1
|
Zhou K, Shi X. Deep learning-based quantitative analyses of feedback in the land-atmosphere interactions over the Vietnamese Mekong Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175119. [PMID: 39089372 DOI: 10.1016/j.scitotenv.2024.175119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
During the past several decades, the Vietnamese Mekong Delta (VMD) has experienced many severe droughts, resulting in significant impacts on both agriculture and aquaculture. In the evolution and intensification of droughts, local feedbacks in the Land-Atmosphere (LA) interactions were considered to play a crucial role. It is critical to quantify the impact of LA variables on drought processes and severity with the feedback loop of water and energy balances (e.g., soil moisture-latent and sensible heat-precipitation). In this study, a deep learning model, named Long- and Short-term Time-series Network (LSTNet), was applied to simulate the LA interactions over the VMD. With the ERA5 data as modelling inputs, the role of each key variable (e.g., soil moisture, sensible and latent heat) in the LA interactions over the period of 2011-2020 was quantified, and the variations of their inter-relationships in the future period (2015-2099) were also investigated based on the CMIP6 data. The LSTNet model has demonstrated that the deep learning algorithm can effectively capture the relative importance of key variables in the LA interactions. We found that it is crucial to evaluate the effects of soil moisture and sensible heat on the LA interactions, particularly in the dry periods when negative anomalies in soil moisture and sensible heat would significantly reduce the amount of precipitation. In addition, the decline in soil moisture and the rise in sensible heat are anticipated to further diminish precipitation in the future under the changing climate.
Collapse
Affiliation(s)
- Keke Zhou
- School of Social and Environmental Sustainability, University of Glasgow, Dumfries, UK.
| | - Xiaogang Shi
- School of Social and Environmental Sustainability, University of Glasgow, Dumfries, UK
| |
Collapse
|
2
|
Cai F, Liu C, Gerten D, Yang S, Zhang T, Li K, Kurths J. Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere. Nat Commun 2024; 15:8012. [PMID: 39271682 PMCID: PMC11399360 DOI: 10.1038/s41467-024-52254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Pronounced spatial disparities in heatwave trends are bound up with a diversity of atmospheric signals with complex variations, including different phases and wavenumbers. However, assessing their relationships quantitatively remains a challenging problem. Here, we use a network-searching approach to identify the strengths of heatwave-related atmospheric teleconnections (AT) with ERA5 reanalysis data. This way, we quantify the close links between heatwave intensity and AT in the Northern Hemisphere. Approximately half of the interannual variability of heatwaves is explained and nearly 80% of the zonally asymmetric trend signs are estimated correctly by the AT changes in the mid-latitudes. We also uncover that the likelihood of extremely hot summers has increased sharply by a factor of 4.5 after 2000 over areas with enhanced AT, but remained almost unchanged over the areas with attenuated AT. Furthermore, reproducing Eastern European heatwave trends among various models of the Coupled Model Intercomparison Project Phase 6 largely depends on the simulated Eurasian AT changes, highlighting the potentially significant impact of AT shifts on the simulation and projection of heatwaves.
Collapse
Affiliation(s)
- Fenying Cai
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14473, Potsdam, Germany
- Department of Geography, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Caihong Liu
- Department of Water and Climate Risk, Institute for Environmental Studies, Vrije University Amsterdam, 1087HV, Amsterdam, Netherlands
| | - Dieter Gerten
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14473, Potsdam, Germany
- Department of Geography, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Song Yang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China.
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, 519082, Zhuhai, China.
| | - Tuantuan Zhang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China.
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, 519082, Zhuhai, China.
| | - Kaiwen Li
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14473, Potsdam, Germany
- School of National Safety and Emergency Management, Beijing Normal University, 100875, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, 100875, Beijing, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14473, Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
- School of Mathematical Sciences, SCMS, and CCSB, Fudan University, 200433, Shanghai, China
| |
Collapse
|
3
|
Luo M, Wu S, Lau GNC, Pei T, Liu Z, Wang X, Ning G, Chan TO, Yang Y, Zhang W. Anthropogenic forcing has increased the risk of longer-traveling and slower-moving large contiguous heatwaves. SCIENCE ADVANCES 2024; 10:eadl1598. [PMID: 38552023 PMCID: PMC10980275 DOI: 10.1126/sciadv.adl1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
Heatwaves are consecutive hot days with devastating impacts on human health and the environment. These events may evolve across both space and time, characterizing a spatiotemporally contiguous propagation pattern that has not been fully understood. Here, we track the spatiotemporally contiguous heatwaves in both reanalysis datasets and model simulations and examine their moving patterns (i.e., moving distance, speed, and direction) in different continents and periods. Substantial changes in contiguous heatwaves have been identified from 1979 to 2020, with longer persistence, longer traveling distance, and slower propagation. These changes have been amplified since 1997, probably due to the weakening of eddy kinetic energy, zonal wind, and anthropogenic forcing. The results suggest that longer-lived, longer-traveling, and slower-moving contiguous heatwaves will cause more devastating impacts on human health and the environment in the future if greenhouse gas emissions keep rising and no effective measures are taken immediately. Our findings provide important implications for the adaption and mitigation of globally connected extreme heatwaves.
Collapse
Affiliation(s)
- Ming Luo
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
- Institute of Environment, Energy, and Sustainability, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sijia Wu
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
| | - Gabriel Ngar-Cheung Lau
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08540-6654, USA
| | - Tao Pei
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Liu
- Earth, Ocean, and Atmospheric Sciences (EOAS) Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Xiaoyu Wang
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
| | - Guicai Ning
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ting On Chan
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanjian Yang
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wei Zhang
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT 84322-4820, USA
| |
Collapse
|
4
|
Zhang Y, Huang JG, Wang M, Wang W, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhai L, Antonucci S, Buttò V, Camarero JJ, Campelo F, Čufar K, De Luis M, Fajstavr M, Giovannelli A, Gričar J, Gruber A, Gryc V, Güney A, Jyske T, Kašpar J, King G, Krause C, Lemay A, Lombardi F, Del Castillo EM, Morin H, Nabais C, Nöjd P, Peters RL, Prislan P, Saracino A, Shishov VV, Swidrak I, Vavrčík H, Vieira J, Zeng Q, Rossi S. High preseason temperature variability drives convergence of xylem phenology in the Northern Hemisphere conifers. Curr Biol 2024; 34:1161-1167.e3. [PMID: 38325374 DOI: 10.1016/j.cub.2024.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.
Collapse
Affiliation(s)
- Yaling Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jian-Guo Huang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Minhuang Wang
- Department of Ecology, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenjin Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Annie Deslauriers
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Eryuan Liang
- Key Laboratory of Alpine Ecology and Biodiversity, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Harri Mäkinen
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Walter Oberhuber
- Department of Botany, Leopold-Franzens University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | | | - Roberto Tognetti
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso 86100, Italy
| | - Václav Treml
- Department of Physical Geography and Geoecology, Charles University, Prague 12843, Czech Republic
| | - Bao Yang
- School of Geograph and Oceanograph Sciences, Nanjing University, Nanjing 210093, China
| | - Lihong Zhai
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Serena Antonucci
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso 86100, Italy
| | - Valentina Buttò
- Forest Research Institute, Université du Quebec en Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X5E4, Canada
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Zaragoza 50192, Spain
| | - Filipe Campelo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Katarina Čufar
- University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Martin De Luis
- Department of Geography and Regional Planning, Environmental Science Institute, University of Zaragoza, Zaragoza 50009, Spain
| | - Marek Fajstavr
- Department of Wood Science and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 61300, Czech Republic
| | - Alessio Giovannelli
- CNR - Istituto di Ricerca sugli Ecosistemi Terrestri, IRET, Via Madonna del Piano 10, I50019 Sesto Fiorentino, Italy
| | - Jožica Gričar
- Slovenian Forestry Institute, Večna Pot 2, 1000, Ljubljana, Slovenia
| | - Andreas Gruber
- Department of Botany, Leopold-Franzens University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Vladimír Gryc
- Department of Wood Science and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 61300, Czech Republic
| | - Aylin Güney
- Izmir Katip Çelebi University, Faculty of Forestry, Balatçık Mahallesi Havaalanı Şosesi No:33/2 Balatçık, Çiğli, Izmir 35620, Turkey
| | - Tuula Jyske
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Jakub Kašpar
- Department of Physical Geography and Geoecology, Charles University, Prague 12843, Czech Republic; Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Department of Forest Ecology, 252 43 Průhonice, Czech Republic
| | - Gregory King
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Department of Sciences, University of Alberta - Augustana Campus, Camrose, AB T4V 2R3, Canada
| | - Cornelia Krause
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Audrey Lemay
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Fabio Lombardi
- AGRARIA Department, Mediterranean University of Reggio Calabria, Reggio Calabria 89124, Italy
| | - Edurne Martínez Del Castillo
- Department of Geography and Regional Planning, Environmental Science Institute, University of Zaragoza, Zaragoza 50009, Spain
| | - Hubert Morin
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Cristina Nabais
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Pekka Nöjd
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Richard L Peters
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Peter Prislan
- Slovenian Forestry Institute, Večna Pot 2, 1000, Ljubljana, Slovenia
| | - Antonio Saracino
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici-Napoli, Italy
| | - Vladimir V Shishov
- Institute of Economics and Trade, Siberian Federal University, Krasnoyarsk 660075, Russia
| | - Irene Swidrak
- Department of Botany, Leopold-Franzens University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Hanuš Vavrčík
- Department of Wood Science and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 61300, Czech Republic
| | - Joana Vieira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Qiao Zeng
- Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China
| | - Sergio Rossi
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
5
|
Chen X, Pan Z, Huang B, Liang J, Wang J, Zhang Z, Jiang K, Huang N, Han G, Long B, Zhang Z, Men J, Gao R, Cai L, Wu Y, Huang Z. Influence paradigms of soil moisture on land surface energy partitioning under different climatic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170098. [PMID: 38278250 DOI: 10.1016/j.scitotenv.2024.170098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Soil moisture (SM) directly controls the land surface energy partition which plays an important role in the formation of extreme weather events. However, its dependence on specific climatic conditions is not thoroughly understood due to the complexity of soil moisture effects. Here, we examine the relationship between SM and surface energy partitioning under different climate conditions, and identify the influence paradigms of soil moisture on surface energy partition. We find that temperature changes can explicitly determine the impact paradigm of different physical processes, i.e. evapotranspiration, soil freezing and thawing, and such influence paradigms are also affected by atmospheric aridity (VPD). Globally, there are five paradigms that effects on surface energy partitioning, including the warm-wet paradigm (WW), transitional paradigm (TP), warm-dry paradigm (WD), cool-wet paradigm (CW) and cold paradigm (CP). Since 1981, the global area proportion for TP is observed to increase pronouncedly. We also find that the critical SM threshold exhibits regional variations and the global average is 0.45 m3/m3. The identified paradigms and their long-term change trends provide new insights into the global intensification of land-atmosphere interaction, which has important implications for global warming and the formation of heatwaves.
Collapse
Affiliation(s)
- Xiao Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Zhihua Pan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China.
| | - Binxiang Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China.
| | - Ju Liang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Jialin Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Ziyuan Zhang
- Department of Geography, Xinzhou Teachers University, Xinzhou, China
| | - Kang Jiang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Na Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Guolin Han
- China Meteorological Administration Training Center, Beijing, China
| | - Buju Long
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Zhenzhen Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Jingyu Men
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Riping Gao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Linlin Cai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Yao Wu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Zhefan Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| |
Collapse
|
6
|
Qu R, Chen S, Wang K, Liu Q, Yang B, Yue M, Peng C. Potential future changes in soil carbon dynamics in the Ziwuling Forest, China under different climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169008. [PMID: 38040362 DOI: 10.1016/j.scitotenv.2023.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Soil carbon (C) cycling processes in terrestrial ecosystems are significantly influenced by global changes, and soil microorganisms play a crucial role in soil organic carbon (SOC) and its feedbacks to climate change. To investigate the potential future changes in soil C dynamics under different scenarios in the Ziwuling Forest region, China, we conducted a soil observation and sampling experiment from April 2021 to July 2022. By utilizing a microbial ecological model (MEND), we aimed to predict the future dynamics of soil C under different scenarios in the area. Our results demonstrate that under the RCP2.6 (Representative Concentration Pathway) scenario, SOC showed a rapid increase, SOC under the RCP2.6 scenario will be significantly higher than those under the RCP4.5 scenario and RCP8.5 scenario in the topsoil and whole soil. Furthermore, the positive correlation between total litter carbon (LC) and SOC under the RCP2.6 scenario highlights the potential role of total litter carbon in driving SOC dynamics. Our study also revealed that the low greenhouse gas (GHG) emission scenario favors the accumulation of SOC in the study area, while the high GHG emission scenario leads to greater soil carbon loss. Overall, these results underscore the importance of considering the impact of climate change, especially global warming, on soil ecosystems in the future. Protecting the soil ecosystem of the Loess Plateau is critical for maintaining soil carbon sinks, preventing soil erosion, and improving and regulating the surrounding environmental climate.
Collapse
Affiliation(s)
- Ruosong Qu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an 710069, China; Northwest Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, China
| | - Shiyi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an 710069, China; College of Life Science, Northwest University, Xi'an 710069, China
| | - Kefeng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an 710069, China; College of Life Science, Northwest University, Xi'an 710069, China.
| | - Qiuyu Liu
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Yue
- Xi'an Botanical Garden of Shaanxi Province, China; College of Life Science, Northwest University, Xi'an 710069, China
| | - Changhui Peng
- Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, C.P. 8888, Succ. Centre-Ville, Montreal H3C 3P8, Canada
| |
Collapse
|
7
|
Gouveia CM, Silva M, Russo A. The severity of dry and hot climate extremes and their related impacts on vegetation in Madagascar. iScience 2024; 27:108658. [PMID: 38155783 PMCID: PMC10753072 DOI: 10.1016/j.isci.2023.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/01/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Madagascar is a low-income country, highly vulnerable to natural disasters affecting the small-scale subsistence farming system. Recently, climate change and environmental degradation have contributed to an intensification of food insecurity. We aim to monitor the link between dry and hot extremes on vegetation conditions, separated or concurrently, using satellite data, such as LST, ET, ET0, and FAPAR products from SEVIRI/MSG disseminated by LSASAF-EUMETSAT. The analysis was made for a long record from 2004 to 2021, focusing on the extreme seasons of 2020 and 2021. Results highlight the higher impact of combined dry and hot events when compared with isolated events, with a strong response of vegetation in the southern part of Madagascar. Results point to the added value of using the recent data records from geostationary satellites with high temporal resolution and updated in near real-time, to early detect, monitor, and characterize the impact of climate extremes on vegetation dynamics.
Collapse
Affiliation(s)
- Célia M. Gouveia
- Instituto Português do Mar e da Atmosfera, Lisboa, Portugal
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz (IDL), 1749-016 Lisboa, Portugal
| | - Mafalda Silva
- Instituto Português do Mar e da Atmosfera, Lisboa, Portugal
| | - Ana Russo
- Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz (IDL), 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Marchin RM, Medlyn BE, Tjoelker MG, Ellsworth DS. Decoupling between stomatal conductance and photosynthesis occurs under extreme heat in broadleaf tree species regardless of water access. GLOBAL CHANGE BIOLOGY 2023; 29:6319-6335. [PMID: 37698501 DOI: 10.1111/gcb.16929] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
High air temperatures increase atmospheric vapor pressure deficit (VPD) and the severity of drought, threatening forests worldwide. Plants regulate stomata to maximize carbon gain and minimize water loss, resulting in a close coupling between net photosynthesis (Anet ) and stomatal conductance (gs ). However, evidence for decoupling of gs from Anet under extreme heat has been found. Such a response both enhances survival of leaves during heat events but also quickly depletes available water. To understand the prevalence and significance of this decoupling, we measured leaf gas exchange in 26 tree and shrub species growing in the glasshouse or at an urban site in Sydney, Australia on hot days (maximum Tair > 40°C). We hypothesized that on hot days plants with ample water access would exhibit reduced Anet and use transpirational cooling leading to stomatal decoupling, whereas plants with limited water access would rely on other mechanisms to avoid lethal temperatures. Instead, evidence for stomatal decoupling was found regardless of plant water access. Transpiration of well-watered plants was 23% higher than model predictions during heatwaves, which effectively cooled leaves below air temperature. For hotter, droughted plants, the increase in transpiration during heatwaves was even more pronounced-gs was 77% higher than model predictions. Stomatal decoupling was found for most broadleaf evergreen and broadleaf deciduous species at the urban site, including some wilted trees with limited water access. Decoupling may simply be a passive consequence of the physical effects of high temperature on plant leaves through increased cuticular conductance of water vapor, or stomatal decoupling may be an adaptive response that is actively regulated by stomatal opening under high temperatures. This temperature response is not yet included in any land surface model, suggesting that model predictions of evapotranspiration may be underpredicted at high temperature and high VPD.
Collapse
Affiliation(s)
- Renée M Marchin
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
9
|
Antanaitis R, Džermeikaitė K, Bespalovaitė A, Ribelytė I, Rutkauskas A, Japertas S, Baumgartner W. Assessment of Ruminating, Eating, and Locomotion Behavior during Heat Stress in Dairy Cattle by Using Advanced Technological Monitoring. Animals (Basel) 2023; 13:2825. [PMID: 37760226 PMCID: PMC10525662 DOI: 10.3390/ani13182825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Heat stress (HS) significantly impacts dairy farming, prompting interest in precision dairy farming (PDF) for gauging its effects on cow health. This study assessed the influence of the Temperature-Humidity Index (THI) on rumination, eating, and locomotor activity. Various parameters, like rumination time, drinking gulps, chews per minute, and others were analyzed. The hypothesis was that precision dairy farming technology could help detect HS. Nine healthy Lithuanian Black-and-White cows were randomly selected for the trial. RumiWatch noseband sensors recorded behaviors, while SmaXtec climate sensors monitored THI. The data collection spanned from 14 June to 30 June. Cows in the THI class ≥ 72 exhibited reduced drinking time (51.16% decrease, p < 0.01), fewer chews per minute (12.9% decrease, p < 0.01), and higher activity levels (16.99% increase, p < 0.01). THI showed an inverse correlation with drinking time (r = -0.191, p < 0.05) and chews per bolus (r = -0.172, p < 0.01). Innovative technologies like RumiWatch are effective in detecting HS effects on behaviors. Future studies should explore the impact of HS on RWS biomarkers, considering factors such as lactation stage, number, yield, and pregnancy.
Collapse
Affiliation(s)
- Ramūnas Antanaitis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania (I.R.)
| | - Karina Džermeikaitė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania (I.R.)
| | - Agnė Bespalovaitė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania (I.R.)
| | - Ieva Ribelytė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania (I.R.)
| | - Arūnas Rutkauskas
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania (I.R.)
| | - Sigitas Japertas
- Practical Training and Research Center, Lithuanian University of Health Sciences, Topolių g. 6, LT-54310 Kaunas, Lithuania
| | - Walter Baumgartner
- University Clinic for Ruminants, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
10
|
Qiao L, Zuo Z, Zhang R, Piao S, Xiao D, Zhang K. Soil moisture-atmosphere coupling accelerates global warming. Nat Commun 2023; 14:4908. [PMID: 37582806 PMCID: PMC10427638 DOI: 10.1038/s41467-023-40641-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
Soil moisture-atmosphere coupling (SA) amplifies greenhouse gas-driven global warming via changes in surface heat balance. The Scenario Model Intercomparison Project projects an acceleration in SA-driven warming due to the 'warmer climate - drier soil' feedback, which continuously warms the globe and thereby exerts an acceleration effect on global warming. The projection shows that SA-driven warming exceeds 0.5 °C over extratropical landmasses by the end of the 21st Century. The likelihood of extreme high temperatures will additionally increase by about 10% over the entire globe (excluding Antarctica) and more than 30% over large parts of North America and Europe under the high-emission scenario. This demonstrates the high sensitivity of SA to climate change, in which SA can exceed the natural range of climate variability and play a non-linear warming component role on the globe.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai, China
| | - Zhiyan Zuo
- Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai, China.
| | - Renhe Zhang
- Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai, China.
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Dong Xiao
- Key laboratory of Cites' Mitigation and Adaptation to Climate Change in Shanghai, China Meteorological Administration, Shanghai, China
| | - Kaiwen Zhang
- Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
| |
Collapse
|
11
|
Leong CM, Hui TY, Guénard B. The role of body mass in limiting post heat-coma recovery ability in terrestrial ectotherms. Ecol Evol 2023; 13:e10218. [PMID: 37361898 PMCID: PMC10288262 DOI: 10.1002/ece3.10218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Under global warming, animal species show shrinking body size responses, cascading deep changes in community structure and ecosystem functions. Although the exact physiological mechanisms behind this phenomenon remain unsolved, smaller individuals may benefit from warming climate more than larger ones. Heat-coma, a physiological state with severe consequences on locomotion ability, is often considered as an "ecological death" scenario under which individuals are unable to escape and exposed to predation, further heat injury, and other hazards. Species are expected to increasingly encounter heat-coma temperature thresholds under warming climate, and body size may be an important trait for thermoregulation in particular for ectotherms. The relationship between heat-coma and shrinking body size remains, however, unclear. Yet, recovery after short-term heat-coma is possible, but little is known about its importance in thermal adaptation and how organismal size correlates with post heat-coma recovery. Here, using ants as a model system, we firstly examined the fate of heat-comatose individuals under field conditions to quantify the ecological benefits of post heat-coma recovery. Then, we quantified ants' recovery ability after heat-coma using a dynamic thermal assay in the laboratory and asked if thermal resilience varies between species with different body mass. Our results confirm that heat-coma represents an inherent ecological death where individuals failed to recover from coma suffer strong predation pressure. Additionally, following phylogenetic signals inclusion, organisms with small mass were more likely to recover, supporting the temperature-size rule in thermal adaptation and recent studies showing a decrease in body size composition of ectotherm community under warmer climatic conditions. Body size as a fundamental trait in ecology thus affects ectotherm survival under thermal stress, which may drive species body size adaptations and community composition under future warming scenarios.
Collapse
Affiliation(s)
- Chi Man Leong
- School of Biological SciencesThe University of Hong KongHong Kong SARChina
- Present address:
Environmental Science Programme, Department of Life Sciences, Faculty of Science and TechnologyBeijing Normal University‐Hong Kong Baptist University United International CollegeZhuhaiChina
| | - Tin Yan Hui
- School of Biological SciencesThe University of Hong KongHong Kong SARChina
- The Swire Institute of Marine ScienceThe University of Hong KongHong Kong SARChina
- Present address:
Science UnitLingnan UniversityHong Kong SARChina
| | - Benoit Guénard
- School of Biological SciencesThe University of Hong KongHong Kong SARChina
| |
Collapse
|
12
|
Ramos AM, Russo A, DaCamara CC, Nunes S, Sousa P, Soares PMM, Lima MM, Hurduc A, Trigo RM. The compound event that triggered the destructive fires of October 2017 in Portugal. iScience 2023; 26:106141. [PMID: 36915678 PMCID: PMC10006635 DOI: 10.1016/j.isci.2023.106141] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Portugal is regularly affected by destructive wildfires that have severe social, economic, and ecological impacts. The total burnt area in 2017 (∼540,000 ha) marked the all-time record value since 1980 with a tragic toll of 114 fatalities that occurred in June and October events. The local insurance sector declared it was the costliest natural disaster in Portugal with payouts exceeding USD295 million. Here, the 2017 October event, responsible for more than 200,000 ha of burnt area and 50 fatalities is analyzed from a compound perspective. A prolonged drought led to preconditioned cumulative hydric stress of vegetation in October 2017. In addition, on 15 October 2017, two other major drivers played a critical role: 1) the passage of hurricane Ophelia off the Coast of Portugal, responsible for exceptional meteorological conditions and 2) the human agent, responsible for an extremely elevated number of negligent ignitions. This disastrous combination of natural and anthropogenic drivers led to the uncontrolled wildfires observed on 15 October.
Collapse
Affiliation(s)
- Alexandre M Ramos
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Building 435, Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany.,Faculdade de Ciências, Universidade de Lisboa, Instituto Dom Luiz, 1749-016 Lisbon, Portugal
| | - Ana Russo
- Faculdade de Ciências, Universidade de Lisboa, Instituto Dom Luiz, 1749-016 Lisbon, Portugal
| | - Carlos C DaCamara
- Faculdade de Ciências, Universidade de Lisboa, Instituto Dom Luiz, 1749-016 Lisbon, Portugal
| | - Silvia Nunes
- Faculdade de Ciências, Universidade de Lisboa, Instituto Dom Luiz, 1749-016 Lisbon, Portugal
| | - Pedro Sousa
- Faculdade de Ciências, Universidade de Lisboa, Instituto Dom Luiz, 1749-016 Lisbon, Portugal.,Instituto Português do Mar e da Atmosfera (IPMA), 1749-077 Lisbon, Portugal
| | - P M M Soares
- Faculdade de Ciências, Universidade de Lisboa, Instituto Dom Luiz, 1749-016 Lisbon, Portugal
| | - Miguel M Lima
- Faculdade de Ciências, Universidade de Lisboa, Instituto Dom Luiz, 1749-016 Lisbon, Portugal
| | - Alexandra Hurduc
- Faculdade de Ciências, Universidade de Lisboa, Instituto Dom Luiz, 1749-016 Lisbon, Portugal
| | - Ricardo M Trigo
- Faculdade de Ciências, Universidade de Lisboa, Instituto Dom Luiz, 1749-016 Lisbon, Portugal.,Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-919, Brazil
| |
Collapse
|
13
|
Marchin RM, Esperon-Rodriguez M, Tjoelker MG, Ellsworth DS. Crown dieback and mortality of urban trees linked to heatwaves during extreme drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157915. [PMID: 35944640 DOI: 10.1016/j.scitotenv.2022.157915] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Cities have been described as 'heat islands' and 'dry islands' due to hotter, drier air in urban areas, relative to the surrounding landscape. As climate change intensifies, the health of urban trees will be increasingly impacted. Here, we posed the question: Is it possible to predict urban tree species mortality using (1) species climate envelopes and (2) plant functional traits? To answer these, we tracked patterns of crown dieback and recovery for 23 common urban tree and shrub species in Sydney, Australia during the record-breaking austral 2019-2020 summer. We identified 10 heat-tolerant species including five native and five exotic species, which represent climate-resilient options for urban plantings that are likely to continue to thrive for decades. Thirteen species were considered vulnerable to adverse conditions due to their mortality, poor health leading to tree removal, and/or extensive crown dieback. Crown dieback increased with increasing precipitation of the driest month of species climate of origin, suggesting that species from dry climates may be better suited for urban forests in future climates. We effectively grouped species according to their drought strategy (i.e., tolerance versus avoidance) using a simple trait-based framework that was directly linked with species mortality. The seven most climate-vulnerable species used a drought-avoidance strategy, having low wood density and high turgor loss points along with large, thin leaves with low heat tolerance. Overall, plant functional traits were better than species climate envelopes at explaining crown dieback. Recovery after stress required two mild, wet years for most species, resulting in prolonged loss of cooling benefits as well as economic losses due to replacement of dead/damaged trees. Hotter, longer, and more frequent heatwaves will require selection of more climate-resilient species in urban forests, and our results suggest that future research should focus on plant thermal traits to improve prediction models and species selection.
Collapse
Affiliation(s)
- Renée M Marchin
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Manuel Esperon-Rodriguez
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
14
|
Rajeev A, Mahto SS, Mishra V. Climate warming and summer monsoon breaks drive compound dry and hot extremes in India. iScience 2022; 25:105377. [PMID: 36345335 PMCID: PMC9636558 DOI: 10.1016/j.isci.2022.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Considering the severe impacts of compound dry and hot extremes, we examine the primary drivers of CDHEs during the summer monsoon in India. Using ERA5 reanalysis, we show that most of the CDHEs in India occur during the droughts caused by the summer monsoon rainfall deficit. Despite a decline in the frequency of summer monsoon droughts in recent decades, increased CDHEs are mainly driven by warming and dry spells during the summer monsoon particularly in the Northeast, central northeast, and west central regions. A strong land-atmospheric coupling during droughts in the summer monsoon season leads to frequent CDHEs in the Northwest and southern peninsular regions. Furthermore, regional variations in land-atmospheric coupling cause substantial differences in the CDHE occurrence in different parts of the country. Summer monsoon rainfall variability and increased warming can pose a greater risk of compound dry and hot extremes with severe impacts on various sectors in India.
Collapse
Affiliation(s)
- Akshay Rajeev
- Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat, India
| | - Shanti Shwarup Mahto
- Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat, India
| | - Vimal Mishra
- Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat, India
- Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat, India
| |
Collapse
|
15
|
Limited influence of irrigation on pre-monsoon heat stress in the Indo-Gangetic Plain. Nat Commun 2022; 13:4275. [PMID: 35879272 PMCID: PMC9314405 DOI: 10.1038/s41467-022-31962-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Hot extremes are anticipated to be more frequent and more intense under climate change, making the Indo-Gangetic Plain of India, with a 400 million population, vulnerable to heat stress. Recent studies suggest that irrigation has significant cooling and moistening effects over this region. While large-scale irrigation is prevalent in the Indo-Gangetic Plain during the two major cropping seasons, Kharif (Jun-Sep) and Rabi (Nov-Feb), hot extremes are reported in the pre-monsoon months (Apr-May) when irrigation activities are minimal. Here, using observed irrigation data and regional climate model simulations, we show that irrigation effects on heat stress during pre-monsoon are 4.9 times overestimated with model-simulated irrigation as prescribed in previous studies. We find that irrigation increases relative humidity by only 2.5%, indicating that irrigation is a non-crucial factor enhancing the moist heat stress. On the other hand, we detect causal effects of aerosol abundance on the daytime land surface temperature. Our study highlights the need to consider actual irrigation data in testing model-driven hypotheses related to the land-atmosphere feedback driven by human water management. Pre-monsoon irrigation over the Indo-Gangetic Plain is often misrepresented in model-driven hypothesis. Using actual census-based data and realistic model simulations, the authors show that irrigation has limited role in enhancing heat stress in the region.
Collapse
|
16
|
Yang JR, Chen Q, Wang H, Hu XY, Guo YM, Chen JZ. Reliable CA-(Q)SAR generation based on entropy weight optimized by grid search and correction factors. Comput Biol Med 2022; 146:105573. [DOI: 10.1016/j.compbiomed.2022.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
|
17
|
De Kauwe MG, Sabot MEB, Medlyn BE, Pitman AJ, Meir P, Cernusak LA, Gallagher RV, Ukkola AM, Rifai SW, Choat B. Towards species-level forecasts of drought-induced tree mortality risk. THE NEW PHYTOLOGIST 2022; 235:94-110. [PMID: 35363880 PMCID: PMC9321630 DOI: 10.1111/nph.18129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 05/14/2023]
Abstract
Predicting species-level responses to drought at the landscape scale is critical to reducing uncertainty in future terrestrial carbon and water cycle projections. We embedded a stomatal optimisation model in the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and parameterised the model for 15 canopy dominant eucalypt tree species across South-Eastern Australia (mean annual precipitation range: 344-1424 mm yr-1 ). We conducted three experiments: applying CABLE to the 2017-2019 drought; a 20% drier drought; and a 20% drier drought with a doubling of atmospheric carbon dioxide (CO2 ). The severity of the drought was highlighted as for at least 25% of their distribution ranges, 60% of species experienced leaf water potentials beyond the water potential at which 50% of hydraulic conductivity is lost due to embolism. We identified areas of severe hydraulic stress within-species' ranges, but we also pinpointed resilience in species found in predominantly semiarid areas. The importance of the role of CO2 in ameliorating drought stress was consistent across species. Our results represent an important advance in our capacity to forecast the resilience of individual tree species, providing an evidence base for decision-making around the resilience of restoration plantings or net-zero emission strategies.
Collapse
Affiliation(s)
| | - Manon E. B. Sabot
- ARC Centre of Excellence for Climate ExtremesSydneyNSW2052Australia
- Climate Change Research CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Belinda E. Medlyn
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Andrew J. Pitman
- ARC Centre of Excellence for Climate ExtremesSydneyNSW2052Australia
- Climate Change Research CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Patrick Meir
- School of GeosciencesThe University of EdinburghEdinburghEH9 3FFUK
| | - Lucas A. Cernusak
- College of Science and EngineeringJames Cook UniversityCairnsQld4878Australia
| | - Rachael V. Gallagher
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Anna M. Ukkola
- ARC Centre of Excellence for Climate ExtremesSydneyNSW2052Australia
- Climate Change Research CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Sami W. Rifai
- ARC Centre of Excellence for Climate ExtremesSydneyNSW2052Australia
- Climate Change Research CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Brendan Choat
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| |
Collapse
|
18
|
The March 2012 Heat Wave in Northeast America as a Possible Effect of Strong Solar Activity and Unusual Space Plasma Interactions. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the past two decades, the world has experienced an unprecedented number of extreme weather events, some causing major human suffering and economic damage. The March 2012 heat wave is one of the most known and broadly discussed events in the Northeast United States (NE-USA). The present study examines in depth the possible influence of solar activity on the historic March 2012 heat wave based on a comparison of solar/space and meteorological data. Our research suggests that the historic March 2012 heat wave (M2012HW) and the March 1910 heat wave (M1910HW), which occurred a century earlier in NE-USA, were related to Sun-generated special space plasma structures triggering large magnetic storms. Furthermore, the largest (Dst = −222 nT) magnetic storm during solar cycle 24 in March 2015 (only three years later than the March 2012 events) occurred in relation to another heat wave (M2015HW) in NE-USA. Both these heat waves, M2012HW and M2015HW, resemble each other in many ways: they were characterized by extremely huge temperature increases ΔΤΜ = 30° and 32° (with maximum temperatures ΤΜ = 28° and 23°, respectively) during a positive North Atlantic Oscillation index, the high temperatures coincided with large-scale warm air streaming from southern latitudes, they were accompanied by superstorms caused by unexpected geoeffective interplanetary coronal mass ejections (ICMEs), and the ICME-related solar energetic particle (SEP) events were characterized by a proton spectrum extending to very high (>0.5 GeV) energies. We infer that (i) all three heat waves examined (M2012HW, M2015HW, M1910HW) were related with strong magnetic storms triggered by effective solar wind plasma structures, and (b) the heat wave in March 2012 and the related solar activity was not an accidental coincidence; that is, the M2012HW was most probably affected by solar activity. Future case and statistical studies are needed to further check the hypothesis put forward here, which might improve atmospheric models in helping people’s safety, health and life.
Collapse
|
19
|
Two Nothofagus Species in Southernmost South America Are Recording Divergent Climate Signals. FORESTS 2022. [DOI: 10.3390/f13050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent climatic trends, such as warming temperatures, decrease in rainfall, and extreme weather events (e.g., heatwaves), are negatively affecting the performance of forests. In northern Patagonia, such conditions have caused tree growth reduction, crown dieback, and massive die-back events. However, studies looking at these consequences in the southernmost temperate forest (Nothofagus betuloides and Nothofagus pumilio) are much scarcer, especially in southernmost South America (SSA). These forests are also under the influence of the positive phase of Antarctic Oscillation (AAO, also known as Southern Annular Mode, SAM) that has been associated with increasing trends in temperature, drought, and extreme events in the last decades. This study evaluated the growth patterns and the climatic response of eight new tree-ring chronologies from Nothofagus species located at the upper treeline along different environmental gradients in three study areas: Punta Arenas, Yendegaia National Park, and Navarino Island in SSA. The main modes of the ring-width index (RWI) variation were studied using principal component analysis (PCA). We found that PC1 has the higher loadings for sites with precipitation values over 600 mm/yr, PC2 with N. betuloides sites, and PC3 with higher loadings for sites with precipitation values below 600 mm/yr. Our best growth-climate relationships are between N. betuloides and AAO and the most northeastern site of N. pumilio with relative humidity (which coincides with heatwaves and extreme drought). The climatic signals imprinted in the southernmost forests are sensitive to climatic variability, the climate forcing AAO, and the effects of climate change in the last decades.
Collapse
|
20
|
Dong J, Akbar R, Short Gianotti DJ, Feldman AF, Crow WT, Entekhabi D. Can Surface Soil Moisture Information Identify Evapotranspiration Regime Transitions? GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL097697. [PMID: 35865657 PMCID: PMC9286566 DOI: 10.1029/2021gl097697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
The transition of evapotranspiration between energy- and water-limitation regimes also denotes a nonlinear change in surface water and energy coupling strength. The regime transitions are primarily dominated by available moisture in the soil, although other micro-meteorological factors also play a role. Remotely sensed soil moisture is frequently used for detecting evapotranspiration regime transitions during inter storm dry downs. However, its sampling depth does not include the entire soil profile, over which water uptake is dominated by plant root distribution. We use flux tower, surface (θ s ; observations at 5 cm), and vertically integrated in situ soil moisture ( θ v ; 0-50 cm) observations to address the question: Can surface soil moisture robustly identify evapotranspiration regime transitions? Results demonstrate that θ s and θ v are hydraulically linked and have synchronized evapotranspiration regime transitions. As such, θ s and θ v capture comparable statistics of evapotranspiration regime prevalence, which supports the utility of remote-sensing θ s for large-scale land-atmosphere exchange analysis.
Collapse
Affiliation(s)
- Jianzhi Dong
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Institute of Surface‐Earth System ScienceTianjin UniversityTianjinChina
| | - Ruzbeh Akbar
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Daniel J. Short Gianotti
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Andrew F. Feldman
- Biospheric Sciences LaboratoryNASA Goddard Space Flight CenterGreenbeltMDUSA
- NASA Postdoctoral ProgramNASA Goddard Space Flight CenterGreenbeltMDUSA
| | - Wade T. Crow
- United States Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing LaboratoryBeltsvilleMDUSA
| | - Dara Entekhabi
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
21
|
dos Reis CJ, Souza A, Graf R, Kossowski TM, Abreu MC, de Oliveira-Júnior JF, Fernandes WA. Modeling of the air temperature using the Extreme Value Theory for selected biomes in Mato Grosso do Sul (Brazil). STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2022; 36:3499-3516. [PMID: 35401049 PMCID: PMC8981891 DOI: 10.1007/s00477-022-02206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
This paper aims to find probabilities of extreme values of the air temperature for the Cerrado, Pantanal and Atlantic Forest biomes in Mato Grosso do Sul in Brazil. In this case a maximum likelihood estimation was employed for the probability distributions fitting the extreme monthly air temperatures for 2007-2018. Using the Extreme Value Theory approach this work estimates three probability distributions: the Generalized Distribution of Extreme Values (GEV), the Gumbel (GUM) and the Log-Normal (LN). The Kolmogorov-Smirnov test, the corrected Akaike criterion AIC c , the Bayesian information criterion BIC, the root of the mean square error RMSE and the determination coefficient R 2 were applied to measure the goodness-of-fit. The estimated distributions were used to calculate the probabilities of occurrence of maximum monthly air temperatures over 28-32 °C. Temperature predictions were done for the 2-, 5-, 10-, 30-, 50- and 100-year return periods. The GEV and GUM distributions are recommended to be used in the warmer months. In the coldest months, the LN distribution gave a better fit to a series of extreme air temperatures. Deforestation, combustion and extensive fires, and the related aerosol emissions contribute, alongside climate change, to the generation of extreme air temperatures in the studied biomes. Supplementary Information The online version contains supplementary material available at 10.1007/s00477-022-02206-1.
Collapse
Affiliation(s)
- Carlos José dos Reis
- Department of Agricultural, Statistics and Experimentation Institution: Department of Statistics, Federal University of Lavras – UFLA-CEP, Lavras, 37200-900 Brazil
| | - Amaury Souza
- Physics Department, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900 Brazil
| | - Renata Graf
- Department of Hydrology and Water Management, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznań, Poland
| | - Tomasz M. Kossowski
- Department of Spatial Econometrics, Faculty of Human Geography and Planning, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznań, Poland
| | - Marcel Carvalho Abreu
- Department of Environmental Sciences, Forest Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro 23890-000 Brazil
| | | | - Widinei Alves Fernandes
- Physics Department, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900 Brazil
| |
Collapse
|
22
|
Padda SS, Stahlschmidt ZR. Evaluating the effects of water and food limitation on the life history of an insect using a multiple-stressor framework. Oecologia 2022; 198:519-530. [PMID: 35067802 DOI: 10.1007/s00442-022-05115-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Many environmental stressors naturally covary, and the frequency and duration of stressors such as heat waves and droughts are increasing globally with climate change. Multiple stressors may have additive or non-additive effects on fitness-related traits, such as locomotion, reproduction, and somatic growth. Despite its importance to terrestrial animals, water availability is rarely incorporated into multiple-stressor frameworks. Water limitation often occurs concurrently with food limitation (e.g., droughts can trigger famines), and the acquisition of water and food can be linked because water is necessary for digestion and metabolism. Thus, we investigated the independent and interactive effects of water and food limitation on life-history traits using female crickets (Gryllus firmus), which exhibit a wing dimorphism mediating a life-history trade-off between flight and fecundity. Our results indicate that traits vary in their sensitivities to environmental factors and factor-factor interactions. For example, neither environmental factor affected flight musculature, only water limitation affected survival, and food and water availability non-additively (i.e., interactively) influenced body and ovary mass. Water availability had a larger effect on traits than food availability, affected more traits than food availability, and mediated the effects of food availability. Further, life-history strategy influenced the costs of multiple stressors because females investing in flight capacity exhibited greater reductions in body and ovary mass during stress relative to females lacking flight capacity. Therefore, water is important in the multiple-stressor framework, and understanding the dynamics of covarying environmental factors and life history may be critical in the context of climate change characterized by concurrent environmental stressors.
Collapse
Affiliation(s)
- Sugjit S Padda
- University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA.,Department of Ecosystem Science and Management, Pennsylvania State University, State College, PA, 16801, USA
| | | |
Collapse
|
23
|
Abstract
This article is dedicated to the study of airborne GNSS-R signal processing techniques for water body detection and edge localization using a low-altitude airborne carrier with high rate reflectivity measurements. A GNSS-R setup on-board a carrier with reduced size and weight was developed for this application. We develop a radar technique for automatic GNSS signal segmentation in order to differentiate in-land water body surfaces based on the reflectivity measurements associated to different areas of reflection. Such measurements are derived from the GNSS signal amplitudes. We adapt a transitional model to characterize the changes in the measurements of the reflected GNSS signals from one area to another. We propose an on-line/off-line change detection algorithm for GNSS signal segmentation. A real flight experimentation took place in the context of this work obtaining reflections from different surfaces and landforms. We show, using the airborne GNSS measurements obtained, that the proposed radar technique detects in-land water body surfaces along the flight trajectory with high temporal (50 Hz ) and spatial resolution (order of 10 to 100 m2). We also show that we can localize the edges of the detected water body surfaces at meter accuracy.
Collapse
|
24
|
Guntu RK, Agarwal A. Disentangling increasing compound extremes at regional scale during Indian summer monsoon. Sci Rep 2021; 11:16447. [PMID: 34385529 PMCID: PMC8360945 DOI: 10.1038/s41598-021-95775-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Compound extremes exhibit greater adverse impacts than their univariate counterparts. Studies have reported changes in frequency and the spatial extent of extremes in India; however, investigation of compound extremes is in the infancy state. This study investigates the historical variation of compound dry and hot extremes (CDHE) and compound wet and cold extremes (CWCE) during the Indian summer monsoon period from 1951 to 2019 using monthly data. Results are analyzed for 10 identified homogeneous regions for India. Our results unravelled that CDHE (CWCE) frequency has increased (decreased) by 1-3 events per decade for the recent period (1977-2019) relative to the base period (1951-1976). Overall, the increasing (decreasing) pattern of CDHE (CWCE) is high across North-central India, Western India, North-eastern India and South-eastern coastlines. Our findings help in identification of the parts of the country affected by frequent and widespread CDHE during the recent period, which is alarming. More detailed assessments are required to disentangle the complex physical process of compound extremes to improve risk management options.
Collapse
Affiliation(s)
- Ravi Kumar Guntu
- grid.19003.3b0000 0000 9429 752XDepartment of Hydrology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| | - Ankit Agarwal
- grid.19003.3b0000 0000 9429 752XDepartment of Hydrology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| |
Collapse
|
25
|
Temperature Changes and Their Impact on Drought Conditions in Winter and Spring in the Vistula Basin. WATER 2021. [DOI: 10.3390/w13141973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inter-annual variability of hydro-meteorological variables indirectly influence soil moisture conditions in winter and early spring seasons. The interactions between temperature changes and drought conditions are studied by an application of statistical analyses of minimum temperature (Tmin), consecutive days with temperature exceeding the 0 °C threshold value, the number of melting pulses in the winter season and Standardized Evaporation Precipitation Index (SPEI). Additionally, shifts in the onset of days with spring temperature and snow cover occurrence are analysed. A Mann–Kendall test is applied for the trend analysis. Studies have shown significant changes in thermal characteristics in the winter season over the past 70 years, which affect the moisture conditions in the Vistula River Basin. As a result of those changes, the Vistula Basin is more prone to droughts.
Collapse
|
26
|
de Brito MM. Compound and cascading drought impacts do not happen by chance: A proposal to quantify their relationships. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146236. [PMID: 34030375 DOI: 10.1016/j.scitotenv.2021.146236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The understanding of compounding and cascading impacts is becoming increasingly central to the risk reduction debate as hazard consequences are strongly coupled. Still, studies on their quantification and visualization are limited. This restricts the establishment of impact-based early warning systems. Here, a novel method for quantifying drought compound impacts and their cascading paths is presented by integrating network analysis and data mining tools. The 2018/19 drought in Germany is used as a case study. Network graphs are employed to display impact co-occurrences and cascades of agriculture, livestock, forestry, industry, and recreation impacts. Furthermore, sequential pattern mining is used to predict the next impact that is likely to take place. A synthesis of the identified relationships is presented using accessible visual formats. Results show that simultaneous and cascading drought impacts may not happen by chance but follow a pattern. Indeed, statistically significant co-occurrence associations outnumbered randomly distributed ones (91.1% versus 8.9%). With regard to the cascading paths, cross-validation results show that within three attempts, the next impact class was accurately predicted in 72.9% of the cases. Crop losses were usually followed up by a shortage of feed for livestock and consequent early slaughtering of animals. This implies that in order to limit drought impacts, there is a need to consider their compounding and cascading effects. Hence, researchers need to move from the analysis of single impacts to the understanding of how multi-sectoral impacts are connected with each other. The methodology proposed here paves towards this direction. The visualization tools used can help to increase awareness of the possible impact interactions and dependency, improving drought managers' decision-making ability. Moreover, the obtained results can serve as the basis for inferring impact causal relationships.
Collapse
Affiliation(s)
- Mariana Madruga de Brito
- Department of Urban and Environmental Sociology, UFZ-Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
27
|
O S, Orth R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci Data 2021; 8:170. [PMID: 34253737 PMCID: PMC8275613 DOI: 10.1038/s41597-021-00964-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/21/2021] [Indexed: 11/23/2022] Open
Abstract
While soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0-10 cm, 10-30 cm, and 30-50 cm) at 0.25° spatial and daily temporal resolution over the period 2000-2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.
Collapse
Affiliation(s)
- Sungmin O
- Max Planck Institute for Biogeochemistry, Jena, D-07745, Germany.
| | - Rene Orth
- Max Planck Institute for Biogeochemistry, Jena, D-07745, Germany
| |
Collapse
|
28
|
Wasko C. Review: Can temperature be used to inform changes to flood extremes with global warming? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20190551. [PMID: 33641461 DOI: 10.1098/rsta.2019.0551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 06/12/2023]
Abstract
As climate change alters flood risk, there is a need to project changes in flooding for water resource management, infrastructure design and planning. The use of observed temperature relationships for informing changes in hydrologic extremes takes many forms, from simple proportional change approaches to conditioning stochastic rainfall generation on observed temperatures. Although generally focused on understanding changes to precipitation, there is an implied transfer of information gained from precipitation-temperature sensitivities to flooding as extreme precipitation is often responsible for flooding. While reviews of precipitation-temperature sensitivities and the non-stationarity of flooding exist, little attention has been given to the intersection of these two topics. Models which use temperature as a covariate to assess the non-stationarity of extreme precipitation outperform both stationary models and those using a temporal trend as a covariate. But care must be taken when projecting changes in flooding on the basis on precipitation-temperature sensitivities, as antecedent conditions modify the runoff response. Although good agreement is found between peak flow-temperature sensitivities and historical trends across Australia, there remains little evaluation of flood projections using temperature sensitivities globally. Significant work needs to be done before the use of temperature as a covariate for flood projection can be adopted with confidence. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.
Collapse
Affiliation(s)
- Conrad Wasko
- Department of Infrastructure Engineering, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
29
|
Haslinger K, Hofstätter M, Schöner W, Blöschl G. Changing summer precipitation variability in the Alpine region: on the role of scale dependent atmospheric drivers. CLIMATE DYNAMICS 2021; 57:1009-1021. [PMID: 34720434 PMCID: PMC8550189 DOI: 10.1007/s00382-021-05753-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/27/2021] [Indexed: 06/13/2023]
Abstract
Summer precipitation totals in the Alpine Region do not exhibit a systematic trend over the last 120 years. However, we find significant low frequency periodicity of interannual variability which occurs in synchronization with a dominant two-phase state of the atmospheric circulation over the Alps. Enhanced meridional flow increases precipitation variability through positive soil moisture precipitation feedbacks on the regional scale, whereas enhanced zonal flow results in less variability through constant moisture flow from the Atlantic and suppressed feedbacks with the land surface. The dominant state of the atmospheric circulation over the Alps in these periods appears to be steered by zonal sea surface temperature gradients in the mid-latitude North Atlantic. The strength and the location of the westerlies in the mid-latitude Atlantic play an important role in the physical mechanisms linking atmosphere and oceanic temperature gradients and the meridional/zonal circulation characteristics.
Collapse
Affiliation(s)
- Klaus Haslinger
- Climate Research Department, Central Institute for Meteorology and Geodynamics (ZAMG), Hohe Warte 38, 1190 Vienna, Austria
| | - Michael Hofstätter
- Department for Environment and Energy Affairs, Federal Government of Lower Austria, Landhausplatz 1, 3109 St. Pölten, Austria
| | - Wolfgang Schöner
- Department of Geography and Regional Sciences, University of Graz, Heinrichstraße 36, 8010 Graz, Austria
| | - Günter Blöschl
- Institute for Hydraulic and Water Resources Engineering, and Centre for Water Resource Systems, Vienna University of Technology, Karlsplatz 13, 1040 Vienna, Austria
| |
Collapse
|
30
|
Godde C, Mason-D’Croz D, Mayberry D, Thornton P, Herrero M. Impacts of climate change on the livestock food supply chain; a review of the evidence. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2021; 28:100488. [PMID: 33738188 PMCID: PMC7938222 DOI: 10.1016/j.gfs.2020.100488] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
The potential impacts of climate change on current livestock systems worldwide are a major concern, and yet the topic is covered to a limited extent in global reports such as the ones produced by the Intergovernmental Panel on Climate Change. In this article, we review the risk of climate-related impacts along the land-based livestock food supply chain. Although a quantification of the net impacts of climate change on the livestock sector is beyond the reach of our current understanding, there is strong evidence that there will be impacts throughout the supply chain, from farm production to processing operations, storage, transport, retailing and human consumption. The risks of climate-related impacts are highly context-specific but expected to be higher in environments that are already hot and have limited socio-economic and institutional resources for adaptation. Large uncertainties remain as to climate futures and the exposure and responses of the interlinked human and natural systems to climatic changes over time. Consequently, adaptation choices will need to account for a wide range of possible futures, including those with low probability but large consequences. Risk results from the interaction of climate-related hazards with the exposure and vulnerability of human and natural systems. Climate change will impact the livestock sector throughout the food supply chain—from farm production to human consumption. Key hazards relate to climate change trends but also, and importantly, to climate variability and climate extremes. Large uncertainties remain as to climate futures and the exposure and responses of the interlinked human and natural systems. Adaptation choices will need to account for a wide range of possible futures.
Collapse
Affiliation(s)
- C.M. Godde
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, 4067, Australia
- Corresponding author.
| | - D. Mason-D’Croz
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - D.E. Mayberry
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - P.K. Thornton
- CGIAR Research Programme on Climate Change, Agriculture and Food Security (CCAFS), ILRI, Nairobi, Kenya
| | - M. Herrero
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, 4067, Australia
| |
Collapse
|
31
|
A First Assessment of the 2018 European Drought Impact on Ecosystem Evapotranspiration. REMOTE SENSING 2020. [DOI: 10.3390/rs13010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combined heatwave and drought in 2018 notably affected the state and functioning of European ecosystems. The severity and distribution of this extreme event across ecosystem types and its possible implication on ecosystem water fluxes are still poorly understood. This study estimates spatio-temporal changes in evapotranspiration (ET) during the 2018 drought and heatwave and assesses how these changes are distributed in European ecosystems along climatic gradients. We used the ET eight-day composite product from the MODerate Resolution Imaging Spectroradiometer (MODIS) together with meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5). Our results indicate that ecosystem ET was strongly reduced (up to −50% compared to a 10-year reference period) in areas with extreme anomalies in surface air temperature (Tsa) and precipitation (P) in central, northern, eastern, and western Europe. Northern and Eastern Europe had prolonged anomalies of up to seven months with extreme intensities (relative and absolute) of Tsa, P, and ET. Particularly, agricultural areas, mixed natural vegetation, and non-irrigated agricultural areas were the most affected by the increased temperatures in northern Europe. Our results show contrasting drought impacts on ecosystem ET between the North and South of Europe as well as on ecosystem types.
Collapse
|
32
|
Mahmoud SH, Gan TY. Multidecadal variability in the Nile River basin hydroclimate controlled by ENSO and Indian Ocean dipole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141529. [PMID: 32827894 DOI: 10.1016/j.scitotenv.2020.141529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Climate change impacts on the hydroclimate of the Nile River Basin (NRB) tend to be analyzed mostly based on short-term data and confined to a specific hydroclimate variable at sub-basin level. This study provides a better understanding of the hydrological cycle and the hydroclimate variability of NRB and aim to find the origin of the driving forces. Firstly, eight change point detection methods were used to investigate the abrupt changes in the NRB hydroclimate. Next, we used wavelet transform coherence (WTC), spatial correlation, and detrended cross-correlation (DCCA) to analyze the inter-annual to multidecadal variabilities of the hydroclimate of NRB because they are effective in capturing the temporal variability at multiple scales. Our results show significant hydroclimatic changes and trends attributed to climate change impact after the 1970s. For instance, precipitation and relative humidity (RH) decreasing at 16.2 mm/decade and 0.3 5%/decade, respectively. In contrast, geopotential height (GPH), climate warming, wind speed and zonal wind stress increasing at 3.1 m/decade, 0.19 °C/decade, 0.02 m/decade and 1.51 m2/s2/decade, respectively. These observed changes are strongly linked to El Niño and Indian Ocean Dipole (IOD). Our results also indicate that the largely strengthened IOD and El Niño amplitudes since the 1970s controlled the multidecadal variability of NRB's hydroclimate. In addition to ENSO-induced warming in NRB, El Niño exhibited a strong negative (positive) influence on precipitation and RH (GPH, surface temperature, wind speed, AET) over lowlands of Ethiopia, Kenya, Uganda, Sudan, Eritrea, Rwanda, and Burundi over the past 70 years. Our analysis revealed that IOD can either intensify or decrease the impacts of El Niño on the NRB's hydroclimate. For instance, IOD have a greater negative influence on the precipitation variability over Sudan, Ethiopia, Congo, Egypt, and Eritrea. These results were further confirmed by the changes in atmospheric circulation patterns in NRB during active El Niño and La Niño episodes. The increase in GPH anomalies associated with El Niño warming indicates a greater saturation vapor pressure, which at lower levels cause a lower dew point and a higher surface temperature. In addition, El Niño-driven changes to vector and meridional wind patterns created a strong anti-cyclonic wave of dry air that keeps moving dry air into the NRB. These waves propagate southward towards the NRB, controlling the circulation of air mass, heat, and moisture fluxes and affect the surface weather patterns of NRB.
Collapse
Affiliation(s)
- Shereif H Mahmoud
- Department of Civil and Environment Engineering, University of Alberta, Edmonton, Alberta T6G 2G7, Canada
| | - Thian Yew Gan
- Department of Civil and Environment Engineering, University of Alberta, Edmonton, Alberta T6G 2G7, Canada.
| |
Collapse
|
33
|
Song J, Ru J, Zheng M, Wang H, Fan Y, Yue X, Yu K, Zhou Z, Shao P, Han H, Lei L, Zhang Q, Li X, Su F, Zhang K, Wan S. A global database of plant production and carbon exchange from global change manipulative experiments. Sci Data 2020; 7:323. [PMID: 33009397 PMCID: PMC7532199 DOI: 10.1038/s41597-020-00661-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022] Open
Abstract
Numerous ecosystem manipulative experiments have been conducted since 1970/80 s to elucidate responses of terrestrial carbon cycling to the changing atmospheric composition (CO2 enrichment and nitrogen deposition) and climate (warming and changing precipitation regimes), which is crucial for model projection and mitigation of future global change effects. Here, we extract data from 2,242 publications that report global change manipulative experiments and build a comprehensive global database with 5,213 pairs of samples for plant production (productivity, biomass, and litter mass) and ecosystem carbon exchange (gross and net ecosystem productivity as well as ecosystem and soil respiration). Information on climate characteristics and vegetation types of experimental sites as well as experimental facilities and manipulation magnitudes subjected to manipulative experiments are also included in this database. This global database can facilitate the estimation of response and sensitivity of key terrestrial carbon-cycling variables under future global change scenarios, and improve the robust projection of global change‒terrestrial carbon feedbacks imposed by Earth System Models. Measurement(s) | organic material • plant production • carbon exchange | Technology Type(s) | digital curation | Factor Type(s) | climate characteristics • vegetation traits | Sample Characteristic - Environment | climate system | Sample Characteristic - Location | global |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12932843
Collapse
Affiliation(s)
- Jian Song
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Jingyi Ru
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Mengmei Zheng
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Haidao Wang
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Yongge Fan
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Xiaojing Yue
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Kejia Yu
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China
| | - Zhenxing Zhou
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Pengshuai Shao
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, Shandong, 256603, China
| | - Hongyan Han
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, Shandong, 256603, China
| | - Lingjie Lei
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qian Zhang
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiaoming Li
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Fanglong Su
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Kesheng Zhang
- Luoyang Institute of Science and Technology, Luoyang, Henan, 471023, China
| | - Shiqiang Wan
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
34
|
He T, Li C. Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2020.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Hui TY, Dong YW, Han GD, Lau SLY, Cheng MCF, Meepoka C, Ganmanee M, Williams GA. Timing Metabolic Depression: Predicting Thermal Stress in Extreme Intertidal Environments. Am Nat 2020; 196:501-511. [DOI: 10.1086/710339] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Peters W, Bastos A, Ciais P, Vermeulen A. A historical, geographical and ecological perspective on the 2018 European summer drought. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190505. [PMID: 32892723 DOI: 10.1098/rstb.2019.0505] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wouter Peters
- Department of Meteorology and Air Quality, Wageningen University, Wageningen, The Netherlands.,Centre for Isotope Research Groningen, Groningen University, Groningen, The Netherlands
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France
| | - Alex Vermeulen
- Integrated Carbon Observing System (ICOS ERIC), Carbon Portal, Lund, Sweden
| |
Collapse
|
37
|
More frequent and widespread persistent compound drought and heat event observed in China. Sci Rep 2020; 10:14576. [PMID: 32884003 PMCID: PMC7471689 DOI: 10.1038/s41598-020-71312-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/12/2020] [Indexed: 11/17/2022] Open
Abstract
Compound drought and heat event (CDHE) causes severe impacts on agriculture, ecosystem, and human health. Based on daily maximum surface air temperature and meteorological drought composite index data in China, changing features of CDHEs in warm season from 1961 to 2018 is explored at a daily time scale based on a strict and objective definition in this study. Results reveal that CDHEs have occurred more frequently and widely in China, especially since the late 1990s. Notably, such changes are more obvious in Southwest China, eastern Northwest China, northern North China, and the coastal area of southeastern China. A prominent feature is that persistent CDHEs on a daily scale have increased significantly. To better understand climate change of compound extreme events, further studies on the physical mechanism, especially attribution analyses at a regional scale, are urgently needed.
Collapse
|
38
|
Alizadeh MR, Adamowski J, Nikoo MR, AghaKouchak A, Dennison P, Sadegh M. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. SCIENCE ADVANCES 2020; 6:6/39/eaaz4571. [PMID: 32967839 PMCID: PMC7531886 DOI: 10.1126/sciadv.aaz4571] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 08/03/2020] [Indexed: 05/25/2023]
Abstract
Using over a century of ground-based observations over the contiguous United States, we show that the frequency of compound dry and hot extremes has increased substantially in the past decades, with an alarming increase in very rare dry-hot extremes. Our results indicate that the area affected by concurrent extremes has also increased significantly. Further, we explore homogeneity (i.e., connectedness) of dry-hot extremes across space. We show that dry-hot extremes have homogeneously enlarged over the past 122 years, pointing to spatial propagation of extreme dryness and heat and increased probability of continental-scale compound extremes. Last, we show an interesting shift between the main driver of dry-hot extremes over time. While meteorological drought was the main driver of dry-hot events in the 1930s, the observed warming trend has become the dominant driver in recent decades. Our results provide a deeper understanding of spatiotemporal variation of compound dry-hot extremes.
Collapse
Affiliation(s)
- Mohammad Reza Alizadeh
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Jan Adamowski
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Mohammad Reza Nikoo
- Department of Civil and Environmental Engineering, College of Engineering, Shiraz University, Shiraz 7134851156, Iran
| | - Amir AghaKouchak
- Department of Civil and Environmental Engineering, University of California, Irvine, 4130 Engineering Gateway, Irvine, CA 92697, USA
- Department of Earth System Science, University of California, Irvine, 3200 Croul Hall Irvine, CA 92697, USA
| | - Philip Dennison
- Department of Geography, University of Utah, 260 S Central Campus Dr, Rm 4625, Salt Lake City, UT 84112, USA
| | - Mojtaba Sadegh
- Department of Civil Engineering, Boise State University, 1910 University Drive, Boise, ID 83725-2060, USA.
| |
Collapse
|
39
|
Lynch KM, Lyles RH, Waller LA, Abadi AM, Bell JE, Gribble MO. Drought severity and all-cause mortality rates among adults in the United States: 1968-2014. Environ Health 2020; 19:52. [PMID: 32423443 PMCID: PMC7236144 DOI: 10.1186/s12940-020-00597-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Little is known about the effect of drought on all-cause mortality, especially in higher income countries such as the United States. As the frequency and severity of droughts are likely to increase, understanding the connections between drought and mortality becomes increasingly important. METHODS Our exposure variable was an annual cumulative drought severity score based on the 1-month, county-level Standardized Precipitation Evapotranspiration Index. The outcome variables of demographic subgroup-specific all-cause mortality count data per year were obtained from the National Vital Statistics System. Any counts below 10 deaths were censored in that demographic group per county. We modeled county-stratum-year mortality using interval-censored negative binomial regression with county-level random intercepts, for each combined age-race-sex stratum either with or without further stratification by climate regions. Fixed effects meta-regression was used to test the associations between age, race, sex, and region with the drought-mortality regression coefficients. Predictive margins were then calculated from the meta-regression model to estimate larger subgroup (e.g., 'race' or 'sex') associations of drought with mortality. RESULTS Most of the results were null for associations between drought severity and mortality, across joint strata of race, age, sex and region, but incidence rate ratios (IRRs) for 17 subgroups were significant after accounting for the multiple testing; ten were < 1 indicating a possible protective effect of drought on mortality for that particular subpopulation. The meta-regression indicated heterogeneity in the association of drought with mortality according to race, climate region, and age, but not by sex. Marginal means of the estimated log-incidence rate ratios differed significantly from zero for age groups 25-34, 35-44, 45-54 and 55-64; for the white race group; and for the South, West and Southwest regions, in the analysis that included wet county-years. The margin of the meta-regression model suggested a slightly negative, but not statistically significant, association of drought with same-year mortality in the overall population. CONCLUSIONS There were significant, heterogeneous-direction associations in subpopulation-stratified models, after controlling for multiple comparisons, suggesting that the impacts of drought on mortality may not be monolithic across the United States. Meta-regression identified systematic differences in the associations of drought severity with all-cause mortality according to climate region, race, and age. These findings suggest there may be important contextual differences in the effects of drought severity on mortality, motivating further work focused on local mechanisms. We speculate that some of the estimated negative associations of drought severity with same-year mortality could be consistent with either a protective effect of drought on total mortality in the same year, or with a delayed health effect of drought beyond the same year. Further research is needed to clarify associations of drought with more specific causes of death and with sublethal health outcomes, for specific subpopulations, and considering lagged effects occurring beyond the same year as the drought.
Collapse
Affiliation(s)
- Katie M Lynch
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Robert H Lyles
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Azar M Abadi
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse E Bell
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew O Gribble
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA.
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA.
| |
Collapse
|
40
|
Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Newly improved formulations of the bare soil evaporation and the surface temperature are presented, using the multilayer land surface scheme TERRA of the Consortium for Small-scale Modeling (COSMO) atmospheric model. The simulations were carried out in offline mode with atmospheric forcing data from the Meteorological Observatory Lindenberg–Richard-Aßmann-Observatory of the German Meteorological Service. The results show that the bare soil evaporation simulated by the reference version of TERRA is substantially overestimated under wet conditions, and underestimated under dry conditions. Furthermore, the amplitude of the diurnal cycle of the surface temperature is systematically underestimated. In contrast, the diurnal cycles of the temperatures in the soil are overestimated instead. The new description of the bare soil evaporation in TERRA is based on a resistance formulation analogue to Ohm’s law, while the surface temperature is now based on the skin temperature formulation by Viterbo and Beljaars. The new formulation improves the simulated bare soil evaporation substantially. In particular, the overestimation under wet conditions is reduced, also acting against an extensive drying of the soil during the annual cycle. Additionally, the underestimation under dry conditions is reduced as well. Furthermore, the simulated amplitude of the diurnal cycle of the surface temperature is substantially increased. In particular, a nocturnal warm bias is systematically reduced. In addition to this, the new formulations were also applied in coupled mode in the COSMO model, resulting in improved diurnal cycles of near-surface temperature and dew point.
Collapse
|
41
|
Francisco Ribeiro P, Camargo Rodriguez AV. Emerging Advanced Technologies to Mitigate the Impact of Climate Change in Africa. PLANTS (BASEL, SWITZERLAND) 2020; 9:E381. [PMID: 32204576 PMCID: PMC7154875 DOI: 10.3390/plants9030381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022]
Abstract
Agriculture remains critical to Africa's socioeconomic development, employing 65% of the work force and contributing 32% of GDP (Gross Domestic Product). Low productivity, which characterises food production in many Africa countries, remains a major concern. Compounded by the effects of climate change and lack of technical expertise, recent reports suggest that the impacts of climate change on agriculture and food systems in African countries may have further-reaching consequences than previously anticipated. Thus, it has become imperative that African scientists and farmers adopt new technologies which facilitate their research and provide smart agricultural solutions to mitigating current and future climate change-related challenges. Advanced technologies have been developed across the globe to facilitate adaptation to climate change in the agriculture sector. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), synthetic biology, and genomic selection, among others, constitute examples of some of these technologies. In this work, emerging advanced technologies with the potential to effectively mitigate climate change in Africa are reviewed. The authors show how these technologies can be utilised to enhance knowledge discovery for increased production in a climate change-impacted environment. We conclude that the application of these technologies could empower African scientists to explore agricultural strategies more resilient to the effects of climate change. Additionally, we conclude that support for African scientists from the international community in various forms is necessary to help Africans avoid the full undesirable effects of climate change.
Collapse
|
42
|
Predominant regional biophysical cooling from recent land cover changes in Europe. Nat Commun 2020; 11:1066. [PMID: 32103013 PMCID: PMC7044322 DOI: 10.1038/s41467-020-14890-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/06/2020] [Indexed: 11/08/2022] Open
Abstract
Around 70 Mha of land cover changes (LCCs) occurred in Europe from 1992 to 2015. Despite LCCs being an important driver of regional climate variations, their temperature effects at a continental scale have not yet been assessed. Here, we integrate maps of historical LCCs with a regional climate model to investigate air temperature and humidity effects. We find an average temperature change of −0.12 ± 0.20 °C, with widespread cooling (up to −1.0 °C) in western and central Europe in summer and spring. At continental scale, the mean cooling is mainly correlated with agriculture abandonment (cropland-to-forest transitions), but a new approach based on ridge-regression decomposing the temperature change to the individual land transitions shows opposite responses to cropland losses and gains between western and eastern Europe. Effects of historical LCCs on European climate are non-negligible and region-specific, and ignoring land-climate biophysical interactions may lead to sub-optimal climate change mitigation and adaptation strategies. Land cover change contributes to regional climate trends. Here, the authors use high-resolution land cover maps and state-of-the-art climate modelling to assess land cover change effects across Europe over 1992-2015, showing widespread cooling after agricultural abandonment but also different, region-specific effects.
Collapse
|
43
|
Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat Commun 2020; 11:528. [PMID: 32047147 PMCID: PMC7012878 DOI: 10.1038/s41467-019-14233-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/17/2019] [Indexed: 11/08/2022] Open
Abstract
Compared to individual hot days/nights, compound hot extremes that combine daytime and nighttime heat are more impactful. However, past and future changes in compound hot extremes as well as their underlying drivers and societal impacts remain poorly understood. Here we show that during 1960-2012, significant increases in Northern Hemisphere average frequency (~1.03 days decade-1) and intensity (~0.28 °C decade-1) of summertime compound hot extremes arise primarily from summer-mean warming. The forcing of rising greenhouse gases (GHGs) is robustly detected and largely accounts for observed trends. Observationally-constrained projections suggest an approximate eightfold increase in hemispheric-average frequency and a threefold growth in intensity of summertime compound hot extremes by 2100 (relative to 2012), given uncurbed GHG emissions. Accordingly, end-of-century population exposure to compound hot extremes is projected to be four to eight times the 2010s level, dependent on demographic and climate scenarios.
Collapse
|
44
|
Rita A, Camarero JJ, Nolè A, Borghetti M, Brunetti M, Pergola N, Serio C, Vicente-Serrano SM, Tramutoli V, Ripullone F. The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. GLOBAL CHANGE BIOLOGY 2020; 26:851-863. [PMID: 31486191 DOI: 10.1111/gcb.14825] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 05/12/2023]
Abstract
A major component of climate change is an increase in temperature and precipitation variability. Over the last few decades, an increase in the frequency of extremely warm temperatures and drought severity has been observed across Europe. These warmer and drier conditions may reduce productivity and trigger compositional shifts in forest communities. However, we still lack a robust, biogeographical characterization of the negative impacts of climate extremes, such as droughts on forests. In this context, we investigated the impact of the 2017 summer drought on European forests. The normalized difference vegetation index (NDVI) was used as a proxy of forest productivity and was related to the standardized precipitation evapotranspiration index, which accounts for the temperature effects of the climate water balance. The spatial pattern of NDVI reduction in 2017 was largely driven by the extremely warm summer for parts of the central and eastern Mediterranean Basin (Italian and Balkan Peninsulas). The vulnerability to the 2017 summer drought was heterogeneously distributed over Europe, and topographic factors buffered some of the negative impacts. Mediterranean forests dominated by oak species were the most negatively impacted, whereas Pinus pinaster was the most resilient species. The impact of drought on the NDVI decreased at high elevations and mainly on east and north-east facing slopes. We illustrate how an adequate characterization of the coupling between climate conditions and forest productivity (NDVI) allows the determination of the most vulnerable areas to drought. This approach could be widely used for other extreme climate events and when considering other spatially resolved proxies of forest growth and health.
Collapse
Affiliation(s)
- Angelo Rita
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università della Basilicata, Potenza, Italy
| | | | - Angelo Nolè
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università della Basilicata, Potenza, Italy
| | - Marco Borghetti
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università della Basilicata, Potenza, Italy
| | - Michele Brunetti
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Nicola Pergola
- Istituto di Metodologie per l'Analisi Ambientale (IMAA), Consiglio Nazionale delle Ricerche, Tito Scalo (PZ), Italy
| | - Carmine Serio
- Scuola di Ingegneria, Università della Basilicata, Potenza, Italy
| | | | | | - Francesco Ripullone
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università della Basilicata, Potenza, Italy
| |
Collapse
|
45
|
Thiery W, Visser AJ, Fischer EM, Hauser M, Hirsch AL, Lawrence DM, Lejeune Q, Davin EL, Seneviratne SI. Warming of hot extremes alleviated by expanding irrigation. Nat Commun 2020; 11:290. [PMID: 31941885 PMCID: PMC6962396 DOI: 10.1038/s41467-019-14075-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 11/26/2019] [Indexed: 11/18/2022] Open
Abstract
Irrigation affects climate conditions - and especially hot extremes - in various regions across the globe. Yet how these climatic effects compare to other anthropogenic forcings is largely unknown. Here we provide observational and model evidence that expanding irrigation has dampened historical anthropogenic warming during hot days, with particularly strong effects over South Asia. We show that irrigation expansion can explain the negative correlation between global observed changes in daytime summer temperatures and present-day irrigation extent. While global warming increases the likelihood of hot extremes almost globally, irrigation can regionally cancel or even reverse the effects of all other forcings combined. Around one billion people (0.79-1.29) currently benefit from this dampened increase in hot extremes because irrigation massively expanded throughout the 20[Formula: see text] century. Our results therefore highlight that irrigation substantially reduced human exposure to warming of hot extremes but question whether this benefit will continue towards the future.
Collapse
Affiliation(s)
- Wim Thiery
- Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetsstrasse 16, 8092, Zurich, Switzerland.
- Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Auke J Visser
- Meteorology and Air Quality group, Wageningen University, Droevendaalsesteeg 3a, 6708PB, Wageningen, the Netherlands
| | - Erich M Fischer
- Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetsstrasse 16, 8092, Zurich, Switzerland
| | - Mathias Hauser
- Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetsstrasse 16, 8092, Zurich, Switzerland
| | - Annette L Hirsch
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, 2052, Sydney, Australia
| | | | | | - Edouard L Davin
- Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetsstrasse 16, 8092, Zurich, Switzerland
| | - Sonia I Seneviratne
- Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetsstrasse 16, 8092, Zurich, Switzerland
| |
Collapse
|
46
|
Coupling of Soil Moisture and Air Temperature from Multiyear Data During 1980–2013 over China. ATMOSPHERE 2019. [DOI: 10.3390/atmos11010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Soil moisture is an important parameter in land surface processes, which can control the surface energy and water budgets and thus affect the air temperature. Studying the coupling between soil moisture and air temperature is of vital importance for forecasting climate change. This study evaluates this coupling over China from 1980–2013 by using an energy-based diagnostic method, which represents the momentum, heat, and water conservation equations in the atmosphere, while the contributions of soil moisture are treated as external forcing. The results showed that the soil moisture–temperature coupling is strongest in the transitional climate zones between wet and dry climates, which here includes Northeast China and part of the Tibetan Plateau from a viewpoint of annual average. Furthermore, the soil moisture–temperature coupling was found to be stronger in spring than in the other seasons over China, and over different typical climatic zones, it also varied greatly in different seasons. We conducted two case studies (the heatwaves of 2013 in Southeast China and 2009 in North China) to understand the impact of soil moisture–temperature coupling during heatwaves. The results indicated that over areas with soil moisture deficit and temperature anomalies, the coupling strength intensified. This suggests that soil moisture deficits could lead to enhanced heat anomalies, and thus, result in enhanced soil moisture coupling with temperature. This demonstrates the importance of soil moisture and the need to thoroughly study it and its role within the land–atmosphere interaction and the climate on the whole.
Collapse
|
47
|
Haslinger K, Hofstätter M, Kroisleitner C, Schöner W, Laaha G, Holawe F, Blöschl G. Disentangling Drivers of Meteorological Droughts in the European Greater Alpine Region During the Last Two Centuries. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:12404-12425. [PMID: 32025451 PMCID: PMC6988487 DOI: 10.1029/2018jd029527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/22/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the atmospheric drivers of severe precipitation deficits in the Greater Alpine Region during the last 210 years utilizing a daily atmospheric circulation type reconstruction. Precipitation deficit tends to be higher during periods with more frequent anticyclonic (dry) and less frequent cyclonic (wet) circulation types, as would be expected. However, circulation characteristics are not the main drivers of summer precipitation deficit. Dry soils in the warm season tend to limit precipitation, which is particularly the case for circulation types that are sensitive to a soil moisture-precipitation feedback. This mechanism is of specific relevance in explaining the major drought decades of the 1860s and 1940s. Both episodes show large negative precipitation anomalies in spring followed by increasing frequencies of circulation types sensitive to soil moisture precipitation feedbacks. The dry springs of the 1860s were likely caused by circulation characteristics that were quite different from those of recent decades as a consequence of the large spatial extent of Arctic sea ice at the end of the Little Ice Age. On the other hand, the dry springs of the 1940s developed under a persistent positive pressure anomaly across Western and Central Europe, triggered by positive sea surface temperatures in the western subtropical Atlantic.
Collapse
Affiliation(s)
- K. Haslinger
- Climate Research DepartmentCentral Institute for Meteorology and Geodynamics (ZAMG)ViennaAustria
- Institute for Hydraulic and Water Resources Engineering and Centre for Water Resource SystemsVienna University of TechnologyViennaAustria
| | - M. Hofstätter
- Climate Research DepartmentCentral Institute for Meteorology and Geodynamics (ZAMG)ViennaAustria
| | | | - W. Schöner
- Department of Geography and Regional SciencesUniversity of GrazGrazAustria
| | - G. Laaha
- Institute of Applied Statistics and ComputingUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - F. Holawe
- Department of Geography and Regional ResearchUniversity of ViennaViennaAustria
| | - G. Blöschl
- Institute for Hydraulic and Water Resources Engineering and Centre for Water Resource SystemsVienna University of TechnologyViennaAustria
| |
Collapse
|
48
|
Petrie MD, Peters DPC, Burruss ND, Ji W, Savoy HM. Local‐regional similarity in drylands increases during multiyear wet and dry periods and in response to extreme events. Ecosphere 2019. [DOI: 10.1002/ecs2.2939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- M. D. Petrie
- School of Life Sciences University of Nevada Las Vegas Las Vegas Nevada USA
| | - D. P. C. Peters
- United States Department of Agriculture ‐ Agricultural Research Service Jornada Experimental Range Las Cruces New Mexico USA
- Jornada Basin LTER Program New Mexico State University Las Cruces New Mexico USA
| | - N. D. Burruss
- Jornada Basin LTER Program New Mexico State University Las Cruces New Mexico USA
| | - W. Ji
- Department of Plant & Environmental Sciences New Mexico State University Las Cruces New Mexico USA
| | - H. M. Savoy
- Jornada Basin LTER Program New Mexico State University Las Cruces New Mexico USA
| |
Collapse
|
49
|
Tschumi E, Zscheischler J. Countrywide climate features during recorded climate-related disasters. CLIMATIC CHANGE 2019; 158:593-609. [PMID: 32165774 PMCID: PMC7045791 DOI: 10.1007/s10584-019-02556-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Climate-related disasters cause substantial disruptions to human societies. With climate change, many extreme weather and climate events are expected to become more severe and more frequent. The International Disaster Database (EM-DAT) records climate-related disasters associated with observed impacts such as affected people and economic damage on a country basis. Although disasters are classified into different meteorological categories, they are usually not linked to observed climate anomalies. Here, we investigate countrywide climate features associated with disasters that have occurred between 1950 and 2015 and have been classified as droughts, floods, heat waves, and cold waves using superposed epoch analysis. We find that disasters classified as heat waves are associated with significant countrywide increases in annual mean temperature of on average 0.13 ∘C and a significant decrease in annual precipitation of 3.2%. Drought disasters show positive temperature anomalies of 0.08 ∘C and a 4.8 % precipitation decrease. Disasters classified as droughts and heat waves are thus associated with significant annual countrywide anomalies in both temperature and precipitation. During years of flood disasters, precipitation is increased by 2.8 %. Cold wave disasters show no significant signal for either temperature or precipitation. We further find that climate anomalies tend to be larger in smaller countries, an expected behavior when computing countrywide averages. In addition, our results suggest that extreme weather disasters in developed countries are typically associated with larger climate anomalies compared to developing countries. This effect could be due to different levels of vulnerability, as a climate anomaly needs to be larger in a developed country to cause a societal disruption. Our analysis provides a first link between recorded climate-related disasters and observed climate data, which is an important step towards linking climate and impact communities and ultimately better constraining future disaster risk.
Collapse
Affiliation(s)
- Elisabeth Tschumi
- Climate and Environmental Physics and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Jakob Zscheischler
- Climate and Environmental Physics and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Debele SE, Kumar P, Sahani J, Marti-Cardona B, Mickovski SB, Leo LS, Porcù F, Bertini F, Montesi D, Vojinovic Z, Di Sabatino S. Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases. ENVIRONMENTAL RESEARCH 2019; 179:108799. [PMID: 31739212 DOI: 10.1016/j.envres.2019.108799] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/21/2019] [Accepted: 10/04/2019] [Indexed: 05/10/2023]
Abstract
Hydro-meteorological hazards (HMHs) have had a strong impact on human societies and ecosystems. Their impact is projected to be exacerbated by future climate scenarios. HMHs cataloguing is an effective tool to evaluate their associated risks and plan appropriate remediation strategies. However, factors linked to HMHs origin and triggers remain uncertain, which pose a challenge for their cataloguing. Focusing on key HMHs (floods, storm surges, landslides, droughts, and heatwaves), the goal of this review paper is to analyse and present a classification scheme, key features, and elements for designing nature-based solutions (NBS) and mitigating the adverse impacts of HMHs in Europe. For this purpose, we systematically examined the literature on NBS classification and assessed the gaps that hinder the widespread uptake of NBS. Furthermore, we critically evaluated the existing literature to give a better understanding of the HMHs drivers and their interrelationship (causing multi-hazards). Further conceptualisation of classification scheme and categories of NBS shows that relatively few studies have been carried out on utilising the broader concepts of NBS in tackling HMHs and that the classification and effectiveness of each NBS are dependent on the location, architecture, typology, green species and environmental conditions, as well as interrelated non-linear systems. NBS are often more cost-effective than hard engineering approaches used within the existing systems, especially when taking into consideration their potential co-benefits. We also evaluated the sources of available data for HMHs and NBS, highlighted gaps in data, and presented strategies to overcome the current shortcomings for the development of the NBS for HMHs. We highlighted specific gaps and barriers that need to be filled since the uptake and upscaling studies of NBS in HMHs reduction is rare. The fundamental concepts and the key technical features of past studies reviewed here could help practitioners to design and implement NBS in a real-world situation.
Collapse
Affiliation(s)
- Sisay E Debele
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Department of Civil, Structural & Environmental Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Jeetendra Sahani
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Belen Marti-Cardona
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Slobodan B Mickovski
- Glasgow Caledonian University, School of Computing, Engineering and Built Environment, Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Laura S Leo
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Federico Porcù
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Flavio Bertini
- Department of Computer Science and Engineering, University of Bologna, Mura Anteo Zamboni 7, 40126, Bologna, Italy
| | - Danilo Montesi
- Department of Computer Science and Engineering, University of Bologna, Mura Anteo Zamboni 7, 40126, Bologna, Italy
| | - Zoran Vojinovic
- IHE Delft, Institute for Water Education, Westvest 7, Delft, 2611, AX, the Netherlands
| | - Silvana Di Sabatino
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| |
Collapse
|