens. Moreover, we found high dystrophin expression levels in CRC patients with poor survival outcomes. A combination of the dystrophin and RAB3C expression profiles can serve as an independent prognostic factor in CRC and is associated with several clinicopathological parameters. In addition, the RAB3C-dystrophin axis is positively correlated with the phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) genetic alterations in CRC patients. These findings can be used to provide novel combined therapeutic options for the treatment of CRC.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsien Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Zhi-Xuan Zhang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Taipei Medical University Hospital and College of Medicine, Taipei Medical University, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Flores-Montero K, Berberián MV, Mayorga LS, Tomes CN, Ruete MC. The molecular chaperone cysteine string protein is required for monomeric SNARE proteins to assemble in trans-complexes during human sperm acrosomal exocytosis†. Biol Reprod 2023; 108:229-240. [PMID: 36308432 DOI: 10.1093/biolre/ioac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane fusion in sperm cells is crucial for acrosomal exocytosis and must be preserved to ensure fertilizing capacity. Evolutionarily conserved protein machinery regulates acrosomal exocytosis. Molecular chaperones play a vital role in spermatogenesis and post-testicular maturation. Cysteine string protein (CSP) is a member of the Hsp40 co-chaperones, and the participation of molecular chaperones in acrosomal exocytosis is poorly understood. In particular, the role of CSP in acrosomal exocytosis has not been reported so far. Using western blot and indirect immunofluorescence, we show that CSP is present in human sperm, is palmitoylated, and predominantly bound to membranes. Moreover, using functional assays and transmission electron microscopy, we report that blocking the function of CSP avoided the assembly of trans-complexes and inhibited exocytosis. In summary, here, we describe the presence of CSP in human sperm and show that this protein has an essential role in membrane fusion during acrosomal exocytosis mediating the trans-SNARE complex assembly between the outer acrosomal and plasma membranes. In general, understanding CSP's role is critical in identifying new biomarkers and generating new rational-based approaches to treat male infertility.
Collapse
Affiliation(s)
- Karina Flores-Montero
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Victoria Berberián
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Ciencias Básicas - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luis Segundo Mayorga
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Celeste Ruete
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
9
|
Bae JW, Hwang JM, Kwon WS. Prediction of male fertility using Ras-related proteins. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1024-1034. [PMID: 36812003 PMCID: PMC9890330 DOI: 10.5187/jast.2022.e83] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Identifying effective biomarkers for the diagnosis of male fertility is crucial for improving animal production and treating male infertility in humans. Ras-related proteins (Rab) are associated with morphological and motion kinematic functions in spermatozoa. Moreover, Rab2A, a Rab protein, is a possible male fertility-related biomarker. The present study was designed to identify additional fertility-related biomarkers among the various Rab proteins. First, the expression of Rab proteins (Rab3A, 4, 5, 8A, 9, 14, 25, 27A, and 34A) from 31 duroc boar spermatozoa was measured before and after capacitation; correlation between Rab protein expression and litter size was evaluated by statistical analysis. The results showed that the expression of Rab3A, 4, 5, 8A, 9, and 25 before capacitation and Rab3A, 4, 5, 8A, 9, and 14 after capacitation were negatively correlated with litter size. Moreover, depending on the cut-off values calculated by receiver operating curves, an increase in litter size was observed when evaluating the ability of the Rab proteins to forecast litter size. Therefore, we suggest that Rab proteins may be potential fertility-related biomarkers that could help select superior sires in the livestock industry.
Collapse
Affiliation(s)
- Jeong-Won Bae
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Ju-Mi Hwang
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Woo-Sung Kwon
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea,Corresponding author: Woo-Sung Kwon,
Department of Animal Science and Biotechnology, Kyungpook National University,
Sangju 37224, Korea. Tel: +82-54-530-1942, E-mail:
| |
Collapse
|
10
|
Bae JW, Yi JK, Jeong EJ, Lee WJ, Hwang JM, Kim DH, Ha JJ, Kwon WS. Ras-related proteins (Rab) play significant roles in sperm motility and capacitation status. Reprod Biol 2022; 22:100617. [PMID: 35180576 DOI: 10.1016/j.repbio.2022.100617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
Rab proteins are widely known for their involvement in establishing Golgi apparatus and controlling Golgi trafficking in eukaryotic cells. Specifically, Rab proteins play significant roles in acrosome formation and exocytosis. Furthermore, mechanisms involved in the regulation of Rab proteins during capacitation have been identified. However, there has been no direct evaluation to assess the correlation between Rab proteins and sperm function. Consequently, this study was designed to analyze the correlation between Rab proteins and sperm functions. Individually, we analyzed the sperm motility patterns, motion kinematics, capacitation status, and Rab protein expression levels of sperm samples from 31 boars before and after capacitation. As a result, we discovered that Rab3A, Rab5, Rab11, Rab14, and Rab27A correlated with various sperm motility patterns, motion kinematics before capacitation. Rab3A, Rab5, Rab11, Rab14, and Rab34 correlated with various sperm motility patterns, motion kinematics after capacitation. Moreover, Rab4 and Rab34 were associated with capacitation status before capacitation, and Rab3A, 25, and 27A correlated with capacitation status after capacitation. This is the first study to analyze the correlation between Rab proteins and sperm functions. Collectively, our results indicate that specific sperm motility and kinematics, as well as the structural condition of the sperm head and capacitation status, regulate individual Rab protein. Therefore, we expect that the current findings will be used to identify the etiology of idiopathic male infertility patients and to diagnose male fertility and that Rab proteins will be employed as biomarkers to predict and analyze male fertility.
Collapse
Affiliation(s)
- Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Jun Koo Yi
- Gyeongbuk Livestock Research Institute, Yeongju, Gyeongsangbuk-do, 36052, Republic of Korea
| | - Eun-Ju Jeong
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Dae-Hyun Kim
- Gyeongbuk Livestock Research Institute, Yeongju, Gyeongsangbuk-do, 36052, Republic of Korea
| | - Jae Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju, Gyeongsangbuk-do, 36052, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea.
| |
Collapse
|
11
|
GDP/GTP exchange factor MADD drives activation and recruitment of secretory Rab GTPases to Weibel-Palade bodies. Blood Adv 2021; 5:5116-5127. [PMID: 34551092 PMCID: PMC9153003 DOI: 10.1182/bloodadvances.2021004827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023] Open
Abstract
von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized and secreted by endothelial cells and stored in Weibel-Palade bodies (WPBs). The secretory Rab GTPases Rab27A, Rab3B, and Rab3D have been linked with WPB trafficking and secretion. How these Rabs are activated and recruited to WPBs remains elusive. In this study, we identified MAP kinase-activating death domain (MADD) as the guanine nucleotide exchange factor for Rab27A and both Rab3 isoforms in primary human endothelial cells. Rab activity assays revealed a reduction in Rab27A, Rab3B, and Rab3D activation upon MADD silencing. Rab activation, but not binding, was dependent on the differentially expressed in normal and neoplastic cells (DENN) domain of MADD, indicating the potential existence of 2 Rab interaction modules. Furthermore, immunofluorescent analysis showed that Rab27A, Rab3B, and Rab3D recruitment to WPBs was dramatically decreased upon MADD knockdown, revealing that MADD drives Rab membrane targeting. Artificial mistargeting of MADD using a TOMM70 tag abolished Rab27A localization to WPB membranes in a DENN domain-dependent manner, indicating that normal MADD localization in the cytosol is crucial. Activation of Rab3B and Rab3D was reduced upon Rab27A silencing, suggesting that activation of these Rabs is enhanced through previous activation of Rab27A by MADD. MADD silencing did not affect WPB morphology, but it did reduce VWF intracellular content. Furthermore, MADD-depleted cells exhibited decreased histamine-evoked VWF release, similar to Rab27A-depleted cells. In conclusion, MADD acts as a master regulator of VWF secretion by coordinating the activation and membrane targeting of secretory Rabs to WPBs.
Collapse
|
12
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
13
|
Reynoso S, Castillo V, Katkar GD, Lopez-Sanchez I, Taheri S, Espinoza C, Rohena C, Sahoo D, Gagneux P, Ghosh P. GIV/Girdin, a non-receptor modulator for Gαi/s, regulates spatiotemporal signaling during sperm capacitation and is required for male fertility. eLife 2021; 10:69160. [PMID: 34409938 PMCID: PMC8376251 DOI: 10.7554/elife.69160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
For a sperm to successfully fertilize an egg, it must first undergo capacitation in the female reproductive tract and later undergo acrosomal reaction (AR) upon encountering an egg surrounded by its vestment. How premature AR is avoided despite rapid surges in signaling cascades during capacitation remains unknown. Using a combination of conditional knockout (cKO) mice and cell-penetrating peptides, we show that GIV (CCDC88A), a guanine nucleotide-exchange modulator (GEM) for trimeric GTPases, is highly expressed in spermatocytes and is required for male fertility. GIV is rapidly phosphoregulated on key tyrosine and serine residues in human and murine spermatozoa. These phosphomodifications enable GIV-GEM to orchestrate two distinct compartmentalized signaling programs in the sperm tail and head; in the tail, GIV enhances PI3K→Akt signals, sperm motility and survival, whereas in the head it inhibits cAMP surge and premature AR. Furthermore, GIV transcripts are downregulated in the testis and semen of infertile men. These findings exemplify the spatiotemporally segregated signaling programs that support sperm capacitation and shed light on a hitherto unforeseen cause of infertility in men.
Collapse
Affiliation(s)
- Sequoyah Reynoso
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, United States
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Gajanan Dattatray Katkar
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Inmaculada Lopez-Sanchez
- Department of Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, United States
| | - Celia Espinoza
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Cristina Rohena
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, United States.,Moore's Comprehensive Cancer Center, University of California San Diego, San Diego, United States.,Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, United States
| | - Pascal Gagneux
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States.,Department of Medicine, School of Medicine, University of California San Diego, San Diego, United States.,Moore's Comprehensive Cancer Center, University of California San Diego, San Diego, United States.,Veterans Affairs Medical Center, Washington DC, United States
| |
Collapse
|
14
|
Shan MM, Sun SC. The multiple roles of RAB GTPases in female and male meiosis. Hum Reprod Update 2021; 27:1013-1029. [PMID: 34227671 DOI: 10.1093/humupd/dmab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND RAB GTPases constitute the largest family of small GTPases and are found in all eukaryotes. RAB GTPases regulate components of the endomembrane system, the nucleus and the plasma membrane, and are involved in intracellular actin/tubulin-dependent vesicle movement, membrane fusion and cell growth in mitosis. OBJECTIVE AND RATIONALE RAB GTPases play multiple critical roles during both female and male meiosis. This review summarizes the progress made in our understanding of the role of RAB GTPases in female and male meiosis in different species. We also discuss the potential relationship between RAB GTPases and oocyte/sperm quality, which may help in understanding the mechanisms underlying oogenesis and spermatogenesis and potential genetic causes of infertility. SEARCH METHODS The PubMed database was searched for articles published between 1991 and 2020 using the following terms: 'RAB', 'RAB oocyte', 'RAB sperm' and 'RAB meiosis'. OUTCOMES An analysis of 126 relevant articles indicated that RAB GTPases are present in all eukaryotes, and ten subfamilies (almost 70 members) are expressed in human cells. The roles of 25 RAB proteins and orthologues in female meiosis and 12 in male meiosis have been reported. RAB proteins are essential for the accurate continuity of genetic material, successful fertilization and the normal growth of offspring. Distinct and crucial functions of RAB GTPases in meiosis have been reported. In oocytes, RAB GTPases are involved in spindle organization, kinetochore-microtubule attachment, chromosome alignment, actin filament-mediated spindle migration, cytokinesis, cell cycle and oocyte-embryo transition. RAB GTPases function in mitochondrial processes and Golgi-mediated vesicular transport during female meiosis, and are critical for cortical granule transport during fertilization and oocyte-embryo transition. In sperm, RAB GTPases are vital for cytoskeletal organization and successful cytokinesis, and are associated with Golgi-mediated acrosome formation, membrane trafficking and morphological changes of sperm cells, as well as the exocytosis-related acrosome reaction and zona reaction during fertilization. WIDER IMPLICATIONS Abnormal expression of RAB GTPases disrupts intracellular systems, which may induce diverse diseases. The roles of RAB proteins in female and male reproductive systems, thus, need to be considered. The mechanisms underlying the function of RAB GTPases and the binding specificity of their effectors during oogenesis, spermatogenesis and fertilization remain to be studied. This review should contribute to our understanding of the molecular mechanisms of oogenesis and spermatogenesis and potential genetic causes of infertility.
Collapse
Affiliation(s)
- Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Arias-Hervert ER, Xu N, Njus M, Murphy GG, Hou Y, Williams JA, Lentz SI, Ernst SA, Stuenkel EL. Actions of Rab27B-GTPase on mammalian central excitatory synaptic transmission. Physiol Rep 2021; 8:e14428. [PMID: 32358861 PMCID: PMC7195558 DOI: 10.14814/phy2.14428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Members of the Rab3 gene family are considered central to membrane trafficking of synaptic vesicles at mammalian central excitatory synapses. Recent evidence, however, indicates that the Rab27B-GTPase, which is highly homologous to the Rab3 family, is also enriched on SV membranes and co-localize with Rab3A and Synaptotagmin at presynaptic terminals. While functional roles of Rab3A have been well-established, little functional information exists on the role of Rab27B in synaptic transmission. Here we report on functional effects of Rab27B at SC-CA1 and DG-MF hippocampal synapses. The data establish distinct functional actions of Rab27B and demonstrate functions of Rab27B that differ between SC-CA1 and DG-MF synapses. Rab27B knockout reduced frequency facilitation compared to wild-type (WT) controls at the DG/MF-CA3 synaptic region, while increasing facilitation at the SC-CA1 synaptic region. Remarkably, Rab27B KO resulted in a complete elimination of LTP at the MF-CA3 synapse with no effect at the SC-CA1 synapse. These actions are similar to those previously reported for Rab3A KO. Specificity of action on LTP to Rab27B was confirmed as LTP was rescued in response to lentiviral infection and expression of human Rab27B, but not to GFP, in the DG in the Rab27B KO mice. Notably, the effect of Rab27B KO on MF-CA3 LTP occurred in spite of continued expression of Rab3A in the Rab27B KO. Overall, the results provide a novel perspective in suggesting that Rab27B and Rab3A act synergistically, perhaps via sequential effector recruitment or signaling for presynaptic LTP expression in this hippocampal synaptic region.
Collapse
Affiliation(s)
- Erwin R Arias-Hervert
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA
| | - Nicole Xu
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA
| | - Meredith Njus
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA
| | - Geoff G Murphy
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA.,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yanan Hou
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA
| | - John A Williams
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA.,Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephen I Lentz
- Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephen A Ernst
- Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Edward L Stuenkel
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
de Paola M, Garrido F, Zanetti MN, Michaut MA. VAMPs sensitive to tetanus toxin are required for cortical granule exocytosis in mouse oocytes. Exp Cell Res 2021; 405:112629. [PMID: 34023392 DOI: 10.1016/j.yexcr.2021.112629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023]
Abstract
Fusion of cortical granules with oocyte plasma membrane is one of the most significant secretory events to prevent polyspermy during oocyte activation. Cortical granule exocytosis (CGE) is distinct from most other exocytosis because cortical granules are not renewed after secretion. However, it is thought to be mediated by SNARE complex, which mediates membrane fusion in other exocytoses. SNAREs proteins are divided into Q (glutamine)- and R (arginine)-SNAREs. Q-SNAREs include Syntaxins and SNAP25 family, and R-SNAREs include VAMPs family. In mouse oocytes, Syntaxin4 and SNAP23 have been involved in CGE; nevertheless, it is unknown if VAMP is required. Here, we demonstrated by RT-PCR and immunoblotting that VAMP1 and VAMP3 are expressed in mouse oocyte, and they localized in the cortical region of this cell. Using a functional assay to quantify CGE, we showed that tetanus toxin -which specifically cleavages VAMP1, VAMP2 or VAMP3- inhibited CGE suggesting that at least one VAMP was necessary. Function blocking assays demonstrated that only the microinjection of anti-VAMP1 or anti-VAMP3 antibodies abolished CGE in activated oocytes. These findings demonstrate that R-SNAREs sensitive to tetanus toxin, VAMP1 and VAMP3 -but not VAMP2-, are required for CGE and demonstrate that CGE is mediated by the SNARE complex.
Collapse
Affiliation(s)
- Matilde de Paola
- Laboratorio de Biología Reproductiva y Molecular, Instituto de Histología y Embriología, Universidad Nacional de Cuyo-CONICET, Av. Libertador 80, 5500, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Av. Libertador 80, 5500, Mendoza, Argentina
| | - Facundo Garrido
- Laboratorio de Biología Reproductiva y Molecular, Instituto de Histología y Embriología, Universidad Nacional de Cuyo-CONICET, Av. Libertador 80, 5500, Mendoza, Argentina
| | - María N Zanetti
- Laboratorio de Biología Reproductiva y Molecular, Instituto de Histología y Embriología, Universidad Nacional de Cuyo-CONICET, Av. Libertador 80, 5500, Mendoza, Argentina
| | - Marcela Alejandra Michaut
- Laboratorio de Biología Reproductiva y Molecular, Instituto de Histología y Embriología, Universidad Nacional de Cuyo-CONICET, Av. Libertador 80, 5500, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras, 1300, Mendoza, Argentina.
| |
Collapse
|
17
|
Ma CIJ, Brill JA. Endosomal Rab GTPases regulate secretory granule maturation in Drosophila larval salivary glands. Commun Integr Biol 2021; 14:15-20. [PMID: 33628358 PMCID: PMC7889263 DOI: 10.1080/19420889.2021.1874663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Secretory granules (SGs) are organelles responsible for regulated exocytosis of biologically active molecules in professional secretory cells. Maturation of SGs is a crucial process in which cargoes of SGs are processed and activated, allowing them to exert their function upon secretion. Nonetheless, the intracellular trafficking pathways required for SG maturation are not well defined. We recently performed an RNA interference (RNAi) screen in Drosophila larval salivary glands to identify trafficking components needed for SG maturation. From the screen, we identified several Rab GTPases (Rabs) that affect SG maturation. Expression of constitutively active (CA) and dominant-negative (DN) forms narrowed down the Rabs important for this process to Rab5, Rab9 and Rab11. However, none of these Rabs localizes to the limiting membrane of SGs. In contrast, examination of endogenously YFP-tagged Rabs (YRabs) in larval salivary glands revealed that YRab1 and YRab6 localize to the limiting membrane of immature SGs (iSGs) and SGs. These findings provide new insights into how Rab GTPases contribute to the process of SG maturation.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Medical Sciences Building, Toronto, ON, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Medical Sciences Building, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Toronto, ON, Canada
| |
Collapse
|
18
|
Valdivia A, Cárdenas A, Brenet M, Maldonado H, Kong M, Díaz J, Burridge K, Schneider P, San Martín A, García-Mata R, Quest AFG, Leyton L. Syndecan-4/PAR-3 signaling regulates focal adhesion dynamics in mesenchymal cells. Cell Commun Signal 2020; 18:129. [PMID: 32811537 PMCID: PMC7433185 DOI: 10.1186/s12964-020-00629-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Background Syndecans regulate cell migration thus having key roles in scarring and wound healing processes. Our previous results have shown that Thy-1/CD90 can engage both αvβ3 integrin and Syndecan-4 expressed on the surface of astrocytes to induce cell migration. Despite a well-described role of Syndecan-4 during cell movement, information is scarce regarding specific Syndecan-4 partners involved in Thy-1/CD90-stimulated cell migration. Methods Mass spectrometry (MS) analysis of complexes precipitated with the Syndecan-4 cytoplasmic tail peptide was used to identify potential Syndecan-4-binding partners. The interactions found by MS were validated by immunoprecipitation and proximity ligation assays. The conducted research employed an array of genetic, biochemical and pharmacological approaches, including: PAR-3, Syndecan-4 and Tiam1 silencing, active Rac1 GEFs affinity precipitation, and video microscopy. Results We identified PAR-3 as a Syndecan-4-binding protein. Its interaction depended on the carboxy-terminal EFYA sequence present on Syndecan-4. In astrocytes where PAR-3 expression was reduced, Thy-1-induced cell migration and focal adhesion disassembly was impaired. This effect was associated with a sustained Focal Adhesion Kinase activation in the siRNA-PAR-3 treated cells. Our data also show that Thy-1/CD90 activates Tiam1, a PAR-3 effector. Additionally, we found that after Syndecan-4 silencing, Tiam1 activation was decreased and it was no longer recruited to the membrane. Syndecan-4/PAR-3 interaction and the alteration in focal adhesion dynamics were validated in mouse embryonic fibroblast (MEF) cells, thereby identifying this novel Syndecan-4/PAR-3 signaling complex as a general mechanism for mesenchymal cell migration involved in Thy-1/CD90 stimulation. Conclusions The newly identified Syndecan-4/PAR-3 signaling complex participates in Thy-1/CD90-induced focal adhesion disassembly in mesenchymal cells. The mechanism involves focal adhesion kinase dephosphorylation and Tiam1 activation downstream of Syndecan-4/PAR-3 signaling complex formation. Additionally, PAR-3 is defined here as a novel adhesome-associated component with an essential role in focal adhesion disassembly during polarized cell migration. These novel findings uncover signaling mechanisms regulating cell migration, thereby opening up new avenues for future research on Syndecan-4/PAR-3 signaling in processes such as wound healing and scarring. Graphical abstract ![]()
Collapse
Affiliation(s)
- Alejandra Valdivia
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile. .,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile. .,Microscopy in Medicine (MiM) Core, Emory University, Atlanta, GA, 30322, USA. .,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,School of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA.
| | - Areli Cárdenas
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Marianne Brenet
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Horacio Maldonado
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,UNC Catalyst for Rare Disease, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Milene Kong
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.,Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Alejandra San Martín
- School of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Rafael García-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Andrew F G Quest
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile. .,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.
| |
Collapse
|
19
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|
20
|
Dolce LG, Ohbayashi N, Silva DFD, Ferrari AJ, Pirolla RA, Schwarzer ACDA, Zanphorlin LM, Cabral L, Fioramonte M, Ramos CH, Gozzo FC, Fukuda M, Giuseppe POD, Murakami MT. Unveiling the interaction between the molecular motor Myosin Vc and the small GTPase Rab3A. J Proteomics 2020; 212:103549. [DOI: 10.1016/j.jprot.2019.103549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
|
21
|
Ras-related proteins (Rab) are key proteins related to male fertility following a unique activation mechanism. Reprod Biol 2019; 19:356-362. [DOI: 10.1016/j.repbio.2019.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
|
22
|
The RAB3-RIM Pathway Is Essential for the Release of Neuromodulators. Neuron 2019; 104:1065-1080.e12. [PMID: 31679900 DOI: 10.1016/j.neuron.2019.09.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/01/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Secretion principles are conserved from yeast to humans, and many yeast orthologs have established roles in synaptic vesicle exocytosis in the mammalian brain. Surprisingly, SEC4 orthologs and their effectors, the exocyst, are dispensable for synaptic vesicle exocytosis. Here, we identify the SEC4 ortholog RAB3 and its neuronal effector, RIM1, as essential molecules for neuropeptide and neurotrophin release from dense-core vesicles (DCVs) in mammalian neurons. Inactivation of all four RAB3 genes nearly ablated DCV exocytosis, and re-expression of RAB3A restored this deficit. In RIM1/2-deficient neurons, DCV exocytosis was undetectable. Full-length RIM1, but not mutants that lack RAB3 or MUNC13 binding, restored release. Strikingly, a short N-terminal RIM1 fragment only harboring RAB3- and MUNC13-interacting domains was sufficient to support DCV exocytosis. We propose that RIM and MUNC13 emerged as mammalian alternatives to the yeast exocyst complex as essential RAB3/SEC4 effectors and organizers of DCV fusion sites by recruiting DCVs via RAB3.
Collapse
|
23
|
Morgan NE, Cutrona MB, Simpson JC. Multitasking Rab Proteins in Autophagy and Membrane Trafficking: A Focus on Rab33b. Int J Mol Sci 2019; 20:ijms20163916. [PMID: 31408960 PMCID: PMC6719199 DOI: 10.3390/ijms20163916] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy (particularly macroautophagy) is a bulk degradation process used by eukaryotic cells in order to maintain adequate energy levels and cellular homeostasis through the delivery of long-lived proteins and organelles to the lysosome, resulting in their degradation. It is becoming increasingly clear that many of the molecular requirements to fulfil autophagy intersect with those of conventional and unconventional membrane trafficking pathways. Of particular interest is the dependence of these processes on multiple members of the Rab family of small GTP binding proteins. Rab33b is a protein that localises to the Golgi apparatus and has suggested functions in both membrane trafficking and autophagic processes. Interestingly, mutations in the RAB33B gene have been reported to cause the severe skeletal disorder, Smith–McCort Dysplasia; however, the molecular basis for Rab33b in this disorder remains to be determined. In this review, we focus on the current knowledge of the participation of Rab33b and its interacting partners in membrane trafficking and macroautophagy, and speculate on how its function, and dysfunction, may contribute to human disease.
Collapse
Affiliation(s)
- Niamh E Morgan
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland
| | - Meritxell B Cutrona
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland.
| |
Collapse
|
24
|
Arce M, Pinto MP, Galleguillos M, Muñoz C, Lange S, Ramirez C, Erices R, Gonzalez P, Velasquez E, Tempio F, Lopez MN, Salazar-Onfray F, Cautivo K, Kalergis AM, Cruz S, Lladser Á, Lobos-González L, Valenzuela G, Olivares N, Sáez C, Koning T, Sánchez FA, Fuenzalida P, Godoy A, Contreras Orellana P, Leyton L, Lugano R, Dimberg A, Quest AFG, Owen GI. Coagulation Factor Xa Promotes Solid Tumor Growth, Experimental Metastasis and Endothelial Cell Activation. Cancers (Basel) 2019; 11:cancers11081103. [PMID: 31382462 PMCID: PMC6721564 DOI: 10.3390/cancers11081103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.
Collapse
Affiliation(s)
- Maximiliano Arce
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Mauricio P Pinto
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Macarena Galleguillos
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Catalina Muñoz
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Soledad Lange
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Carolina Ramirez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rafaela Erices
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Vicerrectoría de Investigación, Universidad Mayor, Santiago 7510041, Chile
| | - Pamela Gonzalez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Ethel Velasquez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Comisión Chilena de Energía Nuclear (CCHEN), Santiago, Chile
| | - Fabián Tempio
- Institute of Biomedical Sciences, Faculty of Medicine, University de Chile, Santiago 8380453, Chile
| | - Mercedes N Lopez
- Institute of Biomedical Sciences, Faculty of Medicine, University de Chile, Santiago 8380453, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Flavio Salazar-Onfray
- Institute of Biomedical Sciences, Faculty of Medicine, University de Chile, Santiago 8380453, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Kelly Cautivo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M Kalergis
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Biomedical Research Consortium of Chile, Santiago 8331010, Chile
| | - Sebastián Cruz
- Laboratory of Immunoncology, Fundación Ciencia & Vida, Santiago, Chile
| | - Álvaro Lladser
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Laboratory of Immunoncology, Fundación Ciencia & Vida, Santiago, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Immunoncology, Fundación Ciencia & Vida, Santiago, Chile
- Regenerative Medicine Center, Faculty of Medicine, Clinica Alemana-Universidad Del Desarrollo, Santiago 7650568, Chile
| | - Guillermo Valenzuela
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nixa Olivares
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudia Sáez
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Tania Koning
- Immunology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Fabiola A Sánchez
- Immunology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Patricia Fuenzalida
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alejandro Godoy
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Pamela Contreras Orellana
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Cellular Communication, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Lisette Leyton
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Cellular Communication, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Cellular Communication, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile.
| |
Collapse
|
25
|
Ruete MC, Zarelli VEP, Masone D, de Paola M, Bustos DM, Tomes CN. A connection between reversible tyrosine phosphorylation and SNARE complex disassembly activity of N-ethylmaleimide-sensitive factor unveiled by the phosphomimetic mutant N-ethylmaleimide-sensitive factor-Y83E. ACTA ACUST UNITED AC 2019; 25:344-358. [DOI: 10.1093/molehr/gaz031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Abstract
N-ethylmaleimide-sensitive factor (NSF) disassembles fusion-incompetent cis soluble-NSF attachment protein receptor (SNARE) complexes making monomeric SNAREs available for subsequent trans pairing and fusion. In most cells the activity of NSF is constitutive, but in Jurkat cells and sperm it is repressed by tyrosine phosphorylation; the phosphomimetic mutant NSF–Y83E inhibits secretion in the former. The questions addressed here are if and how the NSF mutant influences the configuration of the SNARE complex. Our model is human sperm, where the initiation of exocytosis (acrosome reaction (AR)) de-represses the activity of NSF through protein tyrosine phosphatase 1B (PTP1B)-mediated dephosphorylation. We developed a fluorescence microscopy-based method to show that capacitation increased, and challenging with an AR inducer decreased, the number of cells with tyrosine-phosphorylated PTP1B substrates in the acrosomal domain. Results from bioinformatic and biochemical approaches using purified recombinant proteins revealed that NSF–Y83E bound PTP1B and thereupon inhibited its catalytic activity. Mutant NSF introduced into streptolysin O-permeabilized sperm impaired cis SNARE complex disassembly, blocking the AR; subsequent addition of PTP1B rescued exocytosis. We propose that NSF–Y83E prevents endogenous PTP1B from dephosphorylating sperm NSF, thus maintaining NSF’s activity in a repressed mode and the SNARE complex unable to dissociate. The contribution of this paper to the sperm biology field is the detection of PTP1B substrates, one of them likely being NSF, whose tyrosine phosphorylation status varies during capacitation and the AR. The contribution of this paper to the membrane traffic field is to have generated direct evidence that explains the dominant-negative role of the phosphomimetic mutant NSF–Y83E.
Collapse
Affiliation(s)
- María Celeste Ruete
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Valeria Eugenia Paola Zarelli
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Matilde de Paola
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo–Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Martín Bustos
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
26
|
Quevedo MF, Bustos MA, Masone D, Roggero CM, Bustos DM, Tomes CN. Grab recruitment by Rab27A-Rabphilin3a triggers Rab3A activation in human sperm exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:612-622. [PMID: 30599141 DOI: 10.1016/j.bbamcr.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Abstract
Sperm must undergo the regulated exocytosis of its dense core granule (the acrosome reaction, AR) to fertilize the egg. We have previously described that Rabs3 and 27 are organized in a RabGEF cascade within the signaling pathway elicited by exocytosis stimuli in human sperm. Here, we report the identity and the role of two molecules that link these secretory Rabs in the RabGEF cascade: Rabphilin3a and GRAB. Like Rab3 and Rab27, GRAB and Rabphilin3a are present, localize to the acrosomal region and are required for calcium-triggered exocytosis in human sperm. Sequestration of either protein with specific antibodies introduced into streptolysin O-permeabilized sperm impairs the activation of Rab3 in the acrosomal region elicited by calcium, but not that of Rab27. Biochemical and functional assays indicate that Rabphilin3a behaves as a Rab27 effector during the AR and that GRAB exhibits GEF activity toward Rab3A. Recombinant, active Rab27A pulls down Rabphilin3a and GRAB from human sperm extracts. Conversely, immobilized Rabphilin3a recruits Rab27 and GRAB; the latter promotes Rab3A activation. The enzymatic activity of GRAB toward Rab3A was also suggested by in silico and in vitro assays with purified proteins. In summary, we describe here a signaling module where Rab27A-GTP interacts with Rabphilin3a, which in turn recruits a guanine nucleotide-exchange activity toward Rab3A. This is the first description of the interaction of Rabphilin3a with a GEF. Because the machinery that drives exocytosis is highly conserved, it is tempting to hypothesize that the RabGEF cascade unveiled here might be part of the molecular mechanisms that drive exocytosis in other secretory systems.
Collapse
Affiliation(s)
- María Florencia Quevedo
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Matías Alberto Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Diego Masone
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ingeniería, Universidad Nacional de Cuyo, Argentina
| | | | - Diego Martín Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina
| | - Claudia Nora Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina.
| |
Collapse
|
27
|
Uno T, Ozakiya Y, Furutani M, Sakamoto K, Uno Y, Kajiwara H, Kanamaru K, Mizoguchi A. Functional characterization of insect-specific RabX6 of Bombyx mori. Histochem Cell Biol 2018; 151:187-198. [DOI: 10.1007/s00418-018-1710-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
|
28
|
Bustos MA, Lucchesi O, Ruete MC, Tomes CN. Membrane-permeable Rab27A is a regulator of the acrosome reaction: Role of geranylgeranylation and guanine nucleotides. Cell Signal 2018; 44:72-81. [PMID: 29337043 DOI: 10.1016/j.cellsig.2018.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
The acrosome reaction is the regulated exocytosis of mammalian sperm's single secretory granule, essential for fertilization. It relies on small GTPases, the cAMP binding protein Epac, and the SNARE complex, among other components. Here, we describe a novel tool to investigate Rab27-related signaling pathways: a hybrid recombinant protein consisting of human Rab27A fused to TAT, a cell penetrating peptide. With this tool, we aimed to unravel the connection between Rab3, Rab27 and Rap1 in sperm exocytosis and to deepen our understanding about how isoprenylation and guanine nucleotides influence the behaviour of Rab27 in exocytosis. Our results show that TAT-Rab27A-GTP-γ-S permeated into live sperm and triggered acrosomal exocytosis per se when geraylgeranylated but inhibited it when not lipid-modified. Likewise, an impermeant version of Rab27A elicited exocytosis in streptolysin O-permeabilized - but not in non-permeabilized - cells when geranylgeranylated and active. When GDP-β-S substituted for GTP-γ-S, isoprenylated TAT-Rab27A inhibited the acrosome reaction triggered by progesterone and an Epac-selective cAMP analogue, whereas the non-isoprenylated protein did not. Geranylgeranylated TAT-Rab27A-GTP-γ-S promoted the exchange of GDP for GTP on Rab3 and Rap1 detected by far-immunofluorescence with Rab3-GTP and Rap1-GTP binding cassettes. In contrast, TAT-Rab27A lacking isoprenylation or loaded with GDP-β-S prevented the activation of Rab3 and Rap1 elicited by progesterone. Challenging streptolysin O-permeabilized human sperm with calcium increased the population of sperm with Rap1-GTP, Rab3-GTP and Rab27-GTP in the acrosomal region; pretreatment with anti-Rab27 antibodies prevented the activation of all three. The novel findings reported here include: the description of membrane permeant TAT-Rab27A as a trustworthy tool to unveil the regulation of the human sperm acrosome reaction by Rab27 under physiological conditions; that the activation of endogenous Rab27 is required for that of Rab3 and Rap1; and the connection between Epac and Rab27 and between Rab27 and the configuration of the SNARE complex. Moreover, we present direct evidence that Rab27A's lipid modification, and activation/inactivation status correlate with its stimulatory or inhibitory roles in exocytosis.
Collapse
Affiliation(s)
- Matías A Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - Ornella Lucchesi
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - María C Ruete
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - Claudia N Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina.
| |
Collapse
|
29
|
Rewiring a Rab regulatory network reveals a possible inhibitory role for the vesicle tether, Uso1. Proc Natl Acad Sci U S A 2017; 114:E8637-E8645. [PMID: 28973856 DOI: 10.1073/pnas.1708394114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ypt1 and Sec4 are essential Rab GTPases that control the early and late stages of the yeast secretory pathway, respectively. A chimera consisting of Ypt1 with the switch I domain of Sec4, Ypt1-SW1Sec4, is efficiently activated in vitro by the Sec4 exchange factor, Sec2. This should lead to its ectopic activation in vivo and thereby disrupt membrane traffic. Nonetheless early studies found that yeast expressing Ypt1-SW1Sec4 as the sole copy of YPT1 exhibit no growth defect. To resolve this conundrum, we have analyzed yeast expressing various levels of Ypt1-SW1Sec4 We show that even normal expression of Ypt1-SW1Sec4 leads to kinetic transport defects at a late stage of the pathway, with secretory vesicles accumulating near exocytic sites. Higher levels are toxic. Toxicity is suppressed by truncation of Uso1, a vesicle tether required for endoplasmic reticulum-Golgi traffic. The globular head of Uso1 binds to Ypt1 and its coiled-coil tail binds to the Golgi-associated SNARE, Sed5. We propose that when Uso1 is inappropriately recruited to secretory vesicles by Ypt1-SW1Sec4, the extended coiled-coil tail blocks docking to the plasma membrane. This putative inhibitory function could serve to increase the fidelity of vesicle docking.
Collapse
|
30
|
Laqqan M, Solomayer EF, Hammadeh M. Aberrations in sperm DNA methylation patterns are associated with abnormalities in semen parameters of subfertile males. Reprod Biol 2017; 17:246-251. [DOI: 10.1016/j.repbio.2017.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 01/07/2023]
|
31
|
Mutant Huntingtin Impairs BDNF Release from Astrocytes by Disrupting Conversion of Rab3a-GTP into Rab3a-GDP. J Neurosci 2017; 36:8790-801. [PMID: 27559163 DOI: 10.1523/jneurosci.0168-16.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/06/2016] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Brain-derived neurotrophic factor (BDNF) is essential for neuronal differentiation and survival. We know that BDNF levels decline in the brains of patients with Huntington's disease (HD), a neurodegenerative disease caused by the expression of mutant huntingtin protein (mHtt), and furthermore that administration of BDNF in HD mice is protective against HD neuropathology. BDNF is produced in neurons, but astrocytes are also an important source of BDNF in the brain. Nonetheless, whether mHtt affects astrocytic BDNF in the HD brain remains unknown. Here we investigated astrocytes from HD140Q knock-in mice and uncovered evidence that mHtt decreases BDNF secretion from astrocytes, which is mediated by exocytosis in astrocytes. Our results demonstrate that mHtt associates with Rab3a, a small GTPase localized on membranes of dense-core vesicles, and prevents GTP-Rab3a from binding to Rab3-GAP1, disrupting the conversion of GTP-Rab3a into GDP-Rab3a and thus impairing the docking of BDNF vesicles on plasma membranes of astrocytes. Importantly, overexpression of Rab3a rescues impaired BDNF vesicle docking and secretion from HD astrocytes. Moreover, ATP release and the number of ATP-containing dense-core vesicles docking are decreased in HD astrocytes, suggesting that the exocytosis of dense-core vesicles is impaired by mHtt in HD astrocytes. Further, Rab3a overexpression reduces reactive astrocytes in the striatum of HD140Q knock-in mice. Our results indicate that compromised exocytosis of BDNF in HD astrocytes contributes to the decreased BDNF levels in HD brains and underscores the importance of improving glial function in the treatment of HD. SIGNIFICANCE STATEMENT Huntington's disease (HD) is an inherited neurodegenerative disorder that affects one in every 10,000 Americans. To date, there is no effective treatment for HD, in part because the pathogenic mechanism driving the disease is not fully understood. The dysfunction of astrocytes is known to contribute to the pathogenesis of HD. One important role of astrocytes is to synthesize and release brain-derived neurotrophic factor (BDNF), which is vital for neuronal survival, development, and function. We found that mutant huntingtin protein (mHtt) at the endogenous level decreases BDNF secretion from astrocytes by disrupting the conversion of GTP-Rab3a into GDP-Rab3a and that overexpressing Rab3a can rescue this deficient BDNF release and early neuropathology in HD knock-in mouse brain. Our study suggests that astrocytic Rab3a is a potential therapeutic target for HD treatment.
Collapse
|
32
|
Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 2017; 9:95-106. [PMID: 28135905 PMCID: PMC5902209 DOI: 10.1080/21541248.2016.1264352] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the last two decades, extracellular vesicle-mediated communication between cells has become a major field in cell biology. However, the function of extracellular vesicles is far from clear, especially due to the disparity of released vesicles by cells. Basically, one must consider vesicles budding from the cell plasma membrane (ectosomes) and vesicles released upon fusion of an endosomal multivesicular compartment (exosomes). Moreover, even for exosomes, we report and discuss here the possibility that different routes regulated by specific Rab GTPases might produce exosomes having various biologic functions.
Collapse
Affiliation(s)
- Lionel Blanc
- a Laboratory of Developmental Erythropoiesis, The Feinstein Institute for Medical Research Hofstra Northwell School of Medicine , Manhasset , NY , USA
| | - Michel Vidal
- b UMR 5235, CNRS, Université Montpellier , cc107, Montpellier , France
| |
Collapse
|
33
|
Lin YH, Ke CC, Wang YY, Chen MF, Chen TM, Ku WC, Chiang HS, Yeh CH. RAB10 Interacts with the Male Germ Cell-Specific GTPase-Activating Protein during Mammalian Spermiogenesis. Int J Mol Sci 2017; 18:ijms18010097. [PMID: 28067790 PMCID: PMC5297731 DOI: 10.3390/ijms18010097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/23/2023] Open
Abstract
According to recent estimates, 2%–15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins (MGCRABGAPs) through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16). RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration) by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1), were identified using co-immunoprecipitation (co-IP) and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS). We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP–RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chih-Chun Ke
- Department of Urology, En Chu Kong Hospital, New Taipei City 23702, Taiwan.
| | - Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Tsung-Ming Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan.
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chung-Hsin Yeh
- Division of Urology, Department of Surgery, Shin-Kong Wu-Su Memorial Hospital, Taipei 11101, Taiwan.
| |
Collapse
|
34
|
Cheeseman LP, Boulanger J, Bond LM, Schuh M. Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes. Nat Commun 2016; 7:13726. [PMID: 27991490 PMCID: PMC5187413 DOI: 10.1038/ncomms13726] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
An egg must be fertilized by a single sperm only. To prevent polyspermy, the zona pellucida, a structure that surrounds mammalian eggs, becomes impermeable upon fertilization, preventing the entry of further sperm. The structural changes in the zona upon fertilization are driven by the exocytosis of cortical granules. These translocate from the oocyte's centre to the plasma membrane during meiosis. However, very little is known about the mechanism of cortical granule translocation. Here we investigate cortical granule transport and dynamics in live mammalian oocytes by using Rab27a as a marker. We show that two separate mechanisms drive their transport: myosin Va-dependent movement along actin filaments, and an unexpected vesicle hitchhiking mechanism by which cortical granules bind to Rab11a vesicles powered by myosin Vb. Inhibiting cortical granule translocation severely impaired the block to sperm entry, suggesting that translocation defects could contribute to miscarriages that are caused by polyspermy.
Mammalian eggs release cortical granules to avoid being fertilized by more than a single sperm as polyspermy results in nonviable embryos. Here, the authors describe the mechanism driving translocation of the granules to the cortex in the mouse egg and show this process is essential to prevent polyspermy.
Collapse
Affiliation(s)
- Liam P Cheeseman
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jérôme Boulanger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Lisa M Bond
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Melina Schuh
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.,Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
35
|
Quevedo MF, Lucchesi O, Bustos MA, Pocognoni CA, De la Iglesia PX, Tomes CN. The Rab3A-22A Chimera Prevents Sperm Exocytosis by Stabilizing Open Fusion Pores. J Biol Chem 2016; 291:23101-23111. [PMID: 27613869 DOI: 10.1074/jbc.m116.729954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction.
Collapse
Affiliation(s)
- María F Quevedo
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Ornella Lucchesi
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Matías A Bustos
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Cristian A Pocognoni
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Paola X De la Iglesia
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Claudia N Tomes
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| |
Collapse
|
36
|
Belmonte SA, Mayorga LS, Tomes CN. The Molecules of Sperm Exocytosis. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016; 220:71-92. [PMID: 27194350 DOI: 10.1007/978-3-319-30567-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exocytosis is a fundamental process used by eukaryotic cells to release biological compounds and to insert lipids and proteins in the plasma membrane. Specialized secretory cells undergo regulated exocytosis in response to physiological signals. Sperm exocytosis or acrosome reaction (AR) is essentially a regulated secretion with special characteristics. We will focus here on some of these unique features, covering the topology, kinetics, and molecular mechanisms that prepare, drive, and regulate membrane fusion during the AR. Last, we will compare acrosomal release with exocytosis in other model systems.
Collapse
Affiliation(s)
- Silvia A Belmonte
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina
| | - Luis S Mayorga
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina
| | - Claudia N Tomes
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina.
| |
Collapse
|
37
|
Whole Genome Sequencing Identifies a Novel Factor Required for Secretory Granule Maturation in Tetrahymena thermophila. G3-GENES GENOMES GENETICS 2016; 6:2505-16. [PMID: 27317773 PMCID: PMC4978903 DOI: 10.1534/g3.116.028878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Unbiased genetic approaches have a unique ability to identify novel genes associated with specific biological pathways. Thanks to next generation sequencing, forward genetic strategies can be expanded to a wider range of model organisms. The formation of secretory granules, called mucocysts, in the ciliate Tetrahymena thermophila relies, in part, on ancestral lysosomal sorting machinery, but is also likely to involve novel factors. In prior work, multiple strains with defects in mucocyst biogenesis were generated by nitrosoguanidine mutagenesis, and characterized using genetic and cell biological approaches, but the genetic lesions themselves were unknown. Here, we show that analyzing one such mutant by whole genome sequencing reveals a novel factor in mucocyst formation. Strain UC620 has both morphological and biochemical defects in mucocyst maturation-a process analogous to dense core granule maturation in animals. Illumina sequencing of a pool of UC620 F2 clones identified a missense mutation in a novel gene called MMA1 (Mucocyst maturation). The defects in UC620 were rescued by expression of a wild-type copy of MMA1, and disrupting MMA1 in an otherwise wild-type strain phenocopies UC620. The product of MMA1, characterized as a CFP-tagged copy, encodes a large soluble cytosolic protein. A small fraction of Mma1p-CFP is pelletable, which may reflect association with endosomes. The gene has no identifiable homologs except in other Tetrahymena species, and therefore represents an evolutionarily recent innovation that is required for granule maturation.
Collapse
|
38
|
Yang J, Liu W, Lu X, Fu Y, Li L, Luo Y. High expression of small GTPase Rab3D promotes cancer progression and metastasis. Oncotarget 2016; 6:11125-38. [PMID: 25823663 PMCID: PMC4484444 DOI: 10.18632/oncotarget.3575] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/21/2015] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases control exocytic and endocytic membrane trafficking such as exosomes release. As a secretory small GTPase, Rab3D is a vital regulator for protein secretion. However, the role of Rab3D in cancer was never systematically studied. The aim of this study is to examine its function and mechanism in cancer, especially metastasis. We detected protein levels of Rab3D in nine cancer cell lines and twelve types of clinical cancer specimens. Subsequently, we established in vitro migration and in vivo orthotopic metastatic mouse models to study the role of Rab3D in tumor metastasis. Here, we reported that the expression levels of Rab3D were dysregulated in cancer cells and highly correlated with tumor malignancies in the clinical samples. Increased expressions of Rab3D led to tumor invasion in vitro and lung metastasis in vivo, whereas Rab3D knockdown suppressed the tumor cell motility. Mechanistic studies revealed that Rab3D activated intracellular the AKT/GSK3β signaling to induce the EMT process. In addition, it also regulated the extracellular secretion of Hsp90α to promote tumor cell migration and invasion. These results prove that Rab3D is a key molecule to regulate tumor metastasis, suggesting that blocking the Rab3D function can be a potential therapeutic approach for cancer metastasis.
Collapse
Affiliation(s)
- Jian Yang
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Liu
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin'an Lu
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Fu
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin Li
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
39
|
Bustos MA, Lucchesi O, Ruete MC, Mayorga LS, Tomes CN. Small GTPases in acrosomal exocytosis. Methods Mol Biol 2016; 1298:141-60. [PMID: 25800839 DOI: 10.1007/978-1-4939-2569-8_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulated exocytosis employs a conserved molecular machinery in all secretory cells. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Rab superfamilies are members of this machinery. Rab proteins are small GTPases that organize membrane microdomains on organelles by recruiting specific effectors that strongly influence the movement, fusion and fission dynamics of intracellular compartments. Rab3 and Rab27 are the prevalent exocytotic isoforms. Many events occur in mammalian spermatozoa before they can fertilize the egg, one of them is the acrosome reaction (AR), a type of regulated exocytosis. The AR relies on the same fusion machinery as all other cell types, which includes members of the exocytotic SNARE and Rab superfamilies. Here, we describe in depth two protocols designed to determine the activation status of small G proteins. One of them also serves to determine the subcellular localization of active Rabs, something not achievable with other methods. By means of these techniques, we have reported that Rab27 and Rab3 act sequentially and are organized in a RabGEF cascade during the AR. Although we developed them to scrutinize the exocytosis of the acrosome in human sperm, the protocols can potentially be extended to study other Ras-related proteins in virtually any cellular model.
Collapse
Affiliation(s)
- Matias A Bustos
- Instituto de Histología y Embriología (IHEM, CONICET/UNCuyo), Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | | | | | | | | |
Collapse
|
40
|
Wang HH, Cui Q, Zhang T, Wang ZB, Ouyang YC, Shen W, Ma JY, Schatten H, Sun QY. Rab3A, Rab27A, and Rab35 regulate different events during mouse oocyte meiotic maturation and activation. Histochem Cell Biol 2016; 145:647-57. [PMID: 26791531 DOI: 10.1007/s00418-015-1404-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2015] [Indexed: 01/22/2023]
Abstract
Rab family members play important roles in membrane trafficking, cell growth, and differentiation. Almost all components of the cell endomembrane system, the nucleus, and the plasma membrane are closely related to RAB proteins. In this study, we investigated the distribution and functions of three members of the Rab family, Rab3A, Rab27A, and Rab35, in mouse oocyte meiotic maturation and activation. The three Rab family members showed different localization patterns in oocytes. Microinjection of siRNA, antibody injection, or inhibitor treatment showed that (1) Rab3A regulates peripheral spindle and cortical granule (CG) migration, polarity establishment, and asymmetric division; (2) Rab27A regulates CG exocytosis following MII-stage oocyte activation; and (3) Rab35 plays an important role in spindle organization and morphology maintenance, and thus meiotic nuclear maturation. These results show that Rab proteins play important roles in mouse oocyte meiotic maturation and activation and that different members exert different distinct functions.
Collapse
Affiliation(s)
- H H Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Q Cui
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - T Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Z B Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Y C Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - W Shen
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - J Y Ma
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - H Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Q Y Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China. .,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
41
|
Lucchesi O, Ruete MC, Bustos MA, Quevedo MF, Tomes CN. The signaling module cAMP/Epac/Rap1/PLCε/IP3 mobilizes acrosomal calcium during sperm exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:544-61. [PMID: 26704387 DOI: 10.1016/j.bbamcr.2015.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 12/29/2022]
Abstract
Exocytosis of the sperm's single secretory granule, or acrosome, is a regulated exocytosis triggered by components of the egg's investments. In addition to external calcium, sperm exocytosis (termed the acrosome reaction) requires cAMP synthesized endogenously and calcium mobilized from the acrosome through IP3-sensitive channels. The relevant cAMP target is Epac. In the first part of this paper, we present a novel tool (the TAT-cAMP sponge) to investigate cAMP-related signaling pathways in response to progesterone as acrosome reaction trigger. The TAT-cAMP sponge consists of the cAMP-binding sites of protein kinase A regulatory subunit RIβ fused to the protein transduction domain TAT of the human immunodeficiency virus-1. The sponge permeated into sperm, sequestered endogenous cAMP, and blocked exocytosis. Progesterone increased the population of sperm with Rap1-GTP, Rab3-GTP, and Rab27-GTP in the acrosomal region; pretreatment with the TAT-cAMP sponge prevented the activation of all three GTPases. In the second part of this manuscript, we show that phospholipase Cε (PLCε) is required for the acrosome reaction downstream of Rap1 and upstream of intra-acrosomal calcium mobilization. Last, we present direct evidence that cAMP, Epac, Rap1, and PLCε are necessary for calcium mobilization from sperm's secretory granule. In summary, we describe here a pathway that connects cAMP to calcium mobilization from the acrosome during sperm exocytosis. Never before had direct evidence for each step of the cascade been put together in the same study.
Collapse
Affiliation(s)
- Ornella Lucchesi
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - María C Ruete
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Matías A Bustos
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - María F Quevedo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Claudia N Tomes
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina.
| |
Collapse
|
42
|
Pocognoni CA, Berberián MV, Mayorga LS. ESCRT (Endosomal Sorting Complex Required for Transport) Machinery Is Essential for Acrosomal Exocytosis in Human Sperm1. Biol Reprod 2015; 93:124. [DOI: 10.1095/biolreprod.115.132001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022] Open
|
43
|
Hui L, Geiger NH, Bloor-Young D, Churchill GC, Geiger JD, Chen X. Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: Evidence for acidic store-operated calcium entry in neurons. Cell Calcium 2015; 58:617-27. [PMID: 26475051 DOI: 10.1016/j.ceca.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 01/22/2023]
Abstract
Neurons possess an elaborate system of endolysosomes. Recently, endolysosomes were found to have readily releasable stores of intracellular calcium; however, relatively little is known about how such 'acidic calcium stores' affect calcium signaling in neurons. Here we demonstrated in primary cultured neurons that calcium released from acidic calcium stores triggered calcium influx across the plasma membrane, a phenomenon we have termed "acidic store-operated calcium entry (aSOCE)". aSOCE was functionally distinct from store-operated calcium release and calcium entry involving endoplasmic reticulum. aSOCE appeared to be governed by N-type calcium channels (NTCCs) because aSOCE was attenuated significantly by selectively blocking NTCCs or by siRNA knockdown of NTCCs. Furthermore, we demonstrated that NTCCs co-immunoprecipitated with the lysosome associated membrane protein 1 (LAMP1), and that aSOCE is accompanied by increased cell-surface expression levels of NTCC and LAMP1 proteins. Moreover, we demonstrated that siRNA knockdown of LAMP1 or Rab27a, both of which are key proteins involved in lysosome exocytosis, attenuated significantly aSOCE. Taken together our data suggest that aSOCE occurs in neurons, that aSOCE plays an important role in regulating the levels and actions of intraneuronal calcium, and that aSOCE is regulated at least in part by exocytotic insertion of N-type calcium channels into plasma membranes through LAMP1-dependent lysosome exocytosis.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nicholas H Geiger
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Duncan Bloor-Young
- Department of Pharmacology, University of Oxford, Mansfield Rd., Oxford OX1 3QT, UK
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Rd., Oxford OX1 3QT, UK
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
44
|
Coleman WL, Kulp AC, Venditti JJ. Functional distribution of synapsin I in human sperm. FEBS Open Bio 2015; 5:801-8. [PMID: 26566474 PMCID: PMC4600850 DOI: 10.1016/j.fob.2015.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022] Open
Abstract
Synapsin I was localized in the human sperm equatorial segment. Presence of synapsin I was confirmed by dot and Western blotting techniques. Treatment of sperm with anti-synapsin antibodies significantly decreased motility.
Proteins known to function during cell–cell communication and exocytosis in neurons and other secretory cells have recently been reported in human sperm. Synapsins are a group of proteins that have been very well characterized in neurons, but little is known about synapsin function in other cell types. Based upon previous findings and the known function of synapsin, we tested the hypothesis that synapsin I was present in human sperm. Washed, capacitated, and acrosome induced sperm preparations were used to evaluate the functional distribution of synapsin I using immunocytochemistry. Protein extracts from mouse brain, mouse testis/epididymis, and human semen were used for protein blotting techniques. Immunolocalization revealed synapsin I was enriched in the sperm equatorial segment. Protein extracts from mouse brain, mouse testis/epididymis, and human semen were positive for synapsin I using several different antibodies, and dot blot results were confirmed by Western blot analyses. Finally, treatment of capacitated and acrosome reaction induced samples with anti-synapsin antibodies significantly reduced sperm motility. Localization of synapsin I in human sperm is a novel finding. The association of synapsin I with the sperm equatorial segment and effects on motility are suggestive of a role associated with capacitation and/or acrosome reaction, processes that render sperm capable of fertilizing an oocyte.
Collapse
Affiliation(s)
- William L Coleman
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, Bloomsburg, PA, United States
| | - Adam C Kulp
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, Bloomsburg, PA, United States
| | - Jennifer J Venditti
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, Bloomsburg, PA, United States
| |
Collapse
|
45
|
Abstract
Exocytosis is a highly regulated process that consists of multiple functionally, kinetically and/or morphologically definable stages such as recruitment, targeting, tethering and docking of secretory vesicles with the plasma membrane, priming of the fusion machinery and calcium-triggered membrane fusion. After fusion, the membrane around the secretory vesicle is incorporated into the plasma membrane and the granule releases its contents. The proteins involved in these processes belong to several highly conserved families: Rab GTPases, SNAREs (soluble NSF-attachment protein receptors), α-SNAP (α-NSF attachment protein), NSF (N-ethylmaleimide-sensitive factor), Munc13 and -18, complexins and synaptotagmins. In the present article, the molecules of exocytosis are reviewed, using human sperm as a model system. Sperm exocytosis is driven by isoforms of the same proteinaceous fusion machinery mentioned above, with their functions orchestrated in a hierarchically organized and unidirectional signalling cascade. In addition to the universal exocytosis regulator calcium, this cascade includes other second messengers such as diacylglycerol, inositol 1,4,5-trisphosphate and cAMP, as well as the enzymes that synthesize them and their target proteins. Of special interest is the cAMP-binding protein Epac (exchange protein directly activated by cAMP) due in part to its enzymatic activity towards Rap. The activation of Epac and Rap leads to a highly localized calcium signal which, together with assembly of the SNARE complex, governs the final stages of exocytosis. The source of this releasable calcium is the secretory granule itself.
Collapse
|
46
|
Bustos MA, Roggero CM, De la Iglesia PX, Mayorga LS, Tomes CN. GTP-bound Rab3A exhibits consecutive positive and negative roles during human sperm dense-core granule exocytosis. J Mol Cell Biol 2015; 6:286-98. [PMID: 25053757 DOI: 10.1093/jmcb/mju021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Exocytosis of mammalian sperm dense-core secretory granule relies on the same fusion molecules as all other secretory cells; one such molecule is the small GTPase Rab3A. Here, we report an in-depth biochemical characterization of the role of Rab3A in secretion by scrutinizing the exocytotic response of streptolysin O-permeabilized human sperm to the acute application of a number of Rab3A-containing constructs and correlating the findings with those gathered with the endogenous protein. Full length, geranylgeranylated, and active Rab3A elicited human sperm exocytosis per se. With Rab3A/Rab22A chimeric proteins, we demonstrated that the carboxy-terminal domain of the Rab3A molecule was necessary and sufficient to promote exocytosis, whereas its amino-terminus prevented calcium-triggered secretion. Interestingly, full length Rab3A halted secretion when added after the docking of the acrosome to the plasma membrane. This effect depended on the inability of Rab3A to hydrolyze GTP. We combined modified immunofluorescence and acrosomal staining protocols to detect membrane fusion and the activation status of endogenous Rab3 simultaneously in individual cells, and found that GTP hydrolysis on endogenous Rab3 was mandatory for fusion pores to open. Our findings contribute to establishing that Rab3 modulates regulated exocytosis differently depending on the nucleotide bound and the exocytosis stage under study.
Collapse
Affiliation(s)
- Matías A Bustos
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Carlos M Roggero
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina Present address: Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Paola X De la Iglesia
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina Present address: Servicio de Patología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Luis S Mayorga
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia N Tomes
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
47
|
Pelletán LE, Suhaiman L, Vaquer CC, Bustos MA, De Blas GA, Vitale N, Mayorga LS, Belmonte SA. ADP ribosylation factor 6 (ARF6) promotes acrosomal exocytosis by modulating lipid turnover and Rab3A activation. J Biol Chem 2015; 290:9823-41. [PMID: 25713146 DOI: 10.1074/jbc.m114.629006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 11/06/2022] Open
Abstract
Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5'-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization.
Collapse
Affiliation(s)
- Leonardo E Pelletán
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Laila Suhaiman
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Cintia C Vaquer
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Matías A Bustos
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Gerardo A De Blas
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Nicolas Vitale
- the Département Neurotransmission et Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), CNRS et Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg, France
| | - Luis S Mayorga
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| | - Silvia A Belmonte
- From the Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina and
| |
Collapse
|
48
|
Ruete MC, Lucchesi O, Bustos MA, Tomes CN. Epac, Rap and Rab3 act in concert to mobilize calcium from sperm's acrosome during exocytosis. Cell Commun Signal 2014; 12:43. [PMID: 25159528 PMCID: PMC4156617 DOI: 10.1186/s12964-014-0043-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/19/2014] [Indexed: 11/11/2022] Open
Abstract
Background Exocytosis of sperm’s single secretory granule or acrosome (acrosome reaction, AR) is a highly regulated event essential for fertilization. The AR begins with an influx of calcium from the extracellular milieu and continues with the synthesis of cAMP and the activation of its target Epac. The cascade bifurcates into a Rab3-GTP-driven limb that assembles the fusion machinery and a Rap-GTP-driven limb that mobilizes internal calcium. Results To understand the crosstalk between the two signaling cascades, we applied known AR inhibitors in three experimental approaches: reversible, stage-specific blockers in a functional assay, a far-immunofluorescence protocol to detect active Rab3 and Rap, and single cell-confocal microscopy to visualize fluctuations in internal calcium stores. Our model system was human sperm with their plasma membrane permeabilized with streptolysin O and stimulated with external calcium. The inhibition caused by reagents that prevented the activation of Rap was reversed by mobilizing intracellular calcium pharmacologically, whereas that caused by AR inhibitors that impeded Rab3’s binding to GTP was not. Both limbs of the exocytotic cascade joined at or near the stage catalyzed by Rab3 in a unidirectional, hierarchical connection in which the intra-acrosomal calcium mobilization arm was subordinated to the fusion protein arm; somewhere after Rab3, the pathways became independent. Conclusions We delineated the sequence of events that connect an external calcium signal to internal calcium mobilization during exocytosis. We have taken advantage of the versatility of the sperm model to investigate how cAMP, calcium, and the proteinaceous fusion machinery coordinate to accomplish secretion. Because the requirement of calcium from two different sources is not unique to sperm and fusion proteins are highly conserved, our findings might contribute to elucidate mechanisms that operate in regulated exocytosis in other secretory cell types. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0043-0) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Cazares VA, Subramani A, Saldate JJ, Hoerauf W, Stuenkel EL. Distinct actions of Rab3 and Rab27 GTPases on late stages of exocytosis of insulin. Traffic 2014; 15:997-1015. [PMID: 24909540 DOI: 10.1111/tra.12182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Abstract
Rab GTPases associated with insulin-containing secretory granules (SGs) are key in targeting, docking and assembly of molecular complexes governing pancreatic β-cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase-activating protein overexpression in β-cells from wild-type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP-bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool (IRP) and central to regulating the size of the readily releasable pool (RRP). By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the RRP with SGs. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release-ready SGs in β-cells, they also direct unique kinetic and functional properties of the exocytotic pathway.
Collapse
Affiliation(s)
- Victor A Cazares
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | | | |
Collapse
|
50
|
REEP1 and REEP2 proteins are preferentially expressed in neuronal and neuronal-like exocytotic tissues. Brain Res 2013; 1545:12-22. [PMID: 24355597 DOI: 10.1016/j.brainres.2013.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/15/2013] [Accepted: 12/07/2013] [Indexed: 12/19/2022]
Abstract
The six members of the Receptor Expression Enhancing Protein (REEP) family were originally identified based on their ability to enhance heterologous expression of olfactory receptors and other difficult to express G protein-coupled receptors. Interestingly, REEP1 mutations have been linked to neurodegenerative disorders of upper and lower motor neurons, hereditary spastic paraplegia (HSP) and distal hereditary motor neuropathy type V (dHMN-V). The closely related REEP2 isoform has not demonstrated any such disease linkage. Previous research has suggested that REEP1 mRNA is ubiquitously expressed in brain, muscle, endocrine, and multiple other organs, inconsistent with the neurodegenerative phenotype observed in HSP and dHMN-V. To more fully examine REEP1 expression, we developed and characterized a new REEP1 monoclonal antibody for both immunoblotting and immunofluorescent microscopic analysis. Unlike previous RT-PCR studies, immunoblotting demonstrated that REEP1 protein was not ubiquitous; its expression was restricted to neuronal tissues (brain, spinal cord) and testes. Gene expression microarray analysis demonstrated REEP1 and REEP2 mRNA expression in superior cervical and stellate sympathetic ganglia tissue. Furthermore, expression of endogenous REEP1 was confirmed in cultured murine sympathetic ganglion neurons by RT-PCR and immunofluorescent staining, with expression occurring between Day 4 and Day 8 of culture. Lastly, we demonstrated that REEP2 protein expression was also restricted to neuronal tissues (brain and spinal cord) and tissues that exhibit neuronal-like exocytosis (testes, pituitary, and adrenal gland). In addition to sensory tissues, expression of the REEP1/REEP2 subfamily appears to be restricted to neuronal and neuronal-like exocytotic tissues, consistent with neuronally restricted symptoms of REEP1 genetic disorders.
Collapse
|