1
|
Ray A, Bassette M, Hu KH, Pass LF, Courau T, Samad B, Combes A, Johri V, Davidson B, Wai K, Ha P, Hernandez G, Zaleta-Linares I, Krummel MF. Multimodal delineation of a layer of effector function among exhausted CD8 T cells in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.26.559470. [PMID: 37808790 PMCID: PMC10557647 DOI: 10.1101/2023.09.26.559470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The anti-tumor function of CD8 T cells is limited through well-established pathways of T cell exhaustion (TEX). Strategies to capture emergent functional states amongst this dominant trajectory of dysfunction are necessary to find pathways to durable anti-tumor immunity. By leveraging transcriptional reporting (by the fluorescent protein TFP) of the T cell activation marker Cd69, related to upstream AP-1 transcription factors, we define a classifier for potent versus suboptimal CD69+ activation states arising from T cell stimulation. In tumors, this delineation acts an additional functional readout along the TEX differentiation trajectory, within and across TEX subsets, marked by enhanced effector cytokine and granzyme B production. The more potent state remains differentially prominent in a T cell-mediated tumor clearance model, where they also show increased engagement in the microenvironment and are superior in tumor cell killing. Employing multimodal CITE-Seq in human head and neck tumors enables a similar strategy to identify Cd69RNAhiCD69+ cells that also have enhanced functional features in comparison to Cd69RNAloCD69+ cells, again within and across intratumoral CD8 T cell subsets. Refining the contours of the T cell functional landscape in tumors in this way paves the way for the identification of rare exceptional effectors, with imminent relevance to cancer treatment.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Molly Bassette
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Kenneth H. Hu
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Lomax F. Pass
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Tristan Courau
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Bushra Samad
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Alexis Combes
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Vrinda Johri
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Brittany Davidson
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Katherine Wai
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Patrick Ha
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Grace Hernandez
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Itzia Zaleta-Linares
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Shime H, Odanaka M, Imai M, Sugiyama D, Takayama S, Morita A, Yamazaki S. UVB Irradiation Expands Skin-Resident CD81 +Foxp3 + Regulatory T Cells with a Highly Activated Phenotype. J Invest Dermatol 2024:S0022-202X(24)03025-2. [PMID: 39725158 DOI: 10.1016/j.jid.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024]
Abstract
Exposure to UVB induces the expansion of regulatory T cells (Tregs) expressing proenkephalin and amphiregulin with a healing function in the skin. It is unclear how this UVB exposure affects the functionally distinct subsets of skin Tregs. In this study, we have demonstrated that skin-resident CD81+Tregs expressing both proenkephalin gene Penk and amphiregulin gene Areg expanded after UVB irradiation. CD81+Tregs in UVB-irradiated skin as well as in normal skin exhibited a highly activated state. Foxp3, BLIMP-1, and IRF4, which transcriptionally enhance Treg function-related molecules, were also highly expressed in UVB-expanded CD81+Tregs. Notably, UVB-expanded skin CD81+Tregs constitutively expressed on their cell surface CTLA-4, a critical molecule for Treg-mediated immune suppression. CD81+Tregs exhibited suppressive activity against CD4+T-cell proliferation. Stimulation of CD81 enhanced the proliferation of Foxp3+Tregs under CD3 and CD28 stimulation in vitro, indicating that CD81 acts as a costimulatory molecule. Blocking CD81 partially resulted in reduced Treg expansion in the skin of UVB-irradiated mice. These results suggest that CD81 is a representative marker of highly activated Tregs in normal and UVB-irradiated skin and may represent a functional molecule that controls Treg expansion in the skin in response to UVB irradiation.
Collapse
Affiliation(s)
- Hiroaki Shime
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Mizuyu Odanaka
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaki Imai
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shoryu Takayama
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sayuri Yamazaki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
3
|
Ramseier NT, Jing H, Anderson J, Hu YS. Superresolution Imaging Reveals the Spatial Organization of CD81 Microdomains in Regulating Membrane Signaling on Jurkat T Cell Microvilli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627345. [PMID: 39677771 PMCID: PMC11643289 DOI: 10.1101/2024.12.07.627345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Tetraspanin proteins are closely associated with high-curvature membrane structures and play key roles in organizing membrane domains and regulating membrane signaling in immune cells. However, their specific roles in regulating T cell membrane signaling, particularly within the microvilli often characteristic of these cells, remain poorly understood. Here, we used Jurkat T cells as a model system and investigated CD81 as a member of the tetraspanin family. Using total internal reflection fluorescence (TIRF) microscopy and structured illumination microscopy (SIM), we identified an enrichment of the tetraspanin CD81 microdomains along the actin-rich membrane microvilli. At the distal end of the microvilli, SIM images revealed the spatial colocalization of CD81 with T cell receptors (TCR) and CD63, implying a potential role for CD81 in regulating TCR signaling in conjunction with CD63. Spatial analysis of CD81 and CD63 microdomains from the dual-color SIM data revealed their preference for associating with each other. Cluster analysis of direct stochastic optical reconstruction microscopy (dSTORM) data revealed that in vitro T cell activation results in reduced domain sizes and increased domain separation of CD81. These findings provide visual evidence of the spatial organization and rearrangement of CD81 on the T cell microvilli, highlighting its potential role in signal regulation on specialized membrane protrusions.
Collapse
Affiliation(s)
- Neal T. Ramseier
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Gu W, Eke C, Gonzalez Santiago E, Olaloye O, Konnikova L. Single-cell atlas of the small intestine throughout the human lifespan demonstrates unique features of fetal immune cells. Mucosal Immunol 2024; 17:599-617. [PMID: 38555026 PMCID: PMC11384551 DOI: 10.1016/j.mucimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Proper development of mucosal immunity is critical for human health. Over the past decade, it has become evident that in humans, this process begins in utero. However, there are limited data on the unique features and functions of fetal mucosal immune cells. To address this gap, we integrated several single-cell ribonucleic acid sequencing datasets of the human small intestine (SI) to create an SI transcriptional atlas throughout the human life span, ranging from the first trimester to adulthood, with a focus on immune cells. Fetal SI displayed a complex immune landscape comprising innate and adaptive immune cells that exhibited distinct transcriptional programs from postnatal samples, especially compared with pediatric and adult samples. We identified shifts in myeloid populations across gestation and progression of memory T-cell states throughout the human lifespan. In particular, there was a marked shift of memory T cells from those with stem-like properties in the fetal samples to fully differentiated cells with a high expression of activation and effector function genes in adult samples, with neonatal samples containing both features. Finally, we demonstrate that the SI developmental atlas can be used to elucidate improper trajectories linked to mucosal diseases by implicating developmental abnormalities underlying necrotizing enterocolitis, a severe intestinal complication of prematurity. Collectively, our data provide valuable resources and important insights into intestinal immunity that will facilitate regenerative medicine and disease understanding.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Chino Eke
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT, USA; Program in Human Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Tserga A, Saulnier-Blache JS, Palamaris K, Pouloudi D, Gakiopoulou H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Complement Cascade Proteins Correlate with Fibrosis and Inflammation in Early-Stage Type 1 Diabetic Kidney Disease in the Ins2Akita Mouse Model. Int J Mol Sci 2024; 25:1387. [PMID: 38338666 PMCID: PMC10855735 DOI: 10.3390/ijms25031387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic kidney disease (DKD) is characterized by histological changes including fibrosis and inflammation. Evidence supports that DKD is mediated by the innate immune system and more specifically by the complement system. Using Ins2Akita T1D diabetic mice, we studied the connection between the complement cascade, inflammation, and fibrosis in early DKD. Data were extracted from a previously published quantitative-mass-spectrometry-based proteomics analysis of kidney glomeruli of 2 (early DKD) and 4 months (moderately advanced DKD)-old Ins2Akita mice and their controls A Spearman rho correlation analysis of complement- versus inflammation- and fibrosis-related protein expression was performed. A cross-omics validation of the correlation analyses' results was performed using public-domain transcriptomics datasets (Nephroseq). Tissue sections from 43 patients with DKD were analyzed using immunofluorescence. Among the differentially expressed proteins, the complement cascade proteins C3, C4B, and IGHM were significantly increased in both early and later stages of DKD. Inflammation-related proteins were mainly upregulated in early DKD, and fibrotic proteins were induced in moderately advanced stages of DKD. The abundance of complement proteins with fibrosis- and inflammation-related proteins was mostly positively correlated in early stages of DKD. This was confirmed in seven additional human and mouse transcriptomics DKD datasets. Moreover, C3 and IGHM mRNA levels were found to be negatively correlated with the estimated glomerular filtration rate (range for C3 rs = -0.58 to -0.842 and range for IGHM rs = -0.6 to -0.74) in these datasets. Immunohistology of human kidney biopsies revealed that C3, C1q, and IGM proteins were induced in patients with DKD and were correlated with fibrosis and inflammation. Our study shows for the first time the potential activation of the complement cascade associated with inflammation-mediated kidney fibrosis in the Ins2Akita T1D mouse model. Our findings could provide new perspectives for the treatment of early DKD as well as support the use of Ins2Akita T1D in pre-clinical studies.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France; (J.S.S.-B.); (J.P.S.)
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Kostantinos Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Despoina Pouloudi
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Harikleia Gakiopoulou
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
- Department of Biology, National and Kapodistrian University of Athens, 15701 Zografou, Greece
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France; (J.S.S.-B.); (J.P.S.)
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| | - Manousos Makridakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| |
Collapse
|
6
|
Buchacher T, Shetty A, Koskela SA, Smolander J, Kaukonen R, Sousa AGG, Junttila S, Laiho A, Rundquist O, Lönnberg T, Marson A, Rasool O, Elo LL, Lahesmaa R. PIM kinases regulate early human Th17 cell differentiation. Cell Rep 2023; 42:113469. [PMID: 38039135 PMCID: PMC10765319 DOI: 10.1016/j.celrep.2023.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.
Collapse
Affiliation(s)
- Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland.
| | - Ankitha Shetty
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Saara A Koskela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Johannes Smolander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - António G G Sousa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Olof Rundquist
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
7
|
Novel CD81 Mutations in a Chinese Patient Led to IgA Nephropathy and Impaired BCR Signaling. J Clin Immunol 2022; 42:1672-1684. [PMID: 35849269 DOI: 10.1007/s10875-022-01333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE CD81 deficiency is an extremely rare primary immunodeficiency disease characterized by severe and recurrent infections, IgA-related nephropathy, and profound hypogammaglobulinemia. Only one patient has been reported so far, and the pathogenesis remains unclear. Here, we identified a new case of CD81 deficiency and described its pathogenesis. METHODS We analyzed the clinical, genetic, and immunological features of the patient with CD81 deficiency, and explored the pathogenesis of her antibody deficiencies. RESULTS The major manifestation of this patient was unexpectedly not recurrent infections but IgA nephropathy with aberrant serum galactose-deficient IgA1. Whole-exome sequencing revealed novel biallelic mutations in CD81 gene that abolished the surface expression of CD81. B cells from the patient lack membrane CD19 and showed reduced switched memory B cells and transitional B cells. Decreased expression of key molecules pY and pBTK in BCR signaling were demonstrated by confocal microscopy. RNA sequencing revealed that genes associated with BCR signaling and immunoglobulins were downregulated in CD81-deficient B cells. In addition, the patient showed increased frequency of T follicular helper cells that biased to Th1-like subsets. CONCLUSION We reported the second patient with CD81 deficiency in the world and illustrated aberrant BCR signaling in the patient, therefore helping to unravel the mechanism of antibody deficiency in CD81-deficient patients.
Collapse
|
8
|
CD81 costimulation skews CAR transduction toward naive T cells. Proc Natl Acad Sci U S A 2022; 119:1910844119. [PMID: 35091467 PMCID: PMC8812682 DOI: 10.1073/pnas.1910844119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptors (CARs) are engineered, artificial T cell receptors that can redirect cytotoxic immune T cells to eliminate cancer. Previous reports describe the benefit of less differentiated naive T cell subtypes for the purpose of CAR therapy. Here we test CD81, a T cell costimulator that preferentially activates naive T cells, for CAR engineering. We show that CD81 costimulation of naive T cells prior to CAR transduction can lead to enhanced CAR expression in this T cell subset. Adoptive cellular therapy using chimeric antigen receptors (CARs) has revolutionized our treatment of relapsed B cell malignancies and is currently being integrated into standard therapy. The impact of selecting specific T cell subsets for CAR transduction remains under investigation. Previous studies demonstrated that effector T cells derived from naive, rather than central memory T cells mediate more potent antitumor effects. Here, we investigate a method to skew CAR transduction toward naive T cells without physical cell sorting. Viral-mediated CAR transduction requires ex vivo T cell activation, traditionally achieved using antibody-mediated strategies. CD81 is a T cell costimulatory molecule that when combined with CD3 and CD28 enhances naive T cell activation. We interrogate the effect of CD81 costimulation on resultant CAR transduction. We identify that upon CD81-mediated activation, naive T cells lose their identifying surface phenotype and switch to a memory phenotype. By prelabeling naive T cells and tracking them through T cell activation and CAR transduction, we document that CD81 costimulation enhanced naive T cell activation and resultantly generated a CAR T cell product enriched with naive-derived CAR T cells.
Collapse
|
9
|
Brand RM, Moore BA, Zyhowski A, Siegel A, Uttam S, Metter EJ, Engstrom J, Brand RE, Biswas N, Whitcomb DC, Binion DG, Schwartz M, McGowan I. Tofacitinib inhibits inflammatory cytokines from ulcerative colitis and healthy mucosal explants and is associated with pSTAT1/3 reduction in T-cells. Am J Physiol Gastrointest Liver Physiol 2021; 320:G396-G410. [PMID: 33355506 PMCID: PMC8202239 DOI: 10.1152/ajpgi.00383.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Poor translatability of animal disease models has hampered the development of new inflammatory bowel disorder (IBD) therapeutics. We describe a preclinical, ex vivo system using freshly obtained and well-characterized human colorectal tissue from patients with ulcerative colitis (UC) and healthy control (HC) participants to test potential therapeutics for efficacy and target engagement, using the JAK/STAT inhibitor tofacitinib (TOFA) as a model therapeutic. Colorectal biopsies from HC participants and patients with UC were cultured and stimulated with multiple mitogens ± TOFA. Soluble biomarkers were detected using a 29-analyte multiplex ELISA. Target engagement in CD3+CD4+ and CD3+CD8+ T-cells was determined by flow cytometry in peripheral blood mononuclear cells (PBMCs) and isolated mucosal mononuclear cells (MMCs) following the activation of STAT1/3 phosphorylation. Data were analyzed using linear mixed-effects modeling, t test, and analysis of variance. Biomarker selection was performed using penalized and Bayesian logistic regression modeling, with results visualized using uniform manifold approximation and projection. Under baseline conditions, 27 of 29 biomarkers from patients with UC were increased versus HC participants. Explant stimulation increased biomarker release magnitude, expanding the dynamic range for efficacy and target engagement studies. Logistic regression analyses identified the most representative UC baseline and stimulated biomarkers. TOFA inhibited biomarkers dependent on JAK/STAT signaling. STAT1/3 phosphorylation in T-cells revealed compartmental differences between PBMCs and MMCs. Immunogen stimulation increases biomarker release in similar patterns for HC participants and patients with UC, while enhancing the dynamic range for pharmacological effects. This work demonstrates the power of ex vivo human colorectal tissue as preclinical tools for evaluating target engagement and downstream effects of new IBD therapeutic agents.NEW & NOTEWORTHY Using colorectal biopsy material from healthy volunteers and patients with clinically defined IBD supports translational research by informing the evaluation of therapeutic efficacy and target engagement for the development of new therapeutic entities. Combining experimental readouts from intact and dissociated tissue enhances our understanding of the tissue-resident immune system that contribute to disease pathology. Bayesian logistic regression modeling is an effective tool for predicting ex vivo explant biomarker release patterns.
Collapse
Affiliation(s)
- Rhonda M Brand
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Beverley A Moore
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- B.A. Moore Pharmaceutical Consulting, LLC, Collegeville, Pennsylvania
| | - Ashley Zyhowski
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Aaron Siegel
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Shikhar Uttam
- University of Tennessee Health Science Center, Memphis, Tennessee
| | - E Jeffrey Metter
- University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jarret Engstrom
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Randall E Brand
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nabanita Biswas
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David C Whitcomb
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David G Binion
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marc Schwartz
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ian McGowan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Caveolin-1, tetraspanin CD81 and flotillins in lymphocyte cell membrane organization, signaling and immunopathology. Biochem Soc Trans 2020; 48:2387-2397. [PMID: 33242069 DOI: 10.1042/bst20190387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
The adaptive immune system relies on B and T lymphocytes to ensure a specific and long-lasting protection of an individual from a wide range of potential pathogenic hits. Lymphocytes are highly potent and efficient in eliminating pathogens. However, lymphocyte activation must be tightly regulated to prevent incorrect activity that could result in immunopathologies, such as autoimmune disorders or cancers. Comprehensive insight into the molecular events underlying lymphocyte activation is of enormous importance to better understand the function of the immune system. It provides the basis to design therapeutics to regulate lymphocyte activation in pathological scenarios. Most reported defects in immunopathologies affect the regulation of intracellular signaling pathways. This highlights the importance of these molecules, which control lymphocyte activation and homeostasis impacting lymphocyte tolerance to self, cytokine production and responses to infections. Most evidence for these defects comes from studies of disease models in genetically engineered mice. There is an increasing number of studies focusing on lymphocytes derived from patients which supports these findings. Many indirectly involved proteins are emerging as unexpected regulators of the immune system. In this mini-review, we focus in proteins that regulate plasma membrane (PM) compartmentalization and thereby impact the steady state and the activation of immunoreceptors, namely the T cell antigen receptor (TCR) and the B cell antigen receptor (BCR). Some of these membrane proteins are shown to be involved in immune abnormalities; others, however, are not thoroughly investigated in the context of immune pathogenesis. We aim to highlight them and stimulate future research avenues.
Collapse
|
11
|
Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cell Mol Immunol 2020; 18:92-111. [PMID: 33110250 PMCID: PMC7852534 DOI: 10.1038/s41423-020-00568-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is an important immunological organ that controls systemic tolerance. The liver harbors professional and unconventional antigen-presenting cells that are crucial for tolerance induction and maintenance. Orchestrating the immune response in homeostasis depends on a healthy and well-toned immunological liver microenvironment, which is maintained by the crosstalk of liver-resident antigen-presenting cells and intrahepatic and liver-infiltrating leukocytes. In response to pathogens or autoantigens, tolerance is disrupted by unknown mechanisms. Intrahepatic parenchymal and nonparenchymal cells exhibit unique antigen-presenting properties. The presentation of microbial and endogenous lipid-, metabolite- and peptide-derived antigens from the gut via conventional and nonconventional mechanisms can educate intrahepatic immune cells and elicit effector responses or tolerance. Perturbation of this balance results in autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. Although the exact etiologies of these autoimmune liver diseases are unknown, it is thought that the disruption of tolerance towards self-antigens and microbial metabolites and lipids, as well as alterations in bile acid composition, may result in changes in effector cell activation and polarization and may reduce or impair protective anti-inflammatory regulatory T and B cell responses. Additionally, the canonical and noncanonical transmission of antigens and antigen:MHC complexes via trogocytosis or extracellular vesicles between different (non) immune cells in the liver may play a role in the induction of hepatic inflammation and tolerance. Here, we summarize emerging aspects of antigen presentation, autoantibody production, and the application of novel therapeutic approaches in the characterization and treatment of autoimmune liver diseases.
Collapse
|
12
|
Yau C, Gan ES, Kwek SS, Tan HC, Ong EZ, Hamis NZ, Rivino L, Chan KR, Watanabe S, Vasudevan SG, Ooi EE. Live vaccine infection burden elicits adaptive humoral and cellular immunity required to prevent Zika virus infection. EBioMedicine 2020; 61:103028. [PMID: 33045466 PMCID: PMC7553235 DOI: 10.1016/j.ebiom.2020.103028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The emergence of Zika virus (ZIKV) as an important cause of congenital and childhood developmental disorders presents another challenge to global health. Efforts to develop a Zika vaccine have begun although vaccine development against flaviviruses, of which ZIKV belongs to, has proven to be time-consuming and challenging. Defining the vaccine attributes that elicit adaptive immune response necessary for preventing ZIKV infection could provide an evidence-based guide to Zika vaccine development. METHODS We used a previously described attenuated ZIKV DN-2 strain in a type-I interferon receptor deficient mouse model and tested the hypothesis that duration of vaccine burden rather than peak level of infection, is a determinant of immunogenicity. We quantified both humoral and cellular responses against ZIKV using plaque reduction neutralisation test and flow cytometry with ELISPOT assays, respectively. Vaccinated mice were challenged with wild-type ZIKV (H/PF/2013 strain) to determine the level of protection against infection. FINDINGS We found that the overall vaccine burden is directly correlated with neutralising antibody titres. Reduced duration of vaccine burden lowered neutralising antibody titres that resulted in subclinical infection, despite unchanged peak vaccine viraemia levels. We also found that sterilising immunity is dependant on both neutralising antibody and CD8+T cell responses; depletion of CD8+T cells in vaccinated animals led to wild-type ZIKV infection, especially in the male reproductive tract. INTERPRETATION Our findings indicate that duration of attenuated virus vaccine burden is a determinant of humoral and cellular immunity and also suggest that vaccines that elicit both arms of the adaptive immune response are needed to fully prevent ZIKV transmission. FUNDING This study was supported by the National Medical Research Council through the Clinician-Scientist Award (Senior Investigator) to E.E.O. Salary support for S.W. was from a Competitive Research Programme grant awarded by the National Research Foundation of Singapore.
Collapse
Affiliation(s)
- Clement Yau
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Esther Shuyi Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Swee Sen Kwek
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Eugenia Z Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore
| | - Noor Zayanah Hamis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Satoru Watanabe
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore; Saw Swee Hock School of Public health, National University of Singapore, Singapore 117549, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| |
Collapse
|
13
|
Perez MD, Seu L, Lowman KE, Moylan DC, Tidwell C, Samuel S, Duverger A, Wagner FH, Carlin E, Sharma V, Pope B, Raman C, Erdmann N, Locke J, Hu H, Sabbaj S, Kutsch O. The tetraspanin CD151 marks a unique population of activated human T cells. Sci Rep 2020; 10:15748. [PMID: 32978478 PMCID: PMC7519159 DOI: 10.1038/s41598-020-72719-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Tetraspanins are a family of proteins with an array of functions that are well studied in cancer biology, but their importance in immunology is underappreciated. Here we establish the tetraspanin CD151 as a unique marker of T-cell activation and, in extension, an indicator of elevated, systemic T-cell activity. Baseline CD151 expression found on a subset of T-cells was indicative of increased activation of the MAPK pathway. Following TCR/CD3 activation, CD151 expression was upregulated on the overall T-cell population, a quintessential feature of an activation marker. CD151+ T-cell frequencies in the spleen, an organ with increased immune activity, were twice as high as in paired peripheral blood samples. This CD151+ T-cell frequency increase was not paralleled by an increase of CD25 or CD38, demonstrating that CD151 expression is regulated independently of other T-cell activation markers. CD151+ T-cells were also more likely to express preformed granzyme B, suggesting that CD151+ T cells are pro-inflammatory. To this end, HIV-1 patients on antiretroviral therapy who are reported to exhibit chronically elevated levels of immune activity, had significantly higher CD4+CD151+ T-cell frequencies than healthy controls, raising the possibility that proinflammatory CD151+ T cells could contribute to the premature immunological aging phenotype observed in these patients.
Collapse
Affiliation(s)
- Mildred D Perez
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lillian Seu
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kelsey E Lowman
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David C Moylan
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher Tidwell
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shekwonya Samuel
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexandra Duverger
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic H Wagner
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric Carlin
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishal Sharma
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon Pope
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chander Raman
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jayme Locke
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui Hu
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steffanie Sabbaj
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Olaf Kutsch
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Dolcino M, Tinazzi E, Puccetti A, Lunardi C. Long Non-Coding RNAs Target Pathogenetically Relevant Genes and Pathways in Rheumatoid Arthritis. Cells 2019; 8:cells8080816. [PMID: 31382516 PMCID: PMC6721587 DOI: 10.3390/cells8080816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease driven by genetic, environmental and epigenetic factors. Long non-coding RNAs (LncRNAs) are a key component of the epigenetic mechanisms and are known to be involved in the development of autoimmune diseases. In this work we aimed to identify significantly differentially expressed LncRNAs (DE-LncRNAs) that are functionally connected to modulated genes strictly associated with RA. In total, 542,500 transcripts have been profiled in peripheral blood mononuclear cells (PBMCs) from four patients with early onset RA prior any treatment and four healthy donors using Clariom D arrays. Results were confirmed by real-time PCR in 20 patients and 20 controls. Six DE-LncRNAs target experimentally validated miRNAs able to regulate differentially expressed genes (DEGs) in RA; among them, only FTX, HNRNPU-AS1 and RP11-498C9.15 targeted a large number of DEGs. Most importantly, RP11-498C9.15 targeted the largest number of signalling pathways that were found to be enriched by the global amount of RA-DEGs and that have already been associated with RA and RA-synoviocytes. Moreover, RP11-498C9.15 targeted the most highly connected genes in the RA interactome, thus suggesting its involvement in crucial gene regulation. These results indicate that, by modulating both microRNAs and gene expression, RP11-498C9.15 may play a pivotal role in RA pathogenesis.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Antonio Puccetti
- Department of Experimental Medicine-Section of Histology, University of Genova, 16132 Genova, Italy
| | - Claudio Lunardi
- Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
15
|
Tobón-Arroyave SI, Celis-Mejía N, Córdoba-Hidalgo MP, Isaza-Guzmán DM. Decreased salivary concentration of CD9 and CD81 exosome-related tetraspanins may be associated with the periodontal clinical status. J Clin Periodontol 2019; 46:470-480. [PMID: 30825338 DOI: 10.1111/jcpe.13099] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/07/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
AIM This cross-sectional case-control study was designed to determine the association of the salivary concentration of CD9/CD81 exosome-related tetraspanins with the periodontal clinical status. MATERIALS AND METHODS Saliva samples from 104 periodontitis patients and 45 healthy controls were collected. Periodontal status was assessed based on full-mouth clinico-radiographical data, and salivary concentration of the analytes was calculated by ELISA. The association between the biomarkers with disease status was analysed using multivariate binary logistic regression models. RESULTS Significantly decreased salivary levels of CD9 and CD81 exosomes were detected in periodontitis patients in comparison with healthy controls. Also, negative significant correlations between salivary concentrations of CD9/CD81 exosomes regarding clinical measurements were observed. Likewise, a significant downward trend of the concentration of these two biomarkers concerning the stage and grade of disease could be identified. Logistic regression analyses revealed a strong/independent association for decreased salivary concentration of CD81 exosomes regarding disease status. Confounding and interaction effects between age and salivary concentration of CD9 exosomes were also noted. CONCLUSION Reduced salivary concentration of CD9/CD81 exosomes might be of significance in the context of periodontal disease pathogenesis.
Collapse
Affiliation(s)
- Sergio Iván Tobón-Arroyave
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Natalia Celis-Mejía
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | | | - Diana María Isaza-Guzmán
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| |
Collapse
|
16
|
Salerno F, Freen-van Heeren JJ, Guislain A, Nicolet BP, Wolkers MC. Costimulation through TLR2 Drives Polyfunctional CD8 + T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2018; 202:714-723. [PMID: 30578304 DOI: 10.4049/jimmunol.1801026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Abstract
Optimal T cell activation requires Ag recognition through the TCR, engagement of costimulatory molecules, and cytokines. T cells can also directly recognize danger signals through the expression of TLRs. Whether TLR ligands have the capacity to provide costimulatory signals and enhance Ag-driven T cell activation is not well understood. In this study, we show that TLR2 and TLR7 ligands potently lower the Ag threshold for cytokine production in T cells. To investigate how TLR triggering supports cytokine production, we adapted the protocol for flow cytometry-based fluorescence in situ hybridization to mouse T cells. The simultaneous detection of cytokine mRNA and protein with single-cell resolution revealed that TLR triggering primarily drives de novo mRNA transcription. Ifng mRNA stabilization only occurs when the TCR is engaged. TLR2-, but not TLR7-mediated costimulation, can enhance mRNA stability at low Ag levels. Importantly, TLR2 costimulation increases the percentage of polyfunctional T cells, a hallmark of potent T cell responses. In conclusion, TLR-mediated costimulation effectively potentiates T cell effector function to suboptimal Ag levels.
Collapse
Affiliation(s)
- Fiamma Salerno
- Department of Hematopoiesis, Sanquin Research-Amsterdam MC Landsteiner Laboratory, 1066 CX Amsterdam, the Netherlands
| | - Julian J Freen-van Heeren
- Department of Hematopoiesis, Sanquin Research-Amsterdam MC Landsteiner Laboratory, 1066 CX Amsterdam, the Netherlands
| | - Aurelie Guislain
- Department of Hematopoiesis, Sanquin Research-Amsterdam MC Landsteiner Laboratory, 1066 CX Amsterdam, the Netherlands
| | - Benoit P Nicolet
- Department of Hematopoiesis, Sanquin Research-Amsterdam MC Landsteiner Laboratory, 1066 CX Amsterdam, the Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research-Amsterdam MC Landsteiner Laboratory, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
17
|
Ding H, Dai Y, Lei Y, Wang Z, Liu D, Li R, Shen L, Gu N, Zheng M, Zhu X, Zhao G, Hu Y. Upregulation of CD81 in trophoblasts induces an imbalance of Treg/Th17 cells by promoting IL-6 expression in preeclampsia. Cell Mol Immunol 2018; 16:302-312. [PMID: 30487550 DOI: 10.1038/s41423-018-0186-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/27/2022] Open
Abstract
The disturbance of maternal immune tolerance to a semiallogeneic fetus is recognized as one of the key pathologies of preeclampsia (PE), in which an imbalance between the inflammation-limiting regulatory T cells (Tregs) and the inflammation-mediating Th17 cells plays an essential role. Previously, we reported that the abnormal upregulation of tetraspannin CD81 in trophoblast cells (fetal component) participated in the pathogenesis of PE. However, as one of the potential immune regulatory molecules, whether CD81 induces PE by interfering with the balance of the maternal immune system has not yet been clarified. Thus, we investigated the relationship between the upregulation of CD81 in trophoblast cells and the imbalance of Treg and Th17 cells in mothers. Here, we demonstrated that upregulation of CD81 in trophoblast cells was accompanied by a decrease in Treg cells and an increase in Th17 cells in both the basal plate (placental maternal side) and peripheral blood of patients with PE. In vitro culture of naïve T cells with medium from the CD81-overexpressing trophoblast cell line HTR-8 resulted in enhanced differentiation of T cells into Th17 cells and decreased the formation of Tregs, which was dependent on the paracrine signaling of IL-6 in trophocytes, induced by CD81. In a CD81-induced PE rat model, we found a significant shift of T cell differentiation towards Th17 cells, and administration of IL-6 antibody mitigated the PE phenotype and the imbalance of the Treg/Th17 cells. These results define a vital regulatory cascade involving trophocyte-derived CD81, IL-6, and maternal Treg/Th17 cells in the pathogenesis of PE and suggests new therapeutic approaches based on CD81 and IL-6 downregulation to prevent human PE.
Collapse
Affiliation(s)
- Hailin Ding
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Yimin Dai
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Yi Lei
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Zhiyin Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Ruotian Li
- Department of Laboratory Medicine, Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, 210008, Nanjing, China
| | - Li Shen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Ning Gu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Xiangyu Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China.
| |
Collapse
|
18
|
Brand RM, Biswas N, Siegel A, Myerski A, Engstrom J, Jeffrey Metter E, Brand RE, Cranston RD, McGowan I. Immunological responsiveness of intestinal tissue explants and mucosal mononuclear cells to ex vivo stimulation. J Immunol Methods 2018; 463:39-46. [PMID: 30218652 DOI: 10.1016/j.jim.2018.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND There are limited data on the immunological responsiveness of healthy intestinal tissue when it is cultured and stimulated ex vivo. Such an ex vivo model has the potential to be a valuable tool in understanding disease pathogenesis and as a preclinical tool for the assessment of candidate therapeutic agents used to treat inflammatory bowel disease (IBD). AIM We undertook a comprehensive study to evaluate ex vivo immunological responses of intestinal tissue and isolated mucosal mononuclear cells (MMC) to a broad range of stimuli. METHODS Colorectal biopsies (explants) were obtained from healthy participants by flexible sigmoidoscopy and were placed either directly into culture or digested to isolate MMC prior to placement in culture. Explants or MMC were treated with polyinosinic:polycytidylic acid (Poly IC), phytohemagglutinin (PHA), lipopolysacccharides from E Coli (LPS), anti-CD3/CD28 antibodies, or IL-1β/TNF-α for 24 h. Supernatants were assayed for 40 inflammatory biomarkers using multiplexed enzyme-linked immunosorbent assay (ELISA). The isolated MMCs were further characterized using twelve color flow cytometry. RESULTS Explants have greater weight adjusted constitutive expression of inflammatory biomarkers than MMCs. Biomarker responses varied as a function of immunogen and use of intact tissue or isolated cells. PHA applied to intact explants was the most effective agent in inducing biomarker changes. Stimulation induced activated and memory cellular phenotypes in both explants and MMCs. CONCLUSIONS The breadth and magnitude of responses from intact and enzymatically digested intestinal tissue explants stimulated with exogenous immunogens are complex and vary by tissue form and treatment. Overall, PHA stimulation of intact explants produced the most robust responses in normal human colorectal tissue. This system could potentially serve as a preliminary model of the disease state, suitable for small scale screening of new therapeutic agents prior to using IBD patient derived tissue.
Collapse
Affiliation(s)
- Rhonda M Brand
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA.
| | - Nabanita Biswas
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Siegel
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| | - Ashley Myerski
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| | - Jarret Engstrom
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| | | | - Randall E Brand
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ross D Cranston
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ian McGowan
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Seu L, Tidwell C, Timares L, Duverger A, Wagner FH, Goepfert PA, Westfall AO, Sabbaj S, Kutsch O. CD151 Expression Is Associated with a Hyperproliferative T Cell Phenotype. THE JOURNAL OF IMMUNOLOGY 2017; 199:3336-3347. [PMID: 28954890 DOI: 10.4049/jimmunol.1700648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
The tetraspanin CD151 is a marker of aggressive cell proliferation and invasiveness for a variety of cancer types. Given reports of CD151 expression on T cells, we explored whether CD151 would mark T cells in a hyperactivated state. Consistent with the idea that CD151 could mark a phenotypically distinct T cell subset, it was not uniformly expressed on T cells. CD151 expression frequency was a function of the T cell lineage (CD8 > CD4) and a function of the memory differentiation state (naive T cells < central memory T cells < effector memory T cells < T effector memory RA+ cells). CD151 and CD57, a senescence marker, defined the same CD28- T cell populations. However, CD151 also marked a substantial CD28+ T cell population that was not marked by CD57. Kinome array analysis demonstrated that CD28+CD151+ T cells form a subpopulation with a distinct molecular baseline and activation phenotype. Network analysis of these data revealed that cell cycle control and cell death were the most altered process motifs in CD28+CD151+ T cells. We demonstrate that CD151 in T cells is not a passive marker, but actively changed the cell cycle control and cell death process motifs of T cells. Consistent with these data, long-term T cell culture experiments in the presence of only IL-2 demonstrated that independent of their CD28 expression status, CD151+ T cells, but not CD151- T cells, would exhibit an Ag-independent, hyperresponsive proliferation phenotype. Not unlike its reported function as a tumor aggressiveness marker, CD151 in humans thus marks and enables hyperproliferative T cells.
Collapse
Affiliation(s)
- Lillian Seu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christopher Tidwell
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Laura Timares
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Frederic H Wagner
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Andrew O Westfall
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Steffanie Sabbaj
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
20
|
CD81 as a tumor target. Biochem Soc Trans 2017; 45:531-535. [PMID: 28408492 DOI: 10.1042/bst20160478] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 01/25/2023]
Abstract
CD81 participates in a variety of important cellular processes such as membrane organization, protein trafficking, cellular fusion and cell-cell interactions. In the immune system, CD81 regulates immune synapse, receptor clustering and signaling; it also mediates adaptive and innate immune suppression. CD81 is a gateway in hepatocytes for pathogens such as hepatitis C virus and Plasmodium; it also confers susceptibility to Listeria infection. These diverse biological roles are due to the tendency of CD81 to associate with other tetraspanins and with cell-specific partner proteins, which provide the cells with a signaling platform. CD81 has also been shown to regulate cell migration and invasion, and has therefore been implicated in cancer progression. Indeed, we have recently shown that CD81 contributes to tumor growth and metastasis. CD81 is expressed in most types of cancer, including breast, lung, prostate, melanoma, brain cancer and lymphoma, and the overexpression or down-regulation of this molecule has been correlated with either good or bad prognosis. Here, we discuss the role of CD81 in cancer and its potential therapeutic use as a tumor target.
Collapse
|
21
|
Moreira ML, Costa-Pereira C, Alves MLR, Marteleto BH, Ribeiro VM, Peruhype-Magalhães V, Giunchetti RC, Martins-Filho OA, Araújo MSS. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes. Vet Parasitol 2016; 220:33-45. [PMID: 26995719 DOI: 10.1016/j.vetpar.2016.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
Abstract
Visceral leishmaniasis (VL) is transmitted by phlebotomine sandfly vectors and domestic dogs serve as a reservoir. The elimination of seropositive dogs has been a recommended strategy for managing the disease in Brazil. A protective canine vaccine would be an important tool for controlling the disease, reducing the parasites available to sandfly vectors and, consequently, reducing the number of human VL cases. Leishmune(®) is an anti-canine Leishmaniosis (VL Canine) vaccine produced by Zoetis (Pfizer, Brazil) that was commercially available in Brazil until 2014. The main goal of the present study was to investigate the protective immunological events induced by vaccination with Leishmune(®) in the time frame of one year. Healthy, non-vaccinated dogs and dogs of 1, 6 and 10 months post-vaccination were evaluated. Results showed that Leishmune(®) induced an increase in phagocytic activity of neutrophils and monocytes and also increased NO production. Immunological events were correlated with functional responses, as high levels of IgG and an increase of the receptor Fcγ were detected. Vaccination induced an increased expression of TLR (2, 4, 5, 9), integrin (CD29, CD49f), activation (MHCII) and co-stimulatory (CD80, CD81) molecules by neutrophils and monocytes. Vaccination led to decrease of IL-4 and an increase of IL-8 production by monocytes and higher IFN-γ and IL-17 production by T-cells. The results suggested that Leishmune(®) was able to induce a long-lasting change in immune response, mediated by supportive immunological events that may be participating in protective immunity against CL.
Collapse
Affiliation(s)
- Marcela L Moreira
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Christiane Costa-Pereira
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Marina Luiza Rodrigues Alves
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Bruno H Marteleto
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Vitor M Ribeiro
- Clínica Veterinária Santo Agostinho, Belo Horizonte, Minas Gerais, Brazil.
| | - Vanessa Peruhype-Magalhães
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Rodolfo C Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Olindo A Martins-Filho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Márcio S S Araújo
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Haque M, Song J, Fino K, Sandhu P, Wang Y, Ni B, Fang D, Song J. Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells. Cell Transplant 2016; 25:811-27. [PMID: 26777320 DOI: 10.3727/096368916x690467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adoptive cell transfer (ACT) of antigen (Ag)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a highly promising treatment for a variety of diseases. Naive or central memory T-cell-derived effector CTLs are optimal populations for ACT-based immunotherapy because these cells have a high proliferative potential, are less prone to apoptosis than terminally differentiated cells, and have the higher ability to respond to homeostatic cytokines. However, such ACT with T-cell persistence is often not feasible due to difficulties in obtaining sufficient cells from patients. Here we present that in vitro differentiated HSCs of engineered PSCs can develop in vivo into tumor Ag-specific naive CTLs, which efficiently suppress melanoma growth. Mouse-induced PSCs (iPSCs) were retrovirally transduced with a construct encoding chicken ovalbumin (OVA)-specific T-cell receptors (TCRs) and survival-related proteins (i.e., BCL-xL and survivin). The gene-transduced iPSCs were cultured on the delta-like ligand 1-expressing OP9 (OP9-DL1) murine stromal cells in the presence of murine recombinant cytokines (rFlt3L and rIL-7) for a week. These iPSC-derived cells were then intravenously adoptively transferred into recipient mice, followed by intraperitoneal injection with an agonist α-Notch 2 antibody and cytokines (rFlt3L and rIL-7). Two weeks later, naive OVA-specific CD8(+) T cells were observed in the mouse peripheral lymphatic system, which were responsive to OVA-specific stimulation. Moreover, the mice were resistant to the challenge of B16-OVA melanoma induction. These results indicate that genetically modified stem cells may be used for ACT-based immunotherapy or serve as potential vaccines.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rocha-Perugini V, Sánchez-Madrid F, Martínez Del Hoyo G. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation. Front Immunol 2016; 6:653. [PMID: 26793193 PMCID: PMC4707441 DOI: 10.3389/fimmu.2015.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) , Madrid , Spain
| |
Collapse
|
24
|
Detchokul S, Williams ED, Parker MW, Frauman AG. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol 2015; 171:5462-90. [PMID: 23731188 DOI: 10.1111/bph.12260] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED One of the hallmarks of cancer is the ability to activate invasion and metastasis. Cancer morbidity and mortality are largely related to the spread of the primary, localized tumour to adjacent and distant sites. Appropriate management and treatment decisions based on predicting metastatic disease at the time of diagnosis is thus crucial, which supports better understanding of the metastatic process. There are components of metastasis that are common to all primary tumours: dissociation from the primary tumour mass, reorganization/remodelling of extracellular matrix, cell migration, recognition and movement through endothelial cells and the vascular circulation and lodgement and proliferation within ectopic stroma. One of the key and initial events is the increased ability of cancer cells to move, escaping the regulation of normal physiological control. The cellular cytoskeleton plays an important role in cancer cell motility and active cytoskeletal rearrangement can result in metastatic disease. This active change in cytoskeletal dynamics results in manipulation of plasma membrane and cellular balance between cellular adhesion and motility which in turn determines cancer cell movement. Members of the tetraspanin family of proteins play important roles in regulation of cancer cell migration and cancer-endothelial cell interactions, which are critical for cancer invasion and metastasis. Their involvements in active cytoskeletal dynamics, cancer metastasis and potential clinical application will be discussed in this review. In particular, the tetraspanin member, CD151, is highlighted for its major role in cancer invasion and metastasis. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- S Detchokul
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine (Austin Health/Northern Health), The University of Melbourne, Heidelberg, Vic., Australia
| | | | | | | |
Collapse
|
25
|
Abstract
A case of a young girl diagnosed with an antibody deficiency syndrome serves to highlight the role of CD81 in B cell biology. Moreover, this case illustrates a fundamental function of the tetraspanin family, namely their association with partner proteins. Characterization of the patient's B cells revealed lack of surface CD19 although both of her CD19 alleles were normal. Further analysis determined that her antibody deficiency syndrome was due to a mutation in the CD81 gene, which did not enable expression of CD19 on the surface of the patient's B cells. Actually, the partnership of CD81 with CD19 and the dependency of CD19 for its trafficking to the cell surface expression were first documented in CD81-deficient mice. CD81 is a widely expressed protein, yet the mutation in the antibody-deficient patient impaired mostly her B cell function. CD81 is required for multiple normal physiological functions, which have been subverted by major human pathogens, such as hepatitis C virus. However, this review will focus on the function of CD81 in cells of the adaptive immune system. Specifically, it will highlight studies focusing on the different roles of CD81 in B and T cells and on its function in B-T cell interactions.
Collapse
|
26
|
Evans VA, Kumar N, Filali A, Procopio FA, Yegorov O, Goulet JP, Saleh S, Haddad EK, da Fonseca Pereira C, Ellenberg PC, Sekaly RP, Cameron PU, Lewin SR. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells. PLoS Pathog 2013; 9:e1003799. [PMID: 24339779 PMCID: PMC3855553 DOI: 10.1371/journal.ppat.1003799] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/12/2013] [Indexed: 12/11/2022] Open
Abstract
Latently infected resting CD4+ T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4+ T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4+ T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4+ T cells. Gene expression in non-proliferating CD4+ T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4+ T cells, which is predominantly mediated through signalling during DC-T cell contact. Current antiretroviral drugs significantly prolong life and reduce morbidity but are unable to cure HIV. While on treatment, the virus is able to hide in resting memory T cells in a silent or “latent” form. These latently infected cells are rare and thus are hard to study using blood from HIV-infected individuals on treatment. Therefore, it is very important to have laboratory models that can closely mimic what is going on in the body. We have developed a novel model of HIV latency in the laboratory. Using this model we have shown that the presence of dendritic cells, an important type of immune cell that can regulate T cell activation, at the time of infection allows for the infection of resting T cells and the establishment of latency. We have demonstrated that this is predominantly mediated by direct cell-to-cell interactions. Further exploration of the mechanisms behind HIV latency could lead to new ways to treat and possibly eradicate HIV.
Collapse
Affiliation(s)
- Vanessa A. Evans
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Nitasha Kumar
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Ali Filali
- VGTI-Florida, Port St. Lucie, Florida, United States of America
| | | | - Oleg Yegorov
- VGTI-Florida, Port St. Lucie, Florida, United States of America
| | - Jean-Philippe Goulet
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Suha Saleh
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Elias K. Haddad
- VGTI-Florida, Port St. Lucie, Florida, United States of America
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Candida da Fonseca Pereira
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Monash Micro Imaging, Monash University, Melbourne, Victoria, Australia
| | - Paula C. Ellenberg
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Rafick-Pierre Sekaly
- VGTI-Florida, Port St. Lucie, Florida, United States of America
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Paul U. Cameron
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Alfred Hospital, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
27
|
CD25 and CD69 induction by α4β1 outside-in signalling requires TCR early signalling complex proteins. Biochem J 2013; 454:109-21. [PMID: 23758320 PMCID: PMC3749870 DOI: 10.1042/bj20130485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Distinct signalling pathways producing diverse cellular outcomes can utilize similar subsets of proteins. For example, proteins from the TCR (T-cell receptor) ESC (early signalling complex) are also involved in interferon-α receptor signalling. Defining the mechanism for how these proteins function within a given pathway is important in understanding the integration and communication of signalling networks with one another. We investigated the contributions of the TCR ESC proteins Lck (lymphocyte-specific kinase), ZAP-70 (ζ-chain-associated protein of 70 kDa), Vav1, SLP-76 [SH2 (Src homology 2)-domain-containing leukocyte protein of 76 kDa] and LAT (linker for activation of T-cells) to integrin outside-in signalling in human T-cells. Lck, ZAP-70, SLP-76, Vav1 and LAT were activated by α4β1 outside-in signalling, but in a manner different from TCR signalling. TCR stimulation recruits ESC proteins to activate the mitogen-activated protein kinase ERK (extracellular-signal-regulated kinase). α4β1 outside-in-mediated ERK activation did not require TCR ESC proteins. However, α4β1 outside-in signalling induced CD25 and co-stimulated CD69 and this was dependent on TCR ESC proteins. TCR and α4β1 outside-in signalling are integrated through the common use of TCR ESC proteins; however, these proteins display functionally distinct roles in these pathways. These novel insights into the cross-talk between integrin outside-in and TCR signalling pathways are highly relevant to the development of therapeutic strategies to overcome disease associated with T-cell deregulation.
Collapse
|
28
|
CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses. Mol Cell Biol 2013; 33:3644-58. [PMID: 23858057 DOI: 10.1128/mcb.00302-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated the dynamics of the molecular interactions of tetraspanin CD81 in T lymphocytes, and we show that CD81 controls the organization of the immune synapse (IS) and T cell activation. Using quantitative microscopy, including fluorescence recovery after photobleaching (FRAP), phasor fluorescence lifetime imaging microscopy-Föster resonance energy transfer (phasorFLIM-FRET), and total internal reflection fluorescence microscopy (TIRFM), we demonstrate that CD81 interacts with ICAM-1 and CD3 during conjugation between T cells and antigen-presenting cells (APCs). CD81 and ICAM-1 exhibit distinct mobilities in central and peripheral areas of early and late T cell-APC contacts. Moreover, CD81-ICAM-1 and CD81-CD3 dynamic interactions increase over the time course of IS formation, as these molecules redistribute throughout the contact area. Therefore, CD81 associations unexpectedly define novel sequential steps of IS maturation. Our results indicate that CD81 controls the temporal progression of the IS and the permanence of CD3 in the membrane contact area, contributing to sustained T cell receptor (TCR)-CD3-mediated signaling. Accordingly, we find that CD81 is required for proper T cell activation, regulating CD3ζ, ZAP-70, LAT, and extracellular signal-regulated kinase (ERK) phosphorylation; CD69 surface expression; and interleukin-2 (IL-2) secretion. Our data demonstrate the important role of CD81 in the molecular organization and dynamics of the IS architecture that sets the signaling threshold in T cell activation.
Collapse
|
29
|
Cevik SI, Keskin N, Belkaya S, Ozlu MI, Deniz E, Tazebay UH, Erman B. CD81 interacts with the T cell receptor to suppress signaling. PLoS One 2012; 7:e50396. [PMID: 23226274 PMCID: PMC3511562 DOI: 10.1371/journal.pone.0050396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/19/2012] [Indexed: 01/29/2023] Open
Abstract
CD81 (TAPA-1) is a ubiquitously expressed tetraspanin protein identified as a component of the B lymphocyte receptor (BCR) and as a receptor for the Hepatitis C Virus. In an effort to identify trans-membrane proteins that interact with the T-cell antigen receptor (TCR), we performed a membrane yeast two hybrid screen and identified CD81 as an interactor of the CD3delta subunit of the TCR. We found that in the absence of CD81, in thymocytes from knockout mice, TCR engagement resulted in stronger signals. These results were recapitulated in T cell lines that express low levels of CD81 through shRNA mediated silencing. Increased signaling did not result from alterations in the levels of TCR on the surface of T lymphocytes. Although CD81 is not essential for normal T lymphocyte development, it plays an important role in regulating TCR and possibly pre-TCR signal transduction by controlling the strength of signaling. CD81 dependent alterations in thymocyte signaling are evident in increased CD5 expression on CD81 deficient double positive (DP) thymocytes. We conclude that CD81 interacts with the T cell receptor to suppress signaling.
Collapse
Affiliation(s)
- Safak Isil Cevik
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Nazli Keskin
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center- SUNUM, Istanbul, Turkey
| | - Serkan Belkaya
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Meral Ilcim Ozlu
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Emre Deniz
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center- SUNUM, Istanbul, Turkey
| | - Uygar Halis Tazebay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Batu Erman
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center- SUNUM, Istanbul, Turkey
| |
Collapse
|
30
|
Köberle M, Kaesler S, Kempf W, Wölbing F, Biedermann T. Tetraspanins in mast cells. Front Immunol 2012; 3:106. [PMID: 22783251 PMCID: PMC3346162 DOI: 10.3389/fimmu.2012.00106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/17/2012] [Indexed: 01/01/2023] Open
Abstract
Mast cells (MC) are key mediators of the immune system, most prominently known for their role in eliciting harmful allergic reactions. Mast cell mediator release (e.g. by degranulation) is triggered by FcεRI recognition of antigen – IgE complexes. Until today no therapeutic targeting of this and other mast cell activation pathways is established. Among possible new candidates there are tetraspanins that have been described on MC already several years ago. Tetraspanins are transmembrane proteins acting as scaffolds, mediating local clustering of their interaction partners, and thus amplify their activities. More recently, tetraspanins were also found to exert intrinsic receptor functions. Tetraspanins have been found to be crucial components of fundamental biological processes like cell motility and adhesion. In immune cells, they not only boost the effectiveness of antigen presentation by clustering MHC molecules, they are also key players in all kinds of degranulation events and immune receptor clustering. This review focuses on the contribution of tetraspanins clustered with FcεRI or residing in granule membranes to classical MC functions but also undertakes an outlook on the possible contribution of tetraspanins to newly described mast cell functions and discusses possible targets for drug development.
Collapse
Affiliation(s)
- Martin Köberle
- Department of Dermatology, Eberhard Karls University Tübingen Tübingen, Germany
| | | | | | | | | |
Collapse
|