1
|
Zhang Y, Qing J, Li Y, Gao X, Lu D, Wang Y, Gu L, Zhang H, Li Z, Wang X, Zhou Y, Zhang P. PRMT7-Mediated PTEN Activation Enhances Bone Regeneration in Female Mice. Int J Mol Sci 2025; 26:2981. [PMID: 40243588 PMCID: PMC11988880 DOI: 10.3390/ijms26072981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Epigenetic regulation provides new insights into the mechanisms of osteogenic differentiation and identifies potential targets for treating bone-related diseases. However, the specific regulatory networks and mechanisms involved still need further investigation. In this study, we identify PRMT7 as a novel epigenetic regulator of mesenchymal stem cells (MSCs) osteogenic commitment. Conditional knockout of Prmt7 in mice reveals a significant impairment in osteogenesis and bone regeneration, specifically in females, affecting both femurs and mandibles, with no noticeable effect in males. Mechanistically, PRMT7 modulates MSCs osteogenic differentiation by activating PTEN. Specifically, PRMT7 enhances PTEN transcription by increasing H3R2me1 levels at the PTEN promoter. Additionally, PRMT7 interacts with the PTEN protein and stabilizes nuclear PTEN, revealing an unprecedented pathway. Notably, overexpression of PTEN alleviates the osteogenic deficits observed in Prmt7-deficient mice. This research establishes PRMT7 as a potential therapeutic target for promoting bone formation/regeneration and offers novel molecular insights into the PRMT7-PTEN regulatory axis, underscoring its significance in bone biology and regenerative medicine.
Collapse
Affiliation(s)
- Yingfei Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Jia Qing
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yang Li
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Xin Gao
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yiyang Wang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Lanxin Gu
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Hui Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Zechuan Li
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Xu Wang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
2
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Chesnokova LS, Mosher BS, Fulkerson HL, Nam HW, Shakya AK, Yurochko AD. Distinct early role of PTEN regulation during HCMV infection of monocytes. Proc Natl Acad Sci U S A 2024; 121:e2312290121. [PMID: 38483999 PMCID: PMC10962971 DOI: 10.1073/pnas.2312290121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to β1/β3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.
Collapse
Affiliation(s)
- Liudmila S. Chesnokova
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Bailey S. Mosher
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Heather L. Fulkerson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Hyung W. Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Akhalesh K. Shakya
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Feist-Weller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, Shreveport, LA71103
- Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| |
Collapse
|
4
|
Garcia G, Chakravarty N, Paiola S, Urena E, Gyani P, Tse C, French SW, Danielpour M, Breunig JJ, Nathanson DA, Arumugaswami V. Differential Susceptibility of Ex Vivo Primary Glioblastoma Tumors to Oncolytic Effect of Modified Zika Virus. Cells 2023; 12:2384. [PMID: 37830597 PMCID: PMC10572118 DOI: 10.3390/cells12192384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor, is a highly lethal form of cancer with a very limited set of treatment options. High heterogeneity in the tumor cell population and the invasive nature of these cells decrease the likely efficacy of traditional cancer treatments, thus requiring research into novel treatment options. The use of oncolytic viruses as potential therapeutics has been researched for some time. Zika virus (ZIKV) has demonstrated oncotropism and oncolytic effects on GBM stem cells (GSCs). To address the need for safe and effective GBM treatments, we designed an attenuated ZIKV strain (ZOL-1) that does not cause paralytic or neurological diseases in mouse models compared with unmodified ZIKV. Importantly, we found that patient-derived GBM tumors exhibited susceptibility (responders) and non-susceptibility (non-responders) to ZOL-1-mediated tumor cell killing, as evidenced by differential apoptotic cell death and cell viability upon ZOL-1 treatment. The oncolytic effect observed in responder cells was seen both in vitro in neurosphere models and in vivo upon xenograft. Finally, we observed that the use of ZOL-1 as combination therapy with multiple PI3K-AKT inhibitors in non-responder GBM resulted in enhanced chemotherapeutic efficacy. Altogether, this study establishes ZOL-1 as a safe and effective treatment against GBM and provides a foundation to conduct further studies evaluating its potential as an effective adjuvant with other chemotherapies and kinase inhibitors.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Sophia Paiola
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Estrella Urena
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Priya Gyani
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Christopher Tse
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Samuel W. French
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.D.); (J.J.B.)
| | - Joshua J. Breunig
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.D.); (J.J.B.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David A. Nathanson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Dong L, Li Y, Liu L, Meng X, Li S, Han D, Xiao Z, Xia Q. Smurf1 Suppression Enhances Temozolomide Chemosensitivity in Glioblastoma by Facilitating PTEN Nuclear Translocation. Cells 2022; 11:3302. [PMID: 36291166 PMCID: PMC9600526 DOI: 10.3390/cells11203302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor suppressor PTEN mainly inhibits the PI3K/Akt pathway in the cytoplasm and maintains DNA stability in the nucleus. The status of PTEN remains therapeutic effectiveness for chemoresistance of the DNA alkylating agent temozolomide (TMZ) in glioblastoma (GB). However, the underlying mechanisms of PTEN's interconnected role in the cytoplasm and nucleus in TMZ resistance are still unclear. In this study, we report that TMZ-induced PTEN nuclear import depends on PTEN ubiquitylation modification by Smurf1. The Smurf1 suppression decreases the TMZ-induced PTEN nuclear translocation and enhances the DNA damage. In addition, Smurf1 degrades cytoplasmic PTEN K289E (the nuclear-import-deficient PTEN mutant) to activate the PI3K/Akt pathway under TMZ treatment. Altogether, Smurf1 interconnectedly promotes PTEN nuclear function (DNA repair) and cytoplasmic function (activation of PI3K/Akt pathway) to resist TMZ. These results provide a proof-of-concept demonstration for a potential strategy to overcome the TMZ resistance in PTEN wild-type GB patients by targeting Smurf1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Fumarate inhibits PTEN to promote tumorigenesis and therapeutic resistance of type2 papillary renal cell carcinoma. Mol Cell 2022; 82:1249-1260.e7. [PMID: 35216667 DOI: 10.1016/j.molcel.2022.01.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022]
Abstract
Fumarate is an oncometabolite. However, the mechanism underlying fumarate-exerted tumorigenesis remains unclear. Here, utilizing human type2 papillary renal cell carcinoma (PRCC2) as a model, we show that fumarate accumulates in cells deficient in fumarate hydratase (FH) and inhibits PTEN to activate PI3K/AKT signaling. Mechanistically, fumarate directly reacts with PTEN at cysteine 211 (C211) to form S-(2-succino)-cysteine. Succinated C211 occludes tethering of PTEN with the cellular membrane, thereby diminishing its inhibitory effect on the PI3K/AKT pathway. Functionally, re-expressing wild-type FH or PTEN C211S phenocopies an AKT inhibitor in suppressing tumor growth and sensitizing PRCC2 to sunitinib. Analysis of clinical specimens indicates that PTEN C211 succination levels are positively correlated with AKT activation in PRCC2. Collectively, these findings elucidate a non-metabolic, oncogenic role of fumarate in PRCC2 via direct post-translational modification of PTEN and further reveal potential stratification strategies for patients with FH loss by combinatorial AKTi and sunitinib therapy.
Collapse
|
8
|
Ramaiah MJ, Kumar KR. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol Biol Rep 2021; 48:4813-4835. [PMID: 34132942 DOI: 10.1007/s11033-021-06462-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the aggressive brain cancers with patients having less survival period upto 12-15 months. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase, belongs to the phosphatidylinositol 3-kinases (PI3K) pathway and is involved in various cellular processes of cancer cells. Cancer metabolism is regulated by mTOR and its components. mTOR forms two complexes as mTORC1 and mTORC2. Studies have identified the key component of the mTORC2 complex, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) plays a prominent role in the regulation of cancer cell proliferation and metabolism. Apart, growth factor receptor signaling such as epidermal growth factor signaling mediated by epidermal growth factor receptor (EGFR) regulates cancer-related processes. In EGFR signaling various other signaling cascades such as phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR pathway) and Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) -dependent signaling cross-talk each other. From various studies about GBM, it is very well established that Rictor and EGFR mediated signaling pathways majorly playing a pivotal role in chemoresistance and tumor aggressiveness. Recent studies have shown that non-coding RNAs such as microRNAs (miRs) and long non-coding RNAs (lncRNAs) regulate the EGFR and Rictor and sensitize the cells towards chemotherapeutic agents. Thus, understanding of microRNA mediated regulation of EGFR and Rictor will help in cancer prevention and management as well as a future therapy.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| | - K Rohil Kumar
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
9
|
Regulatory effects of IL-1β in the interaction of GBM and tumor-associated monocyte through VCAM-1 and ICAM-1. Eur J Pharmacol 2021; 905:174216. [PMID: 34058204 DOI: 10.1016/j.ejphar.2021.174216] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor with high inflammation. GBM cells infiltrate microglia and macrophages and are surrounded by pro-inflammatory cytokines. Interleukin (IL)-1β, which is abundantly expressed in the tumor microenvironment, is involved in tumor progression. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mediate cell-cell interactions, and these cell adhesion molecules (CAMs) can be regulated by cytokines in immune cells or cancer cells in the inflammatory tumor microenvironment. In this study, we found that ICAM-1 and VCAM-1 expression was induced when GBM cells were treated with IL-1β, and that adhesive interaction between monocytes and GBM cells increased accordingly. The levels of soluble CAMs (sICAM-1 and sVCAM-1) were also increased in the supernatants induced by IL-1β. Furthermore, the conditioned media contained sICAM-1 and sVCAM-1, which further promoted IL-6 and CCL2 expression in differentiated macrophages. IL-1β downregulated Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1) in GBM. The expression of ICAM-1 and VCAM-1 was regulated by p38, AKT, and NF-κB signaling pathways, which were modulated by SHP-1 signaling. The present study suggests that IL-1β-induced protein expression of ICAM-1 and VCAM-1 in GBM may modulate the adhesive interaction between GBM and monocytes. In addition, IL-1β also induced the soluble form of ICAM-1 and VCAM-1 in GBM, which plays a key role in the regulation of tumor-associated monocyte/macrophage polarization.
Collapse
|
10
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
11
|
Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, Zhong J, Zhao Z, Zhao K, Liu D, Xiao F, Xu Q, Jiang T, Li B, Cheng SY, Zhang N. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol 2021; 23:278-291. [PMID: 33664496 DOI: 10.1038/s41556-021-00639-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Activated EGFR signalling drives tumorigenicity in 50% of glioblastoma (GBM). However, EGFR-targeting therapy has proven ineffective in treating patients with GBM, indicating that there is redundant EGFR activation. Circular RNAs are covalently closed RNA transcripts that are involved in various physiological and pathological processes. Herein, we report an additional activation mechanism of EGFR signalling in GBM by an undescribed secretory E-cadherin protein variant (C-E-Cad) encoded by a circular E-cadherin (circ-E-Cad) RNA through multiple-round open reading frame translation. C-E-Cad is overexpressed in GBM and promotes glioma stem cell tumorigenicity. C-E-Cad activates EGFR independent of EGF through association with the EGFR CR2 domain using a unique 14-amino-acid carboxy terminus, thereby maintaining glioma stem cell tumorigenicity. Notably, inhibition of C-E-Cad markedly enhances the antitumour activity of therapeutic anti-EGFR strategies in GBM. Our results uncover a critical role of C-E-Cad in stimulating EGFR signalling and provide a promising approach for treating EGFR-driven GBM.
Collapse
Affiliation(s)
- Xinya Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Xin Xia
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Fanying Li
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Maolei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Huangkai Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
- Gene Denovo Biotechnology (Guangzhou), Guangzhou, China
| | - Xujia Wu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Dawei Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiang Xu
- GenomiCare Biotechnology (Shanghai), Shanghai, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shi-Yuan Cheng
- The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China.
| |
Collapse
|
12
|
Nussinov R, Zhang M, Tsai CJ, Jang H. Phosphorylation and Driver Mutations in PI3Kα and PTEN Autoinhibition. Mol Cancer Res 2020; 19:543-548. [PMID: 33288731 DOI: 10.1158/1541-7786.mcr-20-0818] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
PI3K and PTEN are the second and third most highly mutated proteins in cancer following only p53. Their actions oppose each other. PI3K phosphorylates signaling lipid PIP2 to PIP3 PTEN dephosphorylates it back. Driver mutations in both proteins accrue PIP3 PIP3 recruits AKT and PDK1 to the membrane, promoting cell-cycle progression. Here we review phosphorylation events and mutations in autoinhibition in PI3K and PTEN from the structural standpoint. Our purpose is to clarify how they control the autoinhibited states. In autoinhibition, a segment or a subunit of the protein occludes its functional site. Protein-protein interfaces are often only marginally stable, making them sensitive to changes in conditions in living cells. Phosphorylation can stabilize or destabilize the interfaces. Driver mutations commonly destabilize them. In analogy to "passenger mutations," we coin "passenger phosphorylation" to emphasize that the presence of a phosphorylation recognition sequence logo does not necessarily imply function. Rather, it may simply reflect a statistical occurrence. In both PI3K and PTEN, autoinhibiting phosphorylation events are observed in the occluding "piece." In PI3Kα, the "piece" is the p85α subunit. In PTEN, it is the C-terminal segment. In both enzymes the stabilized interface covers the domain that attaches to the membrane. Driver mutations that trigger rotation of the occluding piece or its deletion prompt activation. To date, both enzymes lack specific, potent drugs. We discuss the implications of detailed structural and mechanistic insight into oncogenic activation and how it can advance allosteric precision oncology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland. .,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, NCI, Frederick, Maryland
| |
Collapse
|
13
|
Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, Dong L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front Oncol 2020; 10:1569. [PMID: 32984016 PMCID: PMC7492558 DOI: 10.3389/fonc.2020.01569] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most common and aggressive brain malignancy, characterized by heterogeneity and drug resistance. PTEN, a crucial tumor suppressor, exhibits phosphatase-dependent (PI3K-AKT-mTOR pathway)/independent (nucleus stability) activities to maintain the homeostatic regulation of numerous physiological processes. Premature and absolute loss of PTEN activity usually tends to cellular senescence. However, monoallelic loss of PTEN is frequently observed at tumor inception, and absolute loss of PTEN activity also occurs at the late stage of gliomagenesis. Consequently, aberrant PTEN homeostasis, mainly regulated at the post-translational level, renders cells susceptible to tumorigenesis and drug resistance. Ubiquitination-mediated degradation or deregulated intracellular localization of PTEN hijacks cell growth rheostat control for neoplastic remodeling. Functional inactivation of PTEN mediated by the overexpression of ubiquitin ligases (E3s) renders GB cells adaptive to PTEN loss, which confers resistance to EGFR tyrosine kinase inhibitors and immunotherapies. In this review, we discuss how glioma cells develop oncogenic addiction to the E3s-PTEN axis, promoting their growth and proliferation. Antitumor strategies involving PTEN-targeting E3 ligase inhibitors can restore the tumor-suppressive environment. E3 inhibitors collectively reactivate PTEN and may represent next-generation treatment against deadly malignancies such as GB.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Posttranslational Regulation and Conformational Plasticity of PTEN. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036095. [PMID: 31932468 DOI: 10.1101/cshperspect.a036095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor that is frequently down-modulated in human cancer. PTEN inhibits the phosphatidylinositol 3-phosphate kinase (PI3K)/AKT pathway through its lipid phosphatase activity. Multiple PI3K/AKT-independent actions of PTEN, protein-phosphatase activities and functions within the nucleus have also been described. PTEN, therefore, regulates many cellular processes including cell proliferation, survival, genomic integrity, polarity, migration, and invasion. Even a modest decrease in the functional dose of PTEN may promote cancer development. Understanding the molecular and cellular mechanisms that regulate PTEN protein levels and function, and how these may go awry in cancer contexts, is, therefore, key to fully understanding the role of PTEN in tumorigenesis. Here, we discuss current knowledge on posttranslational control and conformational plasticity of PTEN, as well as therapeutic possibilities toward reestablishment of PTEN tumor-suppressor activity in cancer.
Collapse
|
15
|
Pulido R, Mingo J, Gaafar A, Nunes-Xavier CE, Luna S, Torices L, Angulo JC, López JI. Precise Immunodetection of PTEN Protein in Human Neoplasia. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036293. [PMID: 31501265 DOI: 10.1101/cshperspect.a036293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN is a major tumor-suppressor protein whose expression and biological activity are frequently diminished in sporadic or inherited cancers. PTEN gene deletion or loss-of-function mutations favor tumor cell growth and are commonly found in clinical practice. In addition, diminished PTEN protein expression is also frequently observed in tumor samples from cancer patients in the absence of PTEN gene alterations. This makes PTEN protein levels a potential biomarker parameter in clinical oncology, which can guide therapeutic decisions. The specific detection of PTEN protein can be achieved by using highly defined anti-PTEN monoclonal antibodies (mAbs), characterized with precision in terms of sensitivity for the detection technique, specificity for PTEN binding, and constraints of epitope recognition. This is especially relevant taking into consideration that PTEN is highly targeted by mutations and posttranslational modifications, and different PTEN protein isoforms exist. The precise characterization of anti-PTEN mAb reactivity is an important step in the validation of these reagents as diagnostic and prognostic tools in clinical oncology, including their routine use in analytical immunohistochemistry (IHC). Here, we review the current status on the use of well-defined anti-PTEN mAbs for PTEN immunodetection in the clinical context and discuss their potential usefulness and limitations for a more precise cancer diagnosis and patient benefit.
Collapse
Affiliation(s)
- Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Ayman Gaafar
- Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo N-0310, Norway
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Javier C Angulo
- Department of Urology, University Hospital of Getafe, Getafe, Madrid 28904, Spain.,Clinical Department, European University of Madrid, Laureate Universities, Madrid 28904, Spain
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain.,University of the Basque Country, Leioa 48940, Spain
| |
Collapse
|
16
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
17
|
Chang H, Cai Z, Roberts TM. The Mechanisms Underlying PTEN Loss in Human Tumors Suggest Potential Therapeutic Opportunities. Biomolecules 2019; 9:biom9110713. [PMID: 31703360 PMCID: PMC6921025 DOI: 10.3390/biom9110713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, we will first briefly describe the diverse molecular mechanisms associated with PTEN loss of function in cancer. We will then proceed to discuss the molecular mechanisms linking PTEN loss to PI3K activation and demonstrate how these mechanisms suggest possible therapeutic approaches for patients with PTEN-null tumors.
Collapse
Affiliation(s)
- Hyeyoun Chang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- KIST-DFCI On-Site Lab, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhenying Cai
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas M. Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: ; Tel.: +1-617-632-3049
| |
Collapse
|
18
|
Hasle N, Matreyek KA, Fowler DM. The Impact of Genetic Variants on PTEN Molecular Functions and Cellular Phenotypes. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036228. [PMID: 31451538 DOI: 10.1101/cshperspect.a036228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor that directly regulates a diverse array of cellular phenotypes, including growth, migration, morphology, and genome stability. How a single protein impacts so many important cellular processes remains a fascinating question. This question has been partially resolved by the characterization of a slew of missense variants that alter or eliminate PTEN's various molecular functions, including its enzymatic activity, subcellular localization, and posttranslational modifications. Here, we review what is known about how PTEN variants impact molecular function and, consequently, cellular phenotype. In particular, we highlight eight informative "sentinel variants" that abrogate distinct molecular functions of PTEN. We consider two published massively parallel assays of variant effect that measured the effect of thousands of PTEN variants on protein abundance and enzymatic activity. Finally, we discuss how characterization of clinically ascertained variants, establishment of clinical sequencing databases, and massively parallel assays of variant effect yield complementary datasets for dissecting PTEN's role in disease.
Collapse
Affiliation(s)
- Nicholas Hasle
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Kenneth A Matreyek
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.,Genetic Networks Program, CIFAR, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
19
|
McKinney A, Lindberg OR, Engler JR, Chen KY, Kumar A, Gong H, Lu KV, Simonds EF, Cloughesy TF, Liau LM, Prados M, Bollen AW, Berger MS, Shieh JTC, James CD, Nicolaides TP, Yong WH, Lai A, Hegi ME, Weiss WA, Phillips JJ. Mechanisms of Resistance to EGFR Inhibition Reveal Metabolic Vulnerabilities in Human GBM. Mol Cancer Ther 2019; 18:1565-1576. [PMID: 31270152 DOI: 10.1158/1535-7163.mct-18-1330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/10/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
Amplification of the epidermal growth factor receptor gene (EGFR) represents one of the most commonly observed genetic lesions in glioblastoma (GBM); however, therapies targeting this signaling pathway have failed clinically. Here, using human tumors, primary patient-derived xenografts (PDX), and a murine model for GBM, we demonstrate that EGFR inhibition leads to increased invasion of tumor cells. Further, EGFR inhibitor-treated GBM demonstrates altered oxidative stress, with increased lipid peroxidation, and generation of toxic lipid peroxidation products. A tumor cell subpopulation with elevated aldehyde dehydrogenase (ALDH) levels was determined to comprise a significant proportion of the invasive cells observed in EGFR inhibitor-treated GBM. Our analysis of the ALDH1A1 protein in newly diagnosed GBM revealed detectable ALDH1A1 expression in 69% (35/51) of the cases, but in relatively low percentages of tumor cells. Analysis of paired human GBM before and after EGFR inhibitor therapy showed an increase in ALDH1A1 expression in EGFR-amplified tumors (P < 0.05, n = 13 tumor pairs), and in murine GBM ALDH1A1-high clones were more resistant to EGFR inhibition than ALDH1A1-low clones. Our data identify ALDH levels as a biomarker of GBM cells with high invasive potential, altered oxidative stress, and resistance to EGFR inhibition, and reveal a therapeutic target whose inhibition should limit GBM invasion.
Collapse
Affiliation(s)
- Andrew McKinney
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Olle R Lindberg
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Jane R Engler
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Katharine Y Chen
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Anupam Kumar
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Henry Gong
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Kan V Lu
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Erin F Simonds
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California.,Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Linda M Liau
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Michael Prados
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Andrew W Bollen
- Department of Pathology, Division of Neuropathology, University of California, San Francisco, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Joseph T C Shieh
- Division of Medical Genetics, Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - C David James
- Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Theodore P Nicolaides
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco, San Francisco, California
| | - William H Yong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Albert Lai
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Monika E Hegi
- Neuroscience Research Center and Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - William A Weiss
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California.,Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California. .,Department of Pathology, Division of Neuropathology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
20
|
Carpenter CD, Alnahhas I, Gonzalez J, Giglio P, Puduvalli VK. Changing paradigms for targeted therapies against diffuse infiltrative gliomas: tackling a moving target. Expert Rev Neurother 2019; 19:663-677. [PMID: 31106606 DOI: 10.1080/14737175.2019.1621169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Gliomas are highly heterogeneous primary brain tumors which result in a disproportionately high degree of morbidity and mortality despite their locoregional occurrence. Advances in the understanding of the biological makeup of these malignancies have yielded a number of potential tumor-driving pathways which have been identified as rational targets for therapy. However, early trials of agents that target these pathways have uniformly failed to yield improvement in outcomes in patients with malignant gliomas. Areas covered: This review provides an overview of the most common biological features of gliomas and the strategies to target the same; in addition, the current status of immunotherapy and biological therapies are outlined and the future directions to tackle the challenges of therapy for gliomas are examined. Expert opinion: The limitations of current treatments are attributed to the inability of most of these agents to cross the blood-brain barrier and to the intrinsic heterogeneity of the tumors that result in treatment resistance. The recent emergence of immune-mediated and biological therapies and of agents that target metabolic pathways in gliomas have provided strategies that may overcome tumor heterogeneity and ongoing trials of such agents are anticipated to yield improved outcomes.
Collapse
Affiliation(s)
- Candice D Carpenter
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Iyad Alnahhas
- b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Javier Gonzalez
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Pierre Giglio
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Vinay K Puduvalli
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| |
Collapse
|
21
|
Saleem H, Kulsoom Abdul U, Küçükosmanoglu A, Houweling M, Cornelissen FMG, Heiland DH, Hegi ME, Kouwenhoven MCM, Bailey D, Würdinger T, Westerman BA. The TICking clock of EGFR therapy resistance in glioblastoma: Target Independence or target Compensation. Drug Resist Updat 2019; 43:29-37. [PMID: 31054489 DOI: 10.1016/j.drup.2019.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Targeted therapy against driver mutations responsible for cancer progression has been shown to be effective in many tumor types. For glioblastoma (GBM), the epidermal growth factor receptor (EGFR) gene is the most frequently mutated oncogenic driver and has therefore been considered an attractive target for therapy. However, so far responses to EGFR-pathway inhibitors have been disappointing. We performed an exhaustive analysis of the mechanisms that might account for therapy resistance against EGFR inhibition. We define two major mechanisms of resistance and propose modalities to overcome them. The first resistance mechanism concerns target independence. In this case, cells have lost expression of the EGFR protein and experience no negative impact of EGFR targeting. Loss of extrachromosomally encoded EGFR as present in double minute DNA is a frequent mechanism for this type of drug resistance. The second mechanism concerns target compensation. In this case, cells will counteract EGFR inhibition by activation of compensatory pathways that render them independent of EGFR signaling. Compensatory pathway candidates are platelet-derived growth factor β (PDGFβ), Insulin-like growth factor 1 (IGFR1) and cMET and their downstream targets, all not commonly mutated at the time of diagnosis alongside EGFR mutation. Given that both mechanisms make cells independent of EGFR expression, other means have to be found to eradicate drug resistant cells. To this end we suggest rational strategies which include the use of multi-target therapies that hit truncation mutations (mechanism 1) or multi-target therapies to co-inhibit compensatory proteins (mechanism 2).
Collapse
Affiliation(s)
- Hamza Saleem
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - U Kulsoom Abdul
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Asli Küçükosmanoglu
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Megan Houweling
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Fleur M G Cornelissen
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands; Division of Biology, Nature Science Building, 9500 Gilman Drive, CA, 92093-0377, United States
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Baden-Württemberg, Germany
| | - Monika E Hegi
- Department of Clinical Neurosciences, Lausanne University Hospital, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Mathilde C M Kouwenhoven
- Department of Neurology, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - David Bailey
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Tom Würdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Ma J, Benitez JA, Li J, Miki S, Ponte de Albuquerque C, Galatro T, Orellana L, Zanca C, Reed R, Boyer A, Koga T, Varki NM, Fenton TR, Nagahashi Marie SK, Lindahl E, Gahman TC, Shiau AK, Zhou H, DeGroot J, Sulman EP, Cavenee WK, Kolodner RD, Chen CC, Furnari FB. Inhibition of Nuclear PTEN Tyrosine Phosphorylation Enhances Glioma Radiation Sensitivity through Attenuated DNA Repair. Cancer Cell 2019; 35:504-518.e7. [PMID: 30827889 PMCID: PMC6424615 DOI: 10.1016/j.ccell.2019.01.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/10/2018] [Accepted: 01/28/2019] [Indexed: 11/21/2022]
Abstract
Ionizing radiation (IR) and chemotherapy are standard-of-care treatments for glioblastoma (GBM) patients and both result in DNA damage, however, the clinical efficacy is limited due to therapeutic resistance. We identified a mechanism of such resistance mediated by phosphorylation of PTEN on tyrosine 240 (pY240-PTEN) by FGFR2. pY240-PTEN is rapidly elevated and bound to chromatin through interaction with Ki-67 in response to IR treatment and facilitates the recruitment of RAD51 to promote DNA repair. Blocking Y240 phosphorylation confers radiation sensitivity to tumors and extends survival in GBM preclinical models. Y240F-Pten knockin mice showed radiation sensitivity. These results suggest that FGFR-mediated pY240-PTEN is a key mechanism of radiation resistance and is an actionable target for improving radiotherapy efficacy.
Collapse
Affiliation(s)
- Jianhui Ma
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Jorge A Benitez
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Jie Li
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shunichiro Miki
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Claudio Ponte de Albuquerque
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Thais Galatro
- Department of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Laura Orellana
- Science for Life Laboratory, 17121 Stockholm, Sweden; Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Rachel Reed
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Antonia Boyer
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Tomoyuki Koga
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Nissi M Varki
- Department of Pathology, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Tim R Fenton
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Suely Kazue Nagahashi Marie
- Department of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, School of Medicine, University of São Paulo, São Paulo, Brazil; Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil
| | - Erik Lindahl
- Science for Life Laboratory, 17121 Stockholm, Sweden; Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Timothy C Gahman
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Andrew K Shiau
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - John DeGroot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erik P Sulman
- Departments of Radiation Oncology, Translational Molecular Pathology, and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pathology, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Abdul KU, Houweling M, Svensson F, Narayan RS, Cornelissen FMG, Küçükosmanoglu A, Metzakopian E, Watts C, Bailey D, Wurdinger T, Westerman BA. WINDOW consortium: A path towards increased therapy efficacy against glioblastoma. Drug Resist Updat 2018; 40:17-24. [PMID: 30439622 DOI: 10.1016/j.drup.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023]
Abstract
Glioblastoma is the most common and malignant form of brain cancer, for which the standard treatment is maximal surgical resection, radiotherapy and chemotherapy. Despite these interventions, mean overall survival remains less than 15 months, during which extensive tumor infiltration throughout the brain occurs. The resulting metastasized cells in the brain are characterized by chemotherapy resistance and extensive intratumoral heterogeneity. An orthogonal approach attacking both intracellular resistance mechanisms as well as intercellular heterogeneity is necessary to halt tumor progression. For this reason, we established the WINDOW Consortium (Window for Improvement for Newly Diagnosed patients by Overcoming disease Worsening), in which we are establishing a strategy for rational selection and development of effective therapies against glioblastoma. Here, we overview the many challenges posed in treating glioblastoma, including selection of drug combinations that prevent therapy resistance, the need for drugs that have improved blood brain barrier penetration and strategies to counter heterogeneous cell populations within patients. Together, this forms the backbone of our strategy to attack glioblastoma.
Collapse
Affiliation(s)
- Kulsoom U Abdul
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | - Megan Houweling
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | - Fredrik Svensson
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS, United Kingdom
| | - Ravi S Narayan
- Department of Radiation Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | - Fleur M G Cornelissen
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | - Asli Küçükosmanoglu
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | | | - Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - David Bailey
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS, United Kingdom
| | - Tom Wurdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands.
| |
Collapse
|
24
|
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein and a member of the tyrosine kinase superfamily receptor. Gliomas are tumors originating from glial cells, which show a range of aggressiveness depending on grade and stage. Many EGFR gene alterations have been identified in gliomas, especially glioblastomas, including amplifications, deletions and single nucleotide polymorphisms (SNPs). Glioblastomas are discussed as a separate entity due to their high correlation with EGFR mutants and the reported association of the latter with survival and response to treatment in this glioma subgroup. This review is a comprehensive report of EGFR gene alterations and their relations with several clinical factors in glioblastomas and other gliomas. It covers all EGFR gene alterations including point mutations, SNPs, methylations, copy number variations and amplifications, assessed with regard to different clinical variables, including response to therapy and survival. This review also discusses the current prognostic status of EGFR in glioblastomas and other gliomas, and highlights gaps in previous studies. This serves as an update for the medical community about the role of EGFR gene alterations in gliomas and specifically glioblastomas, as a means for targeted treatment and prognosis.
Collapse
|
25
|
Habban Akhter M, Sateesh Madhav N, Ahmad J. Epidermal growth factor receptor based active targeting: a paradigm shift towards advance tumor therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1188-1198. [PMID: 29991287 DOI: 10.1080/21691401.2018.1481863] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a cell surface receptor belonging to erythroblastic leukemia viral oncogene homologue (ErbB) family of tyrosine kinase. It plays critical role in the regulation of cell proliferation, survival and differentiation. The EGFR receptor is crucial in a variety of tumor development due to unlikely triggered by receptor overexpression, chromosomal mutation and or ligand-dependent receptor dimerization. The EGFR inhibition established a major therapeutic target in cancer therapy. The signal transduction pathway of EGFR is directly involved in tumor pathogenesis and progression. The combinatorial approach with EGFR inhibitors bring novel therapeutic regime with proved clinical efficacy. This critique briefly addressed EGFR receptor characteristics, worldwide report on various cancers and EGFR based potential targeting modalities in skin, breast, ovary, brain, lungs, pancreas, gastric and colorectal tumors and molecular pathways involved in EGFR targeting.
Collapse
Affiliation(s)
- Md Habban Akhter
- a Faculty of Pharmacy , DIT University , Dehradun , India.,b School of Pharmaceutical Education and Research , Jamia Hamdard , New Delhi , India
| | | | - Javed Ahmad
- c Department of Pharmaceutics , Najran University , Najran , Saudi Arabia
| |
Collapse
|
26
|
Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, Akbari H, Rathore S, Ha SM, Zhang L, Ferguson CJ, Dahiya S, Bi WL, Reardon DA, Idbaih A, Felsberg J, Hentschel B, Weller M, Bagley SJ, Morrissette JJD, Nasrallah MP, Ma J, Zanca C, Scott AM, Orellana L, Davatzikos C, Furnari FB, O'Rourke DM. Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development. Cancer Cell 2018; 34:163-177.e7. [PMID: 29990498 PMCID: PMC6424337 DOI: 10.1016/j.ccell.2018.06.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/27/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
We explored the clinical and pathological impact of epidermal growth factor receptor (EGFR) extracellular domain missense mutations. Retrospective assessment of 260 de novo glioblastoma patients revealed a significant reduction in overall survival of patients having tumors with EGFR mutations at alanine 289 (EGFRA289D/T/V). Quantitative multi-parametric magnetic resonance imaging analyses indicated increased tumor invasion for EGFRA289D/T/V mutants, corroborated in mice bearing intracranial tumors expressing EGFRA289V and dependent on ERK-mediated expression of matrix metalloproteinase-1. EGFRA289V tumor growth was attenuated with an antibody against a cryptic epitope, based on in silico simulation. The findings of this study indicate a highly invasive phenotype associated with the EGFRA289V mutation in glioblastoma, postulating EGFRA289V as a molecular marker for responsiveness to therapy with EGFR-targeting antibodies.
Collapse
Affiliation(s)
- Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E Paul Wileyto
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michel Bilello
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saima Rathore
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Logan Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cole J Ferguson
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Woman's Hospital, Harvard Medical Center, Boston, MA 02115, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris 75013, France
| | - Joerg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Moorenstrasse 5, Duesseldorf 40225, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Medical Faculty, Härtelstrasse 16, Leipzig 04107, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich 8091, Switzerland
| | - Stephen J Bagley
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MacLean P Nasrallah
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianhui Ma
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, La Trobe University, Melbourne, Australia
| | - Laura Orellana
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA.
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Moretti IF, Franco DG, de Almeida Galatro TF, Oba-Shinjo SM, Marie SKN. Plasmatic membrane toll-like receptor expressions in human astrocytomas. PLoS One 2018; 13:e0199211. [PMID: 29912993 PMCID: PMC6005538 DOI: 10.1371/journal.pone.0199211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors (TLRs) are the first to identify disturbances in the immune system, recognizing pathogens such as bacteria, fungi, and viruses. Since the inflammation process plays an important role in several diseases, TLRs have been considered potential therapeutic targets, including treatment for cancer. However, TLRs’ role in cancer remains ambiguous. This study aims to analyze the expression levels of plasmatic cell membrane TLRs (TLR1, TLR2, TLR4, TLR5, and TLR6) in human astrocytomas the most prevalent tumors of CNS different grades (II-IV). We demonstrated that TLR expressions were higher in astrocytoma samples compared to non-neoplastic brain tissue. The gene and protein expressions were observed in GBM cell lines U87MG and A172, proving their presence in the tumor cells. Associated expressions between the known heterodimers TLR1-TLR2 were found in all astrocytoma grades. In GBMs, the mesenchymal subtype showed higher levels of TLR expressions in relation to classical and proneural subtypes. A strong association of TLRs with the activation of cell cycle process and signaling through canonical, inflammasome and ripoptosome pathways was observed by in silico analysis, further highlighting TLRs as interesting targets for cancer treatment.
Collapse
Affiliation(s)
- Isabele Fattori Moretti
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brasil
- * E-mail:
| | - Daiane Gil Franco
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Thais Fernanda de Almeida Galatro
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Sueli Mieko Oba-Shinjo
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Suely Kazue Nagahashi Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brasil
| |
Collapse
|
28
|
Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 2018; 19:547-562. [DOI: 10.1038/s41580-018-0015-0] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Logun M, Zhao W, Mao L, Karumbaiah L. Microfluidics in Malignant Glioma Research and Precision Medicine. ADVANCED BIOSYSTEMS 2018; 2:1700221. [PMID: 29780878 PMCID: PMC5959050 DOI: 10.1002/adbi.201700221] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive form of brain cancer that has no effective treatments and a prognosis of only 12-15 months. Microfluidic technologies deliver microscale control of fluids and cells, and have aided cancer therapy as point-of-care devices for the diagnosis of breast and prostate cancers. However, a few microfluidic devices are developed to study malignant glioma. The ability of these platforms to accurately replicate the complex microenvironmental and extracellular conditions prevailing in the brain and facilitate the measurement of biological phenomena with high resolution and in a high-throughput manner could prove useful for studying glioma progression. These attributes, coupled with their relatively simple fabrication process, make them attractive for use as point-of-care diagnostic devices for detection and treatment of GBM. Here, the current issues that plague GBM research and treatment, as well as the current state of the art in glioma detection and therapy, are reviewed. Finally, opportunities are identified for implementing microfluidic technologies into research and diagnostics to facilitate the rapid detection and better therapeutic targeting of GBM.
Collapse
Affiliation(s)
- Meghan Logun
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 425 River Road, Athens, GA 30602-2771, USA
| | - Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, GA 30602-2771, USA
| | - Leidong Mao
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602-2771, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 425 River Road, Athens, GA 30602-2771, USA
| |
Collapse
|
30
|
An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 2018; 37:1561-1575. [PMID: 29321659 PMCID: PMC5860944 DOI: 10.1038/s41388-017-0045-7] [Citation(s) in RCA: 419] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.
Collapse
Affiliation(s)
- Zhenyi An
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ozlem Aksoy
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Tina Zheng
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Qi-Wen Fan
- Department of Neurology, University of California, San Francisco, CA, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
31
|
|
32
|
In-vitro evaluation of MPA-loaded electrospun coaxial fiber membranes for local treatment of glioblastoma tumor cells. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Malaney P, Uversky VN, Davé V. PTEN proteoforms in biology and disease. Cell Mol Life Sci 2017; 74:2783-2794. [PMID: 28289760 PMCID: PMC11107534 DOI: 10.1007/s00018-017-2500-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 01/30/2023]
Abstract
Proteoforms are specific molecular forms of protein products arising from a single gene that possess different structures and different functions. Therefore, a single gene can produce a large repertoire of proteoforms by means of allelic variations (mutations, indels, SNPs), alternative splicing and other pre-translational mechanisms, post-translational modifications (PTMs), conformational dynamics, and functioning. Resulting proteoforms that have different sizes, alternative splicing patterns, sets of post-translational modifications, protein-protein interactions, and protein-ligand interactions, might dramatically increase the functionality of the encoded protein. Herein, we have interrogated the tumor suppressor PTEN for its proteoforms and find that this protein exists in multiple forms with distinct functions and sub-cellular localizations. Furthermore, the levels of each PTEN proteoform in a given cell may affect its biological function. Indeed, the paradigm of the continuum model of tumor suppression by PTEN can be better explained by the presence of a continuum of PTEN proteoforms, diversity, and levels of which are associated with pathological outcomes than simply by the different roles of mutations in the PTEN gene. Consequently, understanding the mechanisms underlying the dysregulation of PTEN proteoforms by several genomic and non-genomic mechanisms in cancer and other diseases is imperative. We have identified different PTEN proteoforms, which control various aspects of cellular function and grouped them into three categories of intrinsic, function-induced, and inducible proteoforms. A special emphasis is given to the inducible PTEN proteoforms that are produced due to alternative translational initiation. The novel finding that PTEN forms dimers with biological implications supports the notion that PTEN proteoform-proteoform interactions may play hitherto unknown roles in cellular homeostasis and in pathogenic settings, including cancer. These PTEN proteoforms with unique properties and functionalities offer potential novel therapeutic opportunities in the treatment of various cancers and other diseases.
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Pathology and Cell Biology, Morsani College of Medicine, MDC 64, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33612, USA
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave., Saint Petersburg, Russia, 194064
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, MDC 64, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
- Department of Oncological Sciences, Morsani College of Medicine, University of South Florida, Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
34
|
Mohanty S, Chen Z, Li K, Morais GR, Klockow J, Yerneni K, Pisani L, Chin FT, Mitra S, Cheshier S, Chang E, Gambhir SS, Rao J, Loadman PM, Falconer RA, Daldrup-Link HE. A Novel Theranostic Strategy for MMP-14-Expressing Glioblastomas Impacts Survival. Mol Cancer Ther 2017; 16:1909-1921. [PMID: 28659432 DOI: 10.1158/1535-7163.mct-17-0022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/09/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) has a dismal prognosis. Evidence from preclinical tumor models and human trials indicates the role of GBM-initiating cells (GIC) in GBM drug resistance. Here, we propose a new treatment option with tumor enzyme-activatable, combined therapeutic and diagnostic (theranostic) nanoparticles, which caused specific toxicity against GBM tumor cells and GICs. The theranostic cross-linked iron oxide nanoparticles (CLIO) were conjugated to a highly potent vascular disrupting agent (ICT) and secured with a matrix-metalloproteinase (MMP-14) cleavable peptide. Treatment with CLIO-ICT disrupted tumor vasculature of MMP-14-expressing GBM, induced GIC apoptosis, and significantly impaired tumor growth. In addition, the iron core of CLIO-ICT enabled in vivo drug tracking with MR imaging. Treatment with CLIO-ICT plus temozolomide achieved tumor remission and significantly increased survival of human GBM-bearing mice by more than 2-fold compared with treatment with temozolomide alone. Thus, we present a novel therapeutic strategy with significant impact on survival and great potential for clinical translation. Mol Cancer Ther; 16(9); 1909-21. ©2017 AACR.
Collapse
Affiliation(s)
- Suchismita Mohanty
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Zixin Chen
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Kai Li
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Jessica Klockow
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Ketan Yerneni
- Department of Biology, Skidmore College, Saratoga Springs, New York
| | - Laura Pisani
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Siddharta Mitra
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, California
| | - Samuel Cheshier
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, California
| | | | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
- Department of Bioengineering, Stanford University, Stanford, California
- Department of Materials Science & Engineering, Stanford University, Stanford, California
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Paul M Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.
| |
Collapse
|
35
|
Wei W, Wang H, Ji S. Paradoxes of the EphB1 receptor in malignant brain tumors. Cancer Cell Int 2017; 17:21. [PMID: 28194092 PMCID: PMC5299699 DOI: 10.1186/s12935-017-0384-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Eph receptors are a subfamily of receptor tyrosine kinases. Eph receptor-mediated forward and ephrin ligand-mediated reverse signalings are termed bidirectional signaling. Increasing evidence shows that Eph/ephrin signaling regulates cell migration, adhesion, morphological changes, differentiation, proliferation and survival through cell–cell communication. Some recent studies have started to implicate Eph/ephrin signaling in tumorigenesis, metastasis, and angiogenesis. Previous studies have shown that EphB1 receptor and its ephrin ligands are expressed in the central nervous system. EphB1/ephrin signaling plays an important role in the regulation of synapse formation and maturation, migration of neural progenitors, establishment of tissue patterns, and the development of immune organs. Besides, various recent studies have detected the abnormal expression of EphB1 receptor in different brain tumors. However, the underlying molecular mechanisms of EphB1/ephrins signaling in the development of these tumors are not fully understood. This review focuses on EphB1 that has both tumor-suppressing and -promoting roles in some brain tumors. Understanding the intracellular mechanisms of EphB1 in tumorigenesis and metastasis of brain tumors might provide a foundation for the development of EphB1-targeted therapies.
Collapse
Affiliation(s)
- Wenqiang Wei
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng, 475004 China.,Department of Microbiology, Medical School, Henan University, Kaifeng, 475004 China
| | - Hongju Wang
- Department of Anatomy, Medical School, Henan University, Kaifeng, 475004 China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng, 475004 China.,Department of Oncology, The First Affiliated Hospital, Henan University, Kaifeng, 475001 China
| |
Collapse
|
36
|
Wang Z, Guo Q, Wang R, Xu G, Li P, Sun Y, She X, Liu Q, Chen Q, Yu Z, Liu C, Xiong J, Li G, Wu M. The D Domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. J Hematol Oncol 2016; 9:130. [PMID: 27884160 PMCID: PMC5123285 DOI: 10.1186/s13045-016-0355-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Background As a well-characterized key player in various signal transduction networks, extracellular-signal-regulated kinase (ERK1/2) has been widely implicated in the development of many malignancies. We previously found that Leucine-rich repeat containing 4 (LRRC4) was a tumor suppressor and a negative regulator of the ERK/MAPK pathway in glioma tumorigenesis. However, the precise molecular role of LRRC4 in ERK signal transmission is unclear. Methods The interaction between LRRC4 and ERK1/2 was assessed by co-immunoprecipitation and GST pull-down assays in vivo and in vitro. We also investigated the interaction of LRRC4 and ERK1/2 and the role of the D domain in ERK activation in glioma cells. Results Here, we showed that LRRC4 and ERK1/2 interact via the D domain and CD domain, respectively. Following EGF stimuli, the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and abrogates ERK1/2 activation and nuclear translocation. In glioblastoma cells, ectopic LRRC4 expression competitively inhibited the interaction of endogenous mitogen-activated protein kinase (MEK) and ERK1/2. Mutation of the D domain decreased the LRRC4-mediated inhibition of MAPK signaling and its anti-proliferation and anti-invasion roles. Conclusions Our results demonstrated that the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. These findings identify a new mechanism underlying glioblastoma progression and suggest a novel therapeutic strategy by restoring the activity of LRRC4 to decrease MAPK cascade activation. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0355-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeyou Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Guo
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Rong Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Gang Xu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Peiyao Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoling She
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiang Liu
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Qiong Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Zhibin Yu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Changhong Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jing Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
37
|
Transforming growth factor-beta1 upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways. Int J Biochem Cell Biol 2016; 77:141-154. [DOI: 10.1016/j.biocel.2016.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
|
38
|
Wei W, Shin YS, Xue M, Matsutani T, Masui K, Yang H, Ikegami S, Gu Y, Herrmann K, Johnson D, Ding X, Hwang K, Kim J, Zhou J, Su Y, Li X, Bonetti B, Chopra R, James CD, Cavenee WK, Cloughesy TF, Mischel PS, Heath JR, Gini B. Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. Cancer Cell 2016; 29:563-573. [PMID: 27070703 PMCID: PMC4831071 DOI: 10.1016/j.ccell.2016.03.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/25/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022]
Abstract
Intratumoral heterogeneity of signaling networks may contribute to targeted cancer therapy resistance, including in the highly lethal brain cancer glioblastoma (GBM). We performed single-cell phosphoproteomics on a patient-derived in vivo GBM model of mTOR kinase inhibitor resistance and coupled it to an analytical approach for detecting changes in signaling coordination. Alterations in the protein signaling coordination were resolved as early as 2.5 days after treatment, anticipating drug resistance long before it was clinically manifest. Combination therapies were identified that resulted in complete and sustained tumor suppression in vivo. This approach may identify actionable alterations in signal coordination that underlie adaptive resistance, which can be suppressed through combination drug therapy, including non-obvious drug combinations.
Collapse
Affiliation(s)
- Wei Wei
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Young Shik Shin
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Min Xue
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomoo Matsutani
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kenta Masui
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huijun Yang
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shiro Ikegami
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuchao Gu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dazy Johnson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiangming Ding
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kiwook Hwang
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jungwoo Kim
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jian Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yapeng Su
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bruno Bonetti
- Department of Neurological and Movement Sciences, University of Verona, Verona, 37134, Italy
| | | | - C David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Timothy F Cloughesy
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA.
| | - James R Heath
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Beatrice Gini
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
39
|
Zorzan M, Giordan E, Redaelli M, Caretta A, Mucignat-Caretta C. Molecular targets in glioblastoma. Future Oncol 2016; 11:1407-20. [PMID: 25952786 DOI: 10.2217/fon.15.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is the most lethal brain tumor. The poor prognosis results from lack of defined tumor margins, critical location of the tumor mass and presence of chemo- and radio-resistant tumor stem cells. The current treatment for glioblastoma consists of neurosurgery, followed by radiotherapy and temozolomide chemotherapy. A better understanding of the role of molecular and genetic heterogeneity in glioblastoma pathogenesis allowed the design of novel targeted therapies. New targets include different key-role signaling molecules and specifically altered pathways. The new approaches include interference through small molecules or monoclonal antibodies and RNA-based strategies mediated by siRNA, antisense oligonucleotides and ribozymes. Most of these treatments are still being tested yet they stay as solid promises for a clinically relevant success.
Collapse
Affiliation(s)
- Maira Zorzan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
40
|
Stress Response Leading to Resistance in Glioblastoma-The Need for Innovative Radiotherapy (iRT) Concepts. Cancers (Basel) 2016; 8:cancers8010015. [PMID: 26771644 PMCID: PMC4728462 DOI: 10.3390/cancers8010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/23/2015] [Accepted: 01/08/2016] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is the most common and most aggressive malignant primary brain tumor in adults. In spite of multimodal therapy concepts, consisting of surgery, radiotherapy and chemotherapy, the median survival, merely 15–18 months, is still poor. Mechanisms for resistance of GBM to radio(chemo)therapy are not fully understood yet and due to the genetic heterogeneity within the tumor including radiation-resistant tumor stem cells, there are several factors leading to therapy failure. Recent research revealed that, hypoxia during radiation and miRNAs may adversely affect the therapeutic response to radiotherapy. Further molecular alterations and prognostic markers like the DNA-repair protein O6-methylguanine-DNA methyltransferase (MGMT), anti-apoptotic molecular chaperones, and/or the activity of aldehyde dehydrogenase 1 (ALDH1) have also been identified to play a role in the sensitivity to cytostatic agents. Latest approaches in the field of radiotherapy to use particle irradiation or dose escalation strategies including modern molecular imaging, however, need further evaluation with regard to long-term outcome. In this review we focus on current information about the mechanisms and markers that mediate resistance to radio(chemo)therapy, and discuss the opportunities of Innovative Radiotherapy (iRT) concepts to improve treatment options for GBM patients.
Collapse
|
41
|
Popescu AM, Purcaru SO, Alexandru O, Dricu A. New perspectives in glioblastoma antiangiogenic therapy. Contemp Oncol (Pozn) 2015; 20:109-18. [PMID: 27358588 PMCID: PMC4925727 DOI: 10.5114/wo.2015.56122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GB) is highly vascularised tumour, known to exhibit enhanced infiltrative potential. One of the characteristics of glioblastoma is microvascular proliferation surrounding necrotic areas, as a response to a hypoxic environment, which in turn increases the expression of angiogenic factors and their signalling pathways (RAS/RAF/ERK/MAPK pathway, PI3K/Akt signalling pathway and WTN signalling cascade). Currently, a small number of anti-angiogenic drugs, extending glioblastoma patients survival, are available for clinical use. Most medications are ineffective in clinical therapy of glioblastoma due to acquired malignant cells or intrinsic resistance, angiogenic receptors cross-activation and redundant intracellular signalling, or the inability of the drug to cross the blood-brain barrier and to reach its target in vivo. Researchers have also observed that GB tumours are different in many aspects, even when they derive from the same tissue, which is the reason for personalised therapy. An understanding of the molecular mechanisms regulating glioblastoma angiogenesis and invasion may be important in the future development of curative therapeutic approaches for the treatment of this devastating disease.
Collapse
Affiliation(s)
| | - Stefana Oana Purcaru
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova and Clinical Hospital of Neuropsychiatry Craiova, Craiova, Romania
| | - Anica Dricu
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
42
|
Ellis HP, Greenslade M, Powell B, Spiteri I, Sottoriva A, Kurian KM. Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence. Front Oncol 2015; 5:251. [PMID: 26636033 PMCID: PMC4644939 DOI: 10.3389/fonc.2015.00251] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GB) is the most common primary malignant brain tumor, and despite the availability of chemotherapy and radiotherapy to combat the disease, overall survival remains low with a high incidence of tumor recurrence. Technological advances are continually improving our understanding of the disease, and in particular, our knowledge of clonal evolution, intratumor heterogeneity, and possible reservoirs of residual disease. These may inform how we approach clinical treatment and recurrence in GB. Mathematical modeling (including neural networks) and strategies such as multiple sampling during tumor resection and genetic analysis of circulating cancer cells, may be of great future benefit to help predict the nature of residual disease and resistance to standard and molecular therapies in GB.
Collapse
Affiliation(s)
- Hayley P Ellis
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol , Bristol , UK
| | - Mark Greenslade
- Bristol Genetics Laboratory, North Bristol NHS Trust , Bristol , UK
| | - Ben Powell
- School of Mathematics, University of Bristol , Bristol , UK
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research , London , UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research , London , UK
| | - Kathreena M Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol , Bristol , UK
| |
Collapse
|
43
|
Chia YCJ, Catimel B, Lio DSS, Ang CS, Peng B, Wu H, Zhu HJ, Cheng HC. The C-terminal tail inhibitory phosphorylation sites of PTEN regulate its intrinsic catalytic activity and the kinetics of its binding to phosphatidylinositol-4,5-bisphosphate. Arch Biochem Biophys 2015; 587:48-60. [PMID: 26471078 DOI: 10.1016/j.abb.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Dephosphorylation of four major C-terminal tail sites and occupancy of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]-binding site of PTEN cooperate to activate its phospholipid phosphatase activity and facilitate its recruitment to plasma membrane. Our investigation of the mechanism by which phosphorylation of these C-terminal sites controls the PI(4,5)P2-binding affinity and catalytic activity of PTEN resulted in the following findings. First, dephosphorylation of all four sites leads to full activation; and phosphorylation of any one site significantly reduces the intrinsic catalytic activity of PTEN. These findings suggest that coordinated inhibition of the upstream protein kinases and activation of the protein phosphatases targeting the four sites are needed to fully activate PTEN phosphatase activity. Second, PI(4,5)P2 cannot activate the phosphopeptide phosphatase activity of PTEN, suggesting that PI(4,5)P2 can only activate the phospholipid phosphatase activity but not the phosphoprotein phosphatase activity of PTEN. Third, dephosphorylation of all four sites significantly decreases the affinity of PTEN for PI(4,5)P2. Since PI(4,5)P2 is a major phospholipid co-localizing with the phospholipid- and phosphoprotein-substrates in plasma membrane, we hypothesise that the reduced affinity facilitates PTEN to "hop" on the plasma membrane to dephosphorylate these substrates.
Collapse
Affiliation(s)
- Yeong-Chit Joel Chia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bruno Catimel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Daisy Sio Seng Lio
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benjamin Peng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hong Wu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
44
|
Yothaisong S, Thanee M, Namwat N, Yongvanit P, Boonmars T, Puapairoj A, Loilome W. Opisthorchis viverrini infection activates the PI3K/ AKT/PTEN and Wnt/β-catenin signaling pathways in a Cholangiocarcinogenesis model. Asian Pac J Cancer Prev 2015; 15:10463-8. [PMID: 25556493 DOI: 10.7314/apjcp.2014.15.23.10463] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Opisthorchis viverrini (Ov) infection is the major etiological factor for cholangiocarcinoma (CCA), especially in northeast Thailand. We have previously reported significant involvement of PI3K/AKT/PTEN and Wnt/β- catenin in human CCA tissues. The present study, therefore, examined the expression and activation of PI3K/ AKT/PTEN and Wnt/β-catenin signaling components during Ov-induced cholangiocarcinogenesis in a hamster animal model. Hamsters were divided into two groups; non-treated and Ov plus NDMA treated. The results of immunohistochemical staining showed an upregulation of PI3K/AKT signaling as determined by elevated expression of the p85α-regulatory and p110α-catalytic subunits of PI3K as well as increased expression and activation of AKT during cholangiocarcinogenesis. Interestingly, the staining intensity of activated AKT (p-AKT) increased in the apical regions of the bile ducts and strong staining was detected where the liver fluke resides. Moreover, PTEN, a negative regulator of PI3K/AKT, was suppressed by decreased expression and increased phosphorylation during cholangiocarcinogenesis. We also detected upregulation of Wnt/β-catenin signaling as determined by increased positive staining of Wnt3, Wnt3a, Wnt5a, Wnt7b and β-catenin, corresponded with the period of cholangiocarcinogenesis. Furthermore, nuclear staining of β-catenin was observed in CCA tissues. Our results suggest the liver fluke infection causes chronic inflammatory conditions which lead to upregulation of the PI3K/AKT and Wnt/β-catenin signaling pathways which may drive CCA carcinogenesis. These results provide useful information for drug development, prevention and treatment of CCA.
Collapse
Affiliation(s)
- Supak Yothaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand E-mail :
| | | | | | | | | | | | | |
Collapse
|
45
|
Reardon DA, Wen PY, Mellinghoff IK. Targeted molecular therapies against epidermal growth factor receptor: past experiences and challenges. Neuro Oncol 2015; 16 Suppl 8:viii7-13. [PMID: 25342602 DOI: 10.1093/neuonc/nou232] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) has emerged as a highly attractive therapeutic target in glioblastoma (GBM) based on its high frequency of gene amplification and mutation and its identification as an upstream trigger of dysregulated cell signaling cascades that drive GBM pathophysiology. Extensive investment has been committed in an attempt to exploit EGFR therapeutically to improve outcome for GBM patients, including the development of a variety of EGFR-targeting therapeutics as well as the participation of hundreds of participants in multiple, carefully constructed clinical trials. In this review, we summarize the design and results of clinical trials evaluating EGFR tyrosine kinase inhibitors in recurrent and newly diagnosed GBM patients. While overall results thus far have been disappointing, it is premature to discount EGFR as a therapeutic target in GBM on the basis of these studies given the limitations in study design and the pharmacology of first-generation EGFR kinase inhibitors. Although important lessons have been learned, critical questions remain unanswered and warrant further study.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ingo K Mellinghoff
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
46
|
Roth P, Weller M. Challenges to targeting epidermal growth factor receptor in glioblastoma: escape mechanisms and combinatorial treatment strategies. Neuro Oncol 2015; 16 Suppl 8:viii14-9. [PMID: 25342600 DOI: 10.1093/neuonc/nou222] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) gene amplification and activating mutations are common findings in glioblastomas. EGFR is at the top of a downstream signaling cascade that regulates important characteristics of glioblastoma cells, including cellular proliferation, migration, and survival. Targeting EGFR has therefore been regarded as a promising therapeutic strategy in glioblastoma for decades. However, although various pharmacological inhibitors and anti-EGFR antibodies are available, the antiglioma activity of these agents has been largely limited to preclinical models, whereas their administration to glioblastoma patients was characterized by lack of clinical benefit. Comprehensive efforts have been made within the last years to understand the underlying mechanisms that confer resistance to EGFR inhibition in glioma cells. The absence of well-known mutations that predict response to EGFR tyrosine kinase inhibitors (TKIs) in gliomas as well as the presence of redundant and alternative compensatory pathways are among the most important escape mechanisms that prevent potent antiglioma effects of EGFR-targeting drugs. Accordingly, an increasing number of in vitro and in vivo studies are aimed at overcoming this resistance by combinatorial approaches using anti-EGFR treatment together with one or more additional drugs. Novel insights into the molecular mechanisms mediating resistance to anti-EGFR treatment and promising combinatorial approaches may help to better define a future role for EGFR inhibition in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Patrick Roth
- Department of Neurology and Brain Tumor Center Zurich, University Hospital Zurich, Zurich, Switzerland (P.R., M.W.)
| | - Michael Weller
- Department of Neurology and Brain Tumor Center Zurich, University Hospital Zurich, Zurich, Switzerland (P.R., M.W.)
| |
Collapse
|
47
|
Xie X, Wang G, Zhang D, Zhang Y, Zhu Y, Li F, Li S, Li M. Activation of peroxisome proliferator-activated receptor γ ameliorates monocrotaline-induced pulmonary arterial hypertension in rats. Biomed Rep 2015; 3:537-542. [PMID: 26171162 DOI: 10.3892/br.2015.465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor γ (PPARγ) suppresses the proliferation of pulmonary artery smooth muscle cells (PASMCs) and vascular remodeling in rats and humans, and therefore improves the development of pulmonary arterial hypertension (PAH). However, molecular mechanisms underlying these effects have not been completely understood. In the present study, the effects of PPARγ activation in monocrotaline (MCT)-induced pulmonary artery remodeling in rats were investigated. Eighteen Sprague-Dawley (SD) rats were randomly assigned into three groups (n=6): Control (Con), PAH and PAH treated with rosiglitazone (MCT + Rosi). The right ventricular systolic pressure (RVSP), the ratio of the right to left ventricle plus septum weight [RV/(LV + S)], the percentage of medial wall thickness (%MT) and wall area (%WA) were used to evaluate the development of PAH. Tissue morphology was measured using hematoxylin and eosin staining. The protein levels of the phosphatase and tensin homologue deleted on chromosome ten (PTEN), Akt (ser473) phosphorylation (p-Akt) and total Akt in intrapulmonary arteries were determined by western blot analysis. MCT treatment significantly increased the RVSP, which was reduced by rosiglitazone treatment. The ratio of RV/(LV + S), %MT and %WA induced by MCT were similarly inhibited, which was associated with the increase of PTEN expression and the inhibition of Akt phosphorylation levels by rosiglitazone. In conclusion, activation of PPARγ ameliorates the proliferation of PASMCs and vascular remodeling by regulating the PTEN/PI3K/Akt pathway, suggesting that the activation of PPARγ has potential benefits for PAH.
Collapse
Affiliation(s)
- Xinming Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guizuo Wang
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Dexin Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yonghong Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yanting Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fangwei Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shaojun Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
48
|
Shen Y, Li J, Nitta M, Futalan D, Steed T, Treiber JM, Taich Z, Stevens D, Wykosky J, Chen HZ, Carter BS, Becher OJ, Kennedy R, Esashi F, Sarkaria JN, Furnari FB, Cavenee WK, Desai A, Chen CC. Orthogonal targeting of EGFRvIII expressing glioblastomas through simultaneous EGFR and PLK1 inhibition. Oncotarget 2015; 6:11751-67. [PMID: 26059434 PMCID: PMC4494902 DOI: 10.18632/oncotarget.3996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 04/20/2015] [Indexed: 11/25/2022] Open
Abstract
We identified a synthetic lethality between PLK1 silencing and the expression of an oncogenic Epidermal Growth Factor Receptor, EGFRvIII. PLK1 promoted homologous recombination (HR), mitigating EGFRvIII induced oncogenic stress resulting from DNA damage accumulation. Accordingly, PLK1 inhibition enhanced the cytotoxic effects of the DNA damaging agent, temozolomide (TMZ). This effect was significantly more pronounced in an Ink4a/Arf(-/-) EGFRvIII glioblastoma model relative to an Ink4a/Arf(-/-) PDGF-β model. The tumoricidal and TMZ-sensitizing effects of BI2536 were uniformly observed across Ink4a/Arf(-/-) EGFRvIII glioblastoma clones that acquired independent resistance mechanisms to EGFR inhibitors, suggesting these resistant clones retain oncogenic stress that required PLK1 compensation. Although BI2536 significantly augmented the anti-neoplastic effect of EGFR inhibitors in the Ink4a/Arf(-/-) EGFRvIII model, durable response was not achieved until TMZ was added. Our results suggest that optimal therapeutic effect against glioblastomas requires a "multi-orthogonal" combination tailored to the molecular physiology associated with the target cancer genome.
Collapse
Affiliation(s)
- Ying Shen
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Masayuki Nitta
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Diahnn Futalan
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Tyler Steed
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Jeffrey M. Treiber
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Zack Taich
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Deanna Stevens
- San Diego Branch, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Jill Wykosky
- San Diego Branch, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bob S. Carter
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Oren J. Becher
- Departments of Pediatrics and Pathology, Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Richard Kennedy
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | - Fumiko Esashi
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Frank B. Furnari
- San Diego Branch, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Webster K. Cavenee
- San Diego Branch, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Arshad Desai
- San Diego Branch, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Clark C. Chen
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Furnari FB, Cloughesy TF, Cavenee WK, Mischel PS. Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 2015; 15:302-10. [PMID: 25855404 PMCID: PMC4875778 DOI: 10.1038/nrc3918] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As tumours evolve, the daughter cells of the initiating cell often become molecularly heterogeneous and develop different functional properties and therapeutic vulnerabilities. In glioblastoma (GBM), a lethal form of brain cancer, the heterogeneous expression of the epidermal growth factor receptor (EGFR) poses a substantial challenge for the effective use of EGFR-targeted therapies. Understanding the mechanisms that cause EGFR heterogeneity in GBM should provide better insights into how they, and possibly other amplified receptor tyrosine kinases, affect cellular signalling, metabolism and drug resistance.
Collapse
Affiliation(s)
- Frank B Furnari
- Ludwig Institute for Cancer Research and the Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research and the Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research and the Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
50
|
Fragoso R, Barata JT. Kinases, tails and more: regulation of PTEN function by phosphorylation. Methods 2015; 77-78:75-81. [PMID: 25448482 DOI: 10.1016/j.ymeth.2014.10.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation regulates the conformation, stability, homo- and heterotypic protein interactions, localization, and activity of the tumor suppressor PTEN. From a simple picture, at the beginning of this millennium, recognizing that CK2 phosphorylated PTEN at the C-terminus and thereby impacted on PTEN stability and activity, research has led to a significantly more complex scenario today, where for instance GSK3, Plk3, ATM, ROCK or Src-family kinases are also gaining the spotlight in this evolving play. Here, we review the current knowledge on the kinases that phosphorylate PTEN, and on the impact that specific phosphorylation events have on PTEN function.
Collapse
Affiliation(s)
- Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|