1
|
Ukegbu CV, Mohamed M, Hoermann A, Qin Y, Kweyamba PA, Lwetoijera DW, Windbichler N, Moore S, Christophides GK, Vlachou D. Nanobody-mediated targeting of Plasmodium falciparum PfPIMMS43 can block malaria transmission in mosquitoes. Commun Biol 2025; 8:683. [PMID: 40301628 PMCID: PMC12041390 DOI: 10.1038/s42003-025-08033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/02/2025] [Indexed: 05/01/2025] Open
Abstract
The transition from ookinete to oocyst is a critical step in the Plasmodium falciparum lifecycle and an important target for malaria transmission-blocking strategies. PfPIMMS43, a surface protein of P. falciparum ookinetes and sporozoites, is critical for this transition and aids the parasite in evading mosquito immune responses. Previous studies demonstrated that polyclonal PfPIMMS43 antibodies reduced P. falciparum infection in Anopheles mosquitoes. Here, building on these findings, we have developed high-affinity single-domain VHH antibodies (nanobodies) derived from llama heavy-chain-only antibodies. We have shown that these nanobodies bind both recombinant and endogenous PfPIMMS43 produced by P. falciparum ookinetes in the mosquito midgut. Importantly, they significantly reduce infection intensity and prevalence of laboratory and field strains of P. falciparum in An. coluzzii and An. gambiae, respectively. Epitope mapping has revealed that the nanobodies target conserved regions in the second half of PfPIMMS43, with homology modelling confirming epitope accessibility. These findings establish PfPIMMS43 as a promising transmission-blocking target. To enhance malaria control and elimination efforts, we propose an innovative strategy in which genetically modified mosquitoes express PfPIMMS43-specific nanobodies in their midguts and spread this trait in wild mosquito populations via gene drive technology.
Collapse
Affiliation(s)
| | - Mgeni Mohamed
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Astrid Hoermann
- Department of Life Sciences, Imperial College London, London, UK
| | - Yuyan Qin
- Department of Life Sciences, Imperial College London, London, UK
| | - Prisca A Kweyamba
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | | | - Sarah Moore
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
2
|
Saab SA, Cardoso-Jaime V, Kefi M, Dimopoulos G. Advances in the dissection of Anopheles-Plasmodium interactions. PLoS Pathog 2025; 21:e1012965. [PMID: 40163471 PMCID: PMC11957333 DOI: 10.1371/journal.ppat.1012965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Malaria is a life-threatening mosquito-borne disease caused by the Plasmodium parasite, responsible for more than half a million deaths annually and principally involving children. The successful transmission of malaria by Anopheles mosquitoes relies on complex successive interactions between the parasite and various mosquito organs, host factors, and restriction factors. This review summarizes our current understanding of the mechanisms regulating Plasmodium infection of the mosquito vector at successive plasmodial developmental stages and highlights potential transmission-blocking targets and strategies.
Collapse
Affiliation(s)
- Sally A. Saab
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| |
Collapse
|
3
|
Webi E, Abkallo HM, Obiero G, Ndegwa P, Xie S, Zhao S, Nene V, Steinaa L. Genome Editing in Apicomplexan Parasites: Current Status, Challenges, and Future Possibilities. CRISPR J 2024; 7:310-326. [PMID: 39387255 DOI: 10.1089/crispr.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) technology has revolutionized genome editing across various biological systems, including the Apicomplexa phylum. This review describes the status, challenges, and applications of CRISPR-Cas9 editing technology in apicomplexan parasites, such as Plasmodium, Toxoplasma, Theileria, Babesia, and Cryptosporidium. The discussion encompasses successfully implemented CRISPR-Cas9-based techniques in these parasites, highlighting the achieved milestones, from precise gene modifications to genome-wide screening. In addition, the review addresses the challenges hampering efficient genome editing, including the parasites' complex life cycles, multiple intracellular stages, and the lack of robust genetic tools. It further explores the ethical and policy considerations surrounding genome editing and the future perspectives of CRISPR-Cas applications in apicomplexan parasites.
Collapse
Affiliation(s)
- Ethel Webi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Paul Ndegwa
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Vishvanath Nene
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
4
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Kefi M, Cardoso-Jaime V, Saab SA, Dimopoulos G. Curing mosquitoes with genetic approaches for malaria control. Trends Parasitol 2024; 40:487-499. [PMID: 38760256 DOI: 10.1016/j.pt.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Victor Cardoso-Jaime
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sally A Saab
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
de Haas FJH, Kläy L, Débarre F, Otto SP. Modelling daisy quorum drive: A short-term bridge across engineered fitness valleys. PLoS Genet 2024; 20:e1011262. [PMID: 38753875 PMCID: PMC11135765 DOI: 10.1371/journal.pgen.1011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/29/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Engineered gene-drive techniques for population modification and/or suppression have the potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Gene-drive systems with low threshold frequencies for invasion, such as homing-based gene drive, require initially few transgenic individuals to spread and are therefore easy to introduce. The self-propelled behavior of such drives presents a double-edged sword, however, as the low threshold can allow transgenic elements to expand beyond a target population. By contrast, systems where a high threshold frequency must be reached before alleles can spread-above a fitness valley-are less susceptible to spillover but require introduction at a high frequency. We model a proposed drive system, called "daisy quorum drive," that transitions over time from a low-threshold daisy-chain system (involving homing-based gene drive such as CRISPR-Cas9) to a high-threshold fitness-valley system (requiring a high frequency-a "quorum"-to spread). The daisy-chain construct temporarily lowers the high thresholds required for spread of the fitness-valley construct, facilitating use in a wide variety of species that are challenging to breed and release in large numbers. Because elements in the daisy chain only drive subsequent elements in the chain and not themselves and also carry deleterious alleles ("drive load"), the daisy chain is expected to exhaust itself, removing all CRISPR elements and leaving only the high-threshold fitness-valley construct, whose spread is more spatially restricted. Developing and analyzing both discrete patch and continuous space models, we explore how various attributes of daisy quorum drive affect the chance of modifying local population characteristics and the risk that transgenic elements expand beyond a target area. We also briefly explore daisy quorum drive when population suppression is the goal. We find that daisy quorum drive can provide a promising bridge between gene-drive and fitness-valley constructs, allowing spread from a low frequency in the short term and better containment in the long term, without requiring repeated introductions or persistence of CRISPR elements.
Collapse
Affiliation(s)
- Frederik J. H. de Haas
- Biodiversity Research Center, Department of Zoology, University of British Columbia, Vancouver BC, Canada
| | - Léna Kläy
- Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, France
| | - Florence Débarre
- Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, France
| | - Sarah P. Otto
- Biodiversity Research Center, Department of Zoology, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
7
|
Yu B, Zheng R, Bian M, Liu T, Lu K, Bao J, Pan G, Zhou Z, Li C. A monoclonal antibody targeting spore wall protein 1 inhibits the proliferation of Nosema bombycis in Bombyx mori. Microbiol Spectr 2023; 11:e0068123. [PMID: 37811955 PMCID: PMC10714992 DOI: 10.1128/spectrum.00681-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE There are a few reports on the resistance of microsporidia, including Nosema bombycis. Here, the alkali-soluble germination proteins of N. bombycis were used as immunogens to prepare a monoclonal antibody, and its single-chain variable fragments effectively blocked microsporidia infection. Our study has provided novel strategies for microsporidiosis control and demonstrated a useful method for the potential treatment of other microsporidia diseases.
Collapse
Affiliation(s)
- Bin Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing, China
| | - Rong Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Maofei Bian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Three Gorges Medical College, Chongqing, China
| | - Ting Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Kun Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Green EI, Jaouen E, Klug D, Proveti Olmo R, Gautier A, Blandin S, Marois E. A population modification gene drive targeting both Saglin and Lipophorin impairs Plasmodium transmission in Anopheles mosquitoes. eLife 2023; 12:e93142. [PMID: 38051195 PMCID: PMC10786457 DOI: 10.7554/elife.93142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Lipophorin is an essential, highly expressed lipid transport protein that is secreted and circulates in insect hemolymph. We hijacked the Anopheles coluzzii Lipophorin gene to make it co-express a single-chain version of antibody 2A10, which binds sporozoites of the malaria parasite Plasmodium falciparum. The resulting transgenic mosquitoes show a markedly decreased ability to transmit Plasmodium berghei expressing the P. falciparum circumsporozoite protein to mice. To force the spread of this antimalarial transgene in a mosquito population, we designed and tested several CRISPR/Cas9-based gene drives. One of these is installed in, and disrupts, the pro-parasitic gene Saglin and also cleaves wild-type Lipophorin, causing the anti-malarial modified Lipophorin version to replace the wild type and hitch-hike together with the Saglin drive. Although generating drive-resistant alleles and showing instability in its gRNA-encoding multiplex array, the Saglin-based gene drive reached high levels in caged mosquito populations and efficiently promoted the simultaneous spread of the antimalarial Lipophorin::Sc2A10 allele. This combination is expected to decrease parasite transmission via two different mechanisms. This work contributes to the design of novel strategies to spread antimalarial transgenes in mosquitoes, and illustrates some expected and unexpected outcomes encountered when establishing a population modification gene drive.
Collapse
Affiliation(s)
- Emily I Green
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Etienne Jaouen
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Dennis Klug
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | | | - Amandine Gautier
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Stéphanie Blandin
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Eric Marois
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| |
Collapse
|
9
|
Kormos A, Dimopoulos G, Bier E, Lanzaro GC, Marshall JM, James AA. Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops. Front Bioeng Biotechnol 2023; 11:1261123. [PMID: 37965050 PMCID: PMC10641379 DOI: 10.3389/fbioe.2023.1261123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The field-testing and eventual adoption of genetically-engineered mosquitoes (GEMs) to control vector-borne pathogen transmission will require them meeting safety criteria specified by regulatory authorities in regions where the technology is being considered for use and other locales that might be impacted. Preliminary risk considerations by researchers and developers may be useful for planning the baseline data collection and field research used to address the anticipated safety concerns. Part of this process is to identify potential hazards (defined as the inherent ability of an entity to cause harm) and their harms, and then chart the pathways to harm and evaluate their probability as part of a risk assessment. The University of California Malaria Initiative (UCMI) participated in a series of workshops held to identify potential hazards specific to mosquito population modification strains carrying gene-drive systems coupled to anti-parasite effector genes and their use in a hypothetical island field trial. The hazards identified were placed within the broader context of previous efforts discussed in the scientific literature. Five risk areas were considered i) pathogens, infections and diseases, and the impacts of GEMs on human and animal health, ii) invasiveness and persistence of GEMs, and interactions of GEMs with target organisms, iii) interactions of GEMs with non-target organisms including horizontal gene transfer, iv) impacts of techniques used for the management of GEMs and v) evolutionary and stability considerations. A preliminary hazards list (PHL) was developed and is made available here. This PHL is useful for internal project risk evaluation and is available to regulators at prospective field sites. UCMI project scientists affirm that the subsequent processes associated with the comprehensive risk assessment for the application of this technology should be driven by the stakeholders at the proposed field site and areas that could be affected by this intervention strategy.
Collapse
Affiliation(s)
- Ana Kormos
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Anthony A. James
- Departments of Microbiology and Molecular Genetics and Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Carballar-Lejarazú R, Dong Y, Pham TB, Tushar T, Corder RM, Mondal A, Sánchez C. HM, Lee HF, Marshall JM, Dimopoulos G, James AA. Dual effector population modification gene-drive strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii. Proc Natl Acad Sci U S A 2023; 120:e2221118120. [PMID: 37428915 PMCID: PMC10629562 DOI: 10.1073/pnas.2221118120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Proposed genetic approaches for reducing human malaria include population modification, which introduces genes into vector mosquitoes to reduce or prevent parasite transmission. We demonstrate the potential of Cas9/guide RNA (gRNA)-based gene-drive systems linked to dual antiparasite effector genes to spread rapidly through mosquito populations. Two strains have an autonomous gene-drive system coupled to dual anti-Plasmodium falciparum effector genes comprising single-chain variable fragment monoclonal antibodies targeting parasite ookinetes and sporozoites in the African malaria mosquitoes Anopheles gambiae (AgTP13) and Anopheles coluzzii (AcTP13). The gene-drive systems achieved full introduction within 3 to 6 mo after release in small cage trials. Life-table analyses revealed no fitness loads affecting AcTP13 gene-drive dynamics but AgTP13 males were less competitive than wild types. The effector molecules reduced significantly both parasite prevalence and infection intensities. These data supported transmission modeling of conceptual field releases in an island setting that shows meaningful epidemiological impacts at different sporozoite threshold levels (2.5 to 10 k) for human infection by reducing malaria incidence in optimal simulations by 50 to 90% within as few as 1 to 2 mo after a series of releases, and by ≥90% within 3 mo. Modeling outcomes for low sporozoite thresholds are sensitive to gene-drive system fitness loads, gametocytemia infection intensities during parasite challenges, and the formation of potentially drive-resistant genome target sites, extending the predicted times to achieve reduced incidence. TP13-based strains could be effective for malaria control strategies following validation of sporozoite transmission threshold numbers and testing field-derived parasite strains. These or similar strains are viable candidates for future field trials in a malaria-endemic region.
Collapse
Affiliation(s)
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD21205
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
| | - Taylor Tushar
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
| | - Rodrigo M. Corder
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Agastya Mondal
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Hsu-Feng Lee
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD21205
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA92697-3900
| |
Collapse
|
11
|
Bottino-Rojas V, James AA. Use of Insect Promoters in Genetic Engineering to Control Mosquito-Borne Diseases. Biomolecules 2022; 13:16. [PMID: 36671401 PMCID: PMC9855440 DOI: 10.3390/biom13010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Mosquito transgenesis and gene-drive technologies provide the basis for developing promising new tools for vector-borne disease prevention by either suppressing wild mosquito populations or reducing their capacity from transmitting pathogens. Many studies of the regulatory DNA and promoters of genes with robust sex-, tissue- and stage-specific expression profiles have supported the development of new tools and strategies that could bring mosquito-borne diseases under control. Although the list of regulatory elements available is significant, only a limited set of those can reliably drive spatial-temporal expression. Here, we review the advances in our ability to express beneficial and other genes in mosquitoes, and highlight the information needed for the development of new mosquito-control and anti-disease strategies.
Collapse
Affiliation(s)
- Vanessa Bottino-Rojas
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| | - Anthony A. James
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Garrood WT, Cuber P, Willis K, Bernardini F, Page NM, Haghighat-Khah RE. Driving down malaria transmission with engineered gene drives. Front Genet 2022; 13:891218. [PMID: 36338968 PMCID: PMC9627344 DOI: 10.3389/fgene.2022.891218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
The last century has witnessed the introduction, establishment and expansion of mosquito-borne diseases into diverse new geographic ranges. Malaria is transmitted by female Anopheles mosquitoes. Despite making great strides over the past few decades in reducing the burden of malaria, transmission is now on the rise again, in part owing to the emergence of mosquito resistance to insecticides, antimalarial drug resistance and, more recently, the challenges of the COVID-19 pandemic, which resulted in the reduced implementation efficiency of various control programs. The utility of genetically engineered gene drive mosquitoes as tools to decrease the burden of malaria by controlling the disease-transmitting mosquitoes is being evaluated. To date, there has been remarkable progress in the development of CRISPR/Cas9-based homing endonuclease designs in malaria mosquitoes due to successful proof-of-principle and multigenerational experiments. In this review, we examine the lessons learnt from the development of current CRISPR/Cas9-based homing endonuclease gene drives, providing a framework for the development of gene drive systems for the targeted control of wild malaria-transmitting mosquito populations that overcome challenges such as with evolving drive-resistance. We also discuss the additional substantial works required to progress the development of gene drive systems from scientific discovery to further study and subsequent field application in endemic settings.
Collapse
Affiliation(s)
- William T. Garrood
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Piotr Cuber
- Department of Molecular Biology, Core Research Laboratories, Natural History Museum, London, United Kingdom
| | - Katie Willis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicole M. Page
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
13
|
Hoermann A, Habtewold T, Selvaraj P, Del Corsano G, Capriotti P, Inghilterra MG, Kebede TM, Christophides GK, Windbichler N. Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development. SCIENCE ADVANCES 2022; 8:eabo1733. [PMID: 36129981 PMCID: PMC9491717 DOI: 10.1126/sciadv.abo1733] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 05/12/2023]
Abstract
Gene drives hold promise for the genetic control of malaria vectors. The development of vector population modification strategies hinges on the availability of effector mechanisms impeding parasite development in transgenic mosquitoes. We augmented a midgut gene of the malaria mosquito Anopheles gambiae to secrete two exogenous antimicrobial peptides, magainin 2 and melittin. This small genetic modification, capable of efficient nonautonomous gene drive, hampers oocyst development in both Plasmodium falciparum and Plasmodium berghei. It delays the release of infectious sporozoites, while it simultaneously reduces the life span of homozygous female transgenic mosquitoes. Modeling the spread of this modification using a large-scale agent-based model of malaria epidemiology reveals that it can break the cycle of disease transmission across a range of transmission intensities.
Collapse
Affiliation(s)
- Astrid Hoermann
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, WA 98109, USA
| | | | - Paolo Capriotti
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Temesgen M. Kebede
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
14
|
Jagannath DK, Valiyaparambil A, Viswanath VK, Hurakadli MA, Kamariah N, Jafer AC, Patole C, Pradhan S, Kumar N, Lakshminarasimhan A. Refolding and characterization of a diabody against Pfs25, a vaccine candidate of Plasmodium falciparum. Anal Biochem 2022; 655:114830. [DOI: 10.1016/j.ab.2022.114830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
|
15
|
Leung S, Windbichler N, Wenger EA, Bever CA, Selvaraj P. Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modelling study. Malar J 2022; 21:226. [PMID: 35883100 PMCID: PMC9327287 DOI: 10.1186/s12936-022-04242-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene drives are a genetic engineering method where a suite of genes is inherited at higher than Mendelian rates and has been proposed as a promising new vector control strategy to reinvigorate the fight against malaria in sub-Saharan Africa. METHODS Using an agent-based model of malaria transmission with vector genetics, the impacts of releasing population-replacement gene drive mosquitoes on malaria transmission are examined and the population replacement gene drive system parameters required to achieve local elimination within a spatially-resolved, seasonal Sahelian setting are quantified. The performance of two different gene drive systems-"classic" and "integral"-are evaluated. Various transmission regimes (low, moderate, and high-corresponding to annual entomological inoculation rates of 10, 30, and 80 infectious bites per person) and other simultaneous interventions, including deployment of insecticide-treated nets (ITNs) and passive healthcare-seeking, are also simulated. RESULTS Local elimination probabilities decreased with pre-existing population target site resistance frequency, increased with transmission-blocking effectiveness of the introduced antiparasitic gene and drive efficiency, and were context dependent with respect to fitness costs associated with the introduced gene. Of the four parameters, transmission-blocking effectiveness may be the most important to focus on for improvements to future gene drive strains because a single release of classic gene drive mosquitoes is likely to locally eliminate malaria in low to moderate transmission settings only when transmission-blocking effectiveness is very high (above ~ 80-90%). However, simultaneously deploying ITNs and releasing integral rather than classic gene drive mosquitoes significantly boosts elimination probabilities, such that elimination remains highly likely in low to moderate transmission regimes down to transmission-blocking effectiveness values as low as ~ 50% and in high transmission regimes with transmission-blocking effectiveness values above ~ 80-90%. CONCLUSION A single release of currently achievable population replacement gene drive mosquitoes, in combination with traditional forms of vector control, can likely locally eliminate malaria in low to moderate transmission regimes within the Sahel. In a high transmission regime, higher levels of transmission-blocking effectiveness than are currently available may be required.
Collapse
Affiliation(s)
- Shirley Leung
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Edward A Wenger
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Caitlin A Bever
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA.
| |
Collapse
|
16
|
Pascini TV, Jeong YJ, Huang W, Pala ZR, Sá JM, Wells MB, Kizito C, Sweeney B, Alves E Silva TL, Andrew DJ, Jacobs-Lorena M, Vega-Rodríguez J. Transgenic Anopheles mosquitoes expressing human PAI-1 impair malaria transmission. Nat Commun 2022; 13:2949. [PMID: 35618711 PMCID: PMC9135733 DOI: 10.1038/s41467-022-30606-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
In mammals, the serine protease plasmin degrades extracellular proteins during blood clot removal, tissue remodeling, and cell migration. The zymogen plasminogen is activated into plasmin by two serine proteases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), a process regulated by plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor that specifically inhibits tPA and uPA. Plasmodium gametes and sporozoites use tPA and uPA to activate plasminogen and parasite-bound plasmin degrades extracellular matrices, facilitating parasite motility in the mosquito and the mammalian host. Furthermore, inhibition of plasminogen activation by PAI-1 strongly blocks infection in both hosts. To block parasite utilization of plasmin, we engineered Anopheles stephensi transgenic mosquitoes constitutively secreting human PAI-1 (huPAI-1) in the midgut lumen, in the saliva, or both. Mosquitoes expressing huPAI-1 strongly reduced rodent and human Plasmodium parasite transmission to mosquitoes, showing that co-opting plasmin for mosquito infection is a conserved mechanism among Plasmodium species. huPAI-1 expression in saliva induced salivary gland deformation which affects sporozoite invasion and P. berghei transmission to mice, resulting in significant levels of protection from malaria. Targeting the interaction of malaria parasites with the fibrinolytic system using genetically engineered mosquitoes could be developed as an intervention to control malaria transmission.
Collapse
Affiliation(s)
- Tales V Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Yeong Je Jeong
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Zarna R Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, G10 Hunterian, Baltimore, MD, 21205, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine, Meridian, ID, 83642, USA
| | - Christopher Kizito
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Brendan Sweeney
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Thiago L Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, G10 Hunterian, Baltimore, MD, 21205, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA.
| |
Collapse
|
17
|
Abstract
Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR-Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne diseases, crop pests and non-native invasive species. However, concerns have been raised regarding the potential unintended impacts of gene-drive systems. This Review summarizes the phenomenal progress in this field, focusing on optimal design features for full-drive elements (drives with linked Cas9 and guide RNA components) that either suppress target mosquito populations or modify them to prevent pathogen transmission, allelic drives for updating genetic elements, mitigating strategies including trans-complementing split-drives and genetic neutralizing elements, and the adaptation of drive technology to other organisms. These scientific advances, combined with ethical and social considerations, will facilitate the transparent and responsible advancement of these technologies towards field implementation.
Collapse
Affiliation(s)
- Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Reid WR, Olson KE, Franz AWE. Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1987-1996. [PMID: 33704462 PMCID: PMC8421695 DOI: 10.1093/jme/tjab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 05/13/2023]
Abstract
Arthropod-borne viruses (arboviruses) such as dengue, Zika, and chikungunya viruses cause morbidity and mortality among human populations living in the tropical regions of the world. Conventional mosquito control efforts based on insecticide treatments and/or the use of bednets and window curtains are currently insufficient to reduce arbovirus prevalence in affected regions. Novel, genetic strategies that are being developed involve the genetic manipulation of mosquitoes for population reduction and population replacement purposes. Population replacement aims at replacing arbovirus-susceptible wild-type mosquitoes in a target region with those that carry a laboratory-engineered antiviral effector to interrupt arboviral transmission in the field. The strategy has been primarily developed for Aedes aegypti (L.), the most important urban arbovirus vector. Antiviral effectors based on long dsRNAs, miRNAs, or ribozymes destroy viral RNA genomes and need to be linked to a robust gene drive to ensure their fixation in the target population. Synthetic gene-drive concepts are based on toxin/antidote, genetic incompatibility, and selfish genetic element principles. The CRISPR/Cas9 gene editing system can be configurated as a homing endonuclease gene (HEG) and HEG-based drives became the preferred choice for mosquitoes. HEGs are highly allele and nucleotide sequence-specific and therefore sensitive to single-nucleotide polymorphisms/resistant allele formation. Current research efforts test new HEG-based gene-drive designs that promise to be less sensitive to resistant allele formation. Safety aspects in conjunction with gene drives are being addressed by developing procedures that would allow a recall or overwriting of gene-drive transgenes once they have been released.
Collapse
Affiliation(s)
- William R Reid
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Ken E Olson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
- Corresponding author, e-mail:
| |
Collapse
|
19
|
Adelman ZN, Kojin BB. Malaria-Resistant Mosquitoes (Diptera: Culicidae); The Principle is Proven, But Will the Effectors Be Effective? JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1997-2005. [PMID: 34018548 DOI: 10.1093/jme/tjab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, a substantial number of anti-malarial effector genes have been evaluated for their ability to block parasite infection in the mosquito vector. While many of these approaches have yielded significant effects on either parasite intensity or prevalence of infection, just a few have been able to completely block transmission. Additionally, many approaches, while effective against the parasite, also disrupt or alter important aspects of mosquito physiology, leading to corresponding changes in lifespan, reproduction, and immunity. As the most promising approaches move towards field-based evaluation, questions of effector gene robustness and durability move to the forefront. In this forum piece, we critically evaluate past effector gene approaches with an eye towards developing a deeper pipeline to augment the current best candidates.
Collapse
Affiliation(s)
- Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| | - Bianca B Kojin
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Dong S, Dong Y, Simões ML, Dimopoulos G. Mosquito transgenesis for malaria control. Trends Parasitol 2021; 38:54-66. [PMID: 34483052 DOI: 10.1016/j.pt.2021.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Malaria is one of the deadliest diseases. Because of the ineffectiveness of current malaria-control methods, several novel mosquito vector-based control strategies have been proposed to supplement existing control strategies. Mosquito transgenesis and gene drive have emerged as promising tools for preventing the spread of malaria by either suppressing mosquito populations by self-destructing mosquitoes or replacing mosquito populations with disease-refractory populations. Here we review the development of mosquito transgenesis and its application for malaria control, highlighting the transgenic expression of antiparasitic effector genes, inactivation of host factor genes, and manipulation of miRNAs and lncRNAs. Overall, from a malaria-control perspective, mosquito transgenesis is not envisioned as a stand-alone approach; rather, its use is proposed as a complement to existing vector-control strategies.
Collapse
Affiliation(s)
- Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Lanzaro GC, Campos M, Crepeau M, Cornel A, Estrada A, Gripkey H, Haddad Z, Kormos A, Palomares S. Selection of sites for field trials of genetically engineered mosquitoes with gene drive. Evol Appl 2021; 14:2147-2161. [PMID: 34603489 PMCID: PMC8477601 DOI: 10.1111/eva.13283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Novel malaria control strategies using genetically engineered mosquitoes (GEMs) are on the horizon. Population modification is one approach wherein mosquitoes are engineered with genes rendering them refractory to the malaria parasite, Plasmodium falciparum, coupled with a low-threshold, Cas9-based gene drive. When released into a wild vector population, GEMs preferentially transmit these parasite-blocking genes to their offspring, ultimately modifying a vector population into a nonvector one. Deploying this technology awaits ecologically contained field trial evaluations. Here, we consider a process for site selection, the first critical step in designing a trial. Our goal is to identify a site that maximizes prospects for success, minimizes risk, and serves as a fair, valid, and convincing test of efficacy and impacts of a GEM product intended for large-scale deployment in Africa. We base site selection on geographic, geological, and biological, rather than social or legal, criteria. We recognize the latter as critically important but not as a first step in selecting a site. We propose physical islands as being the best candidates for a GEM field trial and present an evaluation of 22 African islands. We consider geographic and genetic isolation, biological complexity, island size, and topography and identify two island groups that satisfy key criteria for ideal GEM field trial sites.
Collapse
Affiliation(s)
- Gregory C. Lanzaro
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Melina Campos
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Marc Crepeau
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Anthony Cornel
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Abram Estrada
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Hans Gripkey
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Ziad Haddad
- California Institute of TechnologyJet Propulsion LaboratoryPasadenaCaliforniaUSA
| | - Ana Kormos
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Steven Palomares
- Vector Genetics LaboratoryDepartment of Pathology, Microbiology and ImmunologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
22
|
Caragata EP, Dong S, Dong Y, Simões ML, Tikhe CV, Dimopoulos G. Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease. Annu Rev Microbiol 2021; 74:455-475. [PMID: 32905752 DOI: 10.1146/annurev-micro-011320-025557] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving Wolbachia that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - S Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - Y Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - M L Simões
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| |
Collapse
|
23
|
Lanzaro GC, Sánchez C HM, Collier TC, Marshall JM, James AA. Population modification strategies for malaria vector control are uniquely resilient to observed levels of gene drive resistance alleles. Bioessays 2021; 43:e2000282. [PMID: 34151435 DOI: 10.1002/bies.202000282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 11/09/2022]
Abstract
Cas9/guide RNA (gRNA)-based gene drive systems are expected to play a transformative role in malaria elimination efforts., whether through population modification, in which the drive system contains parasite-refractory genes, or population suppression, in which the drive system induces a severe fitness load resulting in population decline or extinction. DNA sequence polymorphisms representing alternate alleles at gRNA target sites may confer a drive-resistant phenotype in individuals carrying them. Modeling predicts that, for observed levels of SGV at potential target sites and observed rates of de novo DRA formation, population modification strategies are uniquely resilient to DRAs. We conclude that gene drives can succeed when fitness costs incurred by drive-carrying mosquitoes are low enough to prevent strong positive selection for DRAs produced de novo or as part of the SGV and that population modification strategies are less prone to failure due to drive resistance.
Collapse
Affiliation(s)
- Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Hector M Sánchez C
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Travis C Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA.,Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
24
|
Hoermann A, Tapanelli S, Capriotti P, Del Corsano G, Masters EK, Habtewold T, Christophides GK, Windbichler N. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement. eLife 2021; 10:58791. [PMID: 33845943 PMCID: PMC8043746 DOI: 10.7554/elife.58791] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 03/21/2021] [Indexed: 12/15/2022] Open
Abstract
Gene drives for mosquito population replacement are promising tools for malaria control. However, there is currently no clear pathway for safely testing such tools in endemic countries. The lack of well-characterized promoters for infection-relevant tissues and regulatory hurdles are further obstacles for their design and use. Here we explore how minimal genetic modifications of endogenous mosquito genes can convert them directly into non-autonomous gene drives without disrupting their expression. We co-opted the native regulatory sequences of three midgut-specific loci of the malaria vector Anopheles gambiae to host a prototypical antimalarial molecule and guide-RNAs encoded within artificial introns that support efficient gene drive. We assess the propensity of these modifications to interfere with the development of Plasmodium falciparum and their effect on fitness. Because of their inherent simplicity and passive mode of drive such traits could form part of an acceptable testing pathway of gene drives for malaria eradication.
Collapse
Affiliation(s)
- Astrid Hoermann
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paolo Capriotti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Ellen Kg Masters
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Kandul NP, Liu J, Bennett JB, Marshall JM, Akbari OS. A confinable home-and-rescue gene drive for population modification. eLife 2021; 10:e65939. [PMID: 33666174 PMCID: PMC7968924 DOI: 10.7554/elife.65939] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Homing-based gene drives, engineered using CRISPR/Cas9, have been proposed to spread desirable genes throughout populations. However, invasion of such drives can be hindered by the accumulation of resistant alleles. To limit this obstacle, we engineer a confinable population modification home-and-rescue (HomeR) drive in Drosophila targeting an essential gene. In our experiments, resistant alleles that disrupt the target gene function were recessive lethal and therefore disadvantaged. We demonstrate that HomeR can achieve an increase in frequency in population cage experiments, but that fitness costs due to the Cas9 insertion limit drive efficacy. Finally, we conduct mathematical modeling comparing HomeR to contemporary gene drive architectures for population modification over wide ranges of fitness costs, transmission rates, and release regimens. HomeR could potentially be adapted to other species, as a means for safe, confinable, modification of wild populations.
Collapse
Affiliation(s)
- Nikolay P Kandul
- Section of Cell and Developmental Biology, University of California, San DiegoSan DiegoUnited States
| | - Junru Liu
- Section of Cell and Developmental Biology, University of California, San DiegoSan DiegoUnited States
| | - Jared B Bennett
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, BerkeleyBerkeleyUnited States
| | - Omar S Akbari
- Section of Cell and Developmental Biology, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
26
|
Nolan T. Control of malaria-transmitting mosquitoes using gene drives. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190803. [PMID: 33357060 PMCID: PMC7776936 DOI: 10.1098/rstb.2019.0803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
Gene drives are selfish genetic elements that can be re-designed to invade a population and they hold tremendous potential for the control of mosquitoes that transmit disease. Much progress has been made recently in demonstrating proof of principle for gene drives able to suppress populations of malarial mosquitoes, or to make them refractory to the Plasmodium parasites they transmit. This has been achieved using CRISPR-based gene drives. In this article, I will discuss the relative merits of this type of gene drive, as well as barriers to its technical development and to its deployment in the field as malaria control. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Tony Nolan
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
27
|
Zheng S, Huang Y, Huang H, Yu B, Zhou N, Wei J, Pan G, Li C, Zhou Z. The role of NbTMP1, a surface protein of sporoplasm, in Nosema bombycis infection. Parasit Vectors 2021; 14:81. [PMID: 33494800 PMCID: PMC7836179 DOI: 10.1186/s13071-021-04595-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background Nosema bombycis is a unicellular eukaryotic pathogen of the silkworm, Bombyx mori, and is an economic and occupational hazard in the silkworm industry. Because of its long incubation period and horizontal and vertical transmission, it is subject to quarantine measures in sericulture production. The microsporidian life-cycle includes a dormant extracellular phase and intracellular proliferation phase, with the proliferation period being the most active period. This latter period lacks spore wall protection and may be the most susceptible stage for control. Methods In order to find suitable target for the selective breeding of N. bombycis-resistant silkworm strains, we screen highly expressed membrane proteins from the transcriptome data of N. bombycis. The subcellular localization of the candidate protein was verified by Indirect immunofluorescence analysis (IFA) and immunoelectron microscopy (IEM), and its role in N. bombycis proliferation was verified by RNAi. Results The N. bombycis protein (NBO_76g0014) was identified as a transmembrane protein and named NbTMP1. It is homologous with hypothetical proteins NGRA_1734 from Nosema granulosis. NbTMP1 has a transmembrane region of 23 amino acids at the N-terminus. Indirect immunofluorescence analysis (IFA) results suggest that NbTMP1 is secreted on the plasma membrane as the spores develop. Western blot and qRT-PCR analysis showed that NbTMP1 was expressed in all developmental stages of N. bombycis in infected cells and in the silkworm midgut. Downregulation of NbTMP1 expression resulted in significant inhibition of N. bombycis proliferation. Conclusions We confirmed that NbTMP1 is a membrane protein of N. bombycis. Reduction of the transcription level of NbTMP1 significantly inhibited N. bombycis proliferation, and this protein may be a target for the selective breeding of N. bombycis-resistant silkworm strains.
![]()
Collapse
Affiliation(s)
- Shiyi Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.,Affiliated Jinhua Hospital, Zhejiang University of Medicine-Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Yukang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Hongyun Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Bin Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Ni Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China. .,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.,College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
28
|
Identification of a neutralizing epitope within minor repeat region of Plasmodium falciparum CS protein. NPJ Vaccines 2021; 6:10. [PMID: 33462218 PMCID: PMC7813878 DOI: 10.1038/s41541-020-00272-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/14/2020] [Indexed: 11/08/2022] Open
Abstract
Malaria remains a major cause of morbidity and mortality worldwide with 219 million infections and 435,000 deaths predominantly in Africa. The infective Plasmodium sporozoite is the target of a potent humoral immune response that can protect murine, simian and human hosts against challenge by malaria-infected mosquitoes. Early murine studies demonstrated that sporozoites or subunit vaccines based on the sporozoite major surface antigen, the circumsporozoite (CS) protein, elicit antibodies that primarily target the central repeat region of the CS protein. In the current murine studies, using monoclonal antibodies and polyclonal sera obtained following immunization with P. falciparum sporozoites or synthetic repeat peptides, we demonstrate differences in the ability of these antibodies to recognize the major and minor repeats contained in the central repeat region. The biological relevance of these differences in fine specificity was explored using a transgenic P. berghei rodent parasite expressing the P. falciparum CS repeat region. In these in vitro and in vivo studies, we demonstrate that the minor repeat region, comprised of three copies of alternating NANP and NVDP tetramer repeats, contains an epitope recognized by sporozoite-neutralizing antibodies. In contrast, murine monoclonal antibodies specific for the major CS repeats (NANP)n could be isolated from peptide-immunized mice that had limited or no sporozoite-neutralizing activity. These studies highlight the importance of assessing the fine specificity and functions of antirepeat antibodies elicited by P. falciparum CS-based vaccines and suggest that the design of immunogens to increase antibody responses to minor CS repeats may enhance vaccine efficacy.
Collapse
|
29
|
Kojin BB, Martin-Martin I, Araújo HRC, Bonilla B, Molina-Cruz A, Calvo E, Capurro ML, Adelman ZN. Aedes aegypti SGS1 is critical for Plasmodium gallinaceum infection of both the mosquito midgut and salivary glands. Malar J 2021; 20:11. [PMID: 33407511 PMCID: PMC7787129 DOI: 10.1186/s12936-020-03537-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The invasion of the mosquito salivary glands by Plasmodium sporozoites is a critical step that defines the success of malaria transmission and a detailed understanding of the molecules responsible for salivary gland invasion could be leveraged towards control of vector-borne pathogens. Antibodies directed against the mosquito salivary gland protein SGS1 have been shown to reduce Plasmodium gallinaceum sporozoite invasion of Aedes aegypti salivary glands, but the specific role of this protein in sporozoite invasion and in other stages of the Plasmodium life cycle remains unknown. METHODS RNA interference and CRISPR/Cas9 were used to evaluate the role of A. aegypti SGS1 in the P. gallinaceum life cycle. RESULTS Knockdown and knockout of SGS1 disrupted sporozoite invasion of the salivary gland. Interestingly, mosquitoes lacking SGS1 also displayed fewer oocysts. Proteomic analyses confirmed the abolishment of SGS1 in the salivary gland of SGS1 knockout mosquitoes and revealed that the C-terminus of the protein is absent in the salivary gland of control mosquitoes. In silico analyses indicated that SGS1 contains two potential internal cleavage sites and thus might generate three proteins. CONCLUSION SGS1 facilitates, but is not essential for, invasion of A. aegypti salivary glands by P. gallinaceum and has a dual role as a facilitator of parasite development in the mosquito midgut. SGS1 could, therefore, be part of a strategy to decrease malaria transmission by the mosquito vector, for example in a transgenic mosquito that blocks its interaction with the parasite.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Helena R C Araújo
- Departamento de Parasitologia, Laboratório de Mosquitos Geneticamente Modificados, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Brian Bonilla
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Margareth L Capurro
- Departamento de Parasitologia, Laboratório de Mosquitos Geneticamente Modificados, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
30
|
Adolfi A, Gantz VM, Jasinskiene N, Lee HF, Hwang K, Terradas G, Bulger EA, Ramaiah A, Bennett JB, Emerson JJ, Marshall JM, Bier E, James AA. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nat Commun 2020; 11:5553. [PMID: 33144570 PMCID: PMC7609566 DOI: 10.1038/s41467-020-19426-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
Cas9/gRNA-mediated gene-drive systems have advanced development of genetic technologies for controlling vector-borne pathogen transmission. These technologies include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of insect vectors, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant alleles are eliminated via a dominantly-acting maternal effect combined with slower-acting standard negative selection, and rare functional resistant alleles do not prevent drive invasion. Small cage trials show that single releases of gene-drive males robustly result in efficient population modification with ≥95% of mosquitoes carrying the drive within 5-11 generations over a range of initial release ratios.
Collapse
Affiliation(s)
- Adriana Adolfi
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA
- Liverpool School of Tropical Medicine, Vector Biology Department, L3 5QA, Liverpool, UK
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
| | - Nijole Jasinskiene
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA
| | - Hsu-Feng Lee
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA
| | - Kristy Hwang
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA
| | - Gerard Terradas
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
- Tata Institute for Genetics and Society (TIGS)-UCSD, La Jolla, CA, 92093-0335, USA
| | - Emily A Bulger
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
- Tata Institute for Genetics and Society (TIGS)-UCSD, La Jolla, CA, 92093-0335, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94158, USA
- The Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Arunachalam Ramaiah
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697-2525, USA
- Tata Institute for Genetics and Society (TIGS)-India, Bangalore, KA, 560065, India
| | - Jared B Bennett
- Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, CA, 94720, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697-2525, USA
| | - John M Marshall
- Division of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
- Tata Institute for Genetics and Society (TIGS)-UCSD, La Jolla, CA, 92093-0335, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA.
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-4025, USA.
| |
Collapse
|
31
|
Qasim M, Xiao H, He K, Omar MAA, Liu F, Ahmed S, Li F. Genetic engineering and bacterial pathogenesis against the vectorial capacity of mosquitoes. Microb Pathog 2020; 147:104391. [PMID: 32679245 DOI: 10.1016/j.micpath.2020.104391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
Mosquitoes are the main vector of multiple diseases worldwide and transmit viral (malaria, chikungunya, encephalitis, yellow fever, as well as dengue fever), as well as bacterial diseases (tularemia). To manage the outbreak of mosquito populations, various management programs include the application of chemicals, followed by biological and genetic control. Here we aimed to focus on the role of bacterial pathogenesis and molecular tactics for the management of mosquitoes and their vectorial capacity. Bacterial pathogenesis and molecular manipulations have a substantial impact on the biology of mosquitoes, and both strategies change the gene expression and regulation of disease vectors. The strategy for genetic modification is also proved to be excellent for the management of mosquitoes, which halt the development of population via incompatibility of different sex. Therefore, the purpose of the present discussion is to illustrate the impact of both approaches against the vectorial capacity of mosquitoes. Moreover, it could be helpful to understand the relationship of insect-pathogen and to manage various insect vectors as well as diseases.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Huamei Xiao
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; College of Life Sciences and Resource Environment, Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun University, Yichun, 336000, China
| | - Kang He
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed A A Omar
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Feiling Liu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sohail Ahmed
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Fei Li
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Nateghi Rostami M. CRISPR/Cas9 gene drive technology to control transmission of vector‐borne parasitic infections. Parasite Immunol 2020; 42:e12762. [DOI: 10.1111/pim.12762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Nateghi Rostami
- Laboratory of Biology of Host‐Parasite Interactions Department of Parasitology Pasteur Institute of Iran Tehran Iran
| |
Collapse
|
33
|
López Del Amo V, Bishop AL, Sánchez C HM, Bennett JB, Feng X, Marshall JM, Bier E, Gantz VM. A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment. Nat Commun 2020; 11:352. [PMID: 31953404 PMCID: PMC6969112 DOI: 10.1038/s41467-019-13977-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
CRISPR-based gene drives can spread through wild populations by biasing their own transmission above the 50% value predicted by Mendelian inheritance. These technologies offer population-engineering solutions for combating vector-borne diseases, managing crop pests, and supporting ecosystem conservation efforts. Current technologies raise safety concerns for unintended gene propagation. Herein, we address such concerns by splitting the drive components, Cas9 and gRNAs, into separate alleles to form a trans-complementing split-gene-drive (tGD) and demonstrate its ability to promote super-Mendelian inheritance of the separate transgenes. This dual-component configuration allows for combinatorial transgene optimization and increases safety by restricting escape concerns to experimentation windows. We employ the tGD and a small-molecule-controlled version to investigate the biology of component inheritance and resistant allele formation, and to study the effects of maternal inheritance and impaired homology on efficiency. Lastly, mathematical modeling of tGD spread within populations reveals potential advantages for improving current gene-drive technologies for field population modification.
Collapse
Affiliation(s)
- Víctor López Del Amo
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alena L Bishop
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Héctor M Sánchez C
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Jared B Bennett
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
- Tata Institute for Genetics and Society, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0349, USA
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
34
|
Nikolaeva D, Illingworth JJ, Miura K, Alanine DGW, Brian IJ, Li Y, Fyfe AJ, Da DF, Cohuet A, Long CA, Draper SJ, Biswas S. Functional Characterization and Comparison of Plasmodium falciparum Proteins as Targets of Transmission-blocking Antibodies. Mol Cell Proteomics 2020; 19:155-166. [PMID: 29089373 PMCID: PMC6944241 DOI: 10.1074/mcp.ra117.000036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum malaria continues to evade control efforts, utilizing highly specialized sexual-stages to transmit infection between the human host and mosquito vector. In a vaccination model, antibodies directed to sexual-stage antigens, when ingested in the mosquito blood meal, can inhibit parasite growth in the midgut and consequently arrest transmission. Despite multiple datasets for the Plasmodium sexual-stage transcriptome and proteome, there have been no rational screens to identify candidate antigens for transmission-blocking vaccine (TBV) development. This study characterizes 12 proteins from across the P. falciparum sexual-stages as possible TBV targets. Recombinant proteins are heterologously expressed as full-length ectodomains in a mammalian HEK293 cell system. The proteins recapitulate native parasite epitopes as assessed by indirect fluorescence assay and a proportion exhibits immunoreactivity when tested against sera from individuals living in malaria-endemic Burkina Faso and Mali. Purified IgG generated to the mosquito-stage parasite antigen enolase demonstrates moderate inhibition of parasite development in the mosquito midgut by the ex vivo standard membrane feeding assay. The findings support the use of rational screens and comparative functional assessments in identifying proteins of the P. falciparum transmission pathway and establishing a robust pre-clinical TBV pipeline.
Collapse
Affiliation(s)
- Daria Nikolaeva
- The Jenner Institute, University of Oxford, Oxford UK; Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseaseNational Institutes of Health, Rockville, Maryland
| | | | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseaseNational Institutes of Health, Rockville, Maryland
| | | | - Iona J Brian
- The Jenner Institute, University of Oxford, Oxford UK
| | - Yuanyuan Li
- The Jenner Institute, University of Oxford, Oxford UK
| | - Alex J Fyfe
- The Jenner Institute, University of Oxford, Oxford UK
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso
| | - Anna Cohuet
- Institut de Recherche pour le Développement, Montpellier Cedex, France
| | - Carole A Long
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseaseNational Institutes of Health, Rockville, Maryland
| | | | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford UK.
| |
Collapse
|
35
|
Buchman A, Gamez S, Li M, Antoshechkin I, Li HH, Wang HW, Chen CH, Klein MJ, Duchemin JB, Crowe JE, Paradkar PN, Akbari OS. Broad dengue neutralization in mosquitoes expressing an engineered antibody. PLoS Pathog 2020; 16:e1008103. [PMID: 31945137 PMCID: PMC6964813 DOI: 10.1371/journal.ppat.1008103] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
With dengue virus (DENV) becoming endemic in tropical and subtropical regions worldwide, there is a pressing global demand for effective strategies to control the mosquitoes that spread this disease. Recent advances in genetic engineering technologies have made it possible to create mosquitoes with reduced vector competence, limiting their ability to acquire and transmit pathogens. Here we describe the development of Aedes aegypti mosquitoes synthetically engineered to impede vector competence to DENV. These mosquitoes express a gene encoding an engineered single-chain variable fragment derived from a broadly neutralizing DENV human monoclonal antibody and have significantly reduced viral infection, dissemination, and transmission rates for all four major antigenically distinct DENV serotypes. Importantly, this is the first engineered approach that targets all DENV serotypes, which is crucial for effective disease suppression. These results provide a compelling route for developing effective genetic-based DENV control strategies, which could be extended to curtail other arboviruses.
Collapse
Affiliation(s)
- Anna Buchman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Stephanie Gamez
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Ming Li
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Hsing-Han Li
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Hsin-Wei Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Melissa J. Klein
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Departments of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Prasad N. Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Omar S. Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
- Tata Institute for Genetics and Society-UCSD, La Jolla, California, United States of America
| |
Collapse
|
36
|
Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet 2019; 15:e1008440. [PMID: 31856182 PMCID: PMC6922335 DOI: 10.1371/journal.pgen.1008440] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Small laboratory cage trials of non-drive and gene-drive strains of the Asian malaria vector mosquito, Anopheles stephensi, were used to investigate release ratios and other strain properties for their impact on transgene spread during simulated population modification. We evaluated the effects of transgenes on survival, male contributions to next-generation populations, female reproductive success and the impact of accumulation of gene drive-resistant genomic target sites resulting from nonhomologous end-joining (NHEJ) mutagenesis during Cas9, guide RNA-mediated cleavage. Experiments with a non-drive, autosomally-linked malaria-resistance gene cassette showed ‘full introduction’ (100% of the insects have at least one copy of the transgene) within 8 weeks (≤ 3 generations) following weekly releases of 10:1 transgenic:wild-type males in an overlapping generation trial design. Male release ratios of 1:1 resulted in cages where mosquitoes with at least one copy of the transgene fluctuated around 50%. In comparison, two of three cages in which the malaria-resistance genes were linked to a gene-drive system in an overlapping generation, single 1:1 release reached full introduction in 6–8 generations with a third cage at ~80% within the same time. Release ratios of 0.1:1 failed to establish the transgenes. A non-overlapping generation, single-release trial of the same gene-drive strain resulted in two of three cages reaching 100% introduction within 6–12 generations following a 1:1 transgenic:wild-type male release. Two of three cages with 0.33:1 transgenic:wild-type male single releases achieved full introduction in 13–16 generations. All populations exhibiting full introduction went extinct within three generations due to a significant load on females having disruptions of both copies of the target gene, kynurenine hydroxylase. While repeated releases of high-ratio (10:1) non-drive constructs could achieve full introduction, results from the 1:1 release ratios across all experimental designs favor the use of gene drive, both for efficiency and anticipated cost of the control programs. The experimental introduction of manipulated genes into insect species has a long history in basic genetics. Recent advances in genome editing technologies have spurred considerable effort to exploit these methodologies to provide genetic solutions to some of the worst medical and agricultural problems caused by insects. Insect population suppression and population modification approaches have been proposed to control transmission of vector-borne diseases, including malaria. We used small cage trials to explore the efficacy of non-drive and gene-drive releases to deliver anti-malarial effector genes to a vector mosquito, Anopheles stephensi. We show that both approaches can work to introduce genes to high percentages, but as expected, the gene-drive approaches were more efficient in that they needed only a single release with a much lower number of released insects. The gene-drive females in our studies exhibited a significant load that resulted in some cage populations going to extinction. Furthermore, the accumulation of drive-resistant target genes prevented full introduction of the transgenes in those cages that did not go extinct. While none of the strains evaluated here are proposed for open release, these laboratory cage trials reveal features that can be used to improve next-generation gene-drive strains for population modification.
Collapse
|
37
|
Marshall JM, Raban RR, Kandul NP, Edula JR, León TM, Akbari OS. Winning the Tug-of-War Between Effector Gene Design and Pathogen Evolution in Vector Population Replacement Strategies. Front Genet 2019; 10:1072. [PMID: 31737050 PMCID: PMC6831721 DOI: 10.3389/fgene.2019.01072] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
While efforts to control malaria with available tools have stagnated, and arbovirus outbreaks persist around the globe, the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-based gene editing has provided exciting new opportunities for genetics-based strategies to control these diseases. In one such strategy, called "population replacement", mosquitoes, and other disease vectors are engineered with effector genes that render them unable to transmit pathogens. These effector genes can be linked to "gene drive" systems that can bias inheritance in their favor, providing novel opportunities to replace disease-susceptible vector populations with disease-refractory ones over the course of several generations. While promising for the control of vector-borne diseases on a wide scale, this sets up an evolutionary tug-of-war between the introduced effector genes and the pathogen. Here, we review the disease-refractory genes designed to date to target Plasmodium falciparum malaria transmitted by Anopheles gambiae, and arboviruses transmitted by Aedes aegypti, including dengue serotypes 2 and 3, chikungunya, and Zika viruses. We discuss resistance concerns for these effector genes, and genetic approaches to prevent parasite and viral escape variants. One general approach is to increase the evolutionary hurdle required for the pathogen to evolve resistance by attacking it at multiple sites in its genome and/or multiple stages of development. Another is to reduce the size of the pathogen population by other means, such as with vector control and antimalarial drugs. We discuss lessons learned from the evolution of resistance to antimalarial and antiviral drugs and implications for the management of resistance after its emergence. Finally, we discuss the target product profile for population replacement strategies for vector-borne disease control. This differs between early phase field trials and wide-scale disease control. In the latter case, the demands on effector gene efficacy are great; however, with new possibilities ushered in by CRISPR-based gene editing, and when combined with surveillance, monitoring, and rapid management of pathogen resistance, the odds are increasingly favoring effector genes in the upcoming evolutionary tug-of-war.
Collapse
Affiliation(s)
- John M. Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, United States
- Innovative Genomics Institute, Berkeley, CA, United States
| | - Robyn R. Raban
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
| | - Nikolay P. Kandul
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
| | - Jyotheeswara R. Edula
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
| | - Tomás M. León
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, United States
| | - Omar S. Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
- Tata Institute for Genetics and Society, University of California, San Diego, CA, United States
| |
Collapse
|
38
|
Affiliation(s)
- Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
39
|
Facchinelli L, North AR, Collins CM, Menichelli M, Persampieri T, Bucci A, Spaccapelo R, Crisanti A, Benedict MQ. Large-cage assessment of a transgenic sex-ratio distortion strain on populations of an African malaria vector. Parasit Vectors 2019; 12:70. [PMID: 30728060 PMCID: PMC6366042 DOI: 10.1186/s13071-019-3289-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
Background Novel transgenic mosquito control methods require progressively more realistic evaluation. The goal of this study was to determine the effect of a transgene that causes a male-bias sex ratio on Anopheles gambiae target populations in large insectary cages. Methods Life history characteristics of Anopheles gambiae wild type and Ag(PMB)1 (aka gfp124L-2) transgenic mosquitoes, whose progeny are 95% male, were measured in order to parameterize predictive population models. Ag(PMB)1 males were then introduced at two ratios into large insectary cages containing target wild type populations with stable age distributions and densities. The predicted proportion of females and those observed in the large cages were compared. A related model was then used to predict effects of male releases on wild mosquitoes in a west African village. Results The frequency of transgenic mosquitoes in target populations reached an average of 0.44 ± 0.02 and 0.56 ± 0.02 after 6 weeks in the 1:1 and in the 3:1 release ratio treatments (transgenic male:wild male) respectively. Transgenic males caused sex-ratio distortion of 73% and 80% males in the 1:1 and 3:1 treatments, respectively. The number of eggs laid in the transgenic treatments declined as the experiment progressed, with a steeper decline in the 3:1 than in the 1:1 releases. The results of the experiment are partially consistent with predictions of the model; effect size and variability did not conform to the model in two out of three trials, effect size was over-estimated by the model and variability was greater than anticipated, possibly because of sampling effects in restocking. The model estimating the effects of hypothetical releases on the mosquito population of a West African village demonstrated that releases could significantly reduce the number of females in the wild population. The interval of releases is not expected to have a strong effect. Conclusions The biological data produced to parameterize the model, the model itself, and the results of the experiments are components of a system to evaluate and predict the performance of transgenic mosquitoes. Together these suggest that the Ag(PMB)1 strain has the potential to be useful for reversible population suppression while this novel field develops.
Collapse
Affiliation(s)
- Luca Facchinelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Present address: Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ace R North
- Department of Zoology, University of Oxford, New Radcliffe House, Woodstock Road, Oxford, OX2 6GG, UK
| | - C Matilda Collins
- Centre for Environmental Policy, Imperial College London, 16-18 Princes Gardens, London, SW7 1NE, UK
| | - Miriam Menichelli
- Polo di Genomica Genetica e Biologia, Via mazzieri 3, 05100, Terni, Italy
| | - Tania Persampieri
- Polo di Genomica Genetica e Biologia, Via mazzieri 3, 05100, Terni, Italy
| | - Alessandro Bucci
- Polo di Genomica Genetica e Biologia, Via mazzieri 3, 05100, Terni, Italy
| | - Roberta Spaccapelo
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building Imperial College Road South Kensington, London, SW7 2AZ, UK
| | - Mark Q Benedict
- Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
40
|
Adolfi A, Lycett GJ. Opening the toolkit for genetic analysis and control of Anopheles mosquito vectors. CURRENT OPINION IN INSECT SCIENCE 2018; 30:8-18. [PMID: 30553490 DOI: 10.1016/j.cois.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 06/09/2023]
Abstract
Anopheles is the only genus of mosquitoes that transmit human malaria and consequently the focus of large scale genome and transcriptome-wide association studies. Genetic tools to define the function of the candidate genes arising from these analyses are vital. Moreover, genome editing offers the potential to modify Anopheles population structure at local and global scale to provide complementary tools towards the ultimate goal of malaria elimination. Major breakthroughs in Anopheles genetic analysis came with the development of germline transformation and RNA interference technology. Yet, the field has been revolutionised again by precise genome editing now possible through site-specific nucleases. Here we review the components of the current genetic toolkit available to study Anopheles, focusing particularly on how these technical advances are used to gain insight into malaria transmission and the design of genetic methods to control Anopheles vectors.
Collapse
Affiliation(s)
- Adriana Adolfi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4500, USA
| | - Gareth John Lycett
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
41
|
Shaw WR, Catteruccia F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat Microbiol 2018; 4:20-34. [PMID: 30150735 DOI: 10.1038/s41564-018-0214-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
Human pathogens that are transmitted by insects are a global problem, particularly those vectored by mosquitoes; for example, malaria parasites transmitted by Anopheles species, and viruses such as dengue, Zika and chikungunya that are carried by Aedes mosquitoes. Over the past 15 years, the prevalence of malaria has been substantially reduced and virus outbreaks have been contained by controlling mosquito vectors using insecticide-based approaches. However, disease control is now threatened by alarming rates of insecticide resistance in insect populations, prompting the need to develop a new generation of specific strategies that can reduce vector-mediated transmission. Here, we review how increased knowledge in insect biology and insect-pathogen interactions is stimulating new concepts and tools for vector control. We focus on strategies that either interfere with the development of pathogens within their vectors or directly impact insect survival, including enhancement of vector-mediated immune control, manipulation of the insect microbiome, or use of powerful new genetic tools such as CRISPR-Cas systems to edit vector genomes. Finally, we offer a perspective on the implementation hurdles as well as the knowledge gaps that must be filled in the coming years to safely realize the potential of these novel strategies to eliminate the scourge of vector-borne disease.
Collapse
Affiliation(s)
- W Robert Shaw
- Harvard T. H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| | - Flaminia Catteruccia
- Harvard T. H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| |
Collapse
|
42
|
Rami A, Raz A, Zakeri S, Dinparast Djadid N. Isolation and identification of Asaia sp. in Anopheles spp. mosquitoes collected from Iranian malaria settings: steps toward applying paratransgenic tools against malaria. Parasit Vectors 2018; 11:367. [PMID: 29950179 PMCID: PMC6022440 DOI: 10.1186/s13071-018-2955-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 06/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the genus Asaia (Rhodospirillales: Acetobacteraceae) has been isolated from different Anopheles species and presented as a promising tool to combat malaria. This bacterium has unique features such as presence in different organs of mosquitoes (midgut, salivary glands and reproductive organs) of female and male mosquitoes and vertical and horizontal transmission. These specifications lead to the possibility of introducing Asaia as a robust candidate for malaria vector control via paratransgenesis technology. Several studies have been performed on the microbiota of Anopheles mosquitoes (Diptera: Culicidae) in Iran and the Middle East to find a suitable candidate for controlling the malaria based on paratransgenesis approaches. The present study is the first report of isolation, biochemical and molecular characterization of the genus Asaia within five different Anopheles species which originated from different zoogeographical zones in the south, east, and north of Iran. METHODS Mosquitoes originated from field-collected and laboratory-reared colonies of five Anopheles spp. Adult mosquitoes were anesthetized; their midguts were isolated by dissection, followed by grinding the midgut contents which were then cultured in enrichment broth media and later in CaCO3 agar plates separately. Morphological, biochemical and physiological characterization were carried out after the appearance of colonies. For molecular confirmation, selected colonies were cultured, their DNAs were extracted and PCR was performed on the 16S ribosomal RNA gene using specific newly designed primers. RESULTS Morphological, biochemical, physiological and molecular results indicated that all isolates are members of the genus Asaia. CONCLUSIONS Contrary to previous opinions, our findings show that Asaia bacteria are present in both insectary-reared colonies and field-collected mosquitoes and can be isolated by simple and specific methods. Furthermore, with respect to the fact that we isolated Asaia within the different Anopheles specimens from distinct climatic and zoogeographical regions, it is promising and may be concluded that species of this genus can tolerate the complicated environmental conditions of the vector-borne diseases endemic regions. Therefore, it can be considered as a promising target in paratransgenesis and vector control programs. However, we suggest that introducing the new technologies such as next generation sequencing and robust in silico approaches may pave the way to find a unique biomarker for rapid and reliable differentiation of the Asaia species.
Collapse
Affiliation(s)
- Abbas Rami
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
43
|
Mumford JD, Leach AW, Benedict MQ, Facchinelli L, Quinlan MM. Maintaining Quality of Candidate Strains of Transgenic Mosquitoes for Studies in Containment Facilities in Disease Endemic Countries. Vector Borne Zoonotic Dis 2018; 18:31-38. [PMID: 29337661 PMCID: PMC5770121 DOI: 10.1089/vbz.2017.2208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Transgenic mosquitoes are being developed as novel components of area-wide approaches to vector-borne disease control. Best practice is to develop these in phases, beginning with laboratory studies, before moving to field testing and inclusion in control programs, to ensure safety and prevent costly field testing of unsuitable strains. The process of identifying and developing good candidate strains requires maintenance of transgenic colonies over many generations in containment facilities. By working in disease endemic countries with target vector populations, laboratory strains may be developed and selected for properties that will enhance intended control efficacy in the next phase, while avoiding traits that introduce unnecessary risks. Candidate strains aiming toward field use must consistently achieve established performance criteria, throughout the process of scaling up from small study colonies to production of sufficient numbers for field testing and possible open release. Maintenance of a consistent quality can be demonstrated by a set of insect quality and insectary operating indicators, measured over time at predetermined intervals. These indicators: inform comparability of studies using various candidate strains at different times and locations; provide evidence of conformity relevant to compliance with terms of approval for regulated use; and can be used to validate some assumptions related to risk assessments covering the contained phase and for release into the environment.
Collapse
Affiliation(s)
- John D Mumford
- 1 Centre for Environmental Policy, Imperial College London , Ascot, United Kingdom
| | - Adrian W Leach
- 1 Centre for Environmental Policy, Imperial College London , Ascot, United Kingdom
| | - Mark Q Benedict
- 2 Entomology Branch, Centers for Disease Control and Prevention (CDC) , Atlanta, Georgia
| | - Luca Facchinelli
- 3 Department of Vector Biology, Liverpool School of Tropical Medicine , Liverpool, United Kingdom
| | - M Megan Quinlan
- 1 Centre for Environmental Policy, Imperial College London , Ascot, United Kingdom
| |
Collapse
|
44
|
Bier E, Harrison MM, O'Connor-Giles KM, Wildonger J. Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics 2018; 208:1-18. [PMID: 29301946 PMCID: PMC5753851 DOI: 10.1534/genetics.117.1113] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/08/2017] [Indexed: 12/26/2022] Open
Abstract
Drosophila has long been a premier model for the development and application of cutting-edge genetic approaches. The CRISPR-Cas system now adds the ability to manipulate the genome with ease and precision, providing a rich toolbox to interrogate relationships between genotype and phenotype, to delineate and visualize how the genome is organized, to illuminate and manipulate RNA, and to pioneer new gene drive technologies. Myriad transformative approaches have already originated from the CRISPR-Cas system, which will likely continue to spark the creation of tools with diverse applications. Here, we provide an overview of how CRISPR-Cas gene editing has revolutionized genetic analysis in Drosophila and highlight key areas for future advances.
Collapse
Affiliation(s)
- Ethan Bier
- Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0349
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Kate M O'Connor-Giles
- Laboratory of Genetics and Laboratory of Cell and Molecular Biology, Wisconsin 53706
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
45
|
Abstract
Vector control strategies based on population modification of Anopheline mosquitoes may have a significant role in the malaria eradication agenda. They could consolidate elimination gains by providing barriers to the reintroduction of parasites and competent vectors, and allow resources to be allocated to new control sites while maintaining treated areas free of malaria. Synthetic biological approaches are being used to generate transgenic mosquitoes for population modification. Proofs-of-principle exist for mosquito transgenesis, the construction of anti-parasite effector genes and gene-drive systems for rapidly introgressing beneficial genes into wild populations. Key challenges now are to develop field-ready strains of mosquitoes that incorporate features that maximize safety and efficacy, and specify pathways from discovery to development. We propose three pathways and a framework for target product profiles that maximize safety and efficacy while meeting the demands of the complexity of malaria transmission, and the regulatory and social diversity of potential end-users and stakeholders.
Collapse
Affiliation(s)
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| |
Collapse
|
46
|
The malERA Refresh Consultative Panel on Basic Science and Enabling Technologies. malERA: An updated research agenda for basic science and enabling technologies in malaria elimination and eradication. PLoS Med 2017; 14:e1002451. [PMID: 29190277 PMCID: PMC5708601 DOI: 10.1371/journal.pmed.1002451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria.
Collapse
|
47
|
Pike A, Dong Y, Dizaji NB, Gacita A, Mongodin EF, Dimopoulos G. Changes in the microbiota cause genetically modified Anopheles to spread in a population. Science 2017; 357:1396-1399. [PMID: 28963254 DOI: 10.1126/science.aak9691] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 06/26/2017] [Accepted: 08/25/2017] [Indexed: 12/13/2022]
Abstract
The mosquito's innate immune system controls both Plasmodium and bacterial infections. We investigated the competitiveness of mosquitoes genetically modified to alter expression of their own anti-Plasmodium immune genes in a mixed-cage population with wild-type mosquitoes. We observed that genetically modified mosquitoes with increased immune activity in the midgut tissue did not have an observed fitness disadvantage and showed reduced microbial loads in both the midgut and reproductive organs. These changes result in a mating preference of genetically modified males for wild-type females, whereas wild-type males prefer genetically modified females. These changes foster the spread of the genetic modification in a mosquito cage population.
Collapse
Affiliation(s)
- Andrew Pike
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Nahid Borhani Dizaji
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Anthony Gacita
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Macias VM, Ohm JR, Rasgon JL. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1006. [PMID: 28869513 PMCID: PMC5615543 DOI: 10.3390/ijerph14091006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023]
Abstract
Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.
Collapse
Affiliation(s)
- Vanessa M Macias
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Johanna R Ohm
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
49
|
Macias VM, Jimenez AJ, Burini-Kojin B, Pledger D, Jasinskiene N, Phong CH, Chu K, Fazekas A, Martin K, Marinotti O, James AA. nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:81-89. [PMID: 28676355 PMCID: PMC5580807 DOI: 10.1016/j.ibmb.2017.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Transposons are a class of selfish DNA elements that can mobilize within a genome. If mobilization is accompanied by an increase in copy number (replicative transposition), the transposon may sweep through a population until it is fixed in all of its interbreeding members. This introgression has been proposed as the basis for drive systems to move genes with desirable phenotypes into target species. One such application would be to use them to move a gene conferring resistance to malaria parasites throughout a population of vector mosquitos. We assessed the feasibility of using the piggyBac transposon as a gene-drive mechanism to distribute anti-malarial transgenes in populations of the malaria vector, Anopheles stephensi. We designed synthetic gene constructs that express the piggyBac transposase in the female germline using the control DNA of the An. stephensi nanos orthologous gene linked to marker genes to monitor inheritance. Two remobilization events were observed with a frequency of one every 23 generations, a rate far below what would be useful to drive anti-pathogen transgenes into wild mosquito populations. We discuss the possibility of optimizing this system and the impetus to do so.
Collapse
Affiliation(s)
- Vanessa M Macias
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Alyssa J Jimenez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Bianca Burini-Kojin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - David Pledger
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Nijole Jasinskiene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Celine Hien Phong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Karen Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Aniko Fazekas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Kelcie Martin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Anthony A James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States; Department of Microbiology and Molecular Genetics, B240 Med Sci Bldg., School of Medicine, University of California, Irvine, CA 92697-4025, United States.
| |
Collapse
|
50
|
Biological Control Strategies for Mosquito Vectors of Arboviruses. INSECTS 2017; 8:insects8010021. [PMID: 28208639 PMCID: PMC5371949 DOI: 10.3390/insects8010021] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/21/2017] [Indexed: 12/16/2022]
Abstract
Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.
Collapse
|