1
|
Ren L, Xiao Y, Bhattacharjee R, Wu J, Tang P, Caratzoulas S, Meng C, Guo Q, Tsapatsis M. High Yield of L-Sorbose via D-Glucose Isomerization in Ethanol over a Bifunctional Titanium-Boron-Beta Zeolite. Chemistry 2024; 30:e202402341. [PMID: 39278832 DOI: 10.1002/chem.202402341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
D-Glucose-to-L-sorbose isomerization on Lewis acidic zeolite is a highly attractive avenue for sorbose production. But the L-sorbose yield is limited by the competing D-glucose-to-D-fructose isomerization and reaction equilibrium. In this work, it is suggested that ethanol directs the glucose conformation for selective D-glucose-to-L-sorbose isomerization. It also reacts with the produced L-sorbose to form ethyl-sorboside, which allows the D-glucose-to-L-sorbose isomerization to proceed beyond the thermodynamic equilibrium limit. It is shown that a bifunctional zeolite Beta containing framework titanium (Ti) and boron (B) is a selective catalyst for this tandem reaction: Lewis acidic framework Ti catalyzes the D-glucose-to-L-sorbose isomerization via an intramolecular 5,1-hydride shift process as confirmed by isotopic tracing experiments followed by 13C-NMR, while weak Brønsted acid framework B selectively promotes the sorbose ketalization with ethanol. A remarkably high yield of L-sorbose with a high fraction of sugar (>95 %: 27 % unreacted glucose, 11.4 % fructose, 57 % sorbose) was obtained after the mixture produced in ethanol was hydrolyzed.
Collapse
Affiliation(s)
- Limin Ren
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN, 55455, USA
| | - Yuxuan Xiao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rameswar Bhattacharjee
- Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, Delaware, 19716, USA
| | - Jingjing Wu
- National Key Laboratory of Materials for Integrated Circuits and 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China
| | - Pengyi Tang
- National Key Laboratory of Materials for Integrated Circuits and 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China
| | - Stavros Caratzoulas
- Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, Delaware, 19716, USA
| | - Changgong Meng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Guo
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN, 55455, USA
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Michael Tsapatsis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN, 55455, USA
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400N. Charles Street, Baltimore, MD, 21218, USA
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MB, 20723, USA
| |
Collapse
|
2
|
Liu Z, Ling JL, Liu YY, Zheng BH, Wu CD. Incorporation of enzyme-mimic species in porous materials for the construction of porous biomimetic catalysts. Chem Commun (Camb) 2024; 60:12964-12976. [PMID: 39415700 DOI: 10.1039/d4cc04223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The unique catalytic properties of natural enzymes have inspired chemists to develop biomimetic catalyst platforms for the intention of retaining the unique functions and solving the application limitations of enzymes, such as high costs, instability and unrecyclable ability. Porous materials possess unique advantages for the construction of biomimetic catalysts, such as high surface areas, thermal stability, permanent porosity and tunability. These characteristics make them ideal porous matrices for the construction of biomimetic catalysts by immobilizing enzyme-mimic active sites inside porous materials. The developed porous biomimetic catalysts demonstrate high activity, selectivity and stability. In this feature article, we categorize and discuss the recently developed strategies for introducing enzyme-mimic active species inside porous materials, which are based on the type of employed porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), molecular sieves, porous metal silicate (PMS) materials and porous carbon materials. The advantages and limitations of these porous materials-based biomimetic catalysts are discussed, and the challenges and future directions in this field are also highlighted.
Collapse
Affiliation(s)
- Zikun Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Jia-Long Ling
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yang-Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Bu-Hang Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
3
|
Kao YC, Wang YM, Yeh JY, Li SC, Wu KCW, Lin LC, Li YP. Tailoring parameters for QM/MM simulations: accurate modeling of adsorption and catalysis in zirconium-based metal-organic frameworks. Phys Chem Chem Phys 2024. [PMID: 39015995 DOI: 10.1039/d4cp00681j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) simulations offer an efficient way to model reactions occurring in complex environments. This study introduces a specialized set of charge and Lennard-Jones parameters tailored for electrostatically embedded QM/MM calculations, aiming to accurately model both adsorption processes and catalytic reactions in zirconium-based metal-organic frameworks (Zr-MOFs). To validate our approach, we compare adsorption energies derived from QM/MM simulations against experimental results and Monte Carlo simulation outcomes. The developed parameters showcase the ability of QM/MM simulations to represent long-range electrostatic and van der Waals interactions faithfully. This capability is evidenced by the prediction of adsorption energies with a low root mean square error of 1.1 kcal mol-1 across a wide range of adsorbates. The practical applicability of our QM/MM model is further illustrated through the study of glucose isomerization and epimerization reactions catalyzed by two structurally distinct Zr-MOF catalysts, UiO-66 and MOF-808. Our QM/MM calculations closely align with experimental activation energies. Importantly, the parameter set introduced here is compatible with the widely used universal force field (UFF). Moreover, we thoroughly explore how the size of the cluster model and the choice of density functional theory (DFT) methodologies influence the simulation outcomes. This work provides an accurate and computationally efficient framework for modeling complex catalytic reactions within Zr-MOFs, contributing valuable insights into their mechanistic behaviors and facilitating further advancements in this dynamic area of research.
Collapse
Affiliation(s)
- Yu-Chi Kao
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Yi-Ming Wang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Jyun-Yi Yeh
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shih-Cheng Li
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210-1350, USA
| | - Yi-Pei Li
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
- Taiwan International Graduate Program on Sustainable Chemical Science and Technology (TIGP-SCST), No. 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan
| |
Collapse
|
4
|
Zheng M, Chu Y, Wang Q, Wang Y, Xu J, Deng F. Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 140-141:1-41. [PMID: 38705634 DOI: 10.1016/j.pnmrs.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 05/07/2024]
Abstract
Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host-guest/guest-guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry. We first review the current ssNMR methods and techniques that are relevant to characterize zeolite catalysts, including advanced multinuclear and multidimensional experiments, in situ NMR techniques and hyperpolarization methods. Of these, the methodology development on half-integer quadrupolar nuclei is emphasized, which represent about two-thirds of stable NMR-active nuclei and are widely present in catalytic materials. Subsequently, we introduce the recent progress in understanding zeolite chemistry with the aid of these ssNMR methods and techniques, with a specific focus on the investigation of zeolite framework structures, zeolite crystallization mechanisms, surface active/acidic sites, host-guest/guest-guest interactions, and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Mingji Zheng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueying Chu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongxiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
5
|
Liu X, Zhu Z. Synthesis and Catalytic Applications of Advanced Sn- and Zr-Zeolites Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306533. [PMID: 38148424 PMCID: PMC10953593 DOI: 10.1002/advs.202306533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/09/2023] [Indexed: 12/28/2023]
Abstract
The incorporation of isolated Sn (IV) and Zr (IV) ions into silica frameworks is attracting widespread attention, which exhibits remarkable catalytic performance (conversion, selectivity, and stability) in a broad range of reactions, especially in the field of biomass catalytic conversion. As a representative example, the conversion route of carbohydrates into valuable platform and commodity chemicals such as lactic acid and alkyl lactates, has already been established. The zeotype materials also possess water-tolerant ability and are capable to be served as promising heterogeneous catalysts for aqueous reactions. Therefore, dozens of Sn- and Zr-containing silica materials with various channel systems have been prepared successfully in the past decades, containing 8 membered rings (MR) small pore CHA zeolite, 10-MR medium pore zeolites (FER, MCM-56, MEL, MFI, MWW), 12-MR large pore zeolites (Beta, BEC, FAU, MOR, MSE, MTW), and 14-MR extra-large pore UTL zeolite. This review about Sn- and Zr-containing metallosilicate materials focuses on their synthesis strategy, catalytic applications for diverse reactions, and the effect of zeolite characteristics on their catalytic performances.
Collapse
Affiliation(s)
- Xue Liu
- Department of ChemistryCollege of ScienceHebei Agricultural UniversityLingyusi Road 289Baoding071001P. R. China
| | - Zhiguo Zhu
- College of Chemistry and Chemical EngineeringYantai UniversityQingquan Road 30Yantai264005P. R. China
| |
Collapse
|
6
|
Wang Y, Tong C, Liu Q, Han R, Liu C. Intergrowth Zeolites, Synthesis, Characterization, and Catalysis. Chem Rev 2023; 123:11664-11721. [PMID: 37707958 DOI: 10.1021/acs.chemrev.3c00373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Microporous zeolites that can act as heterogeneous catalysts have continued to attract a great deal of academic and industrial interest, but current progress in their synthesis and application is restricted to single-phase zeolites, severely underestimating the potential of intergrowth frameworks. Compared with single-phase zeolites, intergrowth zeolites possess unique properties, such as different diffusion pathways and molecular confinement, or special crystalline pore environments for binding metal active sites. This review first focuses on the structural features and synthetic details of all the intergrowth zeolites, especially providing some insightful discussion of several potential frameworks. Subsequently, characterization methods for intergrowth zeolites are introduced, and highlighting fundamental features of these crystals. Then, the applications of intergrowth zeolites in several of the most active areas of catalysis are presented, including selective catalytic reduction of NOx by ammonia (NH3-SCR), methanol to olefins (MTO), petrochemicals and refining, fine chemicals production, and biomass conversion on Beta, and the relationship between structure and catalytic activity was profiled from the perspective of intergrowth grain boundary structure. Finally, the synthesis, characterization, and catalysis of intergrowth zeolites are summarized in a comprehensive discussion, and a brief outlook on the current challenges and future directions of intergrowth zeolites is indicated.
Collapse
Affiliation(s)
- Yanhua Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Chengzheng Tong
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Qingling Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Rui Han
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Caixia Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Bai Y, Taarning E, Luthra M, Lundegaard LF, Katerinopoulou A, Falsig H, Nova A, Martinez-Espin JS. Tracking Lattice Distortion Induced by Defects and Framework Tin in Beta Zeotypes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19278-19289. [PMID: 39092204 PMCID: PMC11290454 DOI: 10.1021/acs.jpcc.3c04751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Indexed: 08/04/2024]
Abstract
The use of powder X-ray diffraction (PXRD) coupled with lattice parameter refinement is used to investigate the crystal structure of Sn-Beta materials. A newly developed semiempirical PXRD model with a reduced tetragonal unit cell is applied to obtain the characteristic crystallographic features. There is a robust correlation between lattice parameters and the concentration of tin and defects for materials prepared via hydrothermal (HT) and postsynthetic (PT) methods. With tin incorporation, PT Sn-Beta samples, which possess a more defective structure, exhibit an extended interlayer distance in the stacking sequence and expansion of the translation symmetry within the layers, leading to larger unit cell dimensions. In contrast, HT Sn-Beta samples, having fewer defects, show a minimal effect of tin site density on the unit cell volume, whereas lattice distortion is directly correlated to the framework tin density. Furthermore, density functional theory (DFT) studies support an identical trend of lattice distortion following the monoisomorphous substitution of T sites from silicon to tin. These findings highlight that PXRD can serve as a rapid and straightforward characterization method to evaluate both framework defects and heteroatom density, offering a novel approach to monitor structural changes and the possibility to evaluate the catalytic properties of heteroatom-incorporated zeotypes.
Collapse
Affiliation(s)
- Yunfei Bai
- Topsoe
A/S, Haldor Topso̷es Allé 1, 2800 Kongens Lyngby, Denmark
- Aarhus
University, Nordre Ringgade
1, 8000 Aarhus C, Denmark
| | - Esben Taarning
- Topsoe
A/S, Haldor Topso̷es Allé 1, 2800 Kongens Lyngby, Denmark
| | - Mahika Luthra
- Hylleraas
Centre for Quantum Molecular Sciences, Centre for Materials Science
and Nanotechnology, Department of Chemistry, University of Oslo, Blindern, 0315 Oslo, Norway
| | | | | | - Hanne Falsig
- Topsoe
A/S, Haldor Topso̷es Allé 1, 2800 Kongens Lyngby, Denmark
| | - Ainara Nova
- Hylleraas
Centre for Quantum Molecular Sciences, Centre for Materials Science
and Nanotechnology, Department of Chemistry, University of Oslo, Blindern, 0315 Oslo, Norway
| | | |
Collapse
|
8
|
Beynon O, Owens A, Tarantino G, Hammond C, Logsdail AJ. Computational Study of the Solid-State Incorporation of Sn(II) Acetate into Zeolite β. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19072-19087. [PMID: 37791098 PMCID: PMC10544035 DOI: 10.1021/acs.jpcc.3c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Indexed: 10/05/2023]
Abstract
Sn-doped zeolites are potent Lewis acid catalysts for important reactions in the context of green and sustainable chemistry; however, their synthesis can have long reaction times and harsh chemical requirements, presenting an obstacle to scale-up and industrial application. To incorporate Sn into the β zeolite framework, solid-state incorporation (SSI) has recently been demonstrated as a fast and solvent-free synthetic method, with no impairment to the high activity and selectivity associated with Sn-β for its catalytic applications. Here, we report an ab initio computational study that combines periodic density functional theory with high-level embedded-cluster quantum/molecular mechanical (QM/MM) to elucidate the mechanistic steps in the synthetic process. Initially, once the Sn(II) acetate precursor coordinates to the β framework, acetic acid forms via a facile hydrogen transfer from the β framework onto the monodentate acetate ligand, with low kinetic barriers for subsequent dissociation of the ligand from the framework-bound Sn. Ketonization of the dissociated acetic acid can occur over the Lewis acidic Sn(II) site to produce CO2 and acetone with a low kinetic barrier (1.03 eV) compared to a gas-phase process (3.84 eV), helping to explain product distributions in good accordance with experimental analysis. Furthermore, we consider the oxidation of the Sn(II) species to form the Sn(IV) active site in the material by O2- and H2O-mediated mechanisms. The kinetic barrier for oxidation via H2 release is 3.26 eV, while the H2O-mediated dehydrogenation process has a minimum barrier of 1.38 eV, which indicates the possible role of residual H2O in the experimental observations of SSI synthesis. However, we find that dehydrogenation is facilitated more significantly by the presence of dioxygen (O2), introduced in the compressed air gas feed, via a two-step process oxidation process that forms H2O2 as an intermediate and has greatly reduced kinetic barriers of 0.25 and 0.26 eV. The results provide insight into how Sn insertion into β occurs during SSI and demonstrate the possible mechanism of top-down synthetic procedures for metal insertion into zeolites.
Collapse
Affiliation(s)
- Owain
T. Beynon
- Cardiff
Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, U.K.
| | - Alun Owens
- Cardiff
Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, U.K.
| | - Giulia Tarantino
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Ceri Hammond
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Andrew J. Logsdail
- Cardiff
Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, U.K.
| |
Collapse
|
9
|
Beynon O, Owens A, Carbogno C, Logsdail AJ. Evaluating the Role of Anharmonic Vibrations in Zeolite β Materials. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16030-16040. [PMID: 37609380 PMCID: PMC10440812 DOI: 10.1021/acs.jpcc.3c02863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Indexed: 08/24/2023]
Abstract
The characterization of zeolitic materials is often facilitated by spectroscopic analysis of vibrations, which informs about the bonding character of the substrate and any adsorbents. Computational simulations aid the interpretation of the spectra but often ignore anharmonic effects that can affect the spectral characteristics significantly. Here, the impact of anharmonicity is demonstrated with a combination of dynamical and static simulations applied to the structures formed during the synthesis of Sn-BEA via solid-state incorporation (SSI): the initial siliceous BEA (Si-β), aluminosilicate BEA (H-β), dealuminated BEA (deAl-β), and Sn-BEA (Sn-β). Heteroatom and defect-containing BEA are shown to have strong anharmonic vibrational contributions, with atomic and elemental resolution highlighting particularly the prevalence for H atoms (H-β, deAl-β) as well as localization to heteroatoms at defect sites. We simulate the vibrational spectra of BEA accounting for anharmonic contributions and observe an improved agreement with experimental data compared to harmonic methods, particularly at wavenumbers below 1500 cm-1. The results demonstrate the importance of incorporating anharmonic effects in simulations of vibrational spectra, with consequences toward future characterization and application of zeolitic materials.
Collapse
Affiliation(s)
- Owain
T. Beynon
- Cardiff
Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, U.K.
| | - Alun Owens
- Cardiff
Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, U.K.
| | - Christian Carbogno
- The
NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof
of the Humboldt-Universität zu Berlin, Faradayweg 4-6, 14195 Berlin, Germany
| | - Andrew J. Logsdail
- Cardiff
Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, U.K.
| |
Collapse
|
10
|
Wang S, Guo D, Kang R, Feng J, Pan H. Fabrication of lignin-derived mesoporous carbon/magnesium oxide composites for microwave-assisted isomerization of glucose in water. Int J Biol Macromol 2023; 232:123341. [PMID: 36682652 DOI: 10.1016/j.ijbiomac.2023.123341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
A series of mesoporous carbon/magnesium oxide composites (LDMC@MgO-x) with different Mg doping ratios were synthesized by using alkali lignin as the carbon source, potassium chloride as the salt template and magnesium nitrate as the catalytic site precursor, respectively. The BET, FTIR, SEM, and TEM analyses indicated that the as-prepared LDMC@MgO-x possessed a unique hierarchical porous structure with high specific surface area, rich functional groups, and uniformly distributed MgO nanoparticles. Among them, LDMC@MgO-20%, as an optimized base catalyst, could realize effective isomerization of glucose with a maximum fructose yield of 34.4 % in water at 130 °C for only 5 min under microwave assistance. In addition, the activation energy of glucose isomerization catalyzed by LDMC@MgO-20% was estimated to be about 43.6 kJ·mol-1, which was lower than that of most Lewis acid-catalyzed systems.
Collapse
Affiliation(s)
- Shuai Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Dayi Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Rui Kang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junfeng Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Hui Pan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
11
|
Liu X, Liu S, Yan T, Shang N, Li H, Wang Z, Xu H, Wu P. Tin Active Sites Confined in Zeolite Framework as a Promising Shape-Selective Catalyst for Ethylene Oxide Hydration. Chemistry 2023; 29:e202203696. [PMID: 36574213 DOI: 10.1002/chem.202203696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Indexed: 12/28/2022]
Abstract
Shape-selective stannosilicates have been post-synthesized for the hydration of epoxide to diols. A simple acid treatment has been employed to remove extensively the interlayer double four ring units, converting the three-dimensional (3D) UTL germanosilicate into a 2D layered IPC-1P intermediate. Isomorphous incorporation of tetrahedrally coordinated Sn active centers was realized via solid-liquid treatment of IPC-1P with diammonium hexachlorostannate aqueous solution, which was accompanied by the spontaneous condensation of neighboring silica-rich cfi layers upon calcination and structural construction of a 3D PCR structure. Sn-PCR stannosilicates with tunable Sn contents were thus prepared. With Sn-derived robust Lewis acidity confined in the intersecting 10- and 8-ring channels, the Sn-PCR (Si/Sn molar ratio of 77) catalyst served as a shape-selective nanoreactor for the hydration of ethylene oxide (EO) into ethylene glycol (EG), exhibiting a remarkable EO conversion (99.5 %) as well as a steady EG selectivity (>98.4 %) at greatly reduced H2 O/EO molar ratio and near-ambient reaction temperature.
Collapse
Affiliation(s)
- Xue Liu
- Department of Chemistry, College of Science, Hebei Agricultural University, Lingyusi Road 289, Baoding, 071001, P. R. China.,Shanghai Key Laboratory of, Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Sen Liu
- Department of Chemistry, College of Science, Hebei Agricultural University, Lingyusi Road 289, Baoding, 071001, P. R. China
| | - Tingyu Yan
- Department of Chemistry, College of Science, Hebei Agricultural University, Lingyusi Road 289, Baoding, 071001, P. R. China
| | - Ningzhao Shang
- Department of Chemistry, College of Science, Hebei Agricultural University, Lingyusi Road 289, Baoding, 071001, P. R. China
| | - Huiliang Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Lingyusi Road 289, Baoding, 071001, P. R. China
| | - Zheng Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Lingyusi Road 289, Baoding, 071001, P. R. China
| | - Hao Xu
- Shanghai Key Laboratory of, Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Peng Wu
- Shanghai Key Laboratory of, Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| |
Collapse
|
12
|
Bramley GA, Beynon OT, Stishenko PV, Logsdail AJ. The application of QM/MM simulations in heterogeneous catalysis. Phys Chem Chem Phys 2023; 25:6562-6585. [PMID: 36810655 DOI: 10.1039/d2cp04537k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The QM/MM simulation method is provenly efficient for the simulation of biological systems, where an interplay of extensive environment and delicate local interactions drives a process of interest through a funnel on a complex energy landscape. Recent advances in quantum chemistry and force-field methods present opportunities for the adoption of QM/MM to simulate heterogeneous catalytic processes, and their related systems, where similar intricacies exist on the energy landscape. Herein, the fundamental theoretical considerations for performing QM/MM simulations, and the practical considerations for setting up QM/MM simulations of catalytic systems, are introduced; then, areas of heterogeneous catalysis are explored where QM/MM methods have been most fruitfully applied. The discussion includes simulations performed for adsorption processes in solvent at metallic interfaces, reaction mechanisms within zeolitic systems, nanoparticles, and defect chemistry within ionic solids. We conclude with a perspective on the current state of the field and areas where future opportunities for development and application exist.
Collapse
Affiliation(s)
- Gabriel Adrian Bramley
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, CF10 3AT, UK.
| | - Owain Tomos Beynon
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, CF10 3AT, UK.
| | | | - Andrew James Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, CF10 3AT, UK.
| |
Collapse
|
13
|
Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Environmental monitoring of pollutants, such as NOx and COx, which can be facilitated by a range of gas sensors, is of considerable fundamental and practical importance. This work has been focused on the synthesis and evaluation of zeolite β with tin (Sn-BEA) and dealuminated β (DeAl-BEA) zeolites. The zeolite samples have been extensively investigated by IR, UV-VIS and NMR spectroscopy, XRD, TGA, and N2 adsorption-desorption. The prepared Sn-BEA sample is characterised by the submicron particle size, an almost defect-free structure, and high hydrophobicity. Sensors containing selective microporous layers based on Sn-BEA and DeAl-BEA zeolites have been prepared and extensively tested. Both the Sn-BEA and DeAl-BEA zeolites have been deposited in thin films and evaluated as gas sensors for CO, CO2, NO, and NO2 in the presence of water vapour at room temperature. The Sn-BEA zeolite-based sensor showed high selectivity towards NO2, while the DeAl-BEA is selective towards CO2 and NO2.
Collapse
|
14
|
Suib SL, Přech J, Szaniawska E, Čejka J. Recent Advances in Tetra- (Ti, Sn, Zr, Hf) and Pentavalent (Nb, V, Ta) Metal-Substituted Molecular Sieve Catalysis. Chem Rev 2023; 123:877-917. [PMID: 36547404 DOI: 10.1021/acs.chemrev.2c00509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal substitution of molecular sieve systems is a major driving force in developing novel catalytic processes to meet current demands of green chemistry concepts and to achieve sustainability in the chemical industry and in other aspects of our everyday life. The advantages of metal-substituted molecular sieves include high surface areas, molecular sieving effects, confinement effects, and active site and morphology variability and stability. The present review aims to comprehensively and critically assess recent advances in the area of tetra- (Ti, Sn, Zr, Hf) and pentavalent (V, Nb, Ta) metal-substituted molecular sieves, which are mainly characterized for their Lewis acidic active sites. Metal oxide molecular sieve materials with properties similar to those of zeolites and siliceous molecular sieve systems are also discussed, in addition to relevant studies on metal-organic frameworks (MOFs) and some composite MOF systems. In particular, this review focuses on (i) synthesis aspects determining active site accessibility and local environment; (ii) advances in active site characterization and, importantly, quantification; (iii) selective redox and isomerization reaction applications; and (iv) photoelectrocatalytic applications.
Collapse
Affiliation(s)
- Steven L Suib
- Departments of Chemistry and Chemical and Biomolecular Engineering, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Jan Přech
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Ewelina Szaniawska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
15
|
Gautam R, Pal P, Saravanamurugan S. Enhanced Catalytic Activity of Modified ZSM-5 Towards Glucose Isomerization to Fructose. Chempluschem 2023; 88:e202200299. [PMID: 36646519 DOI: 10.1002/cplu.202200299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The present study focuses on generating mesopores within H-ZSM-5 (H-Z) zeolite via desilication and dealumination to incorporate Lewis acidic metal, such as Sn, into the framework (Sn4 ZS180 A15 ) to catalyse glucose isomerisation. Sn4 ZS180 A15 possesses enhanced surface area (457 m2 g-1 ), mesopore volume (0.585 cm3 g-1 ) and a high weak-medium to strong acidic sites ratio, compared to parent H-Z (395 m2 g-1 ; 0.174 cm3 g-1 ). DRS-UV-Vis and XPS results corroborate Sn incorporation into the framework of Sn4 ZS180 A15 , based on the absorbance peak around 200-220 nm and peaks appearing at 495.8 and 487.4 eV, respectively. Sn4 ZS180 A15 exhibits higher catalytic activity towards glucose isomerisation in ethanol-water at 110 °C, yielding 44.2 % fructose with 80.0 % selectivity. Conversely, the parent H-Z afforded negligible glucose conversion with a fructose yield of <1 % under identical conditions. Moreover, Sn-incorporated on dealuminated (Sn4 ZS0 A15 ) and desilicated (Sn4 ZS180 A0 ) catalysts give a low yield of fructose (7-10 %), signifying the requirement of the desilication-dealumination process before incorporating Sn into the framework.
Collapse
Affiliation(s)
- Rahul Gautam
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Priyanka Pal
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| |
Collapse
|
16
|
Yu T, Feng D, Zhou J, Si Y, Liu M. Catalytic isomerization of glucose to fructose over organic ligands: a DFT study. J Mol Model 2022; 29:30. [PMID: 36585991 DOI: 10.1007/s00894-022-05439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
CONTEXT Isomerization processes between glucose and fructose catalyzed by four different organic ligands are investigated with quantum chemistry methods in this study. These organic ligands are the carboxylic pendant group, sulfonic pendant group, amino pendant group, and 1H-imidazole ligand. After guessing and verifying a variety of elementary reactions, transition states and energy barriers that are relevant to the optimum pathways have been confirmed. The effective barriers under the catalysis of the carboxylic pendant group, sulfonic pendant group, amino pendant group, and 1H-imidazole ligand are 97.5 kJ mol-1, 134.7 kJ mol-1, 146.7 kJ mol-1, and 167.7 kJ mol-1, respectively. Then, based on the conclusions of the non-solvation model, the effective barriers in solvents are briefly investigated. The implicit model predicts that solvents bring little improvement or setback to catalyzed reaction models. The explicit model shows that the proton transfer with the participant of water molecules can improve the catalytic performance of Lewis bases in these reactions. The detailed reaction mechanism combing and reliable reaction templates provided in this work will be useful for catalysis designs for glucose transformation to fructose. METHODS This work used the computational level of ωB97M-D3BJ/def2-SVP and the software package of ORCA 4.2. For solvent effects, energies of the gas phase were corrected by the combination of C-PCM and SMD.
Collapse
Affiliation(s)
- Tao Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China.
| | - Dexin Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yitao Si
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
17
|
Gao DM, Zhang S, Lei T, Zhu J, Huhe T, Sun F, Zeng G, Liu H. Unexpected High-Substrate-Dependent Ketonization of Aldose on Niobium Phosphate-Supported Magnesia: An Emphasis on Surface Chemisorption. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Da-Ming Gao
- National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization, Changzhou University, Changzhou 213164, China
- Institute of Urban and Rural Mining Research CCZU, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Changzhou University, Changzhou 213164, China
| | - Shuoqi Zhang
- Kuang Yaming Honor School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Tingzhou Lei
- National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization, Changzhou University, Changzhou 213164, China
- Institute of Urban and Rural Mining Research CCZU, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Changzhou University, Changzhou 213164, China
| | - Jie Zhu
- National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization, Changzhou University, Changzhou 213164, China
- Institute of Urban and Rural Mining Research CCZU, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Changzhou University, Changzhou 213164, China
| | - Taoli Huhe
- National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization, Changzhou University, Changzhou 213164, China
- Institute of Urban and Rural Mining Research CCZU, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Changzhou University, Changzhou 213164, China
| | - Fuan Sun
- National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization, Changzhou University, Changzhou 213164, China
- Institute of Urban and Rural Mining Research CCZU, Changzhou University, Changzhou 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Changzhou University, Changzhou 213164, China
| | - Guixiang Zeng
- Kuang Yaming Honor School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
DFT Investigation of the catalytic conversion of acetic acid to acetone on the zeolite H-ZSM5. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Xu Y, Yang L, Si C, Zhang S, Zhang Q, Zeng G, Jiang W. Direct Synthesis of Lactide from Lactic Acid by Sn-beta Zeolite: Crucial Role of the Open Sn Site. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunlong Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Linlin Yang
- Kuang Yaming Honors School & Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chunying Si
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuoqi Zhang
- Kuang Yaming Honors School & Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guixiang Zeng
- Kuang Yaming Honors School & Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Eco-friendly preparation of phosphated gallia: A tunable dual-acidic catalyst for the efficient 5-hydroxymethylfurfural production from carbohydrates. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
A critical assessment of the roles of water molecules and solvated ions in acid-base-catalyzed reactions at solid-water interfaces. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Peeters E, Calderon-Ardila S, Hermans I, Dusselier M, Sels BF. Toward Industrially Relevant Sn-BETA Zeolites: Synthesis, Activity, Stability, and Regeneration. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elise Peeters
- Center for Sustainable Catalysis and Engineering (CSCE), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Sergio Calderon-Ardila
- Center for Sustainable Catalysis and Engineering (CSCE), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Ive Hermans
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, Wisconsin 53706, United States
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering (CSCE), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bert F. Sels
- Center for Sustainable Catalysis and Engineering (CSCE), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
23
|
Zuo M, Wang X, Wang Q, Zeng X, Lin L. Aqueous-Natural Deep Eutectic Solvent-Enhanced 5-Hydroxymethylfurfural Production from Glucose, Starch, and Food Wastes. CHEMSUSCHEM 2022; 15:e202101889. [PMID: 34730878 DOI: 10.1002/cssc.202101889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
5-Hydroxymethylfurfural (HMF) has been regarded as an essential building block for synthesizing chemicals and biofuels, but the direct conversion of biomass to HMF is still a critical challenge. In this study, a cheap and green aqueous-natural deep eutectic solvent (A-NADES) was used to efficiently produce HMF from various carbohydrates, with a low amount of SnCl4 as the catalyst. High HMF yields of 64.3, 64.0, 61.3, and 54.5 % were obtained from glucose, starch, rice waste, and bread waste at 130 °C in the A-NADES/MIBK (methyl isobutyl ketone) biphasic system, respectively. Mechanistic study results revealed that the water in A-NADES was the key factor in facilitating the conversion of Sn atom existent forms and promoted the HMF production. The choline chloride in NADES stabilized the HMF product with the cooperation of extraction solvent MIBK and inhibited the side reactions of HMF. This study investigated the multiple interaction functions of A-NADES to feedstocks and proposed a practical application of novel solvents to facilitate biomass and food waste conversion with a green method.
Collapse
Affiliation(s)
- Miao Zuo
- College of Forestry, Hebei Agriculture University, Baoding, 071101, P. R. China
| | - Xinyu Wang
- College of Forestry, Hebei Agriculture University, Baoding, 071101, P. R. China
| | - Qian Wang
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
24
|
Tututi-Ríos E, González H, Cabrera-Munguia DA, Gutiérrez-Alejandre A, Rico JL. Acid properties of Sn-SBA-15 and Sn-SBA-15-PrSO3H materials and their role on the esterification of oleic acid. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Cortez-Elizalde J, Silahua-Pavón AA, Córdova-Pérez GE, Arévalo-Pérez JC, Guerra-Que Z, Espinosa-González CG, Ortíz-Chi F, Godavarthi S, Torres-Torres JG. Production of 5-Hydroxymethylfurfural from glucose using Al2O3-TiO2-ZrO2 ternary catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Abstract
Beta zeolite modified with Sn in the framework (Sn-Beta) was synthesized and introduced as a heterogeneous catalyst for Baeyer–Villiger oxidations about twenty years ago. Since then, both syntheses strategies, characterization and understanding as well as applications with the material have developed significantly. Remarkably, Sn-Beta zeolite has been discovered to exhibit unprecedented high catalytic efficiency for the transformation of glucose to fructose (i.e., aldoses to ketoses) and lactic acid derivatives in both aqueous and alcoholic media, which has inspired an extensive interest to develop more facile and scalable syntheses routes and applications for sugars transformations. This review survey the progress made on both syntheses approaches of Sn-Beta and applications of the material within catalyzed transformations of sugar, including bottom-up and top-down syntheses and catalyzed isomerization, dehydration, and fragmentation of sugars.
Collapse
|
27
|
Peng F, Sun Y, Hua C, Bai F, Ma H, Hu X, Liu X, Zhang M, Wang X. Polymetallic Molybdenum‐Based Catalysts for Epimerization of Glucose to Mannose. ChemistrySelect 2022. [DOI: 10.1002/slct.202103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fubin Peng
- School of Textile and Material Engineering Institution Dalian Polytechnic University Dalian 116034 P.R. China
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P.R. China
| | - Ying Sun
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P.R. China
| | - Chao Hua
- Innovation Academy for Green Manufacture Chinese Academy of Sciences Beijing 100190 P.R. China
- Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical and Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Fang Bai
- Innovation Academy for Green Manufacture Chinese Academy of Sciences Beijing 100190 P.R. China
- Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P.R. China
- School of Chemical and Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Hong Ma
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P.R. China
| | - Xiangping Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P.R. China
| | - Xin Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Meiyun Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Xinhong Wang
- School of Textile and Material Engineering Institution Dalian Polytechnic University Dalian 116034 P.R. China
| |
Collapse
|
28
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
29
|
Kirali AAB, Sreekantan S, Marimuthu B. Ce promoted Cu/γ-Al2O3 catalysts for the enhanced selectivity of 1,2-propanediol from catalytic hydrogenolysis of glucose. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Zhu P, Meier S, Riisager A. Stannate-catalysed glucose-fructose isomerisation in alcohols. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00901c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isomerisation of glucose to fructose is a crucial step in the valorisation of biomass-derived carbohydrates to renewable chemicals, polymers and fuels. Glucose isomerisation is base-catalysed but superior catalytic activity can...
Collapse
|
31
|
Zhang H, Samsudin IB, Jaenicke S, Chuah GK. Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01325h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zeolites are versatile catalysts not only for large scale petrochemical processes but also in applications related to fine chemicals synthesis, biomass conversion and CO2 utilization. Introduction of mesopores and heteroatoms...
Collapse
|
32
|
Johnson BA, Di Iorio JR, Román-Leshkov Y. Identification and quantification of distinct active sites in Hf-Beta zeolites for transfer hydrogenation catalysis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Lin L, Han X, Han B, Yang S. Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chem Soc Rev 2021; 50:11270-11292. [PMID: 34632985 DOI: 10.1039/d1cs00039j] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of efficient catalysts to break down and convert woody biomass will be a paradigm shift in delivering the global target of sustainable economy and environment via the use of cheap, highly abundant, and renewable carbon resources. However, such development is extremely challenging due to the complexity of lignocellulose, and today most biomass is treated simply as waste. The solution lies in the design of multifunctional catalysts that can place effective control on substrate activation and product selectivity. This is, however, severely hindered by the lack of fundamental understanding of (i) the precise role of active sites, and (ii) the catalyst-substrate chemistry that underpins the catalytic activity. Moreover, active sites alone often cannot deliver the desired selectivity of products, and full understanding of the microenvironment of the active sites is urgently needed. Here, we review key recent advances in the study of reaction mechanisms of biomass conversion over emerging heterogeneous catalysts. These insights will inform the design of future catalytic systems showing improved activity and selectivity.
Collapse
Affiliation(s)
- Longfei Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
34
|
Pimenta Lorenti J, Scolari E, Cabral NM, Bisio C, Gallo JMR. Isomerization and Epimerization of Glucose Catalyzed by Sn-Containing Mesoporous Silica. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juliana Pimenta Lorenti
- Group of Renewable Energy, Nanotechnology, and Catalysis (GreenCat), Department of Chemistry, Federal University of São Carlos, Rod. Washington Luis, KM 235, CEP 13565-905, P.O. Box 676, São Carlos, São Paulo, Brazil
| | - Eduardo Scolari
- Group of Renewable Energy, Nanotechnology, and Catalysis (GreenCat), Department of Chemistry, Federal University of São Carlos, Rod. Washington Luis, KM 235, CEP 13565-905, P.O. Box 676, São Carlos, São Paulo, Brazil
| | - Natalia M. Cabral
- Group of Renewable Energy, Nanotechnology, and Catalysis (GreenCat), Department of Chemistry, Federal University of São Carlos, Rod. Washington Luis, KM 235, CEP 13565-905, P.O. Box 676, São Carlos, São Paulo, Brazil
| | - Chiara Bisio
- Department of Sciences and Technological Innovation and Interdisciplinary Nano-SiSTeMI Centre, University of Eastern Piedmont A. Avogadro, 15121 Alessandria, Italy
- CNR-SCITEC Institute of Science and Molecular Technologies “G. Natta”, via C. Golgi 19, 20133 Milano, Italy
| | - Jean Marcel R. Gallo
- Group of Renewable Energy, Nanotechnology, and Catalysis (GreenCat), Department of Chemistry, Federal University of São Carlos, Rod. Washington Luis, KM 235, CEP 13565-905, P.O. Box 676, São Carlos, São Paulo, Brazil
| |
Collapse
|
35
|
Ye X, Shi X, Jin B, Zhong H, Jin F, Wang T. Natural mineral bentonite as catalyst for efficient isomerization of biomass-derived glucose to fructose in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146276. [PMID: 33714831 DOI: 10.1016/j.scitotenv.2021.146276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The development of inexpensive and efficient heterogeneous catalyst for the conversion of biomass including food and winery processing waste to value-added products is crucial in biorefinery. Glucose could be obtained via the hydrolysis of waste cellulose or starch-rich material, and the isomerization of glucose to fructose using either Lewis acid or Brønsted base catalysts is an important route in biorefinery. As a natural clay mineral, bentonite (Bt) is widely used as adsorption material and catalyst support, but how its intrinsic acid-base properties can impact the biomass conversion chemistry is still rarely reported. In this study, we investigated the influence of the textural and acid-base properties of Bt on the glucose isomerization reaction. The reaction kinetics and mechanism, and the effect of Al3+-exchange were explored. The results showed that the activation energy of Bt-catalyzed glucose conversion was 59.0 kJ mol-1, and the in-situ Fourier transform infrared spectrometer (FT-IR) characterization proved that Brønsted base was responsible for the isomerization. The highest fructose yield of 39.2% with 86.3% selectivity could be obtained at 110 °C for 60 min in water. Alkaline rinse and calcination can recover most of the catalytic activity of the spent catalyst.
Collapse
Affiliation(s)
- Xin Ye
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Shi
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Binbin Jin
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Heng Zhong
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fangming Jin
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Tianfu Wang
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
36
|
Lei Q, Wang C, Dai W, Wu G, Guan N, Hunger M, Li L. Tandem Lewis acid catalysis for the conversion of alkenes to 1,2-diols in the confined space of bifunctional TiSn-Beta zeolite. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63734-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Lorenti JP, Scolari E, Finger PH, Plass W, Gallo JMR. Synthesis of Sn‐MCM‐41 at Low Temperature: Effect of the Synthesis Parameters on the Structural, Textural, and Catalytic Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juliana P. Lorenti
- Group of Renewable Energy, Nanotechnology, and Catalysis (GreenCat) Department of Chemistry Federal University of São Carlos Rod. Washington Luis, km 235 13565-905 São Carlos-SP Brazil
| | - Eduardo Scolari
- Group of Renewable Energy, Nanotechnology, and Catalysis (GreenCat) Department of Chemistry Federal University of São Carlos Rod. Washington Luis, km 235 13565-905 São Carlos-SP Brazil
| | - Pedro H. Finger
- Group of Renewable Energy, Nanotechnology, and Catalysis (GreenCat) Department of Chemistry Federal University of São Carlos Rod. Washington Luis, km 235 13565-905 São Carlos-SP Brazil
| | - Winfried Plass
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstrasse 8 07743 Jena Germany
| | - Jean Marcel R. Gallo
- Group of Renewable Energy, Nanotechnology, and Catalysis (GreenCat) Department of Chemistry Federal University of São Carlos Rod. Washington Luis, km 235 13565-905 São Carlos-SP Brazil
| |
Collapse
|
38
|
Wang K, Liu S, Hao R, Du A, Wang Y. Catalytic coupling boosting efficient production of 5‐hydroxymethylfurfural from glucose. AIChE J 2021. [DOI: 10.1002/aic.17345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ke Wang
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Jiangsu Key Lab of Biomass‐based Green Fuels and Chemicals, Co‐Innovation Center for Efficient Processing and Utilization of Forest Products Nanjing Forestry University Nanjing PR China
| | - Sijia Liu
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Jiangsu Key Lab of Biomass‐based Green Fuels and Chemicals, Co‐Innovation Center for Efficient Processing and Utilization of Forest Products Nanjing Forestry University Nanjing PR China
| | - Runming Hao
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Jiangsu Key Lab of Biomass‐based Green Fuels and Chemicals, Co‐Innovation Center for Efficient Processing and Utilization of Forest Products Nanjing Forestry University Nanjing PR China
| | - An Du
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Jiangsu Key Lab of Biomass‐based Green Fuels and Chemicals, Co‐Innovation Center for Efficient Processing and Utilization of Forest Products Nanjing Forestry University Nanjing PR China
| | - Yang Wang
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Jiangsu Key Lab of Biomass‐based Green Fuels and Chemicals, Co‐Innovation Center for Efficient Processing and Utilization of Forest Products Nanjing Forestry University Nanjing PR China
| |
Collapse
|
39
|
Yang Q, Pan X. Introducing hydroxyl groups as cellulose-binding sites into polymeric solid acids to improve their catalytic performance in hydrolyzing cellulose. Carbohydr Polym 2021; 261:117895. [PMID: 33766380 DOI: 10.1016/j.carbpol.2021.117895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 10/22/2022]
Abstract
Effective hydrolysis of cellulose to glucose is a crucial step to produce fuels and chemicals from lignocellulosic biomass. Solid acids are promising alternatives of cellulases and homogenous acids for hydrolyzing cellulose. In this study, porous polymeric solid acids bearing hydroxyl and sulfonic acid groups were fabricated for cellulose hydrolysis in water through the low-cost Friedel-Crafts "knitting" polymerization of hydroxyl-containing aromatic monomers followed by sulfonation. The synthesized bifunctional solid acids could effectively hydrolyze microcrystalline cellulose (Avicel) to glucose by as high as 93 % at 120 °C within 48 h and ball-milled Avicel by 98 % at 120 °C in 24 h. The evidence from this study indicated that the outstanding catalytic performance of the solid acids was attributed to the porous structure (large surface area) and the presence of the hydroxyl (cellulose-binding group) in the solid acids.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, United States; Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, 49008, United States
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, United States.
| |
Collapse
|
40
|
Tangsermvit V, Pila T, Boekfa B, Somjit V, Klysubun W, Limtrakul J, Horike S, Kongpatpanich K. Incorporation of Al 3+ Sites on Brønsted Acid Metal-Organic Frameworks for Glucose-to-Hydroxylmethylfurfural Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006541. [PMID: 33733619 DOI: 10.1002/smll.202006541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/23/2020] [Indexed: 06/12/2023]
Abstract
5-hydroxylmethylfurfural (HMF) is a bio-based chemical that can be prepared from natural abundant glucose by using combined Brønsted-Lewis acid catalysts. In this work, Al3+ catalytic site has been grafted on Brønsted metal-organic frameworks (MOFs) to enhance Brønsted-Lewis acidity of MOF catalysts for a one-pot glucose-to-HMF transformation. The uniform porous structure of zirconium-based MOFs allows the optimization of both acid strength and density of acid sites in MOF-based catalysts by incorporating the desired amount of Al3+ catalytic sites at the organic linker. Al3+ sites generated via a post-synthetic modification act as Lewis acid sites located adjacent to the Brønsted sulfonated sites of MOF structure. The local structure of the Al3+ sites incorporated in MOFs has been elucidated by X-ray absorption near-edge structure (XANES) combined with density functional theory (DFT) calculations. The cooperative effect from Brønsted and Lewis acids located in close proximity and the high acid density is demonstrated as an important factor to achieve high yield of HMF.
Collapse
Affiliation(s)
- Vitsarut Tangsermvit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Taweesak Pila
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Bundet Boekfa
- Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Vetiga Somjit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Jumras Limtrakul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Satoshi Horike
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Institute for Integrated Cell-Material Science, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
41
|
Palai YN, Shrotri A, Asakawa M, Fukuoka A. Silica supported Sn catalysts with tetrahedral Sn sites for selective isomerization of glucose to fructose. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Najmi S, So J, Stavitski E, McDermott WP, Lyu Y, Burt SP, Hermans I, Sholl DS, Sievers C. In‐situ
IR Spectroscopy Study of Reactions of C3 Oxygenates on Heteroatom (Sn, Mo, and W) doped BEA Zeolites and the Effect of Co‐adsorbed Water. ChemCatChem 2021. [DOI: 10.1002/cctc.202001424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sean Najmi
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Jungseob So
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Eli Stavitski
- National Synchrotron Light Source II Brookhaven National Laboratory Upton NY 11973 USA
| | - William P. McDermott
- Department of Chemistry & Department of Chemical and Biological Engineering University of Wisconsin-Madison Madison WI 53706 USA
| | - Yimeng Lyu
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Sam P. Burt
- Department of Chemistry & Department of Chemical and Biological Engineering University of Wisconsin-Madison Madison WI 53706 USA
| | - Ive Hermans
- Department of Chemistry & Department of Chemical and Biological Engineering University of Wisconsin-Madison Madison WI 53706 USA
| | - David S. Sholl
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
43
|
Dombrowski JP, Ziegler MS, Phadke NM, Mansoor E, Levine DS, Witzke RJ, Head-Gordon M, Bell AT, Tilley TD. Siloxyaluminate and Siloxygallate Complexes as Models for Framework and Partially Hydrolyzed Framework Sites in Zeolites and Zeotypes. Chemistry 2021; 27:307-315. [PMID: 32926472 DOI: 10.1002/chem.202002926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Indexed: 11/07/2022]
Abstract
Anionic molecular models for nonhydrolyzed and partially hydrolyzed aluminum and gallium framework sites on silica, M[OSi(OtBu)3 ]4 - and HOM[OSi(OtBu)3 ]3 - (where M=Al or Ga), were synthesized from anionic chlorides Li{M[OSi(OtBu)3 ]3 Cl} in salt metathesis reactions. Sequestration of lithium cations with [12]crown-4 afforded charge-separated ion pairs composed of monomeric anions M[OSi(OtBu)3 ]4 - with outer-sphere [([12]crown-4)2 Li]+ cations, and hydroxides {HOM[OSi(OtBu)3 ]3 } with pendant [([12]crown-4)Li]+ cations. These molecular models were characterized by single-crystal X-ray diffraction, vibrational spectroscopy, mass spectrometry and NMR spectroscopy. Upon treatment of monomeric [([12]crown-4)Li]{HOM[OSi(OtBu)3 ]3 } complexes with benzyl alcohol, benzyloxide complexes were formed, modeling a possible pathway for the formation of active sites for Meerwin-Ponndorf-Verley (MPV) transfer hydrogenations with Al/Ga-doped silica catalysts.
Collapse
Affiliation(s)
- James P Dombrowski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Micah S Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Neelay M Phadke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Erum Mansoor
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.,Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Daniel S Levine
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ryan J Witzke
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Martin Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Alexis T Bell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| |
Collapse
|
44
|
Chen TY, Cheng Z, Desir P, Saha B, Vlachos DG. Fast microflow kinetics and acid catalyst deactivation in glucose conversion to 5-hydroxymethylfurfural. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00391c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Continuous flow microreactors operating at short residence times and high temperatures can give high HMF productivity and contribute to process intensification of biorefineries.
Collapse
Affiliation(s)
- Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Delaware 19716
- USA
| | - Ziwei Cheng
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Delaware 19716
- USA
| | - Pierre Desir
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Delaware 19716
- USA
| | - Basudeb Saha
- Catalysis Center for Energy Innovation
- Delaware 19716
- USA
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Delaware 19716
- USA
- Catalysis Center for Energy Innovation
| |
Collapse
|
45
|
Zhang T, Wei H, Xiao H, Li W, Jin Y, Wei W, Wu S. Advance in constructing acid catalyst-solvent combinations for efficient transformation of glucose into 5-Hydroxymethylfurfural. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Kim Y, Mittal A, Robichaud DJ, Pilath HM, Etz BD, St. John PC, Johnson DK, Kim S. Prediction of Hydroxymethylfurfural Yield in Glucose Conversion through Investigation of Lewis Acid and Organic Solvent Effects. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yeonjoon Kim
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Ashutosh Mittal
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - David J. Robichaud
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Heidi M. Pilath
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Brian D. Etz
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Peter C. St. John
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - David K. Johnson
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Seonah Kim
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| |
Collapse
|
47
|
Dai W, Lei Q, Wu G, Guan N, Hunger M, Li L. Spectroscopic Signature of Lewis Acidic Framework and Extraframework Sn Sites in Beta Zeolites. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02356] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weili Dai
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, People’s Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Qifeng Lei
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, People’s Republic of China
| | - Guangjun Wu
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, People’s Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Naijia Guan
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, People’s Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Michael Hunger
- Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart, Germany
| | - Landong Li
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, People’s Republic of China
- Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
48
|
Heard CJ, Grajciar L, Uhlík F, Shamzhy M, Opanasenko M, Čejka J, Nachtigall P. Zeolite (In)Stability under Aqueous or Steaming Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003264. [PMID: 32780912 DOI: 10.1002/adma.202003264] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Zeolites are among the most environmentally friendly materials produced industrially at the Megaton scale. They find numerous commercial applications, particularly in catalysis, adsorption, and separation. Under ambient conditions aluminosilicate zeolites are stable when exposed to water or water vapor. However, at extreme conditions as high temperature, high water vapor pressure or increased acidity/basicity, their crystalline framework can be destroyed. The stability of the zeolite framework under aqueous conditions also depends on the concentration and character of heteroatoms (other than Al) and the topology of the zeolite. The factors critical for zeolite (in)stability in the presence of water under various conditions are reviewed from the experimental as well as computational sides. Nonreactive and reactive interactions of water with zeolites are addressed. The goal of this review is to provide a comparative overview of all-silica zeolites, aluminosilicates and zeolites with other heteroatoms (Ti, Sn, and Ge) when contacted with water. Due attention is also devoted to the situation when partial zeolite hydrolysis is used beneficially, such as the formation of hierarchical zeolites, synthesis of new zeolites or fine-tuning catalytic or adsorption characteristics of zeolites.
Collapse
Affiliation(s)
- Christopher James Heard
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Filip Uhlík
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Mariya Shamzhy
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Maksym Opanasenko
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| |
Collapse
|
49
|
Di Iorio JR, Johnson BA, Román-Leshkov Y. Ordered Hydrogen-Bonded Alcohol Networks Confined in Lewis Acid Zeolites Accelerate Transfer Hydrogenation Turnover Rates. J Am Chem Soc 2020; 142:19379-19392. [PMID: 33108165 DOI: 10.1021/jacs.0c09825] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The disruption of ordered water molecules confined within hydrophobic reaction pockets alters the energetics of adsorption and catalysis, but a mechanistic understanding of how nonaqueous solvents influence catalysis in microporous voids remains unclear. Here, we use kinetic analyses coupled with IR spectroscopy to study how alkanol hydrogen-bonding networks confined within hydrophobic and hydrophilic zeolite catalysts modify reaction free energy landscapes. Hydrophobic Beta zeolites containing framework Sn atoms catalyze the transfer hydrogenation reaction of cyclohexanone in a 2-butanol solvent 10× faster than their hydrophilic analogues. This rate enhancement stems from the ability of hydrophobic Sn-Beta to inhibit the formation of extended liquid-like 2-butanol oligomers and promote dimeric H-bonded 2-butanol networks. These different intraporous 2-butanol solvent structures manifest as differences in the activation and adsorption enthalpies and entropies that comprise the free energy landscape of transfer hydrogenation catalysis. The ordered H-bonding solvent network present in hydrophobic Sn-Beta stabilizes the transfer hydrogenation transition state to a greater extent than the liquid-like 2-butanol solvent present in hydrophilic Sn-Beta, giving rise to higher turnover rates on hydrophobic Sn-Beta. Additionally, reactant adsorption within hydrophobic Sn-Beta is driven by the breakup of intraporous solvent-solvent interactions, resulting in positive enthalpies of adsorption that are partially compensated by an increase in the solvent reorganization entropy. Collectively, these results emphasize the ability of the zeolite pore to regulate the structure of confined nonaqueous H-bonding solvent networks, which offers an additional dimension to modulate adsorption and reactivity.
Collapse
Affiliation(s)
- John R Di Iorio
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Blake A Johnson
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 419] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|