1
|
Pekov SI, Bormotov DS, Bocharova SI, Sorokin AA, Derkach MM, Popov IA. Mass spectrometry for neurosurgery: Intraoperative support in decision-making. MASS SPECTROMETRY REVIEWS 2025; 44:62-73. [PMID: 38571445 DOI: 10.1002/mas.21883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Ambient ionization mass spectrometry was proved to be a powerful tool for oncological surgery. Still, it remains a translational technique on the way from laboratory to clinic. Brain surgery is the most sensitive to resection accuracy field since the balance between completeness of resection and minimization of nerve fiber damage determines patient outcome and quality of life. In this review, we summarize efforts made to develop various intraoperative support techniques for oncological neurosurgery and discuss difficulties arising on the way to clinical implementation of mass spectrometry-guided brain surgery.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| | - Denis S Bormotov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | | | - Anatoly A Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Maria M Derkach
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
2
|
Lai H, Fan P, Wang H, Wang Z, Chen N. New perspective on central nervous system disorders: focus on mass spectrometry imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8080-8102. [PMID: 39508396 DOI: 10.1039/d4ay01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An abnormally organized brain spatial network is linked to the development of various central nervous system (CNS) disorders, including neurodegenerative diseases and neuropsychiatric disorders. However, the complicated molecular mechanisms of these diseases remain unresolved, making the development of treatment strategies difficult. A novel molecular imaging technique, called mass spectrometry imaging (MSI), captures molecular information on the surface of samples in situ. With MSI, multiple compounds can be simultaneously visualized in a single experiment. The high spatial resolution enables the simultaneous visualization of the spatial distribution and relative content of various compounds. The wide application of MSI in biomedicine has facilitated extensive studies on CNS disorders in recent years. This review provides a concise overview of the processes, applications, advantages, and disadvantages, as well as mechanisms of the main types of MSI. Meanwhile, this review summarizes the main applications of MSI in studying CNS diseases, including Alzheimer's disease (AD), CNS tumors, stroke, depression, Huntington's disease (HD), and Parkinson's disease (PD). Finally, this review comprehensively discusses the synergistic application of MSI with other advanced imaging modalities, its utilization in organoid models, its integration with spatial omics techniques, and provides an outlook on its future potential in single-cell analysis.
Collapse
Affiliation(s)
- Huaqing Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Huiqin Wang
- Hunan University of Chinese Medicine, Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Hashemi M, Khoushab S, Aghmiuni MH, Anaraki SN, Alimohammadi M, Taheriazam A, Farahani N, Entezari M. Non-coding RNAs in oral cancer: Emerging biomarkers and therapeutic frontier. Heliyon 2024; 10:e40096. [PMID: 39583806 PMCID: PMC11582460 DOI: 10.1016/j.heliyon.2024.e40096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Around the world, oral cancer (OC) is a major public health problem, resulting in a significant number of deaths each year. Early detection and treatment are crucial for improving patient outcomes. Recent progress in DNA sequencing and transcriptome profiling has revealed extensive non-coding RNAs (ncRNAs) transcription, underscoring their regulatory importance. NcRNAs influence genomic transcription and translation and molecular signaling pathways, making them valuable for various clinical applications. Combining spatial transcriptomics (ST) and spatial metabolomics (SM) with single-cell RNA sequencing provides deeper insights into tumor microenvironments, enhancing diagnostic and therapeutic precision for OC. Additionally, the exploration of salivary biomarkers offers a non-invasive diagnostic avenue. This article explores the potential of ncRNAs as diagnostic and therapeutic tools for OC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeid Nemati Anaraki
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Operative, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University,Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Zhai Y, Fu X, Xu W. Miniature mass spectrometers and their potential for clinical point-of-care analysis. MASS SPECTROMETRY REVIEWS 2024; 43:1172-1191. [PMID: 37610153 DOI: 10.1002/mas.21867] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Mass spectrometry (MS) has become a powerful technique for clinical applications with high sensitivity and specificity. Different from conventional MS diagnosis in laboratory, point-of-care (POC) analyses in clinics require mass spectrometers and analytical procedures to be friendly for novice users and applicable for on-site clinical diagnosis. The recent decades have seen the progress in the development of miniature mass spectrometers, providing a promising solution for clinical POC applications. In this review, we report recent advances of miniature mass spectrometers and their exploration in clinical applications, mainly including the rapid analysis of illegal drugs, on-site monitoring of therapeutic drugs, and detection of biomarkers. With improved analytical performance, miniature mass spectrometers are also expected to apply to more and more clinical applications. Some promising POC analyses that can be performed by miniature mass spectrometers in the future are discussed. Lastly, we also provide our perspectives on the challenges in technical development of miniature mass spectrometers for clinical POC analysis.
Collapse
Affiliation(s)
- Yanbing Zhai
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Xinyan Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Grooms AJ, Burris BJ, Badu-Tawiah AK. Mass spectrometry for metabolomics analysis: Applications in neonatal and cancer screening. MASS SPECTROMETRY REVIEWS 2024; 43:683-712. [PMID: 36524560 PMCID: PMC10272294 DOI: 10.1002/mas.21826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Chemical analysis by analytical instrumentation has played a major role in disease diagnosis, which is a necessary step for disease treatment. While the treatment process often targets specific organs or compounds, the diagnostic step can occur through various means, including physical or chemical examination. Chemically, the genome may be evaluated to give information about potential genetic outcomes, the transcriptome to provide information about expression actively occurring, the proteome to offer insight on functions causing metabolite expression, or the metabolome to provide a picture of both past and ongoing physiological function in the body. Mass spectrometry (MS) has been elevated among other analytical instrumentation because it can be used to evaluate all four biological machineries of the body. In addition, MS provides enhanced sensitivity, selectivity, versatility, and speed for rapid turnaround time, qualities that are important for instance in clinical procedures involving the diagnosis of a pediatric patient in intensive care or a cancer patient undergoing surgery. In this review, we provide a summary of the use of MS to evaluate biomarkers for newborn screening and cancer diagnosis. As many reviews have recently appeared focusing on MS methods and instrumentation for metabolite analysis, we sought to describe the biological basis for many metabolomic and additional omics biomarkers used in newborn screening and how tandem MS methods have recently been applied, in comparison to traditional methods. Similar comparison is done for cancer screening, with emphasis on emerging MS approaches that allow biological fluids, tissues, and breath to be analyzed for the presence of diagnostic metabolites yielding insight for treatment options based on the understanding of prior and current physiological functions of the body.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| | - Benjamin J Burris
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| |
Collapse
|
6
|
Zirem Y, Ledoux L, Roussel L, Maurage CA, Tirilly P, Le Rhun É, Meresse B, Yagnik G, Lim MJ, Rothschild KJ, Duhamel M, Salzet M, Fournier I. Real-time glioblastoma tumor microenvironment assessment by SpiderMass for improved patient management. Cell Rep Med 2024; 5:101482. [PMID: 38552622 PMCID: PMC11031375 DOI: 10.1016/j.xcrm.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Glioblastoma is a highly heterogeneous and infiltrative form of brain cancer associated with a poor outcome and limited therapeutic effectiveness. The extent of the surgery is related to survival. Reaching an accurate diagnosis and prognosis assessment by the time of the initial surgery is therefore paramount in the management of glioblastoma. To this end, we are studying the performance of SpiderMass, an ambient ionization mass spectrometry technology that can be used in vivo without invasiveness, coupled to our recently established artificial intelligence pipeline. We demonstrate that we can both stratify isocitrate dehydrogenase (IDH)-wild-type glioblastoma patients into molecular sub-groups and achieve an accurate diagnosis with over 90% accuracy after cross-validation. Interestingly, the developed method offers the same accuracy for prognosis. In addition, we are testing the potential of an immunoscoring strategy based on SpiderMass fingerprints, showing the association between prognosis and immune cell infiltration, to predict patient outcome.
Collapse
Affiliation(s)
- Yanis Zirem
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Léa Ledoux
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Lucas Roussel
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | | | - Pierre Tirilly
- Université de Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
| | - Émilie Le Rhun
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France; Departments of Neurosurgery and Neurology, Clinical Neuroscience Center, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Bertrand Meresse
- Université de Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000 Lille, France
| | | | | | - Kenneth J Rothschild
- AmberGen, Inc., Billerica, MA, USA; Department of Physics and Photonics Center, Boston University, Boston, MA, USA
| | - Marie Duhamel
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Michel Salzet
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France; Institut Universitaire de France (IUF), Paris, France.
| | - Isabelle Fournier
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
7
|
Fiorante A, Ye LA, Tata A, Kiyota T, Woolman M, Talbot F, Farahmand Y, Vlaminck D, Katz L, Massaro A, Ginsberg H, Aman A, Zarrine-Afsar A. A Workflow for Meaningful Interpretation of Classification Results from Handheld Ambient Mass Spectrometry Analysis Probes. Int J Mol Sci 2024; 25:3491. [PMID: 38542461 PMCID: PMC10970785 DOI: 10.3390/ijms25063491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 11/11/2024] Open
Abstract
While untargeted analysis of biological tissues with ambient mass spectrometry analysis probes has been widely reported in the literature, there are currently no guidelines to standardize the workflows for the experimental design, creation, and validation of molecular models that are utilized in these methods to perform class predictions. By drawing parallels with hurdles that are faced in the field of food fraud detection with untargeted mass spectrometry, we provide a stepwise workflow for the creation, refinement, evaluation, and assessment of the robustness of molecular models, aimed at meaningful interpretation of mass spectrometry-based tissue classification results. We propose strategies to obtain a sufficient number of samples for the creation of molecular models and discuss the potential overfitting of data, emphasizing both the need for model validation using an independent cohort of test samples, as well as the use of a fully characterized feature-based approach that verifies the biological relevance of the features that are used to avoid false discoveries. We additionally highlight the need to treat molecular models as "dynamic" and "living" entities and to further refine them as new knowledge concerning disease pathways and classifier feature noise becomes apparent in large(r) population studies. Where appropriate, we have provided a discussion of the challenges that we faced in our development of a 10 s cancer classification method using picosecond infrared laser mass spectrometry (PIRL-MS) to facilitate clinical decision-making at the bedside.
Collapse
Affiliation(s)
- Alexa Fiorante
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Lan Anna Ye
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Fiume, 78, 36100 Vicenza, Italy; (A.T.); (A.M.)
| | - Taira Kiyota
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada; (T.K.); (A.A.)
| | - Michael Woolman
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Francis Talbot
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
| | - Yasamine Farahmand
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
| | - Darah Vlaminck
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Lauren Katz
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Andrea Massaro
- Istituto Zooprofilattico Sperimentale Delle Venezie, Viale Fiume, 78, 36100 Vicenza, Italy; (A.T.); (A.M.)
| | - Howard Ginsberg
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada;
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ahmed Aman
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada; (T.K.); (A.A.)
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| | - Arash Zarrine-Afsar
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; (A.F.); (L.A.Y.); (M.W.); (F.T.); (Y.F.); (D.V.); (L.K.)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada;
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
8
|
Guo L, Xie C, Miao R, Xu J, Xu X, Fang J, Wang X, Liu W, Liao X, Wang J, Dong J, Cai Z. DeepION: A Deep Learning-Based Low-Dimensional Representation Model of Ion Images for Mass Spectrometry Imaging. Anal Chem 2024; 96:3829-3836. [PMID: 38377545 PMCID: PMC10918617 DOI: 10.1021/acs.analchem.3c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Mass spectrometry imaging (MSI) is a high-throughput imaging technique capable of the qualitative and quantitative in situ detection of thousands of ions in biological samples. Ion image representation is a technique that produces a low-dimensional vector embedded with significant spectral and spatial information on an ion image, which further facilitates the distance-based similarity measurement for the identification of colocalized ions. However, given the low signal-to-noise ratios inherent in MSI data coupled with the scarcity of annotated data sets, achieving an effective ion image representation for each ion image remains a challenge. In this study, we propose DeepION, a novel deep learning-based method designed specifically for ion image representation, which is applied to the identification of colocalized ions and isotope ions. In DeepION, contrastive learning is introduced to ensure that the model can generate the ion image representation in a self-supervised manner without manual annotation. Since data augmentation is a crucial step in contrastive learning, a unique data augmentation strategy is designed by considering the characteristics of MSI data, such as the Poisson distribution of ion abundance and a random pattern of missing values, to generate plentiful ion image pairs for DeepION model training. Experimental results of rat brain tissue MSI show that DeepION outperforms other methods for both colocalized ion and isotope ion identification, demonstrating the effectiveness of ion image representation. The proposed model could serve as a crucial tool in the biomarker discovery and drug development of the MSI technique.
Collapse
Affiliation(s)
- Lei Guo
- Interdisciplinary
Institute of Medical Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Chengyi Xie
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Department
of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Rui Miao
- Department
of Electronic Science, National Institute for Data Science in Health
and Medicine, Xiamen University, Xiamen 361005, China
| | - Jingjing Xu
- Department
of Electronic Science, National Institute for Data Science in Health
and Medicine, Xiamen University, Xiamen 361005, China
| | - Xiangnan Xu
- School
of Business and Economics, Humboldt-Universitat
zu Berlin, Berlin 10099, Germany
| | - Jiacheng Fang
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Xiaoxiao Wang
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Wuping Liu
- International
Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Xiangwen Liao
- Interdisciplinary
Institute of Medical Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Jianing Wang
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Jiyang Dong
- Department
of Electronic Science, National Institute for Data Science in Health
and Medicine, Xiamen University, Xiamen 361005, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Department
of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, China
| |
Collapse
|
9
|
Zhao H, Shi C, Han W, Luo G, Huang Y, Fu Y, Lu W, Hu Q, Shang Z, Yang X. Advanced progress of spatial metabolomics in head and neck cancer research. Neoplasia 2024; 47:100958. [PMID: 38142528 PMCID: PMC10788507 DOI: 10.1016/j.neo.2023.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Head and neck cancer ranks as the sixth most prevalent malignancy, constituting 5 % of all cancer cases. Its inconspicuous onset often leads to advanced stage diagnoses, prompting the need for early detection to enhance patient prognosis. Currently, research into early diagnostic markers relies predominantly on genomics, proteomics, transcriptomics, and other methods, which, unfortunately, necessitate tumor tissue homogenization, resulting in the loss of temporal and spatial information. Emerging as a recent addition to the omics toolkit, spatial metabolomics stands out. This method conducts in situ mass spectrometry analyses on fresh tissue specimens while effectively preserving their spatiotemporal information. The utilization of spatial metabolomics in life science research offers distinct advantages. This article comprehensively reviews the progress of spatial metabolomics in head and neck cancer research, encompassing insights into cancer cell metabolic reprogramming. Various mass spectrometry imaging techniques, such as secondary ion mass spectrometry, stroma-assisted laser desorption/ionization, and desorption electrospray ionization, enable in situ metabolite analysis for head and neck cancer. Finally, significant emphasis is placed on the application of presently available techniques for early diagnosis, margin assessment, and prognosis of head and neck cancer.
Collapse
Affiliation(s)
- Huiting Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Guanfa Luo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Yumeng Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Yujuan Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China
| | - Wen Lu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | | | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
10
|
Tomalty D, Giovannetti O, Velikonja L, Munday J, Kaufmann M, Iaboni N, Jamzad A, Rubino R, Fichtinger G, Mousavi P, Nicol CJB, Rudan JF, Adams MA. Molecular characterization of human peripheral nerves using desorption electrospray ionization mass spectrometry imaging. J Anat 2023; 243:758-769. [PMID: 37264225 PMCID: PMC10557387 DOI: 10.1111/joa.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is a molecular imaging method that can be used to elucidate the small-molecule composition of tissues and map their spatial information using two-dimensional ion images. This technique has been used to investigate the molecular profiles of variety of tissues, including within the central nervous system, specifically the brain and spinal cord. To our knowledge, this technique has yet to be applied to tissues of the peripheral nervous system (PNS). Data generated from such analyses are expected to advance the characterization of these structures. The study aimed to: (i) establish whether DESI-MSI can discriminate the molecular characteristics of peripheral nerves and distinguish them from surrounding tissues and (ii) assess whether different peripheral nerve subtypes are characterized by unique molecular profiles. Four different nerves for which are known to carry various nerve fiber types were harvested from a fresh cadaveric donor: mixed, motor and sensory (sciatic and femoral); cutaneous, sensory (sural); and autonomic (vagus). Tissue samples were harvested to include the nerve bundles in addition to surrounding connective tissue. Samples were flash-frozen, embedded in optimal cutting temperature compound in cross-section, and sectioned at 14 μm. Following DESI-MSI analysis, identical tissue sections were stained with hematoxylin and eosin. In this proof-of-concept study, a combination of multivariate and univariate statistical methods was used to evaluate molecular differences between the nerve and adjacent tissue and between nerve subtypes. The acquired mass spectral profiles of the peripheral nerve samples presented trends in ion abundances that seemed to be characteristic of nerve tissue and spatially corresponded to the associated histology of the tissue sections. Principal component analysis (PCA) supported the separation of the samples into distinct nerve and adjacent tissue classes. This classification was further supported by the K-means clustering analysis, which showed separation of the nerve and background ions. Differences in ion expression were confirmed using ANOVA which identified statistically significant differences in ion expression between the nerve subtypes. The PCA plot suggested some separation of the nerve subtypes into four classes which corresponded with the nerve types. This was supported by the K-means clustering. Some overlap in classes was noted in these two clustering analyses. This study provides emerging evidence that DESI-MSI is an effective tool for metabolomic profiling of peripheral nerves. Our results suggest that peripheral nerves have molecular profiles that are distinct from the surrounding connective tissues and that DESI-MSI may be able to discriminate between nerve subtypes. DESI-MSI of peripheral nerves may be a valuable technique that could be used to improve our understanding of peripheral nerve anatomy and physiology. The ability to utilize ambient mass spectrometry techniques in real time could also provide an unprecedented advantage for surgical decision making, including in nerve-sparing procedures in the future.
Collapse
Affiliation(s)
- Diane Tomalty
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Olivia Giovannetti
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Leah Velikonja
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Jasica Munday
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Martin Kaufmann
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Gastrointestinal Diseases Research UnitKingston Health Sciences CenterKingstonOntarioCanada
| | - Natasha Iaboni
- Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - Amoon Jamzad
- School of ComputingQueen's UniversityKingstonOntarioCanada
| | - Rachel Rubino
- Division of Cancer Biology and GeneticsQueen's Cancer Research InstituteKingstonOntarioCanada
| | | | - Parvin Mousavi
- School of ComputingQueen's UniversityKingstonOntarioCanada
| | - Christopher J. B. Nicol
- Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
- Division of Cancer Biology and GeneticsQueen's Cancer Research InstituteKingstonOntarioCanada
| | - John F. Rudan
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - Michael A. Adams
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
11
|
Kaynar G, Cakmakci D, Bund C, Todeschi J, Namer IJ, Cicek AE. PiDeeL: metabolic pathway-informed deep learning model for survival analysis and pathological classification of gliomas. Bioinformatics 2023; 39:btad684. [PMID: 37952175 PMCID: PMC10663986 DOI: 10.1093/bioinformatics/btad684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
MOTIVATION Online assessment of tumor characteristics during surgery is important and has the potential to establish an intra-operative surgeon feedback mechanism. With the availability of such feedback, surgeons could decide to be more liberal or conservative regarding the resection of the tumor. While there are methods to perform metabolomics-based tumor pathology prediction, their model complexity predictive performance is limited by the small dataset sizes. Furthermore, the information conveyed by the feedback provided on the tumor tissue could be improved both in terms of content and accuracy. RESULTS In this study, we propose a metabolic pathway-informed deep learning model (PiDeeL) to perform survival analysis and pathology assessment based on metabolite concentrations. We show that incorporating pathway information into the model architecture substantially reduces parameter complexity and achieves better survival analysis and pathological classification performance. With these design decisions, we show that PiDeeL improves tumor pathology prediction performance of the state-of-the-art in terms of the Area Under the ROC Curve by 3.38% and the Area Under the Precision-Recall Curve by 4.06%. Similarly, with respect to the time-dependent concordance index (c-index), PiDeeL achieves better survival analysis performance (improvement of 4.3%) when compared to the state-of-the-art. Moreover, we show that importance analyses performed on input metabolite features as well as pathway-specific neurons of PiDeeL provide insights into tumor metabolism. We foresee that the use of this model in the surgery room will help surgeons adjust the surgery plan on the fly and will result in better prognosis estimates tailored to surgical procedures. AVAILABILITY AND IMPLEMENTATION The code is released at https://github.com/ciceklab/PiDeeL. The data used in this study are released at https://zenodo.org/record/7228791.
Collapse
Affiliation(s)
- Gun Kaynar
- Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey
| | - Doruk Cakmakci
- School of Computer Science, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Caroline Bund
- MNMS Platform, University Hospitals of Strasbourg, Strasbourg 67098, France
- ICube, University of Strasbourg, CNRS UMR, 7357, Strasbourg 67000, France
- Department of Nuclear Medicine and Molecular Imaging, ICANS, Strasbourg 67000, France
| | - Julien Todeschi
- Department of Neurosurgery, University Hospitals of Strasbourg, Strasbourg, 67091, France
| | - Izzie Jacques Namer
- MNMS Platform, University Hospitals of Strasbourg, Strasbourg 67098, France
- ICube, University of Strasbourg, CNRS UMR, 7357, Strasbourg 67000, France
- Department of Nuclear Medicine and Molecular Imaging, ICANS, Strasbourg 67000, France
| | - A Ercument Cicek
- Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| |
Collapse
|
12
|
Akbari B, Huber BR, Sherman JH. Unlocking the Hidden Depths: Multi-Modal Integration of Imaging Mass Spectrometry-Based and Molecular Imaging Techniques. Crit Rev Anal Chem 2023; 55:109-138. [PMID: 37847593 DOI: 10.1080/10408347.2023.2266838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Multimodal imaging (MMI) has emerged as a powerful tool in clinical research, combining different imaging modes to acquire comprehensive information and enabling scientists and surgeons to study tissue identification, localization, metabolic activity, and molecular discovery, thus aiding in disease progression analysis. While multimodal instruments are gaining popularity, challenges such as non-standardized characteristics, custom software, inadequate commercial support, and integration issues with other instruments need to be addressed. The field of multimodal imaging or multiplexed imaging allows for simultaneous signal reproduction from multiple imaging strategies. Intraoperatively, MMI can be integrated into frameless stereotactic surgery. Recent developments in medical imaging modalities such as magnetic resonance imaging (MRI), and Positron Emission Topography (PET) have brought new perspectives to multimodal imaging, enabling early cancer detection, molecular tracking, and real-time progression monitoring. Despite the evidence supporting the role of MMI in surgical decision-making, there is a need for comprehensive studies to validate and perform integration at the intersection of multiple imaging technologies. They were integrating mass spectrometry-based technologies (e.g., imaging mass spectrometry (IMS), imaging mass cytometry (IMC), and Ion mobility mass spectrometry ((IM-IM) with medical imaging modalities, offering promising avenues for molecular discovery and clinical applications. This review emphasizes the potential of multi-omics approaches in tissue mapping using MMI integrated into desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI), allowing for sequential analyses of the same section. By addressing existing knowledge gaps, this review encourages future research endeavors toward multi-omics approaches, providing a roadmap for future research and enhancing the value of MMI in molecular pathology for diagnosis.
Collapse
Affiliation(s)
- Behnaz Akbari
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Bertrand Russell Huber
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Boston, Massachusetts USA
- US Department of Veterans Affairs, National Center for PTSD, Boston, Massachusetts USA
| | - Janet Hope Sherman
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Kumar BS. Recent Advances and Applications of Ambient Mass Spectrometry Imaging in Cancer Research: An Overview. Mass Spectrom (Tokyo) 2023; 12:A0129. [PMID: 37789912 PMCID: PMC10542858 DOI: 10.5702/massspectrometry.a0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Cancer metabolic variability has a significant impact on both diagnosis and treatment outcomes. The discovery of novel biological indicators and metabolic dysregulation, can significantly rely on comprehension of the modified metabolism in cancer, is a research focus. Tissue histology is a critical feature in the diagnostic testing of many ailments, such as cancer. To assess the surgical margin of the tumour on patients, frozen section histology is a tedious, laborious, and typically arbitrary method. Concurrent monitoring of ion images in tissues facilitated by the latest advancements in mass spectrometry imaging (MSI) is far more efficient than optical tissue image analysis utilized in conventional histopathology examination. This article focuses on the "desorption electrospray ionization (DESI)-MSI" technique's most recent advancements and uses in cancer research. DESI-MSI can provide wealthy information based on the variances in metabolites and lipids in normal and cancerous tissues by acquiring ion images of the lipid and metabolite variances on biopsy samples. As opposed to a systematic review, this article offers a synopsis of the most widely employed cutting-edge DESI-MSI techniques in cancer research.
Collapse
Affiliation(s)
- Bharath S. Kumar
- Correspondence to: Bharath S. Kumar, 21, B2, 27th Street, Nanganallur, Chennai, India, e-mail:
| |
Collapse
|
14
|
Abstract
Mass spectrometry (MS) is one of the most widely used technologies in the chemical sciences. With applications spanning the monitoring of reaction products, the identification of disease biomarkers, and the measurement of thermodynamic parameters and aspects of structural biology, MS is well established as a universal analytical tool applicable to small compounds as well as large molecular complexes. Regardless of the application, the generation of gas-phase ions from neutral compounds is a key step in any MS experiment. However, this ionization step was for many years limited to high-energy approaches that required gas-phase analytes and thus it was restricted to volatile samples. Over the last few decades, new methodologies have been developed to address this limitation and facilitate ionization of biological molecules. Electrospray ionization (ESI) is the most broadly used of these methods, as it facilitates the ionization of intact polar compounds from solution. Twenty years ago, our group reported a new ionization method that uses a charged solvent spray to impact a surface, generating ions from objects rather than just solutions and doing so directly in the ambient environment with no vacuum requirements and little to no sample preparation. This method was termed desorption electrospray ionization (DESI), and it initiated a new field that would come to be known as ambient mass spectrometry. The simplicity and wide applicability of the DESI technology—and the tens of ambient ionization methods developed subsequently—revolutionized the MS analysis of complex materials for their organic components, especially for in situ applications. This Account describes the history of DESI, starting with the development of the technique from early electrosonic spray ionization (ESSI) experimental observations as well as the studies leading to the understanding of its mechanism as a “droplet pick-up” phenomenon involving sequential events (i.e. , thin film formation, solid–liquid extraction, secondary droplet generation, and ESI-like ionization from these droplets). We also overview the developments and applications of the technology that have been demonstrated by our group during the last two decades. In particular, we describe (i) the use of DESI for tissue imaging, one of its more significant applications to date, and its extension to intraoperative clinical diagnosis; (ii) the integration of the technology with portable instrumentation for in situ analysis, especially when coupled with tandem mass spectrometry (MS/MS); (iii) the use of DESI microdroplets as microvessels to accelerate organic reactions by orders of magnitude compared to those in bulk solution; and (iv) the combination of all these capabilities for automated high-throughput experiments aimed at accelerating drug discovery.
Collapse
Affiliation(s)
- Nicolás M Morato
- Department of Chemistry and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Department of Chemistry and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Casey VJ, McNamara LM. Instrumental in Surgery: A Narrative Review on Energy-based Surgical Cutting Devices and Surgical Smoke. Ann Surg 2023; 278:e457-e465. [PMID: 36762559 PMCID: PMC10414159 DOI: 10.1097/sla.0000000000005816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
OBJECTIVE To provide an informed understanding of existing energy-based surgical cutting technologies and aerosol-generating surgical procedures. We provide a perspective on the future innovation and research potential in this space for the benefit of surgeons, physicians, engineers, and researchers alike. BACKGROUND Surgery is a treatment for many medical conditions, the success of which depends on surgical cutting instruments that enable surgeons to conduct surgical procedures for tissue cutting and manipulation. Energy-based surgical cutting tools improve accuracy and limit unnecessary destruction of healthy tissues and cells, but can generate surgical smoke and aerosols, which can be handled using surgical smoke evacuation technology. METHODS A narrative review was conducted to explore existing literature describing the history and development of energy-based surgical instruments, their mechanisms of action, aerosol-generating medical procedures, surgical smoke and aerosols from aerosol-generating medical procedures, and the recommended mitigation strategies, as well as research on rapid biological tissue analyzing devices to date. CONCLUSIONS Smoke evacuation technology may provide diagnostic information regarding tissue pathology, which could eliminate health concerns and revolutionize surgical accuracy. However, further research into surgical smoke is required to quantify the measurable risk to health it poses, the cutting conditions, under which it is generated and to develop advanced diagnostic approaches using this information.
Collapse
Affiliation(s)
- Vincent J. Casey
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, University of Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, Galway, Ireland
| | - Laoise M. McNamara
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, University of Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, Galway, Ireland
| |
Collapse
|
16
|
Meng Y, Hang W, Zare RN. Microlensed fiber allows subcellular imaging by laser-based mass spectrometry. Nat Protoc 2023; 18:2558-2578. [PMID: 37479826 DOI: 10.1038/s41596-023-00848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/02/2023] [Indexed: 07/23/2023]
Abstract
Mass spectrometry imaging (MSI) enables the chemical mapping of molecules and elements in a label-free, high-throughput manner. Because this approach can be accomplished rapidly, it also enables chemical changes to be monitored. Here, we describe a protocol for MSI with subcellular spatial resolution. This is achieved by using a microlensed fiber, which is made by grinding an optical fiber. It is a universal and economic technique that can be adapted to most laser-based mass spectrometry methods. In this protocol, the output of laser radiation from the microlensed fiber causes laser ablation of the sample, and the resulting plume is mass spectrometrically analyzed. The microlensed fiber can be used with matrix-assisted laser desorption ionization, laser desorption ionization, laser ablation electrospray desorption ionization and laser ablation inductively coupled plasma, in each case to achieve submicroscale imaging of single cells and biological tissues. This report provides a detailed introduction of the microlensed fiber design and working principles, sample preparation, microlensed fiber ion source setup and multiple MSI platforms with different kinds of mass spectrometers. A researcher with a little background (such as a trained graduate student) is able to complete all the steps for the experimental setup in ~2 h, including fiber test, laser coupling and ion source modification. The imaging time spent mainly depends on the size of the imaging area. It is suggested that most existing laser-based MSI platforms, especially atmospheric pressure applications, can achieve breakthroughs in spatial resolution by introducing a microlensed fiber module.
Collapse
Affiliation(s)
- Yifan Meng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Gao SQ, Zhao JH, Guan Y, Tang YS, Li Y, Liu LY. Mass spectrometry imaging technology in metabolomics: A systematic review. Biomed Chromatogr 2023; 37:e5494. [PMID: 36044038 DOI: 10.1002/bmc.5494] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/11/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful label-free analysis technique that can provide simultaneous spatial distribution of multiple compounds in a single experiment. By combining the sensitive and rapid screening of high-throughput MS with spatial chemical information, metabolite analysis and morphological characteristics are presented in a single image. MSI can be used for qualitative and quantitative analysis of metabolic profiles and it can provide visual analysis of spatial distribution information of complex biological and microbial systems. Matrix-assisted laser desorption ionization, laser ablation electrospray ionization and desorption electrospray ionization are commonly used in MSI. Here, we summarize and compare these three technologies, as well as the applications and prospects of MSI in metabolomics.
Collapse
Affiliation(s)
- Si-Qi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Jin-Hui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Yue Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Ying-Shu Tang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Li-Yan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
18
|
Fangma Y, Liu M, Liao J, Chen Z, Zheng Y. Dissecting the brain with spatially resolved multi-omics. J Pharm Anal 2023; 13:694-710. [PMID: 37577383 PMCID: PMC10422112 DOI: 10.1016/j.jpha.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 08/15/2023] Open
Abstract
Recent studies have highlighted spatially resolved multi-omics technologies, including spatial genomics, transcriptomics, proteomics, and metabolomics, as powerful tools to decipher the spatial heterogeneity of the brain. Here, we focus on two major approaches in spatial transcriptomics (next-generation sequencing-based technologies and image-based technologies), and mass spectrometry imaging technologies used in spatial proteomics and spatial metabolomics. Furthermore, we discuss their applications in neuroscience, including building the brain atlas, uncovering gene expression patterns of neurons for special behaviors, deciphering the molecular basis of neuronal communication, and providing a more comprehensive explanation of the molecular mechanisms underlying central nervous system disorders. However, further efforts are still needed toward the integrative application of multi-omics technologies, including the real-time spatial multi-omics analysis in living cells, the detailed gene profile in a whole-brain view, and the combination of functional verification.
Collapse
Affiliation(s)
- Yijia Fangma
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
19
|
Shankar V, Vijayalakshmi K, Nolley R, Sonn GA, Kao CS, Zhao H, Wen R, Eberlin LS, Tibshirani R, Zare RN, Brooks JD. Distinguishing Renal Cell Carcinoma From Normal Kidney Tissue Using Mass Spectrometry Imaging Combined With Machine Learning. JCO Precis Oncol 2023; 7:e2200668. [PMID: 37285559 PMCID: PMC10309512 DOI: 10.1200/po.22.00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE Accurately distinguishing renal cell carcinoma (RCC) from normal kidney tissue is critical for identifying positive surgical margins (PSMs) during partial and radical nephrectomy, which remains the primary intervention for localized RCC. Techniques that detect PSM with higher accuracy and faster turnaround time than intraoperative frozen section (IFS) analysis can help decrease reoperation rates, relieve patient anxiety and costs, and potentially improve patient outcomes. MATERIALS AND METHODS Here, we extended our combined desorption electrospray ionization mass spectrometry imaging (DESI-MSI) and machine learning methodology to identify metabolite and lipid species from tissue surfaces that can distinguish normal tissues from clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC) tissues. RESULTS From 24 normal and 40 renal cancer (23 ccRCC, 13 pRCC, and 4 chRCC) tissues, we developed a multinomial lasso classifier that selects 281 total analytes from over 27,000 detected molecular species that distinguishes all histological subtypes of RCC from normal kidney tissues with 84.5% accuracy. On the basis of independent test data reflecting distinct patient populations, the classifier achieves 85.4% and 91.2% accuracy on a Stanford test set (20 normal and 28 RCC) and a Baylor-UT Austin test set (16 normal and 41 RCC), respectively. The majority of the model's selected features show consistent trends across data sets affirming its stable performance, where the suppression of arachidonic acid metabolism is identified as a shared molecular feature of ccRCC and pRCC. CONCLUSION Together, these results indicate that signatures derived from DESI-MSI combined with machine learning may be used to rapidly determine surgical margin status with accuracies that meet or exceed those reported for IFS.
Collapse
Affiliation(s)
- Vishnu Shankar
- Program in Immunology, Stanford University School of Medicine, Stanford, CA
| | | | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Geoffrey A. Sonn
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Chia-Sui Kao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Ru Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | | | - Robert Tibshirani
- Department of Biomedical Data Science, and Statistics, Stanford University, Stanford, CA
| | | | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
20
|
Wang F, Ma S, Chen P, Han Y, Liu Z, Wang X, Sun C, Yu Z. Imaging the metabolic reprograming of fatty acid synthesis pathway enables new diagnostic and therapeutic opportunity for breast cancer. Cancer Cell Int 2023; 23:83. [PMID: 37120513 PMCID: PMC10149015 DOI: 10.1186/s12935-023-02908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Reprogrammed metabolic network is a key hallmark of cancer. Profiling cancer metabolic alterations with spatial signatures not only provides clues for understanding cancer biochemical heterogeneity, but also helps to decipher the possible roles of metabolic reprogramming in cancer development. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technique was used to characterize the expressions of fatty acids in breast cancer tissues. Specific immunofluorescence staining was further carried out to investigate the expressions of fatty acid synthesis-related enzymes. RESULTS The distributions of 23 fatty acids in breast cancer tissues have been mapped, and the levels of most fatty acids in cancer tissues are significantly higher than those in adjacent normal tissues. Two metabolic enzymes, fatty acid synthase (FASN) and acetyl CoA carboxylase (ACC), which being involved in the de novo synthesis of fatty acid were found to be up-regulated in breast cancer. Targeting the up-regulation of FASN and ACC is an effective approach to limiting the growth, proliferation, and metastasis of breast cancer cells. CONCLUSIONS These spatially resolved findings enhance our understanding of cancer metabolic reprogramming and give an insight into the exploration of metabolic vulnerabilities for better cancer treatment.
Collapse
Affiliation(s)
- Fukai Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Shuangshuang Ma
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Panpan Chen
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yuhao Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhaoyun Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinzhao Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Chenglong Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Zhiyong Yu
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
21
|
Qi R, Wang X, Huang M, Dai W, Liang J. Rapid screening of illegal additives in functional food using desorption electrospray ionization mass spectrometry imaging. J Pharm Biomed Anal 2023; 229:115351. [PMID: 36958114 DOI: 10.1016/j.jpba.2023.115351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Compounds such as Sildenafil, which bring potential health risks to consumers, have been illegally added to functional food. The public security department hopes to quickly screen for illegal additives. The quantity of seized samples is often large and their compositions are unknown; it is necessary to screen the unknown samples qualitatively and sometimes quantitatively. In this paper, a new method for rapid screening of 39 common illegal additives in six categories of functional food based on DESI-MSI technology is proposed, and the DESI-MSI library is established, which can be used for exclusive and sensitive qualitative confirmation of suspicious samples. A new carrier material that can be used for rapid qualitative detection of solid sample is discovered. The samples require simple or even no pretreatment to carry out high-resolution imaging through the imaging function of DESI-MSI. The imaging results are clear and intuitive, and can achieve fast and high-throughput qualitative identification of illegally added compounds. This method has good linearity, accuracy, precision, and little effect of matrix, so it can roughly quantify the illegal additives in functional products. Twenty-one batches of unknown samples were detected by DESI-MSI, and the positive results were confirmed by LC-MS/MS (QQQ). The results showed that the DESI-MSI method was effective and reliable. DESI-MSI with self-made database is a promising method for rapid screening of illegal additives in functional food, which can be widely used in grass-roots police stations.
Collapse
Affiliation(s)
- Rourou Qi
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xinyi Wang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Miao Huang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Wei Dai
- Shanghai Municipal Public Security Bureau, Shanghai 200083, PR China.
| | - Jianying Liang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
22
|
Yang Z, Zhao C, Zong S, Piao J, Zhao Y, Chen X. A review on surgical treatment options in gliomas. Front Oncol 2023; 13:1088484. [PMID: 37007123 PMCID: PMC10061125 DOI: 10.3389/fonc.2023.1088484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Gliomas are one of the most common primary central nervous system tumors, and surgical treatment remains the principal role in the management of any grade of gliomas. In this study, based on the introduction of gliomas, we review the novel surgical techniques and technologies in support of the extent of resection to achieve long-term disease control and summarize the findings on how to keep the balance between cytoreduction and neurological morbidity from a list of literature searched. With modern neurosurgical techniques, gliomas resection can be safely performed with low morbidity and extraordinary long-term functional outcomes.
Collapse
Affiliation(s)
- Zhongxi Yang
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Chen Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Shan Zong
- Department of Gynecology Oncology, The First Hospital of Jilin University, Jilin, China
| | - Jianmin Piao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- *Correspondence: Xuan Chen,
| |
Collapse
|
23
|
Soudah T, Zoabi A, Margulis K. Desorption electrospray ionization mass spectrometry imaging in discovery and development of novel therapies. MASS SPECTROMETRY REVIEWS 2023; 42:751-778. [PMID: 34642958 DOI: 10.1002/mas.21736] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is one of the least specimen destructive ambient ionization mass spectrometry tissue imaging methods. It enables rapid simultaneous mapping, measurement, and identification of hundreds of molecules from an unmodified tissue sample. Over the years, since its first introduction as an imaging technique in 2005, DESI-MSI has been extensively developed as a tool for separating tissue regions of various histopathologic classes for diagnostic applications. Recently, DESI-MSI has also emerged as a versatile technique that enables drug discovery and can guide the efficient development of drug delivery systems. For example, it has been increasingly employed for uncovering unique patterns of in vivo drug distribution, the discovery of potentially treatable biochemical pathways, revealing novel druggable targets, predicting therapeutic sensitivity of diseased tissues, and identifying early tissue response to pharmacological treatment. These and other recent advances in implementing DESI-MSI as the tool for the development of novel therapies are highlighted in this review.
Collapse
Affiliation(s)
- Terese Soudah
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amani Zoabi
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Katherine Margulis
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Bogusiewicz J, Bojko B. Insight into new opportunities in intra-surgical diagnostics of brain tumors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
25
|
Hristova J, Svinarov D. Enhancing precision medicine through clinical mass spectrometry platform. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Julieta Hristova
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobrin Svinarov
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
26
|
Aggregation of Multimodal ICE-MS Data into Joint Classifier Increases Quality of Brain Cancer Tissue Classification. DATA 2022. [DOI: 10.3390/data8010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mass spectrometry fingerprinting combined with multidimensional data analysis has been proposed in surgery to determine if a biopsy sample is a tumor. In the specific case of brain tumors, it is complicated to obtain control samples, leading to model overfitting due to unbalanced sample cohorts. Usually, classifiers are trained using a single measurement regime, most notably single ion polarity, but mass range and spectral resolution could also be varied. It is known that lipid groups differ significantly in their ability to produce positive or negative ions; hence, using only one polarity significantly restricts the chemical space available for sample discrimination purposes. In this work, we have developed an approach employing mass spectrometry data obtained by eight different regimes of measurement simultaneously. Regime-specific classifiers are trained, then a mixture of experts techniques based on voting or mean probability is used to aggregate predictions of all trained classifiers and assign a class to the whole sample. The aggregated classifiers have shown a much better performance than any of the single-regime classifiers and help significantly reduce the effect of an unbalanced dataset without any augmentation.
Collapse
|
27
|
Jiao B, Zhou W, Liu Y, Zhang W, Ouyang Z. In-situ sampling of lipids in tissues using a porous membrane microprobe for direct mass spectrometry analysis. Mater Today Bio 2022; 16:100424. [PMID: 36157050 PMCID: PMC9490171 DOI: 10.1016/j.mtbio.2022.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Direct sampling of lipids from tissues for direct mass spectrometry (MS) analysis allows a quick profiling of lipidome, which is important for biomedical applications. In this work, we developed a polyporous polymeric membrane (PPM) microprobe for highly efficient sampling of lipids directly from tissue samples. The PPM was prepared by polypropylene with pores as large of 10 μm, facilitating the permeation of lipids from tissue surfaces. The PPM was coated onto a stainless steel wire with a thickness of ∼100 μm. The entire analysis procedure includes sampling of the lipids in tissue, washing the probe, and extraction spray ionization for MS analysis. The effectiveness was validated by analyzing mouse brain tissue samples. It showed high recoveries for a series of lipid classes in comparison with total lipid extraction method. Further demonstration was carried out with analysis of tissue samples from mouse liver, stomach, kidney and legs. With high physical strength and good chemical stability, the microprobe was also demonstrated for sampling lipids inside mouse kidney tissue samples. By incorporating a photochemical derivatization, a workflow was also developed for fast detection of lipid C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>C isomers in tissue samples. Finally, a microprobe array was also developed for simultaneous sampling of lipids from multiple sites on tissue surfaces.
Collapse
|
28
|
Van Hese L, De Vleeschouwer S, Theys T, Rex S, Heeren RMA, Cuypers E. The diagnostic accuracy of intraoperative differentiation and delineation techniques in brain tumours. Discov Oncol 2022; 13:123. [PMID: 36355227 PMCID: PMC9649524 DOI: 10.1007/s12672-022-00585-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022] Open
Abstract
Brain tumour identification and delineation in a timeframe of seconds would significantly guide and support surgical decisions. Here, treatment is often complicated by the infiltration of gliomas in the surrounding brain parenchyma. Accurate delineation of the invasive margins is essential to increase the extent of resection and to avoid postoperative neurological deficits. Currently, histopathological annotation of brain biopsies and genetic phenotyping still define the first line treatment, where results become only available after surgery. Furthermore, adjuvant techniques to improve intraoperative visualisation of the tumour tissue have been developed and validated. In this review, we focused on the sensitivity and specificity of conventional techniques to characterise the tumour type and margin, specifically fluorescent-guided surgery, neuronavigation and intraoperative imaging as well as on more experimental techniques such as mass spectrometry-based diagnostics, Raman spectrometry and hyperspectral imaging. Based on our findings, all investigated methods had their advantages and limitations, guiding researchers towards the combined use of intraoperative imaging techniques. This can lead to an improved outcome in terms of extent of tumour resection and progression free survival while preserving neurological outcome of the patients.
Collapse
Affiliation(s)
- Laura Van Hese
- Division of Mass Spectrometry Imaging, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- Department of Anaesthesiology, University Hospitals Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Steven De Vleeschouwer
- Neurosurgery Department, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory for Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute (LBI), 3000, Leuven, Belgium
| | - Tom Theys
- Neurosurgery Department, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory for Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute (LBI), 3000, Leuven, Belgium
| | - Steffen Rex
- Department of Anaesthesiology, University Hospitals Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Ron M A Heeren
- Division of Mass Spectrometry Imaging, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Eva Cuypers
- Division of Mass Spectrometry Imaging, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
29
|
Morato NM, Brown HM, Garcia D, Middlebrooks EH, Jentoft M, Chaichana K, Quiñones-Hinojosa A, Cooks RG. High-throughput analysis of tissue microarrays using automated desorption electrospray ionization mass spectrometry. Sci Rep 2022; 12:18851. [PMID: 36344609 PMCID: PMC9640715 DOI: 10.1038/s41598-022-22924-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Tissue microarrays (TMAs) are commonly used for the rapid analysis of large numbers of tissue samples, often in morphological assessments but increasingly in spectroscopic analysis, where specific molecular markers are targeted via immunostaining. Here we report the use of an automated high-throughput system based on desorption electrospray ionization (DESI) mass spectrometry (MS) for the rapid generation and online analysis of high-density (6144 samples/array) TMAs, at rates better than 1 sample/second. Direct open-air analysis of tissue samples (hundreds of nanograms) not subjected to prior preparation, plus the ability to provide molecular characterization by tandem mass spectrometry (MS/MS), make this experiment versatile and applicable to both targeted and untargeted analysis in a label-free manner. These capabilities are demonstrated in a proof-of-concept study of frozen brain tissue biopsies where we showcase (i) a targeted MS/MS application aimed at identification of isocitrate dehydrogenase mutation in glioma samples and (ii) an untargeted MS tissue type classification using lipid profiles and correlation with tumor cell percentage estimates from histopathology. The small sample sizes and large sample numbers accessible with this methodology make for a powerful analytical system that facilitates the identification of molecular markers for later use in intraoperative applications to guide precision surgeries and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Nicolás M. Morato
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA
| | - Hannah Marie Brown
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA ,grid.4367.60000 0001 2355 7002Present Address: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - Diogo Garcia
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA
| | - Erik H. Middlebrooks
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA ,grid.417467.70000 0004 0443 9942Department of Radiology, Mayo Clinic, Jacksonville, FL USA
| | - Mark Jentoft
- grid.417467.70000 0004 0443 9942Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA
| | - Kaisorn Chaichana
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA
| | | | - R. Graham Cooks
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
30
|
Haddad AF, Aghi MK, Butowski N. Novel intraoperative strategies for enhancing tumor control: Future directions. Neuro Oncol 2022; 24:S25-S32. [PMID: 36322096 PMCID: PMC9629473 DOI: 10.1093/neuonc/noac090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Maximal safe surgical resection plays a key role in the care of patients with gliomas. A range of technologies have been developed to aid surgeons in distinguishing tumor from normal tissue, with the goal of increasing tumor resection and limiting postoperative neurological deficits. Technologies that are currently being investigated to aid in improving tumor control include intraoperative imaging modalities, fluorescent tumor makers, intraoperative cell and molecular profiling of tumors, improved microscopic imaging, intraoperative mapping, augmented and virtual reality, intraoperative drug and radiation delivery, and ablative technologies. In this review, we summarize the aforementioned advancements in neurosurgical oncology and implications for improving patient outcomes.
Collapse
Affiliation(s)
- Alexander F Haddad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
31
|
Tata A, Pallante I, Zacometti C, Moressa A, Bragolusi M, Negro A, Massaro A, Binato G, Gallocchio F, Angeletti R, Pozzato N, Piro R. Rapid, novel screening of toxicants in poison baits, and autopsy specimens by ambient mass spectrometry. Front Chem 2022; 10:982377. [PMID: 36092679 PMCID: PMC9452653 DOI: 10.3389/fchem.2022.982377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Animal poisoning and dissemination of baits in the environment have public health and ethological implications, which can be followed by criminal sanctions for those responsible. The reference methods for the analysis of suspect baits and autopsy specimens are founded on chromatographic-based techniques. They are extremely robust and sensitive, but also very expensive and laborious. For this reason, we developed an ambient mass spectrometry (AMS) method able to screen for 40 toxicants including carbamates, organophosphate and chlorinated pesticides, coumarins, metaldehyde, and strychnine. Spiked samples were firstly purified and extracted by dispersive solid phase extraction (QuEChERS) and then analyzed by direct analysis in real time high-resolution mass spectrometry (DART-HRMS). To verify the performance of this new approach, 115 authentic baits (n = 59) and necropsy specimens (gastrointestinal content and liver, n = 56) were assessed by the official reference methods and combined QuEChERS-DART-HRMS. The agreement between the results allowed evaluation of the performances of the new screening method for a variety of analytes and calculation of the resultant statistical indicators (the new method had overall accuracy 89.57%, sensitivity of 88.24%, and a specificity of 91.49%). Taking into account only the baits, 96.61% of overall accuracy was achieved with 57/59 samples correctly identified (statistical sensitivity 97.50%, statistical specificity 94.74%). Successful identification of the bitter compound, denatonium benzoate, in all the samples that contained rodenticides (28/28) was also achieved. We believe initial screening of suspect poison baits could guide the choice of reference confirmatory methods, reduce the load in official laboratories, and help the early stages of investigations into cases of animal poisoning.
Collapse
Affiliation(s)
- Alessandra Tata
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
- *Correspondence: Alessandra Tata,
| | - Ivana Pallante
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Medicina Forense Veterinaria, Vicenza, Italy
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Moressa
- Istituto Zooprofilattico Sperimentale delle Venezie, Chimica, Legnaro, Italy
| | - Marco Bragolusi
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandro Negro
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Andrea Massaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Giovanni Binato
- Istituto Zooprofilattico Sperimentale delle Venezie, Chimica, Legnaro, Italy
| | - Federica Gallocchio
- Istituto Zooprofilattico Sperimentale delle Venezie, Chimica, Legnaro, Italy
| | - Roberto Angeletti
- Istituto Zooprofilattico Sperimentale delle Venezie, Chimica, Legnaro, Italy
| | - Nicola Pozzato
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Medicina Forense Veterinaria, Vicenza, Italy
| | - Roberto Piro
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| |
Collapse
|
32
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
33
|
Bailey MJ, de Puit M, Romolo FS. Surface Analysis Techniques in Forensic Science: Successes, Challenges, and Opportunities for Operational Deployment. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:173-196. [PMID: 35167323 DOI: 10.1146/annurev-anchem-061020-124221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface analysis techniques have rapidly evolved in the last decade. Some of these are already routinely used in forensics, such as for the detection of gunshot residue or for glass analysis. Some surface analysis approaches are attractive for their portability to the crime scene. Others can be very helpful in forensic laboratories owing to their high spatial resolution, analyte coverage, speed, and specificity. Despite this, many proposed applications of the techniques have not yet led to operational deployment. Here, we explore the application of these techniques to the most important traces commonly found in forensic casework. We highlight where there is potential to add value and outline the progress that is needed to achieve operational deployment. We consider within the scope of this review surface mass spectrometry, surface spectroscopy, and surface X-ray spectrometry. We show how these tools show great promise for the analysis of fingerprints, hair, drugs, explosives, and microtraces.
Collapse
Affiliation(s)
- Melanie J Bailey
- Department of Chemistry, Stag Hill Campus, University of Surrey, Guildford, United Kingdom;
| | - Marcel de Puit
- Netherlands Forensic Institute, The Hague, The Netherlands
- Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
34
|
Fast and semiquantitative screening for sildenafil in herbal over-the-counter formulations with atmospheric pressure solid analysis probe (ASAP) to prevent medicinal adulteration. J Pharm Biomed Anal 2022; 214:114720. [DOI: 10.1016/j.jpba.2022.114720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 11/20/2022]
|
35
|
Zhao C, Cai Z. Three-dimensional quantitative mass spectrometry imaging in complex system: From subcellular to whole organism. MASS SPECTROMETRY REVIEWS 2022; 41:469-487. [PMID: 33300181 DOI: 10.1002/mas.21674] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Mass spectrometry imaging (MSI) has been applied for label-free three-dimensional (3D) imaging from position array across the whole organism, which provides high-dimensional quantitative data of inorganic or organic compounds that may play an important role in the regulation of cellular signaling, including metals, metabolites, lipids, drugs, peptides, and proteins. While MSI is suitable for investigation of the spatial distribution of molecules, it has a limitation with visualization and quantification of multiple molecules. 3D-MSI, however, can be applied toward exploring metabolic pathway as well as the interactions of lipid-protein, protein-protein, and metal-protein in complex systems from subcellular to the whole organism through an untargeted methodology. In this review, we highlight the methods and applications of MS-based 3D imaging to address the complexity of molecular interaction from nano- to micrometer lateral resolution, with particular focus on: (a) common and hybrid 3D-MSI techniques; (b) quantitative MSI methodology, including the methods using a stable isotope labeling internal standard (SILIS) and SILIS-free approaches with tissue extinction coefficient or virtual calibration; (c) reconstruction of the 3D organ; (d) application of 3D-MSI for biomarker screening and environmental toxicological research. 3D-MSI quantitative analysis provides accurate spatial information and quantitative variation of biomolecules, which may be valuable for the exploration of the molecular mechanism of the disease progresses and toxicological assessment of environmental pollutants in the whole organism. Additionally, we also discuss the challenges and perspectives on the future of 3D quantitative MSI.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
36
|
Haddad AF, Young JS, Morshed RA, Berger MS. FLAIRectomy: Resecting beyond the Contrast Margin for Glioblastoma. Brain Sci 2022; 12:brainsci12050544. [PMID: 35624931 PMCID: PMC9139350 DOI: 10.3390/brainsci12050544] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
The standard of care for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) is maximal resection followed by chemotherapy and radiation. Studies investigating the resection of GBM have primarily focused on the contrast enhancing portion of the tumor on magnetic resonance imaging. Histopathological studies, however, have demonstrated tumor infiltration within peri-tumoral fluid-attenuated inversion recovery (FLAIR) abnormalities, which is often not resected. The histopathology of FLAIR and local recurrence patterns of GBM have prompted interest in the resection of peri-tumoral FLAIR, or FLAIRectomy. To this point, recent studies have suggested a significant survival benefit associated with safe peri-tumoral FLAIR resection. In this review, we discuss the evidence surrounding the composition of peri-tumoral FLAIR, outcomes associated with FLAIRectomy, future directions of the field, and potential implications for patients.
Collapse
|
37
|
Zhou X, Zhang W, Ouyang Z. Recent advances in on-site mass spectrometry analysis for clinical applications. Trends Analyt Chem 2022; 149:116548. [PMID: 35125564 PMCID: PMC8802081 DOI: 10.1016/j.trac.2022.116548] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, mass spectrometry (MS) is increasingly attracting interests for clinical applications, which also calls for technical innovations to make a transfer of MS from conventional analytical laboratories to clinics. The system design and analysis procedure should be friendly for novice users and appliable for on-site clinical diagnosis. In addition, the analysis result should be auto-interpreted and reported in formats much simpler than mass spectra. This motivates new ideas for developments in all the aspects of MS. In this review, we report recent advances of direct sampling ionization and miniature MS system, which have been developed targeting clinical and even point-of-care analysis. We also discuss the trend of the development and provide perspective on the technical challenges raised by diseases such as coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
38
|
Jin Z, Yue Q, Duan W, Sui A, Zhao B, Deng Y, Zhai Y, Zhang Y, Sun T, Zhang G, Han L, Mao Y, Yu J, Zhang X, Li C. Intelligent SERS Navigation System Guiding Brain Tumor Surgery by Intraoperatively Delineating the Metabolic Acidosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104935. [PMID: 35023300 PMCID: PMC8895125 DOI: 10.1002/advs.202104935] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Surgeons face challenges in intraoperatively defining margin of brain tumors due to its infiltrative nature. Extracellular acidosis caused by metabolic reprogramming of cancer cells is a reliable marker for tumor infiltrative regions. Although the acidic margin-guided surgery shows promise in improving surgical prognosis, its clinical transition is delayed by having the exogenous probes approved by the drug supervision authority. Here, an intelligent surface-enhanced Raman scattering (SERS) navigation system delineating glioma acidic margins without administration of exogenous probes is reported. With assistance of this system, the metabolites at the tumor cutting edges can be nondestructively transferred within a water droplet to a SERS chip with pH sensitivity. Homemade deep learning model automatically processes the Raman spectra collected from the SERS chip and delineates the pH map of tumor resection bed with increased speed. Acidity correlated cancer cell density and proliferation level are demonstrated in tumor cutting edges of animal models and excised tissues from glioma patients. The overall survival of animal models post the SERS system guided surgery is significantly increased in comparison to the conventional strategy used in clinical practice. This SERS system holds the promise in accelerating clinical transition of acidic margin-guided surgery for solid tumors with infiltrative nature.
Collapse
Affiliation(s)
- Ziyi Jin
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - Qi Yue
- Department of neurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Wenjia Duan
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - An Sui
- School of Information Science and TechnologyFudan UniversityShanghai200438China
| | - Botao Zhao
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Yinhui Deng
- School of Information Science and TechnologyFudan UniversityShanghai200438China
| | - Yuting Zhai
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - Guang‐Ping Zhang
- School of Physics and ElectronicsShandong Normal UniversityJinan250358China
| | - Limei Han
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - Ying Mao
- Department of neurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Jinhua Yu
- School of Information Science and TechnologyFudan UniversityShanghai200438China
| | - Xiao‐Yong Zhang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
- MOE Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceMOE Frontiers Center for Brain ScienceShanghaiChina
| | - Cong Li
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
39
|
Noun M, Akoumeh R, Abbas I. Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-26. [PMID: 34809729 DOI: 10.1017/s1431927621013593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections. This advancement is attributed to the submicron lateral resolution, the high sensitivity, the good precision, and the accurate chemical specificity, which make these techniques suitable for decoding and understanding complex mechanisms of certain diseases, as well as monitoring the spatial distribution of specific elements, and compounds. While the application of both techniques for the analysis of cells and tissues is thoroughly discussed, a briefing of MALDI-TOF and TOF-SIMS basis and the adequate sampling before analysis are briefly covered. The importance of MALDI-TOF and TOF-SIMS as diagnostic tools and robust analytical techniques in the medicinal, pharmaceutical, and toxicology fields is highlighted through representative published studies.
Collapse
Affiliation(s)
- Manale Noun
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Rayane Akoumeh
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| |
Collapse
|
40
|
Metabolomic Phenotyping of Gliomas: What Can We Get with Simplified Protocol for Intact Tissue Analysis? Cancers (Basel) 2022; 14:cancers14020312. [PMID: 35053475 PMCID: PMC8773998 DOI: 10.3390/cancers14020312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme is one of the most malignant neoplasms among humans in their third and fourth decades of life, which is evidenced by short patient survival times and rapid tumor-cell proliferation after radiation and chemotherapy. At present, the diagnosis of gliomas and decisions related to therapeutic strategies are based on genetic testing and histological analysis of the tumor, with molecular biomarkers still being sought to complement the diagnostic panel. This work aims to enable the metabolomic characterization of cancer tissue and the discovery of potential biomarkers via high-resolution mass spectrometry coupled to liquid chromatography and a solvent-free sampling protocol that uses a microprobe to extract metabolites directly from intact tumors. The metabolomic analyses were performed independently from genetic and histological testing and at a later time. Despite the small cohort analyzed in this study, the results indicated that the proposed method is able to identify metabolites associated with different malignancy grades of glioma, as well as IDH and 1p19q codeletion mutations. A comparison of the constellation of identified metabolites and the results of standard tests indicated the validity of using the characterization of one comprehensive tumor phenotype as a reflection of all diagnostically meaningful information. Due to its simplicity, the proposed analytical approach was verified as being compatible with a surgical environment and applicable for large-scale studies.
Collapse
|
41
|
Koomen DC, May JC, McLean JA. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry. Expert Rev Proteomics 2022; 19:17-31. [PMID: 34986717 PMCID: PMC8881341 DOI: 10.1080/14789450.2022.2026218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/23/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Ion mobility-mass spectrometry is an emerging technology in the clinical setting for high throughput and high confidence molecular characterization from complex biological samples. Ion mobility spectrometry can provide isomer separations on the basis of molecular structure, the ability of which is increasing through technological developments that afford enhanced resolving power. Integrating multiple separation dimensions, such as liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) provide dramatic enhancements in the mitigation of molecular interferences for high accuracy clinical measurements. AREAS COVERED Multidimensional separations with LC-IM-MS provide better selectivity and sensitivity in molecular analysis. Mass spectrometry imaging of tissues to inform spatial molecular distribution is improved by complementary ion mobility analyses. Biomarker identification in surgical environments is enhanced by intraoperative biochemical analysis with mass spectrometry and holds promise for integration with ion mobility spectrometry. New prospects in high resolving power ion mobility are enhancing analysis capabilities, such as distinguishing isomeric compounds. EXPERT OPINION Ion mobility-mass spectrometry holds many prospects for the field of isomer identification, molecular imaging, and intraoperative tumor margin delineation in clinical settings. These advantages are afforded while maintaining fast analysis times and subsequently high throughput. High resolving power ion mobility will enhance these advantages further, in particular for analyses requiring high confidence isobaric selectivity and detection.
Collapse
Affiliation(s)
- David C Koomen
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
42
|
Limorenko G, Lashuel HA. To target Tau pathologies, we must embrace and reconstruct their complexities. Neurobiol Dis 2021; 161:105536. [PMID: 34718129 DOI: 10.1016/j.nbd.2021.105536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022] Open
Abstract
The accumulation of hyperphosphorylated fibrillar Tau aggregates in the brain is one of the defining hallmarks of Tauopathy diseases, including Alzheimer's disease. However, the primary events or molecules responsible for initiation of the pathological Tau aggregation and spreading remain unknown. The discovery of heparin as an effective inducer of Tau aggregation in vitro was instrumental to enabling different lines of research into the role of Tau aggregation in the pathogenesis of Tauopathies. However, recent proteomics and cryogenic electron microscopy (cryo-EM) studies have revealed that heparin-induced Tau fibrils generated in vitro do not reproduce the biochemical and ultrastructural properties of disease-associated brain-derived Tau fibrils. These observations demand that we reassess our current approaches for investigating the mechanisms underpinning Tau aggregation and pathology formation. Our review article presents an up-to-date survey and analyses of 1) the evolution of our understanding of the interactions between Tau and heparin, 2) the various structural and mechanistic models of the heparin-induced Tau aggregation, 3) the similarities and differences between brain-derived and heparin-induced Tau fibrils; and 4) emerging concepts on the biochemical and structural determinants underpinning Tau pathological heterogeneity in Tauopathies. Our analyses identify specific knowledge gaps and call for 1) embracing the complexities of Tau pathologies; 2) reassessment of current approaches to investigate, model and reproduce pathological Tau aggregation as it occurs in the brain; 3) more research towards a better understanding of the naturally-occurring cofactor molecules that are associated with Tau brain pathology initiation and propagation; and 4) developing improved approaches for in vitro production of the Tau aggregates and fibrils that recapitulate and/or amplify the biochemical and structural complexity and diversity of pathological Tau in Tauopathies. This will result in better and more relevant tools, assays, and mechanistic models, which could significantly improve translational research and the development of drugs and antibodies that have higher chances for success in the clinic.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
43
|
New Advances in Tissue Metabolomics: A Review. Metabolites 2021; 11:metabo11100672. [PMID: 34677387 PMCID: PMC8541552 DOI: 10.3390/metabo11100672] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolomics offers a hypothesis-generating approach for biomarker discovery in clinical medicine while also providing better understanding of the underlying mechanisms of chronic diseases. Clinical metabolomic studies largely rely on human biofluids (e.g., plasma, urine) as a more convenient specimen type for investigation. However, biofluids are non-organ specific reflecting complex biochemical processes throughout the body, which may complicate biochemical interpretations. For these reasons, tissue metabolomic studies enable deeper insights into aberrant metabolism occurring at the direct site of disease pathogenesis. This review highlights new advances in metabolomics for ex vivo analysis, as well as in situ imaging of tissue specimens, including diverse tissue types from animal models and human participants. Moreover, we discuss key pre-analytical and post-analytical challenges in tissue metabolomics for robust biomarker discovery with a focus on new methodological advances introduced over the past six years, including innovative clinical applications for improved screening, diagnostic testing, and therapeutic interventions for cancer.
Collapse
|
44
|
Katz L, Tata A, Woolman M, Zarrine-Afsar A. Lipid Profiling in Cancer Diagnosis with Hand-Held Ambient Mass Spectrometry Probes: Addressing the Late-Stage Performance Concerns. Metabolites 2021; 11:metabo11100660. [PMID: 34677375 PMCID: PMC8537725 DOI: 10.3390/metabo11100660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Untargeted lipid fingerprinting with hand-held ambient mass spectrometry (MS) probes without chromatographic separation has shown promise in the rapid characterization of cancers. As human cancers present significant molecular heterogeneities, careful molecular modeling and data validation strategies are required to minimize late-stage performance variations of these models across a large population. This review utilizes parallels from the pitfalls of conventional protein biomarkers in reaching bedside utility and provides recommendations for robust modeling as well as validation strategies that could enable the next logical steps in large scale assessment of the utility of ambient MS profiling for cancer diagnosis. Six recommendations are provided that range from careful initial determination of clinical added value to moving beyond just statistical associations to validate lipid involvements in disease processes mechanistically. Further guidelines for careful selection of suitable samples to capture expected and unexpected intragroup variance are provided and discussed in the context of demographic heterogeneities in the lipidome, further influenced by lifestyle factors, diet, and potential intersect with cancer lipid pathways probed in ambient mass spectrometry profiling studies.
Collapse
Affiliation(s)
- Lauren Katz
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy;
| | - Michael Woolman
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Arash Zarrine-Afsar
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence: ; Tel.: +1-416-581-8473
| |
Collapse
|
45
|
Peruzzi P, Valdes PQ, Aghi MK, Berger M, Chiocca EA, Golby AJ. The Evolving Role of Neurosurgical Intervention for Central Nervous System Tumors. Hematol Oncol Clin North Am 2021; 36:63-75. [PMID: 34565649 DOI: 10.1016/j.hoc.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Since its inception, greater than a century ago, neurosurgery has represented the fundamental trait-d'union between clinical management, scientific investigation, and therapeutic advancements in the field of brain tumors. During the years, oncological neurosurgery has evolved as a self-standing subspecialty, due to technical progress, equipment improvement, evolution of therapeutic paradigms, and the progressively crucial role that it plays in the execution of complex therapeutic strategies and modern clinical trials.
Collapse
Affiliation(s)
- Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Pablo Q Valdes
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA 02115, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94117, USA
| | - Mitchel Berger
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94117, USA
| | - Ennio Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA 02115, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital/Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
46
|
Basu SS, Stopka SA, Abdelmoula WM, Randall EC, Gimenez-Cassina Lopez B, Regan MS, Calligaris D, Lu FF, Norton I, Mallory MA, Santagata S, Dillon DA, Golshan M, Agar NYR. Interim clinical trial analysis of intraoperative mass spectrometry for breast cancer surgery. NPJ Breast Cancer 2021; 7:116. [PMID: 34504095 PMCID: PMC8429658 DOI: 10.1038/s41523-021-00318-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
Optimal resection of breast tumors requires removing cancer with a rim of normal tissue while preserving uninvolved regions of the breast. Surgical and pathological techniques that permit rapid molecular characterization of tissue could facilitate such resections. Mass spectrometry (MS) is increasingly used in the research setting to detect and classify tumors and has the potential to detect cancer at surgical margins. Here, we describe the ex vivo intraoperative clinical application of MS using a liquid micro-junction surface sample probe (LMJ-SSP) to assess breast cancer margins. In a midpoint analysis of a registered clinical trial, surgical specimens from 21 women with treatment naïve invasive breast cancer were prospectively collected and analyzed at the time of surgery with subsequent histopathological determination. Normal and tumor breast specimens from the lumpectomy resected by the surgeon were smeared onto glass slides for rapid analysis. Lipidomic profiles were acquired from these specimens using LMJ-SSP MS in negative ionization mode within the operating suite and post-surgery analysis of the data revealed five candidate ions separating tumor from healthy tissue in this limited dataset. More data is required before considering the ions as candidate markers. Here, we present an application of ambient MS within the operating room to analyze breast cancer tissue and surgical margins. Lessons learned from these initial promising studies are being used to further evaluate the five candidate biomarkers and to further refine and optimize intraoperative MS as a tool for surgical guidance in breast cancer.
Collapse
Affiliation(s)
- Sankha S Basu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walid M Abdelmoula
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth C Randall
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Calligaris
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fake F Lu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isaiah Norton
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa A Mallory
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehra Golshan
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Yale Cancer Center, Department of Surgery, New Haven, CT, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Yang X, Song X, Zhang X, Shankar V, Wang S, Yang Y, Chen S, Zhang L, Ni Y, Zare RN, Hu Q. In situ DESI-MSI lipidomic profiles of mucosal margin of oral squamous cell carcinoma. EBioMedicine 2021; 70:103529. [PMID: 34391097 PMCID: PMC8374374 DOI: 10.1016/j.ebiom.2021.103529] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Background Although there is consensus that the optimal safe margin is ≥ 5mm, obtaining clear margins (≥5 mm) intraoperatively seems to be the major challenge. We applied a molecular diagnostic method at the lipidomic level to determine the safe surgical resection margin of OSCC by desorption electrospray ionisation mass spectrometry imaging (DESI-MSI). Methods By overlaying mass spectrometry images with hematoxylin-eosin staining (H&E) from 18 recruited OSCC participants, the mass spectra of all pixels across the diagnosed tumour and continuous mucosal margin regions were extracted to serve as the training and validation datasets. A Lasso regression model was used to evaluate the test performance. Findings By leave-one-out validation, the Lasso model achieved 88.6% accuracy in distinguishing between tumour and normal regions. To determine the safe surgical resection distance and margin status of OSCC, a set of 14 lipid ions that gradually decreased from tumour to normal tissue was assigned higher weight coefficients in the Lasso model. The safe surgical resection distance of OSCC was measured using the developed 14 lipid ion molecular diagnostic model for clinical reference. The overall accuracy of predicting tumours, positive margins, and negative margins was 92.6%. Interpretation The spatial segmentation results based on our diagnostic model not only clearly delineated the tumour and normal tissue, but also distinguished the different status of surgical margins. Meanwhile, the safe surgical resection margin of OSCC on frozen sections can also be accurately measured using the developed diagnostic model. Funding This study was supported by Nanjing Municipal Key Medical Laboratory Constructional Project Funding (since 2016) and the Centre of Nanjing Clinical Medicine Tumour (since 2014).
Collapse
Affiliation(s)
- Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 210008, China; Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| | - Xiaowei Song
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Vishnu Shankar
- Department of Chemistry, Stanford University, Stanford, California, 94305, USA
| | - Shuai Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Yan Yang
- Department of Oral Pathology, Stomatological hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Sheng Chen
- Department of Oral Pathology, Stomatological hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Lei Zhang
- Department of Oral Pathology, Stomatological hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| | - Richard N Zare
- Department of Chemistry, Fudan University, Shanghai, 200438, China; Department of Chemistry, Stanford University, Stanford, California, 94305, USA.
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
48
|
Zhao C, Yong T, Zhang Y, Xiao Y, Jin Y, Zheng C, Nirasawa T, Cai Z. Breast cancer proliferation and deterioration-associated metabolic heterogeneity changes induced by exposure of bisphenol S, a widespread replacement of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125391. [PMID: 33652221 DOI: 10.1016/j.jhazmat.2021.125391] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Exposure to bisphenol A (BPA) is considered to be associated with the increased incidence of breast cancer. As a widespread replacement of BPA, the effect of bisphenol S (BPS) on breast tumor programming has not been studied. We reported that BPS exposure significantly promoted proliferation and deterioration of breast tumor by nonmonotonic dose response. The mechanisms were investigated by molecular biology and mass spectrometry-based lipidomics, proteomics and imaging. BPS exposure induced the spatially intratumor heterogeneity of morphology-driven lipids and proteins. The more significant proliferation resulted from BPS-10 (10 μg/kg body weight /day) exposure was evidenced by the variations of spatial distribution of lipids related to ceramide-sphingomyelin signaling pathway, proteins related to chromosomal stability and cell proliferation in central necrotic regions of breast tumor. In contrast, the BPS-100 exposure obviously accelerated deterioration of breast tumor by the variations of spatial distribution of proteins that were associated with the stability of nucleic acid structure in peripheral neoplastic regions. Accordingly, dysregulation of metabolism and protein function as well as DNA methylation and hypoxic tumor microenvironment could be applied to predict the possibility of tumorigenesis, proliferation and metastasis that might be caused by other bisphenol analogs.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ting Yong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Shaanxi, China
| | - Yu Xiao
- Department of Breast and Thyroid Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yaofeng Jin
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Shaanxi, China
| | - Chang Zheng
- Department of Breast and Thyroid Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | | | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
49
|
Brown HM, Alfaro CM, Pirro V, Dey M, Hattab EM, Cohen-Gadol AA, Cooks RG. Intraoperative Mass Spectrometry Platform for IDH Mutation Status Prediction, Glioma Diagnosis, and Estimation of Tumor Cell Infiltration. J Appl Lab Med 2021; 6:902-916. [PMID: 33523209 PMCID: PMC8266740 DOI: 10.1093/jalm/jfaa233] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Surgical tumor resection is the primary treatment option for diffuse glioma, the most common malignant brain cancer. The intraoperative diagnosis of gliomas from tumor core samples can be improved by use of molecular diagnostics. Further, residual tumor at surgical margins is a primary cause of tumor recurrence and malignant progression. This study evaluates a desorption electrospray ionization mass spectrometry (DESI-MS) system for intraoperative isocitrate dehydrogenase (IDH) mutation assessment, estimation of tumor cell infiltration as tumor cell percentage (TCP), and disease status. This information could be used to enhance the extent of safe resection and so potentially improve patient outcomes. METHODS A mobile DESI-MS instrument was modified and used in neurosurgical operating rooms (ORs) on a cohort of 49 human subjects undergoing craniotomy with tumor resection for suspected diffuse glioma. Small tissue biopsies (ntotal = 203) from the tumor core and surgical margins were analyzed by DESI-MS in the OR and classified using univariate and multivariate statistical methods. RESULTS Assessment of IDH mutation status using DESI-MS/MS to measure 2-hydroxyglutarate (2-HG) ion intensities from tumor cores yielded a sensitivity, specificity, and overall diagnostic accuracy of 89, 100, and 94%, respectively (ncore = 71). Assessment of TCP (categorized as low or high) in tumor margin and core biopsies using N-acetyl-aspartic acid (NAA) intensity provided a sensitivity, specificity, and accuracy of 91, 76, and 83%, respectively (ntotal = 203). TCP assessment using lipid profile deconvolution provided sensitivity, specificity, and accuracy of 76, 85, and 81%, respectively (ntotal = 203). Combining the experimental data and using PCA-LDA predictions of disease status, the sensitivity, specificity, and accuracy in predicting disease status are 63%, 83%, and 74%, respectively (ntotal = 203). CONCLUSIONS The DESI-MS system allowed for identification of IDH mutation status, glioma diagnosis, and estimation of tumor cell infiltration intraoperatively in a large human glioma cohort. This methodology should be further refined for clinical diagnostic applications.
Collapse
Affiliation(s)
| | - Clint M. Alfaro
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Valentina Pirro
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Mahua Dey
- Department of Neurological Surgery, Indiana University School of Medicine, Goodman Campbell Brain and Spine, Indianapolis, IN, USA
| | - Eyas M. Hattab
- Department of Pathology and Laboratory Medicine, University of Louisville, KY, USA
| | - Aaron A. Cohen-Gadol
- Department of Neurological Surgery, Indiana University School of Medicine, Goodman Campbell Brain and Spine, Indianapolis, IN, USA
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
50
|
Liu H, Wang S, Lin JM, Lin Z, Li HF. Investigation of the lipidomic changes in differentiated glioblastoma cells after drug treatment using MALDI-MS. Talanta 2021; 233:122570. [PMID: 34215066 DOI: 10.1016/j.talanta.2021.122570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023]
Abstract
Lipids differences between tumor and normal tissue have been proved to be of diagnostic and therapeutic significance. The research of lipidomics in tumor is more and more important. Mass spectrometry like matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) can be more convenient and informative for lipids researching in biological and clinical researches. Most of malignant tumors like glioblastoma are characterized by incomplete differentiation, so differentiation therapy has made important progress in tumor treatment. Lipid profiles changes after therapy are worthy investigating. In our study, glioblastoma cell line U87-MG cells were treated by inducers of sodium phenylbutyrate (SPB) and all-trans retinoic acid (ATRA). The changes in lipids on cell membrane were profiled by MALDI-MS. The differentiation degree was assessed by cell proliferation, cell cycle, morphology and protein expression before MALDI-MS analysis. Comparing the inducer treated and untreated U87-MG cells, reduced proliferation rate, blocked cell cycle, benign nucleus morphology and changed expression of protein CD133 and glial fibrillary acidic protein (GFAP), were found after drug treatment. Moreover, the lipids of cell membrane presented distinguished differences in the drug treated cells. Most of the glycerophosphocholines (PC) with an increasing abundance are unsaturated PCs (PC (38:1), 816 m/z; PC (36:1), 788 m/z; PC (31:1), 725 m/z), and those decreasing are saturated PCs (PC (32:0), 734 m/z). These results provide the lipidomic differentiation which may be a significant guidance for evaluating the therapeutic effect of tumor therapy.
Collapse
Affiliation(s)
- Hongxing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Shiqi Wang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Zhixiong Lin
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| | - Hai-Fang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|