1
|
Rai RP, Syed A, Elgorban AM, Abid I, Wong LS, Khan MS, Khatoon J, Prasad KN, Ghoshal UC. Expressions of selected microRNAs in gastric cancer patients and their association with Helicobacter pylori and its cag pathogenicity island. Microb Pathog 2025; 202:107442. [PMID: 40049249 DOI: 10.1016/j.micpath.2025.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND Helicobacter pylori infection and the resulting inflammation of the stomach are widely recognized as the primary risk factors for the development of gastric cancer (human health). Despite numerous attempts, the correlation between various virulence factors of H. pylori and stomach cancer remains mainly unexplained. The cag pathogenicity island (cagPAI) is a widely recognized indicator of virulence in H. pylori. MicroRNAs play crucial roles in a wide range of biological and pathological processes and dysregulated expressions of miRNAs have been detected in numerous cancer types. However, research on the correlation between H. pylori infection and its cagPAI, as well as the differential expression of microRNAs in gastric cancer, is lacking. AIM The aim of this study was to examine the differential expression of miRNAs in 80 patients with gastric cancer, specifically in connection to the presence of H. pylori and its cag pathogenicity island (cagPAI). METHODS Biopsies of 80 gastric cancer patients were collected and used for H. pylori DNA isolation and tissue miRNA isolation, and further analyzed for cagPAI and miRNA expression and their association. RESULTS Elevated levels of miR-21, miR-155, and miR-223 were detected in malignant tissues. The expression of miR-21 and miR-223 was considerably elevated in biopsies that tested positive for H. pylori, whereas the expression of miR-34a was reduced. H. pylori cagPAI samples that are functionally intact exhibit greater expression of miR-21 and miR-223 compared to cagPAI samples that are partially deleted, in both normal and malignant tissues. CONCLUSION Thus, the novelty of our study lies in its focus on the differential expression of specific miRNAs in relation to the functional integrity of the cagPAI in H. pylori-infected gastric cancer patients, offering a more detailed understanding of the interplay between H. pylori virulence factors and miRNA regulation than previous studies.
Collapse
Affiliation(s)
- Ravi Prakash Rai
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdallah M Elgorban
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia.
| | - Islem Abid
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia.
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| | - Jahanarah Khatoon
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| | - Kashi N Prasad
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Uday Chand Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow, India.
| |
Collapse
|
2
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Sun L, Wang D, Feng K, Zhang JA, Gao W, Zhang L. Cell membrane-coated nanoparticles for targeting carcinogenic bacteria. Adv Drug Deliv Rev 2024; 209:115320. [PMID: 38643841 DOI: 10.1016/j.addr.2024.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The etiology of cancers is multifactorial, with certain bacteria established as contributors to carcinogenesis. As the understanding of carcinogenic bacteria deepens, interest in cancer treatment through bacterial eradication is growing. Among emerging antibacterial platforms, cell membrane-coated nanoparticles (CNPs), constructed by enveloping synthetic substrates with natural cell membranes, exhibit significant promise in overcoming challenges encountered by traditional antibiotics. This article reviews recent advancements in developing CNPs for targeting carcinogenic bacteria. It first summarizes the mechanisms of carcinogenic bacteria and the status of cancer treatment through bacterial eradication. Then, it reviews engineering strategies for developing highly functional and multitasking CNPs and examines the emerging applications of CNPs in combating carcinogenic bacteria. These applications include neutralizing virulence factors to enhance bacterial eradication, exploiting bacterium-host binding for precise antibiotic delivery, and modulating antibacterial immunity to inhibit bacterial growth. Overall, this article aims to inspire technological innovations in developing CNPs for effective cancer treatment through oncogenic bacterial targeting.
Collapse
Affiliation(s)
- Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Kailin Feng
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiayuan Alex Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Colakogullari M, Karatas L, Tatar Z. Investigating associations between HLA DQA1 ~ DQB1 haplotypes, H. pylori infection, metaplasia, and anti-CagA IgA seropositivity in a Turkish gastritis cohort. Immunogenetics 2024; 76:1-13. [PMID: 37979046 DOI: 10.1007/s00251-023-01325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Helicobacter pylori was reported as an important cause of gastritis, and gastric ulcers and CagA oncoprotein-producing H. pylori subgroups were blamed to increase the severity of gastritis. Disparities were reported in that the presence of serum anti-CagA IgA was not parallel with CagA-positive H. pylori cohabitation. We hypothesized that the HLA-DQA1 ~ DQB1 haplotypes in human populations include protective haplotypes that more effectively present immunogenic CagA peptides and susceptible haplotypes with an impaired capacity to present CagA peptides. We recruited patients (n = 201) admitted for gastroendoscopy procedures and performed high-resolution HLA-DQA1 and DQB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.0% positive), and H. pylori was classified as positive or negative in gastric mucosal tissue slides (72.6% positive). The HLA DQA1*05:05 allele (29.1%) and HLA DQB1*03:01 allele (32.8%) were found at the highest frequency among gastritis patients of Turkish descent. In HLA DQA1*05:05 ~ DQB1*03:01 double homozygous (7.3%) and heterozygous (40.7%) haplotype carriers, the presence of anti-CagA IgA decreased dramatically, the presence of H. pylori increased, and the presence of metaplasia followed a decreasing trend. The DQ protein encoded by HLA DQA1*05:05-DQ*03:01 showed a low binding affinity to the CagA peptide when binding capacity was analyzed by the NetMHCIIPan 4.0 prediction method. In conclusion, HLA DQA1 ~ DQB1 polymorphisms are crucial as host defense mechanisms against CagA H. pylori since antigen binding capacity plays a crucial role in anti-CagA IgA production.
Collapse
|
5
|
Tran SC, Bryant KN, Cover TL. The Helicobacter pylori cag pathogenicity island as a determinant of gastric cancer risk. Gut Microbes 2024; 16:2314201. [PMID: 38391242 PMCID: PMC10896142 DOI: 10.1080/19490976.2024.2314201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Helicobacter pylori strains can be broadly classified into two groups based on whether they contain or lack a chromosomal region known as the cag pathogenicity island (cag PAI). Colonization of the human stomach with cag PAI-positive strains is associated with an increased risk of gastric cancer and peptic ulcer disease, compared to colonization with cag PAI-negative strains. The cag PAI encodes a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS) that delivers CagA and non-protein substrates into host cells. Animal model experiments indicate that CagA and the Cag T4SS stimulate a gastric mucosal inflammatory response and contribute to the development of gastric cancer. In this review, we discuss recent studies defining structural and functional features of CagA and the Cag T4SS and mechanisms by which H. pylori strains containing the cag PAI promote the development of gastric cancer and peptic ulcer disease.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
6
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
7
|
Liu M, Hu Z, Wang C, Zhang Y. The TLR/MyD88 signalling cascade in inflammation and gastric cancer: the immune regulatory network of Helicobacter pylori. J Mol Med (Berl) 2023; 101:767-781. [PMID: 37195446 DOI: 10.1007/s00109-023-02332-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Helicobacter pylori-induced chronic gastritis represents a well-established risk factor for gastric cancer (GC). However, the mechanism by which chronic inflammation caused by H. pylori induces the development of GC is unclear. H. pylori can influence host cell signalling pathways to induce gastric disease development and mediate cancer promotion and progression. Toll-like receptors (TLRs), as pattern recognition receptors (PRRs), play a key role in the gastrointestinal innate immune response, and their signalling has been implicated in the pathogenesis of an increasing number of inflammation-associated cancers. The core adapter myeloid differentiation factor-88 (MyD88) is shared by most TLRs and functions primarily in H. pylori-triggered innate immune signalling. MyD88 is envisioned as a potential target for the regulation of immune responses and is involved in the regulation of tumourigenesis in a variety of cancer models. In recent years, the TLR/MyD88 signalling pathway has received increasing attention for its role in regulating innate and adaptive immune responses, inducing inflammatory activation and promoting tumour formation. In addition, TLR/MyD88 signalling can manipulate the expression of infiltrating immune cells and various cytokines in the tumour microenvironment (TME). In this review, we discuss the pathogenetic regulatory mechanisms of the TLR/MyD88 signalling cascade pathway and its downstream molecules in H. pylori infection-induced-associated GC. The focus is to elucidate the immunomolecular mechanisms of pathogen recognition and innate immune system activation of H. pylori in the TME of inflammation-associated GC. Ultimately, this study will provide insight into the mechanism of H. pylori-induced chronic inflammation-induced GC development and provide thoughts for GC prevention and treatment strategies.
Collapse
Affiliation(s)
- Meiqi Liu
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China
| | - Zhizhong Hu
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China
| | - Chengkun Wang
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China.
| | - Yang Zhang
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China.
| |
Collapse
|
8
|
Reyes VE. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023; 11:1312. [PMID: 37317287 PMCID: PMC10220541 DOI: 10.3390/microorganisms11051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Gastric cancer is a challenging public health concern worldwide and remains a leading cause of cancer-related mortality. The primary risk factor implicated in gastric cancer development is infection with Helicobacter pylori. H. pylori induces chronic inflammation affecting the gastric epithelium, which can lead to DNA damage and the promotion of precancerous lesions. Disease manifestations associated with H. pylori are attributed to virulence factors with multiple activities, and its capacity to subvert host immunity. One of the most significant H. pylori virulence determinants is the cagPAI gene cluster, which encodes a type IV secretion system and the CagA toxin. This secretion system allows H. pylori to inject the CagA oncoprotein into host cells, causing multiple cellular perturbations. Despite the high prevalence of H. pylori infection, only a small percentage of affected individuals develop significant clinical outcomes, while most remain asymptomatic. Therefore, understanding how H. pylori triggers carcinogenesis and its immune evasion mechanisms is critical in preventing gastric cancer and mitigating the burden of this life-threatening disease. This review aims to provide an overview of our current understanding of H. pylori infection, its association with gastric cancer and other gastric diseases, and how it subverts the host immune system to establish persistent infection.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0372, USA
| |
Collapse
|
9
|
Blanc M, Lettl C, Guérin J, Vieille A, Furler S, Briand-Schumacher S, Dreier B, Bergé C, Plückthun A, Vadon-Le Goff S, Fronzes R, Rousselle P, Fischer W, Terradot L. Designed Ankyrin Repeat Proteins provide insights into the structure and function of CagI and are potent inhibitors of CagA translocation by the Helicobacter pylori type IV secretion system. PLoS Pathog 2023; 19:e1011368. [PMID: 37155700 DOI: 10.1371/journal.ppat.1011368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/18/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development.
Collapse
Affiliation(s)
- Marine Blanc
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Clara Lettl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jérémy Guérin
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Anaïs Vieille
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Sven Furler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Célia Bergé
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Sandrine Vadon-Le Goff
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), Lyon, France
| | - Rémi Fronzes
- European Institute of Chemistry and Biology, CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Univ. Bordeaux, Pessac, France
| | - Patricia Rousselle
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), Lyon, France
| | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
10
|
Hatakeyama M. Impact of the Helicobacter pylori Oncoprotein CagA in Gastric Carcinogenesis. Curr Top Microbiol Immunol 2023; 444:239-257. [PMID: 38231221 DOI: 10.1007/978-3-031-47331-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori CagA is the first and only bacterial oncoprotein etiologically associated with human cancer. Upon delivery into gastric epithelial cells via bacterial type IV secretion, CagA acts as a pathogenic/pro-oncogenic scaffold that interacts with and functionally perturbs multiple host proteins such as pro-oncogenic SHP2 phosphatase and polarity-regulating kinase PAR1b/MARK2. Although H. pylori infection is established during early childhood, gastric cancer generally develops in elderly individuals, indicating that oncogenic CagA activity is effectively counteracted at a younger age. Moreover, the eradication of cagA-positive H. pylori cannot cure established gastric cancer, indicating that H. pylori CagA-triggered gastric carcinogenesis proceeds via a hit-and-run mechanism. In addition to its direct oncogenic action, CagA induces BRCAness, a cellular status characterized by replication fork destabilization and loss of error-free homologous recombination-mediated DNA double-strand breaks (DSBs) by inhibiting cytoplasmic-to-nuclear localization of the BRCA1 tumor suppressor. This causes genomic instability that leads to the accumulation of excess mutations in the host cell genome, which may underlie hit-and-run gastric carcinogenesis. The close connection between CagA and BRCAness was corroborated by a recent large-scale case-control study that revealed that the risk of gastric cancer in individuals carrying pathogenic variants of genes that induce BRCAness (such as BRCA1 and BRCA2) dramatically increases upon infection with cagA-positive H. pylori. Accordingly, CagA-mediated BRCAness plays a crucial role in the development of gastric cancer in conjunction with the direct oncogenic action of CagA.
Collapse
Affiliation(s)
- Masanori Hatakeyama
- Institute of Microbial Chemistry, Laboratory of Microbial Carcinogenesis, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-Ku, Tokyo, 141-0021, Japan.
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-0815, Japan.
| |
Collapse
|
11
|
Su H, Ren W, Zhang D. Research progress on exosomal proteins as diagnostic markers of gastric cancer (review article). Clin Exp Med 2022; 23:203-218. [DOI: 10.1007/s10238-022-00793-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
AbstractGastric cancer (GC) is one of the most common types of tumors and the most common cause of cancer mortality worldwide. The diagnosis of GC is critical to its prevention and treatment. Available tumor markers are the crucial step for GC diagnosis. Recent studies have shown that proteins in exosomes are potential diagnostic and prognostic markers for GC. Exosomes, secreted by cells, are cup-shaped with a diameter of 30–150 nm under the electron microscope. They are also surrounded by lipid bilayers and are widely found in various body fluids. Exosomes contain proteins, lipids and nucleic acid. The examination of exosomal proteins has the advantages of quickness, easy sampling, and low pain and cost, as compared with the routine inspection method of GC, which may lead to marked developments in GC diagnosis. This article summarized the exosomal proteins with a diagnostic and prognostic potential in GC, as well as exosomal proteins involved in GC progression.
Collapse
|
12
|
Retnakumar R, Nath AN, Nair GB, Chattopadhyay S. Gastrointestinal microbiome in the context of Helicobacter pylori infection in stomach and gastroduodenal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:53-95. [DOI: 10.1016/bs.pmbts.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Alexander SM, Retnakumar RJ, Chouhan D, Devi TNB, Dharmaseelan S, Devadas K, Thapa N, Tamang JP, Lamtha SC, Chattopadhyay S. Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Front Microbiol 2021; 12:713955. [PMID: 34484153 PMCID: PMC8416104 DOI: 10.3389/fmicb.2021.713955] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic potentials of the gastric pathogen, Helicobacter pylori, have been proposed, evaluated, and confirmed by many laboratories for nearly 4 decades since its serendipitous discovery in 1983 by Barry James Marshall and John Robin Warren. Helicobacter pylori is the first bacterium to be categorized as a definite carcinogen by the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO). Half of the world’s population carries H. pylori, which may be responsible for severe gastric diseases like peptic ulcer and gastric cancer. These two gastric diseases take more than a million lives every year. However, the role of H. pylori as sole pathogen in gastric diseases is heavily debated and remained controversial. It is still not convincingly understood, why most (80–90%) H. pylori infected individuals remain asymptomatic, while some (10–20%) develop such severe gastric diseases. Moreover, several reports indicated that colonization of H. pylori has positive and negative associations with several other gastrointestinal (GI) and non-GI diseases. In this review, we have discussed the state of the art knowledge on “H. pylori factors” and several “other factors,” which have been claimed to have links with severe gastric and duodenal diseases. We conclude that H. pylori infection alone does not satisfy the “necessary and sufficient” condition for developing aggressive clinical outcomes. Rather, the cumulative effect of a number of factors like the virulence proteins of H. pylori, local geography and climate, genetic background and immunity of the host, gastric and intestinal microbiota, and dietary habit and history of medicine usage together determine whether the H. pylori infected person will remain asymptomatic or will develop one of the severe gastric diseases.
Collapse
Affiliation(s)
| | | | - Deepak Chouhan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Trivandrum, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Gangtok, India
| | | | | | | |
Collapse
|
14
|
Lettl C, Haas R, Fischer W. Kinetics of CagA type IV secretion by Helicobacter pylori and the requirement for substrate unfolding. Mol Microbiol 2021; 116:794-807. [PMID: 34121254 DOI: 10.1111/mmi.14772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022]
Abstract
Type IV secretion of effector proteins is an important principle for interaction of human pathogens with their target cells. The corresponding secretion systems may transport a multitude of effector proteins that have to be deployed in the respective spatiotemporal context, or only a single translocated protein, as in the case of the CagA effector protein produced by the human gastric pathogen Helicobacter pylori. For a more detailed analysis of the kinetics and mode of action of CagA type IV secretion by H. pylori, we describe here, a novel, highly sensitive split luciferase-based translocation reporter which can be easily adapted to different end-point or real-time measurements. Using this reporter, we showed that H. pylori cells are able to rapidly inject a limited amount of their CagA supply into cultured gastric epithelial cells. We have further employed the reporter system to address the question whether CagA has to be unfolded prior to translocation by the type IV secretion system. We showed that protein domains co-translocated with CagA as protein fusions are more readily tolerated as substrates than in other secretion systems, but also provide evidence that unfolding of effector proteins is a prerequisite for their transport.
Collapse
Affiliation(s)
- Clara Lettl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Munich, Germany.,Partner Site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Munich, Germany.,Partner Site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Munich, Germany.,Partner Site Munich, German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
15
|
Selvaraj C, Vierra M, Dinesh DC, Abhirami R, Singh SK. Structural insights of macromolecules involved in bacteria-induced apoptosis in the pathogenesis of human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:1-38. [PMID: 34090612 DOI: 10.1016/bs.apcsb.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numbers of pathogenic bacteria can induce apoptosis in human host cells and modulate the cellular pathways responsible for inducing or inhibiting apoptosis. These pathogens are significantly recognized by host proteins and provoke the multitude of several signaling pathways and alter the cellular apoptotic stimuli. This process leads the bacterial entry into the mammalian cells and evokes a variety of responses like phagocytosis, release of mitochondrial cytochrome c, secretion of bacterial effectors, release of both apoptotic and inflammatory cytokines, and the triggering of apoptosis. Several mechanisms are involved in bacteria-induced apoptosis including, initiation of the endogenous death machinery, pore-forming proteins, and secretion of superantigens. Either small molecules or proteins may act as a binding partner responsible for forming the protein complexes and regulate enzymatic activity via protein-protein interactions. The bacteria induce apoptosis, attack the human cell and gain control over various types of cells and tissue. Since these processes are intricate in the defense mechanisms of host organisms against pathogenic bacteria and play an important function in host-pathogen interactions. In this chapter, we focus on the various bacterial-induced apoptosis mechanisms in host cells and discuss the important proteins and bacterial effectors that trigger the host cell apoptosis. The structural characterization of bacterial effector proteins and their interaction with human host cells are also considered.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Marisol Vierra
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | | | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
16
|
Crowley E, Hussey S. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:275-292.e12. [DOI: 10.1016/b978-0-323-67293-1.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Hatakeyama M. The role of Helicobacter pylori CagA oncoprotein in neoplastic transformation of gastric epithelial cells. RESEARCH AND CLINICAL APPLICATIONS OF TARGETING GASTRIC NEOPLASMS 2021:119-144. [DOI: 10.1016/b978-0-323-85563-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Yang SJ, Huang CH, Yang JC, Wang CH, Shieh MJ. Residence Time-Extended Nanoparticles by Magnetic Field Improve the Eradication Efficiency of Helicobacter pylori. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54316-54327. [PMID: 33236884 DOI: 10.1021/acsami.0c13101] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Helicobacter pylori infection is one of the leading causes of several gastroduodenal diseases, such as gastritis, peptic ulcer, and gastric cancer. In fact, H. pylori eradication provides a preventive effect against the incidence of gastric cancer. Amoxicillin is a commonly used antibiotic for H. pylori eradication. However, due to its easy degradation by gastric acid, it is necessary to administer it in a large dosage and to combine it with other antibiotics. This complexity and the strong side effects of H. pylori eradication therapy often lead to treatment failure. In this study, the chitosan/poly (acrylic acid) particles co-loaded with superparamagnetic iron oxide nanoparticles and amoxicillin (SPIO/AMO@PAA/CHI) are used as drug nano-carriers for H. pylori eradication therapy. In vitro and in vivo results show that the designed SPIO/AMO@PAA/CHI nanoparticles are biocompatible and could retain the biofilm inhibition and the bactericidal effect of amoxicillin against H. pylori. Moreover, the mucoadhesive property of chitosan allows SPIO/AMO@PAA/CHI nanoparticles to adhere to the gastric mucus layer and rapidly pass through the mucus layer after exposure to a magnetic field. When PAA is added, it competes with amoxicillin for chitosan, so that amoxicillin is quickly and continuously released between the mucus layer and the gastric epithelium and directly acts on H. pylori. Consequently, the use of this nano-carrier can extend the drug residence time in the stomach, reducing the drug dose and treatment period of H. pylori eradication therapy.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Chung-Hao Wang
- Gene'e Tech Co. Ltd. 2F., No. 661, Bannan Road, Zhonghe District, New Taipei City 235, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
19
|
Jackson LK, Potter B, Schneider S, Fitzgibbon M, Blair K, Farah H, Krishna U, Bedford T, Peek RM, Salama NR. Helicobacter pylori diversification during chronic infection within a single host generates sub-populations with distinct phenotypes. PLoS Pathog 2020; 16:e1008686. [PMID: 33370399 PMCID: PMC7794030 DOI: 10.1371/journal.ppat.1008686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/08/2021] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori chronically infects the stomach of approximately half of the world's population. Manifestation of clinical diseases associated with H. pylori infection, including cancer, is driven by strain properties and host responses; and as chronic infection persists, both are subject to change. Previous studies have documented frequent and extensive within-host bacterial genetic variation. To define how within-host diversity contributes to phenotypes related to H. pylori pathogenesis, this project leverages a collection of 39 clinical isolates acquired prospectively from a single subject at two time points and from multiple gastric sites. During the six years separating collection of these isolates, this individual, initially harboring a duodenal ulcer, progressed to gastric atrophy and concomitant loss of acid secretion. Whole genome sequence analysis identified 1,767 unique single nucleotide polymorphisms (SNPs) across isolates and a nucleotide substitution rate of 1.3x10-4 substitutions/site/year. Gene ontology analysis identified cell envelope genes among the genes with excess accumulation of nonsynonymous SNPs (nSNPs). A maximum likelihood tree based on genetic similarity clusters isolates from each time point separately. Within time points, there is segregation of subgroups with phenotypic differences in bacterial morphology, ability to induce inflammatory cytokines, and mouse colonization. Higher inflammatory cytokine induction in recent isolates maps to shared polymorphisms in the Cag PAI protein, CagY, while rod morphology in a subgroup of recent isolates mapped to eight mutations in three distinct helical cell shape determining (csd) genes. The presence of subgroups with unique genetic and phenotypic properties suggest complex selective forces and multiple niches within the stomach during chronic infection.
Collapse
Affiliation(s)
- Laura K. Jackson
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Barney Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sean Schneider
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Matthew Fitzgibbon
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Kris Blair
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Hajirah Farah
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Uma Krishna
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Trevor Bedford
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Nina R. Salama
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
20
|
Song L, Song M, Rabkin CS, Williams S, Chung Y, Van Duine J, Liao LM, Karthikeyan K, Gao W, Park JG, Tang Y, Lissowska J, Qiu J, LaBaer J, Camargo MC. Helicobacter pylori Immunoproteomic Profiles in Gastric Cancer. J Proteome Res 2020; 20:409-419. [PMID: 33108201 DOI: 10.1021/acs.jproteome.0c00466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic Helicobacter pylori infection is the major risk factor for gastric cancer (GC). However, only some infected individuals develop this neoplasia. Previous H. pylori serology studies have been limited by investigating small numbers of candidate antigens. Therefore, we evaluated humoral responses to a nearly complete H. pylori immunoproteome (1527 proteins) among 50 GC cases and 50 controls using Nucleic Acid Programmable Protein Array (NAPPA). Seropositivity was defined as median normalized intensity ≥2 on NAPPA, and 53 anti-H. pylori antibodies had >10% seroprevalence. Anti-GroEL exhibited the greatest seroprevalence (77% overall), which agreed well with ELISA using whole-cell lysates of H. pylori cells. After an initial screen by H. pylori-NAPPA, we discovered and verified that 12 antibodies by ELISA in controls had ≥15% of samples with an optical reading value exceeding the 95th percentile of the GC group. ELISA-verified antibodies were validated blindly in an independent set of 100 case-control pairs. As expected, anti-CagA seropositivity was positively associated with GC (odds ratio, OR = 5.5; p < 0.05). After validation, six anti-H. pylori antibodies showed lower seropositivity in GC, with ORs ranging from 0.44 to 0.12 (p < 0.05): anti-HP1118/Ggt, anti-HP0516/HsIU, anti-HP0243/NapA, anti-HP1293/RpoA, anti-HP0371/FabE, and anti-HP0875/KatA. Among all combinations, a model with anti-Ggt, anti-HslU, anti-NapA, and anti-CagA had an area under the curve of 0.73 for discriminating GC vs. controls. This study represents the first comprehensive assessment of anti-H. pylori humoral profiles in GC. Decreased responses to multiple proteins in GC may reflect mucosal damage and decreased bacterial burden. The higher prevalence of specific anti-H. pylori antibodies in controls may suggest immune protection against GC development.
Collapse
Affiliation(s)
- Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20892-2590, United States
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20892-2590, United States
| | - Stacy Williams
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Yunro Chung
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States.,College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Jennifer Van Duine
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20892-2590, United States
| | - Kailash Karthikeyan
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Weimin Gao
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Jin G Park
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Yanyang Tang
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Jolanta Lissowska
- Division of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, 02-034 Warsaw, Poland
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5001, United States
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20892-2590, United States
| |
Collapse
|
21
|
Tegtmeyer N, Backert S. Different roles of integrin-β1 and integrin-αv for type IV secretion of CagA versus cell elongation phenotype and cell lifting by Helicobacter pylori. PLoS Pathog 2020; 16:e1008135. [PMID: 32692784 PMCID: PMC7373265 DOI: 10.1371/journal.ppat.1008135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
- * E-mail: (NT); (SB)
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
- * E-mail: (NT); (SB)
| |
Collapse
|
22
|
Fischer W, Tegtmeyer N, Stingl K, Backert S. Four Chromosomal Type IV Secretion Systems in Helicobacter pylori: Composition, Structure and Function. Front Microbiol 2020; 11:1592. [PMID: 32754140 PMCID: PMC7366825 DOI: 10.3389/fmicb.2020.01592] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenic bacterium Helicobacter pylori is genetically highly diverse and a major risk factor for the development of peptic ulcer disease and gastric adenocarcinoma in humans. During evolution, H. pylori has acquired multiple type IV secretion systems (T4SSs), and then adapted for various purposes. These T4SSs represent remarkable molecular transporter machines, often associated with an extracellular pilus structure present in many bacteria, which are commonly composed of multiple structural proteins spanning the inner and outer membranes. By definition, these T4SSs exhibit central functions mediated through the contact-dependent conjugative transfer of mobile DNA elements, the contact-independent release and uptake of DNA into and from the extracellular environment as well as the secretion of effector proteins in mammalian host target cells. In recent years, numerous features on the molecular functionality of these T4SSs were disclosed. H. pylori encodes up to four T4SSs on its chromosome, namely the Cag T4SS present in the cag pathogenicity island (cagPAI), the ComB system, as well as the Tfs3 and Tfs4 T4SSs, some of which exhibit unique T4SS functions. The Cag T4SS facilitates the delivery of the CagA effector protein and pro-inflammatory signal transduction through translocated ADP-heptose and chromosomal DNA, while various structural pilus proteins can target host cell receptors such as integrins or TLR5. The ComB apparatus mediates the import of free DNA from the extracellular milieu, whereas Tfs3 may accomplish the secretion or translocation of effector protein CtkA. Both Tfs3 and Tfs4 are furthermore presumed to act as conjugative DNA transfer machineries due to the presence of tyrosine recombinases with cognate recognition sequences, conjugational relaxases, and potential origins of transfer (oriT) found within the tfs3 and tfs4 genome islands. In addition, some extrachromosomal plasmids, transposons and phages have been discovered in multiple H. pylori isolates. The genetic exchange mediated by DNA mobilization events of chromosomal genes and plasmids combined with recombination events could account for much of the genetic diversity found in H. pylori. In this review, we highlight our current knowledge on the four T4SSs and the involved mechanisms with consequences for H. pylori adaptation to the hostile environment in the human stomach.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Nicole Tegtmeyer
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Steffen Backert
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
23
|
HAYASHI HIROKI, INOUE JUN, OYAMA KATSUAKI, MATSUOKA KOKI, NISHIUMI SHIN, YOSHIDA MASARU, YANO YOSHIHIKO, KODAMA YUZO. Detection of Novel Amino Acid Polymorphisms in the East Asian CagA of Helicobacter Pylori with Full Sequencing Data. THE KOBE JOURNAL OF MEDICAL SCIENCES 2020; 66:E22-E31. [PMID: 32814754 PMCID: PMC7447099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Cytotoxin-associated gene A (CagA) is generally accepted to be the most important virulence factor of Helicobacter pylori and increases the risk of developing gastric cancer. East Asian CagA, which includes the EPIYA-D segment at the C-terminal region, has a significantly higher gastric carcinogenic rate than Western CagA including the EPIYA-C segment. Although the amino acid polymorphism surrounding the EPIYA motif in the C-terminal region has been examined in detail, limited information is currently available on the amino acid polymorphism of the N-terminal region of East Asian CagA. In the present study, we analyzed the sequencing data of East Asian CagA that we obtained previously to detect amino acid changes (AACs) in the N-terminal region of East Asian CagA. Four highly frequent AACs in the N-terminal region of East Asian CagA were detected in our datasets, two of which (V356A, Y677F) exhibited reproducible specificity using a validation dataset from the NCBI database, which are candidate AACs related to the pathogenic function of CagA. We examined whether these AACs affect the functions of CagA in silico model. The computational docking simulation model showed that binding affinity between CagA and phosphatidylserine remained unchanged in the model of mutant CagA reflecting both AAC, whereas that between CagA and α5β1 integrin significantly increased. Based on whole genome sequencing data we herein identified novel specific AACs in the N-terminal regions of EPIYA-D that have the potential to change the function of CagA.
Collapse
Affiliation(s)
- HIROKI HAYASHI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - JUN INOUE
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KATSUAKI OYAMA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KOKI MATSUOKA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - SHIN NISHIUMI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - MASARU YOSHIDA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YOSHIHIKO YANO
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Molecular Medicine & Medical Genetics, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YUZO KODAMA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
24
|
Rizzato C, Torres J, Obazee O, Camorlinga-Ponce M, Trujillo E, Stein A, Mendez-Tenorio A, Bravo MM, Canzian F, Kato I. Variations in cag pathogenicity island genes of Helicobacter pylori from Latin American groups may influence neoplastic progression to gastric cancer. Sci Rep 2020; 10:6570. [PMID: 32300197 PMCID: PMC7162905 DOI: 10.1038/s41598-020-63463-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (HP) colonizes the human stomach and induces acute gastritis, peptic ulcer disease, atrophic gastritis, and gastric adenocarcinoma. Increased virulence in HP isolates derives from harboring the cag (cytotoxin-associated genes) pathogenicity island (cagPAI). We analyzed the microvariants in cagPAI genes with the hypothesis that they may play an important role in determining HP virulence. We tested DNAs from cagA positive patients HP isolates; a total of 74 patients with chronic gastritis (CG, N = 37), intestinal metaplasia (IM, N = 21) or gastric cancer (GC, N = 16) from Mexico and Colombia. We selected 520 non-synonymous variants with at least 7.5% frequency in the original sequence outputs or with a minimum of 5 isolates with minor allele. After adjustment for multiple comparisons, no variants were statistically significantly associated with IM or GC. However, 19 non-synonymous showed conventional P-values < 0.05 comparing the frequency of the alleles between the isolates from subjects with gastritis and isolates from subjects with IM or GC; 12 of these showed a significant correlation with the severity of the disease. The present study revealed that several cagPAI genes from Latin American Western HP strains contains a number of non-synonymous variants in relatively high frequencies which could influence on the clinical outcome. However, none of the associations remained statistically significant after adjustment for multiple comparison.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Esperanza Trujillo
- Grupo de Investigación en Biología del Cáncer. Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alfonso Mendez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional, México City, México
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer. Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
25
|
The Helicobacter pylori Cag Type IV Secretion System. Trends Microbiol 2020; 28:682-695. [PMID: 32451226 DOI: 10.1016/j.tim.2020.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022]
Abstract
Colonization of the human stomach with Helicobacter pylori strains containing the cag pathogenicity island is a risk factor for development of gastric cancer. The cag pathogenicity island contains genes encoding a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS). The molecular architecture of the H. pylori Cag T4SS is substantially more complex than that of prototype T4SSs in other bacterial species. In this review, we discuss recent discoveries pertaining to the structure and function of the Cag T4SS and its role in gastric cancer pathogenesis.
Collapse
|
26
|
Zeng B, Chen C, Yi Q, Zhang X, Wu X, Zheng S, Li N, She F. N-terminal region of Helicobacter pylori CagA induces IL-8 production in gastric epithelial cells via the β1 integrin receptor. J Med Microbiol 2020; 69:457-464. [DOI: 10.1099/jmm.0.001088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction.
Helicobacter pylori
is associated with gastrointestinal disease, most notably gastric cancer. Cytotoxin-associated antigen A (CagA), an important virulence factor for
H. pylori
pathogenicity, induces host cells to release inflammatory factors, especially interleukin-8 (IL-8). The mechanism by which C-terminal CagA induces IL-8 production has been studied extensively, but little is known about the role of the N-terminus.
Aim. To investigate the effect of CagA303–456aa (a peptide in the N-terminal CagA) on IL-8 production by gastric epithelial cells.
Methodology. CagA303-456aa was produced by a prokaryotic expression system and purified by Strep-tag affinity chromatography. An integrin β1 (ITGB1)-deficient AGS cell line was constructed using the CRISPR/Cas9 technique, and NCTC 11637 cagA and/or cagL knockout mutants were constructed via homologous recombination. The levels of IL-8 production were determined by enzyme-linked immunosorbent assay (ELISA), and p38 and ERK1/2 phosphorylation were examined by Western blot.
Results. CagA303-456aa induced IL-8 expression by AGS cells. IL-8 induction by CagA303-456aawas specifically inhibited by ITGB1 deficiency. Notably, CagA303-456aa activated the phosphorylation of both p38 and ERK1/2, and blocking p38 and ERK1/2 activity significantly reduced IL-8 induction by CagA303-456aa. ITGB1 deficiency also inhibited the activation of p38 phosphorylation by CagA303-456aa. Finally, experiments in CagA and/or CagL knockout bacterial lines demonstrated that extracellular CagA might induce IL-8 production by AGS cells.
Conclusion. Residues 303–456 of the N-terminal region of CagA induce IL-8 production via a CagA303-456–ITGB1–p38–IL-8 pathway, and ERK1/2 is also involved in the release of IL-8. Extracellular CagA might induce IL-8 production before translocation into AGS cells.
Collapse
Affiliation(s)
- Bangwei Zeng
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian Province 350001, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Chu Chen
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Qingfeng Yi
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Xiaoyan Zhang
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Xiangyan Wu
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Shurong Zheng
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Neng Li
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| |
Collapse
|
27
|
Galle JN, Hegemann JH. Exofacial phospholipids at the plasma membrane: ill-defined targets for early infection processes. Biol Chem 2020; 400:1323-1334. [PMID: 31408428 DOI: 10.1515/hsz-2019-0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/06/2019] [Indexed: 02/04/2023]
Abstract
The eukaryotic plasma membrane (PM) consists largely of phospholipids and proteins, and separates the intracellular compartments from the extracellular space. It also serves as a signaling platform for cell-to-cell communication and an interaction platform for the molecular crosstalk between pathogens and their target cells. Much research has been done to elucidate the interactions between pathogens and host membrane proteins. However, little is known about the interactions between pathogens and membrane phospholipids, although reports have described a contribution of phospholipids to cell recognition and/or invasion during early infection by diverse pathogens. Thus, during adhesion to the host cell, the obligate intracellular bacterial pathogens Chlamydia spp., the facultative intracellular pathogen Helicobacter pylori and the facultative aerobic pathogen Vibrio parahaemolyticus, interact with exofacial phospholipids. This review focuses on several prominent instances of pathogen interaction with host-cell phospholipids.
Collapse
Affiliation(s)
- Jan N Galle
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Role of Mycoplasma Chaperone DnaK in Cellular Transformation. Int J Mol Sci 2020; 21:ijms21041311. [PMID: 32075244 PMCID: PMC7072988 DOI: 10.3390/ijms21041311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Studies of the human microbiome have elucidated an array of complex interactions between prokaryotes and their hosts. However, precise bacterial pathogen-cancer relationships remain largely elusive, although several bacteria, particularly those establishing persistent intra-cellular infections, like mycoplasmas, can alter host cell cycles, affect apoptotic pathways, and stimulate the production of inflammatory substances linked to DNA damage, thus potentially promoting abnormal cell growth and transformation. Consistent with this idea, in vivo experiments in several chemically induced or genetically deficient mouse models showed that germ-free conditions reduce colonic tumor formation. We demonstrate that mycoplasma DnaK, a chaperone protein belonging to the Heath shock protein (Hsp)-70 family, binds Poly-(ADP-ribose) Polymerase (PARP)-1, a protein that plays a critical role in the pathways involved in recognition of DNA damage and repair, and reduces its catalytic activity. It also binds USP10, a key p53 regulator, reducing p53 stability and anti-cancer functions. Finally, we showed that bystander, uninfected cells take up exogenous DnaK-suggesting a possible paracrine function in promoting cellular transformation, over and above direct mycoplasma infection. We propose that mycoplasmas, and perhaps certain other bacteria with closely related DnaK, may have oncogenic activity, mediated through the inhibition of DNA repair and p53 functions, and may be involved in the initiation of some cancers but not necessarily involved nor necessarily even be present in later stages.
Collapse
|
29
|
Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2019; 17:50-63. [PMID: 31804619 PMCID: PMC6952403 DOI: 10.1038/s41423-019-0339-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. The cagA gene product, CagA, is delivered into gastric epithelial cells via the bacterial type IV secretion system. Delivered CagA then undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in its C-terminal region and acts as an oncogenic scaffold protein that physically interacts with multiple host signaling proteins in both tyrosine phosphorylation-dependent and -independent manners. Analysis of CagA using in vitro cultured gastric epithelial cells has indicated that the nonphysiological scaffolding actions of CagA cell-autonomously promote the malignant transformation of the cells by endowing the cells with multiple phenotypic cancer hallmarks: sustained proliferation, evasion of growth suppressors, invasiveness, resistance to cell death, and genomic instability. Transgenic expression of CagA in mice leads to in vivo oncogenic action of CagA without any overt inflammation. The in vivo oncogenic activity of CagA is further potentiated in the presence of chronic inflammation. Since Helicobacter pylori infection triggers a proinflammatory response in host cells, a feedforward stimulation loop that augments the oncogenic actions of CagA and inflammation is created in CagA-injected gastric mucosa. Given that Helicobacter pylori is no longer colonized in established gastric cancer lesions, the multistep nature of gastric cancer development should include a “hit-and-run” process of CagA action. Thus, acquisition of genetic and epigenetic alterations that compensate for CagA-directed cancer hallmarks may be required for completion of the “hit-and-run” process of gastric carcinogenesis.
Collapse
|
30
|
Activity and Functional Importance of Helicobacter pylori Virulence Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:35-56. [PMID: 31016624 DOI: 10.1007/5584_2019_358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori is a very successful Gram-negative pathogen colonizing the stomach of humans worldwide. Infections with this bacterium can generate pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The best characterized H. pylori virulence factors that cause direct cell damage include an effector protein encoded by the cytotoxin-associated gene A (CagA), a type IV secretion system (T4SS) encoded in the cag-pathogenicity island (cag PAI), vacuolating cytotoxin A (VacA), γ-glutamyl transpeptidase (GGT), high temperature requirement A (HtrA, a serine protease) and cholesterol glycosyl-transferase (CGT). Since these H. pylori factors are either surface-exposed, secreted or translocated, they can directly interact with host cell molecules and are able to hijack cellular functions. Studies on these bacterial factors have progressed substantially in recent years. Here, we review the current status in the characterization of signaling cascades by these factors in vivo and in vitro, which comprise the disruption of cell-to-cell junctions, induction of membrane rearrangements, cytoskeletal dynamics, proliferative, pro-inflammatory, as well as, pro-apoptotic and anti-apoptotic responses or immune evasion. The impact of these signal transduction modules in the pathogenesis of H. pylori infections is discussed.
Collapse
|
31
|
Classification of Helicobacter pylori Virulence Factors: Is CagA a Toxin or Not? Trends Microbiol 2019; 27:731-738. [DOI: 10.1016/j.tim.2019.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
|
32
|
Pachathundikandi SK, Gutiérrez-Escobar AJ, Tegtmeyer N. Tailor-Made Detection of Individual Phosphorylated and Non-Phosphorylated EPIYA-Motifs of Helicobacter pylori Oncoprotein CagA. Cancers (Basel) 2019; 11:cancers11081163. [PMID: 31412675 PMCID: PMC6721621 DOI: 10.3390/cancers11081163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The gastric pathogen and carcinogen Helicobacter pylori(H. pylori) encodes a type IV secretion system for translocation of the effector protein CagA into host cells. Injected CagA becomes tyrosine-phosphorylated at the five amino acid residue Glutamate-Proline- Isoleucine-Tyrosine-Alanine (EPIYA)-sequence motifs. These phosphorylated EPIYA-sites represent recognition motifs for binding of multiple host factors, which then manipulate signaling pathways to trigger gastric disease. Thus, efficient detection of single phosphorylated EPIYA-motifs in CagA is required. Detection of phospho-CagA is primarily performed using commercial pan-phosphotyrosine antibodies. However, those antibodies were originally generated to recognize many phosphotyrosines in various mammalian proteins and are not optimized for use in bacteria. To address this important limitation, we synthesized 11-mer phospho- and non-phospho-peptides from EPIYA-motifs A, B, and C, and produced three phospho-specific and three non-phospho-specific rabbit polyclonal CagA antibodies. These antibodies specifically recognized the corresponding phosphorylated and non-phosphorylated EPIYA-motifs, while the EPIYA-C antibodies also recognized the related East-Asian EPIYA-D motif. Otherwise, no cross-reactivity of the antibodies among EPIYAs was observed. Western blotting demonstrated that each EPIYA-motif can be predominantly phosphorylated during H. pylori infection. This represents the first complete set of phospho-specific antibodies for an effector protein in bacteria, providing useful tools to gather information for the categorization of CagA phosphorylation, cancer signaling, and gastric disease progression.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Andrés Julián Gutiérrez-Escobar
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany.
| |
Collapse
|
33
|
Buß M, Tegtmeyer N, Schnieder J, Dong X, Li J, Springer TA, Backert S, Niemann HH. Specific high affinity interaction of Helicobacter pylori CagL with integrin α V β 6 promotes type IV secretion of CagA into human cells. FEBS J 2019; 286:3980-3997. [PMID: 31197920 DOI: 10.1111/febs.14962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/12/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
CagL is an essential pilus surface component of the virulence-associated type IV secretion system (T4SS) employed by Helicobacter pylori to translocate the oncogenic effector protein CagA into human gastric epithelial cells. CagL contains an RGD motif and integrin α5 β1 is widely accepted as its host cell receptor. Here, we show that CagL binds integrin αV β6 with substantially higher affinity and that this interaction is functionally important. Cell surface expression of αV β6 on various cell lines correlated perfectly with cell adhesion to immobilized CagL and with binding of soluble CagL to cells. We found no such correlation for α5 β1 . The purified αV β6 ectodomain bound CagL with high affinity. This interaction was highly specific, as the affinity of CagL for other RGD-binding integrins was two to three orders of magnitude weaker. Mutation of either conserved leucine in the CagL RGDLXXL motif, a motif that generally confers specificity for integrin αV β6 and αV β8 , lowered the affinity of CagL for αV β6 . Stable expression of αV β6 in αV β6 -negative but α5 β1 -expressing human cells promoted two hallmarks of the functional H. pylori T4SS, namely translocation of CagA into host cells and induction of interleukin-8 secretion by host cells. These findings suggest that integrin αV β6 , although not essential for T4SS function, represents an important host cell receptor for CagL.
Collapse
Affiliation(s)
- Maren Buß
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
| | - Jennifer Schnieder
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Germany
| | - Xianchi Dong
- Children's Hospital Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jing Li
- Children's Hospital Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Timothy A Springer
- Children's Hospital Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Germany
| |
Collapse
|
34
|
Junaid M, Li CD, Shah M, Khan A, Guo H, Wei DQ. Extraction of molecular features for the drug discovery targeting protein-protein interaction of Helicobacter pylori CagA and tumor suppressor protein ASSP2. Proteins 2019; 87:837-849. [PMID: 31134671 DOI: 10.1002/prot.25748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/04/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Half of the world population is infected by the Gram-negative bacterium Helicobacter pylori (H. pylori). It colonizes in the stomach and is associated with severe gastric pathologies including gastric cancer and peptic ulceration. The most virulent factor of H. pylori is the cytotoxin-associated gene A (CagA) that is injected into the host cell. CagA interacts with several host proteins and alters their function, thereby causing several diseases. The most well-known target of CagA is the tumor suppressor protein ASPP2. The subdomain I at the N-terminus of CagA interacts with the proline-rich motif of ASPP2. Here, in this study, we carried out alanine scanning mutagenesis and an extensive molecular dynamics simulation summing up to 3.8 μs to find out hot spot residues and discovered some new protein-protein interaction (PPI)-modulating molecules. Our findings are in line with previous biochemical studies and further suggested new residues that are crucial for binding. The alanine scanning showed that mutation of Y207 and T211 residues to alanine decreased the binding affinity. Likewise, dynamics simulation and molecular mechanics with generalized Born surface area (MMGBSA) analysis also showed the importance of these two residues at the interface. A four-feature pharmacophore model was developed based on these two residues, and top 10 molecules were filtered from ZINC, NCI, and ChEMBL databases. The good binding affinity of the CHEMBL17319 and CHEMBL1183979 molecules shows the reliability of our adopted protocol for binding hot spot residues. We believe that our study provides a new insight for using CagA as the therapeutic target for gastric cancer treatment and provides a platform for a future experimental study.
Collapse
Affiliation(s)
- Muhammad Junaid
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Dong Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyue Guo
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Guo L, Hong D, Wang S, Zhang F, Tang F, Wu T, Chu Y, Liu H, He M, Yang H, Yin R, Liu K. Therapeutic Protection Against H. pylori Infection in Mongolian Gerbils by Oral Immunization With a Tetravalent Epitope-Based Vaccine With Polysaccharide Adjuvant. Front Immunol 2019; 10:1185. [PMID: 31191547 PMCID: PMC6546824 DOI: 10.3389/fimmu.2019.01185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Urease is an effective target for design of a therapeutic epitope vaccine against Helicobacter pylori (H. pylori). In our previous studies, an epitope vaccine CTB-UE containing Th and B epitopes from H. pylori urease was constructed, and the CTB-UE vaccine could provide therapeutic effect on H. pylori infection in mice. However, a multivalent vaccine, combining different antigens participating in different aspects of H. pylori colonization and pathogenesis, may be more effective as a therapeutic vaccine than a univalent vaccine targetting urease. Therefore, a multivalent epitope vaccine FVpE, containing Th1-type immune adjuvant NAP, three selected functional fragments from CagA and VacA, and an urease multi-epitope peptide (UE) from CTB-UE, was constructed in this study and expected to obtain better sterilizing immunity than the univalent epitope vaccine CTB-UE. The therapeutic effect of multivalent epitope vaccine FVpE with polysaccharide adjuvant (PA) was evaluated in H. pylori-infected Mongolian gerbil model. The results showed that both FvpE and CTB-UE vaccine could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect on H. pylori urease activity. However, only FVpE could induce high levels of specific antibodies to CagA, VacA, and NAP. In addition, oral therapeutic immunization with FVpE plus PA significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils compared with oral immunization with CTB-UE plus PA, or FVpE only, and the FVpE vaccine with PA even exhibited sterilizing immunity. The protection of FVpE was related to the mixed CD4+ T cell responses and epitope-specific antibodies against various H. pylori antigens. These results indicate that a multivalent epitope vaccine targetting various H. pylori antigens could be a promising candidate against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Dantong Hong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shue Wang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Fan Zhang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Tao Wu
- Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuankui Chu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Meng He
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hua Yang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Runting Yin
- Center for Cell Therapy, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
36
|
Zhang Z, Huang Q, Tao X, Song G, Zheng P, Li H, Sun H, Xia W. The unique trimeric assembly of the virulence factor HtrA from Helicobacter pylori occurs via N-terminal domain swapping. J Biol Chem 2019; 294:7990-8000. [PMID: 30936204 DOI: 10.1074/jbc.ra119.007387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the molecular mechanisms of specific bacterial virulence factors can significantly contribute to antibacterial drug discovery. Helicobacter pylori is a Gram-negative microaerophilic bacterium that infects almost half of the world's population, leading to gastric disorders and even gastric cancer. H. pylori expresses a series of virulence factors in the host, among which high-temperature requirement A (HpHtrA) is a newly identified serine protease secreted by H. pylori. HpHtrA cleaves the extracellular domain of the epithelial cell surface adhesion protein E-cadherin and disrupts gastric epithelial cell junctions, allowing H. pylori to access the intercellular space. Here we report the first crystal structure of HpHtrA at 3.0 Å resolution. The structure revealed a new type of HtrA protease trimer stabilized by unique N-terminal domain swapping distinct from other known HtrA homologs. We further observed that truncation of the N terminus completely abrogates HpHtrA trimer formation as well as protease activity. In the presence of unfolded substrate, HpHtrA assembled into cage-like 12-mers or 24-mers. Combining crystallographic, biochemical, and mutagenic data, we propose a mechanistic model of how HpHtrA recognizes and cleaves the well-folded E-cadherin substrate. Our study provides a fundamental basis for the development of anti-H. pylori agents by using a previously uncharacterized HtrA protease as a target.
Collapse
Affiliation(s)
- Zhemin Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guobing Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongyan Li
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
37
|
Hu Y, Liu JP, Li XY, Cai Y, He C, Li NS, Xie C, Xiong ZJ, Ge ZM, Lu NH, Zhu Y. Downregulation of tumor suppressor RACK1 by Helicobacter pylori infection promotes gastric carcinogenesis through the integrin β-1/NF-κB signaling pathway. Cancer Lett 2019; 450:144-154. [PMID: 30849478 DOI: 10.1016/j.canlet.2019.02.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/24/2022]
Abstract
Receptor of activated protein kinase C 1 (RACK1) is downregulated in gastric cancer and is involved in modulating NF-κB signaling pathway activity. However, the underlying molecular mechanisms regulating RACK1 expression are unclear. In this study, we demonstrated that downregulated expression of RACK1 was observed in gastric cancer tissue compared to adjacent normal tissue and was correlated with poor prognosis in patients. Helicobacter pylori (H. pylori) infection downregulated RACK1 expression in concert with canonical NF-κB signaling pathway activation in vivo and in vitro. RACK1 overexpression suppressed NF-κB signaling pathway activation as well as the release of downstream proinflammatory cytokines. In addition, RACK1 downregulation increased integrin β-1 expression, while integrin β-1 silencing decreased NF-κB signaling activation. Moreover, H. pylori infection downregulated RACK1 but upregulated integrin β-1 expression at the precancerous lesion stages in human subjects. Our data indicate that H. pylori infection promotes the upregulation of integrin β-1 expression via downregulation of RACK1 expression, which subsequently leads to the elevated activation of the NF-κB signaling pathway, an essential step in H. pylori-induced carcinogenesis.
Collapse
Affiliation(s)
- Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Jian-Ping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden.
| | - Xue-Yang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Yan Cai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Nian-Shuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Zhi-Juan Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Zhong-Ming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
38
|
Karmakar P, Gaitonde V. Promising Recent Strategies with Potential Clinical Translational Value to Combat Antibacterial Resistant Surge. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E21. [PMID: 30709019 PMCID: PMC6473725 DOI: 10.3390/medicines6010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 12/27/2022]
Abstract
Multiple drug resistance (MDR) for the treatment of bacterial infection has been a significant challenge since the beginning of the 21st century. Many of the small molecule-based antibiotic treatments have failed on numerous occasions due to a surge in MDR, which has claimed millions of lives worldwide. Small particles (SPs) consisting of metal, polymer or carbon nanoparticles (NPs) of different sizes, shapes and forms have shown considerable antibacterial effect over the past two decades. Unlike the classical small-molecule antibiotics, the small particles are less exposed so far to the bacteria to trigger a resistance mechanism, and hence have higher chances of fighting the challenge of the MDR process. Until recently, there has been limited progress of clinical treatments using NPs, despite ample reports of in vitro antibacterial efficacy. In this review, we discuss some recent and unconventional strategies that have explored the antibacterial efficacy of these small particles, alone and in combination with classical small molecules in vivo, and demonstrate possibilities that are favorable for clinical translations in near future.
Collapse
Affiliation(s)
- Partha Karmakar
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
39
|
Hatakeyama M. Malignant Helicobacter pylori-Associated Diseases: Gastric Cancer and MALT Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:135-149. [DOI: 10.1007/5584_2019_363] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Junaid M, Shah M, Khan A, Li CD, Khan MT, Kaushik AC, Ali A, Mehmood A, Nangraj AS, Choi S, Wei DQ. Structural-dynamic insights into the H. pylori cytotoxin-associated gene A (CagA) and its abrogation to interact with the tumor suppressor protein ASPP2 using decoy peptides. J Biomol Struct Dyn 2018; 37:4035-4050. [PMID: 30328798 DOI: 10.1080/07391102.2018.1537895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori (H. pylori) is one of the most extensively studied Gram-negative bacteria due to its implication in gastric cancer. The oncogenicity of H. pylori is associated with cytotoxin-associated gene A (CagA), which is injected into epithelial cells lining the stomach. Both the C- and N-termini of CagA are involved in the interaction with several host proteins, thereby disrupting vital cellular functions, such as cell adhesion, cell cycle, intracellular signal transduction, and cytoskeletal structure. The N-terminus of CagA interacts with the tumor-suppressing protein, apoptosis-stimulating protein of p53 (ASPP2), subsequently disrupting the apoptotic function of tumor suppressor gene p53. Here, we present the in-depth molecular dynamic mechanism of the CagA-ASPP2 interaction and highlight hot-spot residues through in silico mutagenesis. Our findings are in agreement with previous studies and further suggest other residues that are crucial for the CagA-ASPP2 interaction. Furthermore, the ASPP2-binding pocket possesses potential druggability and could be engaged by decoy peptides, identified through a machine-learning system and suggested in this study. The binding affinities of these peptides with CagA were monitored through extensive computational procedures and reported herein. While CagA is crucial for the oncogenicity of H. pylori, our designed peptides possess the potential to inhibit CagA and restore the tumor suppressor function of ASPP2.
Collapse
Affiliation(s)
- Muhammad Junaid
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Masaud Shah
- b Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Abbas Khan
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Cheng-Dong Li
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Muhammad Tahir Khan
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Aman Chandra Kaushik
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Arif Ali
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Aamir Mehmood
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Asma Sindhoo Nangraj
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Sangdun Choi
- b Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Dong-Qing Wei
- a State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
41
|
Mycoplasma promotes malignant transformation in vivo, and its DnaK, a bacterial chaperone protein, has broad oncogenic properties. Proc Natl Acad Sci U S A 2018; 115:E12005-E12014. [PMID: 30509983 PMCID: PMC6304983 DOI: 10.1073/pnas.1815660115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We provide evidence here that (i) a strain of mycoplasma promotes lymphomagenesis in an in vivo mouse model; (ii) a bacterial chaperone protein, DnaK, is likely implicated in the transformation process and resistance to anticancer drugs by interfering with important pathways related to both DNA-damage control/repair and cell-cycle/apoptosis; and (iii) a very low copy number of DNA sequences of mycoplasma DnaK were found in some tumors of the infected mice. Other tumor-associated bacteria carry a similar DnaK protein. Our data suggest a common mechanism whereby bacteria can be involved in cellular transformation and resistance to anticancer drugs by a hit-and-hide/run mechanism. We isolated a strain of human mycoplasma that promotes lymphomagenesis in SCID mice, pointing to a p53-dependent mechanism similar to lymphomagenesis in uninfected p53−/− SCID mice. Additionally, mycoplasma infection in vitro reduces p53 activity. Immunoprecipitation of p53 in mycoplasma-infected cells identified several mycoplasma proteins, including DnaK, a member of the Hsp70 chaperon family. We focused on DnaK because of its ability to interact with proteins. We demonstrate that mycoplasma DnaK interacts with and reduces the activities of human proteins involved in critical cellular pathways, including DNA-PK and PARP1, which are required for efficient DNA repair, and binds to USP10 (a key p53 regulator), impairing p53-dependent anticancer functions. This also reduced the efficacy of anticancer drugs that depend on p53 to exert their effect. mycoplasma was detected early in the infected mice, but only low copy numbers of mycoplasma DnaK DNA sequences were found in some primary and secondary tumors, pointing toward a hit-and-run/hide mechanism of transformation. Uninfected bystander cells took up exogenous DnaK, suggesting a possible paracrine function in promoting malignant transformation, over and above cells infected with the mycoplasma. Phylogenetic amino acid analysis shows that other bacteria associated with human cancers have similar DnaKs, consistent with a common mechanism of cellular transformation mediated through disruption of DNA-repair mechanisms, as well as p53 dysregulation, that also results in cancer-drug resistance. This suggests that the oncogenic properties of certain bacteria are DnaK-mediated.
Collapse
|
42
|
Tegtmeyer N, Harrer A, Schmitt V, Singer BB, Backert S. Expression of CEACAM1 or CEACAM5 in AZ-521 cells restores the type IV secretion deficiency for translocation of CagA byHelicobacter pylori. Cell Microbiol 2018; 21:e12965. [DOI: 10.1111/cmi.12965] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| | - Aileen Harrer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| | - Verena Schmitt
- Medical Faculty, Institute of Anatomy; University of Duisburg-Essen; Essen Germany
| | - Bernhard B. Singer
- Medical Faculty, Institute of Anatomy; University of Duisburg-Essen; Essen Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| |
Collapse
|
43
|
Structural Analysis of Variability and Interaction of the N-terminal of the Oncogenic Effector CagA of Helicobacter pylori with Phosphatidylserine. Int J Mol Sci 2018; 19:ijms19103273. [PMID: 30360352 PMCID: PMC6214045 DOI: 10.3390/ijms19103273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori cytotoxin-associated gene A protein (CagA) has been associated with the increase in virulence and risk of cancer. It has been demonstrated that CagA’s translocation is dependent on its interaction with phosphatidylserine. We evaluated the variability of the N-terminal CagA in 127 sequences reported in NCBI, by referring to molecular interaction forces with the phosphatidylserine and the docking of three mutations chosen from variations in specific positions. The major sites of conservation of the residues involved in CagA–Phosphatidylserine interaction were 617, 621 and 626 which had no amino acid variation. Position 636 had the lowest conservation score; mutations in this position were evaluated to observe the differences in intermolecular forces for the CagA–Phosphatidylserine complex. We evaluated the docking of three mutations: K636A, K636R and K636N. The crystal and mutation models presented a ΔG of −8.919907, −8.665261, −8.701923, −8.515097 Kcal/mol, respectively, while mutations K636A, K636R, K636N and the crystal structure presented 0, 3, 4 and 1 H-bonds, respectively. Likewise, the bulk effect of the ΔG and amount of H-bonds was estimated in all of the docking models. The type of mutation affected both the ΔG (χ2(1)=93.82, p-value <2.2×10−16) and the H-bonds (χ2(1)=91.93, p-value <2.2×10−16). Overall, 76.9% of the strains that exhibit the K636N mutation produced a severe pathology. The average H-bond count diminished when comparing the mutations with the crystal structure of all the docking models, which means that other molecular forces are involved in the CagA–Phosphatidylserine complex interaction.
Collapse
|
44
|
Zhao Q, Busch B, Jiménez-Soto LF, Ishikawa-Ankerhold H, Massberg S, Terradot L, Fischer W, Haas R. Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation. PLoS Pathog 2018; 14:e1007359. [PMID: 30365569 PMCID: PMC6231679 DOI: 10.1371/journal.ppat.1007359] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/12/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023] Open
Abstract
Translocation of the Helicobacter pylori (Hp) cytotoxin-associated gene A (CagA) effector protein via the cag-Type IV Secretion System (cag-T4SS) into host cells is a hallmark of infection with Hp and a major risk factor for severe gastric diseases, including gastric cancer. To mediate the injection of CagA, Hp uses a membrane-embedded syringe-like molecular apparatus extended by an external pilus-like rod structure that binds host cell surface integrin heterodimers. It is still largely unclear how the interaction of the cag-T4SS finally mediates translocation of the CagA protein into the cell cytoplasm. Recently certain carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), acting as receptor for the Hp outer membrane adhesin HopQ, have been identified to be involved in the process of CagA host cell injection. Here, we applied the CRISPR/Cas9-knockout technology to generate defined human gastric AGS and KatoIII integrin knockout cell lines. Although confocal laser scanning microscopy revealed a co-localization of Hp and β1 integrin heterodimers on gastric epithelial cells, Hp infection studies using the quantitative and highly sensitive Hp β-lactamase reporter system clearly show that neither β1 integrin heterodimers (α1β1, α2β1 or α5β1), nor any other αβ integrin heterodimers on the cell surface are essential for CagA translocation. In contrast, deletion of the HopQ adhesin in Hp, or the simultaneous knockout of the receptors CEACAM1, CEACAM5 and CEACAM6 in KatoIII cells abolished CagA injection nearly completely, although bacterial binding was only reduced to 50%. These data provide genetic evidence that the cag-T4SS-mediated interaction of Hp with cell surface integrins on human gastric epithelial cells is not essential for CagA translocation, but interaction of Hp with CEACAM receptors is facilitating CagA translocation by the cag-T4SS of this important microbe.
Collapse
Affiliation(s)
- Qing Zhao
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Benjamin Busch
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Luisa Fernanda Jiménez-Soto
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | | | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, CNRS-Université de Lyon, France
| | - Wolfgang Fischer
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| |
Collapse
|
45
|
Angsantikul P, Thamphiwatana S, Zhang Q, Spiekermann K, Zhuang J, Fang RH, Gao W, Obonyo M, Zhang L. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. ADVANCED THERAPEUTICS 2018; 1:1800016. [PMID: 30320205 PMCID: PMC6176867 DOI: 10.1002/adtp.201800016] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 12/21/2022]
Abstract
Inspired by the natural pathogen-host interactions and adhesion, this study reports on the development of a novel targeted nanotherapeutics for the treatment of Helicobacter pylori (H. pylori) infection. Specifically, plasma membranes of gastric epithelial cells (e.g. AGS cells) are collected and coated onto antibiotic-loaded polymeric cores, the resulting biomimetic nanoparticles (denoted AGS-NPs) bear the same surface antigens as the source AGS cells and thus have inherent adhesion to H. pylori bacteria. When incubated with H. pylori bacteria in vitro, the AGS-NPs preferentially accumulate on the bacterial surfaces. Using clarithromycin (CLR) as a model antibiotic and a mouse model of H. pylori infection, the CLR-loaded AGS-NPs demonstrate superior therapeutic efficacy as compared the free drug counterpart as well as non-targeted nanoparticle control group. Overall, this work illustrates the promise and strength of using natural host cell membranes to functionalize drug nanocarriers for targeted drug delivery to pathogens that colonize on the host cells. As host-pathogen adhesion represents a common biological event for various types of pathogenic bacteria, the bioinspired nanotherapeutic strategy reported here represents a versatile delivery platform that may be applied to treat numerous infectious diseases.
Collapse
Affiliation(s)
- Pavimol Angsantikul
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Soracha Thamphiwatana
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Qiangzhe Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Spiekermann
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jia Zhuang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Marygorret Obonyo
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
Backert S, Haas R, Gerhard M, Naumann M. The Helicobacter pylori Type IV Secretion System Encoded by the cag Pathogenicity Island: Architecture, Function, and Signaling. Curr Top Microbiol Immunol 2018. [DOI: 10.1007/978-3-319-75241-9_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Bats SH, Bergé C, Coombs N, Terradot L, Josenhans C. Biochemical characterization of the Helicobacter pylori Cag Type 4 Secretion System protein CagN and its interaction partner CagM. Int J Med Microbiol 2018; 308:425-437. [PMID: 29572102 DOI: 10.1016/j.ijmm.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/26/2022] Open
Abstract
Highly virulent Helicobacter pylori strains contain the cag pathogenicity island (cagPAI). It codes for about 30 proteins forming a type IV secretion system (T4SS) which translocates the pro-inflammatory protein CagA into epithelial host cells. While CagA and various other Cag proteins have been extensively studied, several cagPAI proteins are poorly characterized or of unknown function. CagN (HP0538) is of unknown function but highly conserved in the cagPAI suggesting an important role. cagM (HP0537) is the first gene of the cagMN operon and its product is part of the CagT4SS core complex. Both proteins do not have detectable homologs in other type IV secretion systems. We have characterized the biochemical and structural properties of CagN and CagM and their interaction. We demonstrate by circular dichroism, Multi-Angle Light Scattering (MALS) and small angle X-ray scattering (SAXS) that CagN is a folded, predominantly monomeric protein with an elongated shape in solution. CagM is folded and forms predominantly dimers that are also elongated in solution. We found by various in vivo and in vitro methods that CagN and CagM directly interact with each other. CagM self-interacts stably with a low nanomolar KD and can form stable multimers. Finally, in vivo experiments show that deletion of CagM reduces the amounts of CagN and other outer CagPAI proteins in H. pylori cells.
Collapse
Affiliation(s)
- Simon H Bats
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Max von Pettenkofer Institute, Ludwig Maximilians Universität LMU München, Pettenkoferstraße 9a, 80336 München, Germany
| | - Célia Bergé
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon 1, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon, Cedex 07, France
| | - Nina Coombs
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon 1, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon, Cedex 07, France
| | - Christine Josenhans
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Max von Pettenkofer Institute, Ludwig Maximilians Universität LMU München, Pettenkoferstraße 9a, 80336 München, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Germany.
| |
Collapse
|
48
|
Kabamba ET, Tuan VP, Yamaoka Y. Genetic populations and virulence factors of Helicobacter pylori. INFECTION GENETICS AND EVOLUTION 2018; 60:109-116. [PMID: 29471116 DOI: 10.1016/j.meegid.2018.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is a bacterium that has infected more than half of the human population worldwide. This bacterium is closely associated with serious human diseases, such as gastric cancer, and identifying and understanding factors that predict bacterial virulence is a priority. In addition, this pathogen shows high genetic diversity and co-evolution with human hosts. H. pylori population genetics, therefore, has emerged as a tool to track human demographic history. As the number of genome sequences available is increasing, studies on the evolution and virulence of H. pylori are gaining momentum. This review article summarizes the most recent findings on H. pylori virulence factors and population genetics.
Collapse
Affiliation(s)
- Evariste Tshibangu Kabamba
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan; Department of Internal Medicine, University of Mbujimayi Faculty of Medicine, Mbujimayi, The Democratic Republic of Congo
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan; Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Viet Nam
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan; Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. Debakey Veterans Affairs Medical Center, 2002 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
49
|
Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 2018; 107:455-471. [PMID: 29235173 PMCID: PMC5796862 DOI: 10.1111/mmi.13896] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023]
Abstract
Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire cell envelope in Gram-negative and Gram-positive bacteria. They play important roles through the contact-dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA elements as well as contact-independent exchange of DNA with the extracellular milieu. In the last few years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. The structure of the F-pilus was also reported and surprisingly revealed a filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been identified and characterized, underscoring the structural and functional diversity of this secretion superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we summarize recent advances in our knowledge of 'paradigmatic' and emerging systems, and further explore how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Beuth University of Applied Sciences Berlin, Life Sciences and Technology, D-13347 Berlin, Germany
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, USA
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom
| | - Steffen Backert
- Friedrich Alexander University Erlangen-Nuremberg, Department of Biology, Division of Microbiology, Staudtstrasse 5, D-91058 Erlangen, Germany
| |
Collapse
|
50
|
Koelblen T, Bergé C, Cherrier MV, Brillet K, Jimenez-Soto L, Ballut L, Takagi J, Montserret R, Rousselle P, Fischer W, Haas R, Fronzes R, Terradot L. Molecular dissection of protein-protein interactions between integrin α5β1 and the Helicobacter pylori
Cag type IV secretion system. FEBS J 2017; 284:4143-4157. [DOI: 10.1111/febs.14299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas Koelblen
- UMR 5086 Molecular Microbiology and Structural Biochemistry; Institut de Biologie et Chimie des Protéines; CNRS-Université de Lyon; France
| | - Célia Bergé
- UMR 5086 Molecular Microbiology and Structural Biochemistry; Institut de Biologie et Chimie des Protéines; CNRS-Université de Lyon; France
| | - Mickaël V. Cherrier
- UMR 5086 Molecular Microbiology and Structural Biochemistry; Institut de Biologie et Chimie des Protéines; CNRS-Université de Lyon; France
| | - Karl Brillet
- UMR 5086 Molecular Microbiology and Structural Biochemistry; Institut de Biologie et Chimie des Protéines; CNRS-Université de Lyon; France
| | - Luisa Jimenez-Soto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie; Ludwig-Maximilians-Universität; München Germany
| | - Lionel Ballut
- UMR 5086 Molecular Microbiology and Structural Biochemistry; Institut de Biologie et Chimie des Protéines; CNRS-Université de Lyon; France
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression; Institute for Protein Research; Osaka University; Japan
| | - Roland Montserret
- UMR 5086 Molecular Microbiology and Structural Biochemistry; Institut de Biologie et Chimie des Protéines; CNRS-Université de Lyon; France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique; UMR 5305; CNRS; University Lyon 1; France
| | - Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie; Ludwig-Maximilians-Universität; München Germany
| | - Rainer Haas
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie; Ludwig-Maximilians-Universität; München Germany
- German Center for Infection Research (DZIF); Partner Site LMU; München Germany
| | - Rémi Fronzes
- European Institute of Chemistry and Biology; CNRS; UMR 5234; Microbiologie Fondamentale et Pathogénicité; University of Bordeaux; Pessac France
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry; Institut de Biologie et Chimie des Protéines; CNRS-Université de Lyon; France
| |
Collapse
|