1
|
Lucidi M, Capecchi G, Spagnoli C, Basile A, Artuso I, Persichetti L, Fardelli E, Capellini G, Visaggio D, Imperi F, Rampioni G, Leoni L, Visca P. The response to desiccation in Acinetobacter baumannii. Virulence 2025; 16:2490209. [PMID: 40220276 PMCID: PMC12005421 DOI: 10.1080/21505594.2025.2490209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/10/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
The long-term resistance to desiccation on abiotic surfaces is a key determinant of the adaptive success of Acinetobacter baumannii as a healthcare-associated bacterial pathogen. Here, the cellular and molecular mechanisms enabling A. baumannii to resist desiccation and persist on abiotic surfaces were investigated. Experiments were set up to mimic the A. baumannii response to air-drying that would occur when bacterial cells contaminate fomites in hospitals. Resistance to desiccation and transition to the "viable but nonculturable" (VBNC) state were determined in the laboratory-adapted strain ATCC 19606T and the epidemic strain ACICU. Culturability, membrane integrity, metabolic activity, virulence, and gene expression profile were compared between the two strains at different stages of desiccation. Upon desiccation, ATCC 19606T and ACICU cells lose culturability and membrane integrity, lower their metabolism, and enter the VBNC state. However, desiccated A. baumannii cells fully recover culturability and virulence in an insect infection model following rehydration in physiological buffers or human biological fluids. Transcriptome and chemical analyses of A. baumannii cells during desiccation unveiled the production of protective metabolites (L-cysteine and L-glutamate) and decreased energetic metabolism consequent to activation of the glyoxylate shunt (GS) pathway, as confirmed by reduced resuscitation efficiency of aceA mutants, lacking the key enzyme of the GS pathway. VBNC cell formation and extensive metabolic reprogramming provide a biological basis for the response of A. baumannii to desiccation, with implications on environmental control measures aimed at preventing the transmission of A. baumannii infection in hospitals.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | | | | | | | - Irene Artuso
- Department of Science, Roma Tre University, Rome, Italy
| | | | | | | | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Giordano Rampioni
- Department of Science, Roma Tre University, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Livia Leoni
- Department of Science, Roma Tre University, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
2
|
Federici L, Masulli M, De Laurenzi V, Allocati N. A Narrative Review of the Role of S-Glutathionylation in Bacteria. Microorganisms 2025; 13:527. [PMID: 40142423 PMCID: PMC11944925 DOI: 10.3390/microorganisms13030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Protein glutathionylation is defined as a reversible, ubiquitous post-translational modification, resulting in the formation of mixed disulfides between glutathione and proteins' cysteine residues. Glutathionylation has been implicated in several cellular mechanisms ranging from protection from oxidative stress to the control of cellular homeostasis and the cell cycle. A significant body of research has examined the multifaceted effects of this post-translational modification under physiological conditions in eukaryotes, with a particular focus on its impact on the development of various diseases in humans. In contrast, the role of glutathionylation in prokaryotic organisms remains to be extensively investigated. However, there has been a recent increase in the number of studies investigating this issue, providing details about the role of glutathione and other related thiols as post-translational modifiers of selected bacterial proteins. It can be concluded that in addition to the classical role of such thiols in protecting against cysteine oxidation and consequent protein inactivation, many more specialized roles of glutathionylation in bacterial pathogenicity, virulence, interspecies competition and survival, and control of gene expression are emerging, and new ones may emerge in the future. In this short review, we aim to summarize the current state-of-the-art in this field of research.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| |
Collapse
|
3
|
Chowdhury T, Cupp-Sutton KA, Guo Y, Gao K, Zhao Z, Burgett A, Wu S. Quantitative Top-down Proteomics Revealed Kinase Inhibitor-Induced Proteoform-Level Changes in Cancer Cells. J Proteome Res 2025; 24:303-314. [PMID: 39620430 PMCID: PMC11784628 DOI: 10.1021/acs.jproteome.4c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Quantitative analysis of proteins and their post-translational modifications (PTMs) in complex biological samples is critical to understanding cellular biology as well as disease detection and treatment. Top-down proteomics methods provide a "bird's eye" view of the proteome by directly detecting and quantifying intact proteoforms. Here, we developed a high-throughput quantitative top-down proteomics platform to probe intact proteoform and phosphoproteoform abundance changes in HeLa cells as a result of treatment with staurosporine (STS), a broad-spectrum kinase inhibitor. In total, we identified and quantified 1187 proteoforms from 215 proteoform families. Among them, 55 proteoforms from 37 proteoform families were significantly changed upon STS treatment. These proteoforms were primarily related to catabolic, metabolic, and apoptotic pathways that are expected to be impacted as a result of kinase inhibition. In addition, we manually evaluated 25 proteoform families that expressed one or more phosphorylated proteoforms. We observed that phosphorylated proteoforms in the same proteoform family, such as eukaryotic initiation factor 4E binding protein 1 (4EBP1), were differentially regulated relative to the unphosphorylated proteoforms. Combining relative profiling of proteoforms within these proteoform families with individual proteoform profiling results in a more comprehensive picture of STS treatment-induced proteoform abundance changes that cannot be achieved using bottom-up methods.
Collapse
Affiliation(s)
- Trishika Chowdhury
- Department of Chemistry and Biochemistry, University of
Alabama, Tuscaloosa, AL 35401
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of
Alabama, Tuscaloosa, AL 35401
| | - Yanting Guo
- Department of Chemistry and Biochemistry, University of
Oklahoma, Norman, OK 73019
| | - Kevin Gao
- Department of Chemistry and Biochemistry, University of
Oklahoma, Norman, OK 73019
| | - Zhitao Zhao
- Department of Chemistry and Biochemistry, University of
Oklahoma, Norman, OK 73019
| | - Anthony Burgett
- University of Oklahoma Health Science Center, Oklahoma
City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of
Alabama, Tuscaloosa, AL 35401
- Department of Chemistry and Biochemistry, University of
Oklahoma, Norman, OK 73019
| |
Collapse
|
4
|
Basharat Z, Foster LJ, Abbas S, Yasmin A. Comparative Proteomics of Bacteria Under Stress Conditions. Methods Mol Biol 2025; 2859:129-162. [PMID: 39436600 DOI: 10.1007/978-1-0716-4152-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bacteria are unicellular organisms with the ability to exist in the harshest of climate and cope with sub-optimal fluctuating environmental conditions. They accomplish this by modification of their internal cellular environment. When external conditions are varied, change in the cell is triggered at the transcriptional level, which usually leads to proteolysis and rewiring of the proteome. Changes in cellular homeostasis, modifications in proteome, and dynamics of such survival mechanisms can be studied using various scientific techniques. Our focus in this chapter would be on comparative proteomics of bacteria under stress conditions using approaches like 2D electrophoresis accompanied by N-terminal sequencing and recently, mass spectrometry. More than 170 such studies on bacteria have been accomplished till to date and involve analysis of whole cells as well as that of cellular fractions, i.e., outer membrane, inner membrane, cell envelope, cytoplasm, thylakoid, lipid bodies, etc. Similar studies conducted on gram-negative and gram-positive model organism, i.e., Escherichia coli and Bacillus subtilis, respectively, have been summarized. Vital information, hypothesis about conservation of stress-specific proteome, and conclusions are also presented in the light of research conducted over the last decades.
Collapse
Affiliation(s)
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Sidra Abbas
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| |
Collapse
|
5
|
Marecic V, Shevchuk O, Link M, Viduka I, Ozanic M, Kostanjsek R, Mihelcic M, Antonic M, Jänsch L, Stulik J, Santic M. Francisella novicida-Containing Vacuole within Dictyostelium discoideum: Isolation and Proteomic Characterization. Microorganisms 2024; 12:1949. [PMID: 39458259 PMCID: PMC11509842 DOI: 10.3390/microorganisms12101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Francisella is a highly infectious gram-negative bacterium that causes tularemia in humans and animals. It can survive and multiply in a variety of cells, including macrophages, dendritic cells, amoebae, and arthropod-derived cells. However, the intracellular life cycle of a bacterium varies depending on the cell type. Shortly after the infection of mammalian cells, the bacterium escapes the phagosome into the cytosol, where it replicates. In contrast, in the amoebae Acanthamoeba castellanii and Hartmannella vermiformis, the bacterium replicates within the membrane-bound vacuole. In recent years, the amoeba Dictyostelium discoideum has emerged as a powerful model to study the intracellular cycle and virulence of many pathogenic bacteria. In this study, we used D. discoideum as a model for the infection and isolation of Francisella novicida-containing vacuoles (FCVs) formed after bacteria invade the amoeba. Our results showed that F. novicida localized in a vacuole after invading D. discoideum. Here, we developed a method to isolate FCV and determined its composition by proteomic analyses. Proteomic analyses revealed 689 proteins, including 13 small GTPases of the Rab family. This is the first evidence of F. novicida-containing vacuoles within amoeba, and this approach will contribute to our understanding of host-pathogen interactions and the process of pathogen vacuole formation, as vacuoles containing bacteria represent direct contact between pathogens and their hosts. Furthermore, this method can be translocated on other amoeba models.
Collapse
Affiliation(s)
- Valentina Marecic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Olga Shevchuk
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, 45147 Essen, Germany;
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (M.L.); (J.S.)
| | - Ina Viduka
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Rok Kostanjsek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mirna Mihelcic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Masa Antonic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Lothar Jänsch
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (M.L.); (J.S.)
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, 51000 Rijeka, Croatia
| |
Collapse
|
6
|
Huete SG, Leyva A, Kornobis E, Cokelaer T, Lechat P, Monot M, Duran R, Picardeau M, Benaroudj N. Revisiting oxygen toxicity: evolution and adaptation to superoxide in a SOD-deficient bacterial pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614947. [PMID: 39386525 PMCID: PMC11463549 DOI: 10.1101/2024.09.25.614947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Defenses against oxidants are crucial for the virulence of pathogens, with superoxide scavenging enzymes (SOSEs) playing a vital role for most aerobes. However, our knowledge of superoxide adaptation primarily stems from the study of SOSE-encoding bacteria. Here, we investigated the evolution of a naturally SOSE-deficient pathogen ( Leptospira spp.), along with the alternative mechanisms it recruits to combat superoxide stress. We demonstrate that emergence of pathogenic Leptospira correlated with SOD loss, but that a long-lasting adaptation to superoxide remains possible. We reveal that cysteine and leucine biosynthesis are the most induced pathways in response to superoxide and demonstrate the importance of sulfur metabolism in superoxide adaptation in this SOSE-deficient model. We also propose cysteine oxidation as a key mediator of superoxide toxicity in the absence of SOSEs. This study challenges our conventional understanding of the oxygen toxicity theory and proposes a new model of superoxide adaptation through metabolic rewiring in bacteria.
Collapse
|
7
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
8
|
Gant MS, Chamot-Rooke J. Present and future perspectives on mass spectrometry for clinical microbiology. Microbes Infect 2024; 26:105296. [PMID: 38199266 DOI: 10.1016/j.micinf.2024.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
In the last decade, MALDI-TOF Mass Spectrometry (MALDI-TOF MS) has been introduced and broadly accepted by clinical laboratory laboratories throughout the world as a powerful and efficient tool for rapid microbial identification. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. Whilst MALDI-TOF MS is currently the gold-standard, it suffers from several shortcomings such as lack of direct information on antibiotic resistance, poor depth of analysis and insufficient discriminatory power for the distinction of closely related bacterial species or for reliably sub-differentiating isolates to the level of clones or strains. Thus, new approaches targeting proteins and allowing a better characterization of bacterial strains are strongly needed, if possible, on a very short time scale after sample collection in the hospital. Bottom-up proteomics (BUP) is a nice alternative to MALDI-TOF MS, offering the possibility for in-depth proteome analysis. Top-down proteomics (TDP) provides the highest molecular precision in proteomics, allowing the characterization of proteins at the proteoform level. A number of studies have already demonstrated the potential of these techniques in clinical microbiology. In this review, we will discuss the current state-of-the-art of MALDI-TOF MS for the rapid microbial identification and detection of resistance to antibiotics and describe emerging approaches, including bottom-up and top-down proteomics as well as ambient MS technologies.
Collapse
Affiliation(s)
- Megan S Gant
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology 75015 Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology 75015 Paris, France.
| |
Collapse
|
9
|
McWhite CD, Sae-Lee W, Yuan Y, Mallam AL, Gort-Freitas NA, Ramundo S, Onishi M, Marcotte EM. Alternative proteoforms and proteoform-dependent assemblies in humans and plants. Mol Syst Biol 2024; 20:933-951. [PMID: 38918600 PMCID: PMC11297038 DOI: 10.1038/s44320-024-00048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
The variability of proteins at the sequence level creates an enormous potential for proteome complexity. Exploring the depths and limits of this complexity is an ongoing goal in biology. Here, we systematically survey human and plant high-throughput bottom-up native proteomics data for protein truncation variants, where substantial regions of the full-length protein are missing from an observed protein product. In humans, Arabidopsis, and the green alga Chlamydomonas, approximately one percent of observed proteins show a short form, which we can assign by comparison to RNA isoforms as either likely deriving from transcript-directed processes or limited proteolysis. While some detected protein fragments align with known splice forms and protein cleavage events, multiple examples are previously undescribed, such as our observation of fibrocystin proteolysis and nuclear translocation in a green alga. We find that truncations occur almost entirely between structured protein domains, even when short forms are derived from transcript variants. Intriguingly, multiple endogenous protein truncations of phase-separating translational proteins resemble cleaved proteoforms produced by enteroviruses during infection. Some truncated proteins are also observed in both humans and plants, suggesting that they date to the last eukaryotic common ancestor. Finally, we describe novel proteoform-specific protein complexes, where the loss of a domain may accompany complex formation.
Collapse
Affiliation(s)
- Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.
| | - Wisath Sae-Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yaning Yuan
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Anna L Mallam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Silvia Ramundo
- Gregor Mendel Institute of Molecular Plant Biology, 1030, Wien, Austria
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
10
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
11
|
Mai Z, Fu H, Miao R, Lu C, Zhang X, Yuan Z, Ji P, Hua Y, Wang C, Ma Y, Deng H, Wei Y. Serological investigation and isolation of Salmonella abortus equi in horses in Xinjiang. BMC Vet Res 2024; 20:103. [PMID: 38491518 PMCID: PMC10941388 DOI: 10.1186/s12917-024-03955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Salmonella enterica subspecies enterica serovar abortus equi (S. abortus equi) is one of the main pathogens that causes abortion in pregnant horses and donkeys, which was highly infectious and greatly restricts the healthy development of the horse industry. OBJECTIVES In order to investigate the prevalence and biological characteristics of S. abortus equi in different regions and breeds of horses in Xinjiang. METHODS This study conducted ELISA detection of S. abortus equi antibodies on serum samples of 971 horses collected from three large-scale horse farms and five free-range horse farms in Yili Prefecture and Bayingol Mongolian Autonomous Prefecture of Xinjiang from 2020 to 2023. On this basis, bacterial isolation, culture, identification, and drug sensitivity tests were conducted on 42 samples of aborted foal tissues and 23 mare vaginal swabs. RESULTS The results showed that the positive rate of S. abortus equi antibody was as high as 20.91% in 971 horse serum samples. Among them, the positive rate in the Ili region (29.09%) was significantly higher than that in the Bayingole region (11.24%), and the positive rate in mares (22.45%) was higher than that in stallions (14.05%). In terms of horse breeds, the positive rates of self-propagating thoroughbred horses, half-bred horses, Ili horses and Yanqi horses were 43.22%, 28.81%, 14.72% and 11.24% respectively. In addition, S. abortus equi was more susceptible to juvenile and elderly horses, with positive rates of 70.00%and 41.86%, respectively, both of which were significantly higher than young (10.97%) and adult (19.79%) horses. Further, 9 strains of S. abortus equi were obtained through bacterial isolation, culture and identification, which were resistant to five antibiotics (Clarithromycin, Clindamycin, penicillin, Sulfamethoxazole and Rifampicin), and sensitive to 13 antimicrobial agents (Amoxicillin, Ciprofloxacin and Gentamicin, et al.). CONCLUSION There was a high infection rate of S. abortus equi in Ili Prefecture and self-propagating thoroughbred horses, and juvenile or old mares were more susceptible, which will provide scientific basis for the prevention of S. abortus equi infection in different regions and breeds of horses in Xinjiang.
Collapse
Affiliation(s)
- Zhanhai Mai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Han Fu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Ronghao Miao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Chong Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xiaosong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ziwen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chen Wang
- Animal Husbandry and Veterinary Station of Bazhou Center for Disease Control and Prevention of Korla, Korla, China
| | - Yuhui Ma
- Animal Husbandry and Veterinary Medicine Development Center of Zhaosu County, Zhaosu, China
| | - Haifeng Deng
- Zhaosu Horse Farm, Ili Kazakh Autonomous Prefecture, Zhaosu, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
12
|
Gong Y, Dai L. Decoding Ubiquitin Modifications by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:1-18. [PMID: 39546132 DOI: 10.1007/978-981-97-7288-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein ubiquitination is a critical and widely distributed post-translational modification (PTM) involved in the regulation of almost every cellular process and pathway in cells, such as proteostasis, DNA repair, trafficking, and immunity. Mass spectrometry (MS)-based proteomics is a robust tool to decode the complexity of ubiquitin networks by disclosing the proteome-wide ubiquitination sites, the length, linkage and topology of ubiquitin chains, the chemical modification of ubiquitin chains, and the crosstalk between ubiquitination and other PTMs. In this chapter, we discuss the application of MS in the interpretation of the ubiquitin code.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Tikhomirova A, Rahman MM, Kidd SP, Ferrero RL, Roujeinikova A. Cysteine and resistance to oxidative stress: implications for virulence and antibiotic resistance. Trends Microbiol 2024; 32:93-104. [PMID: 37479622 DOI: 10.1016/j.tim.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023]
Abstract
Reactive oxygen species (ROS), including the superoxide radical anion (O2•-), hydrogen peroxide (H2O2), and the hydroxyl radical (•HO), are inherent components of bacterial metabolism in an aerobic environment. Bacteria also encounter exogenous ROS, such as those produced by the host cells during the respiratory burst. As ROS have the capacity to damage bacterial DNA, proteins, and lipids, detoxification of ROS is critical for bacterial survival. It has been recently recognised that low-molecular-weight (LMW) thiols play a central role in this process. Here, we review the emerging role of cysteine in bacterial resistance to ROS with a link to broader elements of bacterial lifestyle closely associated with cysteine-mediated oxidative stress response, including virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Mohammad M Rahman
- University of Kentucky, Department of Microbiology, Immunology and Molecular Genetics, Lexington, KY, USA
| | - Stephen P Kidd
- University of Adelaide, Department of Molecular and Biomedical Sciences, School of Biological Sciences, Adelaide, SA 5005, Australia; University of Adelaide, Research Centre for Infectious Disease (RCID) and Australian Centre for Antimicrobial Resistance Ecology (ACARE), Adelaide, SA 5005, Australia
| | - Richard L Ferrero
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Melbourne, VIC 3168, Australia; Monash University, Department of Molecular and Translational Science, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Anna Roujeinikova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Monash University, Department of Biochemistry and Molecular Biology, Melbourne, VIC 3800, Australia.
| |
Collapse
|
14
|
Juliano BR, Keating JW, Ruotolo BT. Infrared Photoactivation Enables Improved Native Top-Down Mass Spectrometry of Transmembrane Proteins. Anal Chem 2023; 95:13361-13367. [PMID: 37610409 PMCID: PMC11081007 DOI: 10.1021/acs.analchem.3c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Membrane proteins are often challenging targets for native top-down mass spectrometry experimentation. The requisite use of membrane mimetics to solubilize such proteins necessitates the application of supplementary activation methods to liberate protein ions prior to sequencing, which typically limits the sequence coverage achieved. Recently, infrared photoactivation has emerged as an alternative to collisional activation for the liberation of membrane proteins from surfactant micelles. However, much remains unknown regarding the mechanism by which IR activation liberates membrane protein ions from such micelles, the extent to which such methods can improve membrane protein sequence coverage, and the degree to which such approaches can be extended to support native proteomics. Here, we describe experiments designed to evaluate and probe infrared photoactivation for membrane protein sequencing, proteoform identification, and native proteomics applications. Our data reveal that infrared photoactivation can dissociate micelles composed of a variety of detergent classes, without the need for a strong IR chromophore by leveraging the relatively weak association energies of such detergent clusters in the gas phase. Additionally, our data illustrate how IR photoactivation can be extended to include membrane mimetics beyond micelles and liberate proteins from nanodiscs, liposomes, and bicelles. Finally, our data quantify the improvements in membrane protein sequence coverage produced through the use of IR photoactivation, which typically leads to membrane protein sequence coverage values ranging from 40 to 60%.
Collapse
Affiliation(s)
- Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph W Keating
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Wang Q, Fang F, Sun L. Pilot investigation of magnetic nanoparticle-based immobilized metal affinity chromatography for efficient enrichment of phosphoproteoforms for mass spectrometry-based top-down proteomics. Anal Bioanal Chem 2023; 415:4521-4531. [PMID: 37017721 PMCID: PMC10540245 DOI: 10.1007/s00216-023-04677-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
Protein phosphorylation is a vital and common post-translational modification (PTM) in cells, modulating various biological processes and diseases. Comprehensive top-down proteomics of phosphorylated proteoforms (phosphoproteoforms) in cells and tissues is essential for a better understanding of the roles of protein phosphorylation in fundamental biological processes and diseases. Mass spectrometry (MS)-based top-down proteomics of phosphoproteoforms remains challenging due to their relatively low abundance. Herein, we investigated magnetic nanoparticle-based immobilized metal affinity chromatography (IMAC, Ti4+, and Fe3+) for selective enrichment of phosphoproteoforms for MS-based top-down proteomics. The IMAC method achieved reproducible and highly efficient enrichment of phosphoproteoforms from simple and complex protein mixtures. It outperformed one commercial phosphoprotein enrichment kit regarding the capture efficiency and recovery of phosphoproteins. Reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) analyses of yeast cell lysates after IMAC (Ti4+ or Fe3+) enrichment produced roughly 100% more phosphoproteoform identifications compared to without IMAC enrichment. Importantly, the phosphoproteoforms identified after Ti4+-IMAC or Fe3+-IMAC enrichment correspond to proteins with much lower overall abundance compared to that identified without the IMAC treatment. We also revealed that Ti4+-IMAC and Fe3+-IMAC could enrich different pools of phosphoproteoforms from complex proteomes and the combination of those two methods will be useful for further improving the phosphoproteoform coverage from complex samples. The results clearly demonstrate the value of our magnetic nanoparticle-based Ti4+-IMAC and Fe3+-IMAC for advancing top-down MS characterization of phosphoproteoforms in complex biological systems.
Collapse
Affiliation(s)
- Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Kang J, Seshadri M, Cupp-Sutton KA, Wu S. Toward the analysis of functional proteoforms using mass spectrometry-based stability proteomics. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1186623. [PMID: 39072225 PMCID: PMC11281393 DOI: 10.3389/frans.2023.1186623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional proteomics aims to elucidate biological functions, mechanisms, and pathways of proteins and proteoforms at the molecular level to examine complex cellular systems and disease states. A series of stability proteomics methods have been developed to examine protein functionality by measuring the resistance of a protein to chemical or thermal denaturation or proteolysis. These methods can be applied to measure the thermal stability of thousands of proteins in complex biological samples such as cell lysate, intact cells, tissues, and other biological fluids to measure proteome stability. Stability proteomics methods have been popularly applied to observe stability shifts upon ligand binding for drug target identification. More recently, these methods have been applied to characterize the effect of structural changes in proteins such as those caused by post-translational modifications (PTMs) and mutations, which can affect protein structures or interactions and diversify protein functions. Here, we discussed the current application of a suite of stability proteomics methods, including thermal proteome profiling (TPP), stability of proteomics from rates of oxidation (SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced structural changes on protein stability. We also discuss future perspectives highlighting the integration of top-down mass spectrometry and stability proteomics methods to characterize intact proteoform stability and understand the function of variable protein modifications.
Collapse
Affiliation(s)
- Ji Kang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Meena Seshadri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
17
|
Basharat AR, Zang Y, Sun L, Liu X. TopFD: A Proteoform Feature Detection Tool for Top-Down Proteomics. Anal Chem 2023; 95:8189-8196. [PMID: 37196155 DOI: 10.1021/acs.analchem.2c05244] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Top-down liquid chromatography-mass spectrometry (LC-MS) analyzes intact proteoforms and generates mass spectra containing peaks of proteoforms with various isotopic compositions, charge states, and retention times. An essential step in top-down MS data analysis is proteoform feature detection, which aims to group these peaks into peak sets (features), each containing all peaks of a proteoform. Accurate protein feature detection enhances the accuracy in MS-based proteoform identification and quantification. Here, we present TopFD, a software tool for top-down MS feature detection that integrates algorithms for proteoform feature detection, feature boundary refinement, and machine learning models for proteoform feature evaluation. We performed extensive benchmarking of TopFD, ProMex, FlashDeconv, and Xtract using seven top-down MS data sets and demonstrated that TopFD outperforms other tools in feature accuracy, reproducibility, and feature abundance reproducibility.
Collapse
Affiliation(s)
- Abdul Rehman Basharat
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yong Zang
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
18
|
Cobley JN. Oxiforms: Unique cysteine residue- and chemotype-specified chemical combinations can produce functionally-distinct proteoforms: Like how mixing primary colours creates new shades, cysteine residue- and chemotype-specified chemical combinations can produce functionally-distinct proteoforms called oxiforms: Like how mixing primary colours creates new shades, cysteine residue- and chemotype-specified chemical combinations can produce functionally-distinct proteoforms called oxiforms. Bioessays 2023:e2200248. [PMID: 37147790 DOI: 10.1002/bies.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
A single protein molecule with one or more cysteine residues can occupy a plurality of unique residue and oxidation-chemotype specified proteoforms that I term oxiforms. In binary reduced or oxidised terms, one molecule with three cysteines will adopt one of eight unique oxiforms. Residue-defined sulfur chemistry endows specific oxiforms with distinct functionally-relevant biophysical properties (e.g., steric effects). Their emergent complexity means a functionally-relevant effect may only manifest when multiple cysteines are oxidised. Like how mixing colours makes new shades, combining discrete redox chemistries-colours-can create a kaleidoscope of oxiform hues. The sheer diversity of oxiforms co-existing within the human body provides a biological basis for redox heterogeneity. Of evolutionary significance, oxiforms may enable individual cells to mount a broad spectrum of responses to the same stimulus. Their biological significance, however plausible, is speculative because protein-specific oxiforms remain essentially unexplored. Excitingly, pioneering new techniques can push the field into uncharted territory by quantifying oxiforms. The oxiform concept can advance our understanding of redox-regulation in health and disease.
Collapse
Affiliation(s)
- James N Cobley
- Cysteine Redox Technology Group, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, Scotland, UK
| |
Collapse
|
19
|
Nickerson JL, Baghalabadi V, Rajendran SRCK, Jakubec PJ, Said H, McMillen TS, Dang Z, Doucette AA. Recent advances in top-down proteome sample processing ahead of MS analysis. MASS SPECTROMETRY REVIEWS 2023; 42:457-495. [PMID: 34047392 DOI: 10.1002/mas.21706] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Top-down proteomics is emerging as a preferred approach to investigate biological systems, with objectives ranging from the detailed assessment of a single protein therapeutic, to the complete characterization of every possible protein including their modifications, which define the human proteoform. Given the controlling influence of protein modifications on their biological function, understanding how gene products manifest or respond to disease is most precisely achieved by characterization at the intact protein level. Top-down mass spectrometry (MS) analysis of proteins entails unique challenges associated with processing whole proteins while maintaining their integrity throughout the processes of extraction, enrichment, purification, and fractionation. Recent advances in each of these critical front-end preparation processes, including minimalistic workflows, have greatly expanded the capacity of MS for top-down proteome analysis. Acknowledging the many contributions in MS technology and sample processing, the present review aims to highlight the diverse strategies that have forged a pathway for top-down proteomics. We comprehensively discuss the evolution of front-end workflows that today facilitate optimal characterization of proteoform-driven biology, including a brief description of the clinical applications that have motivated these impactful contributions.
Collapse
Affiliation(s)
| | - Venus Baghalabadi
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Subin R C K Rajendran
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, Nova Scotia, Canada
| | - Philip J Jakubec
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hammam Said
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Teresa S McMillen
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ziheng Dang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
20
|
Guo Y, Chowdhury T, Seshadri M, Cupp-Sutton KA, Wang Q, Yu D, Wu S. Optimization of Higher-Energy Collisional Dissociation Fragmentation Energy for Intact Protein-Level Tandem Mass Tag Labeling. J Proteome Res 2023; 22:1406-1418. [PMID: 36603205 PMCID: PMC10164041 DOI: 10.1021/acs.jproteome.2c00549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Isobaric chemical tag labeling (e.g., TMT) is a commonly used approach in quantitative proteomics, and quantification is enabled through detection of low-mass reporter ions generated after MS2 fragmentation. Recently, we have introduced and optimized an intact protein-level TMT labeling platform that demonstrated >90% labeling efficiency in complex samples with top-down proteomics. Higher-energy collisional dissociation (HCD) is commonly utilized for isobaric tag-labeled peptide fragmentation because it produces accurate reporter ion intensities and avoids loss of low mass ions. HCD energies have been optimized for isobaric tag labeled-peptides but have not been systematically evaluated for isobaric tag-labeled intact proteins. In this study, we report a systematic evaluation of normalized HCD fragmentation energies (NCEs) on TMT-labeled HeLa cell lysate using top-down proteomics. Our results suggested that reporter ions often result in higher ion intensities at higher NCEs. Optimal fragmentation of intact proteins for identification, however, required relatively lower NCE. We further demonstrated that a stepped NCE scheme with energies from 30% to 50% resulted in optimal quantification and identification of TMT-labeled HeLa proteins. These parameters resulted in an average reporter ion intensity of ∼4E4 and average proteoform spectrum matches (PrSMs) of >1000 per RPLC-MS/MS run with a 1% false discovery rate (FDR) cutoff.
Collapse
Affiliation(s)
- Yanting Guo
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Trishika Chowdhury
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Meena Seshadri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Qingyu Wang
- School of Meteorology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
21
|
Guo Y, Yu D, Cupp-Sutton KA, Liu X, Wu S. A benchmarking protocol for intact protein-level Tandem Mass Tag (TMT) labeling for quantitative top-down proteomics. MethodsX 2022; 9:101873. [PMID: 36281278 PMCID: PMC9587358 DOI: 10.1016/j.mex.2022.101873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Isobaric chemical tag labeling for quantification of intact proteins in complex samples is limited due to the tendency of intact proteins precipitate under labeling conditions and increased sample complexity as a result of side products (i.e., incomplete labeling or labeling of unintended residues). To reduce precipitation under labeling conditions, we developed a technique to remove large proteoforms that allowed for the labeling and characterization of small proteoforms (<35 kDa) using top-down proteomics. We also systematically optimized protein-level Tandem Mass Tag (TMT) labeling conditions to obtain optimal labeling parameters for complex samples. Here, we present a benchmarking protocol for protein-level TMT labeling for quantitative top-down proteomics, including complex intact protein sample preparation, protein-level TMT labeling, top-down LC/MS analysis, and TMT reporter ion quantification.An optimized protocol for protein-level TMT labeling in complex sample. Limits production of incorrectly labeled side products for minimization of spectral complexity. A guideline for isobaric chemical tag quantification in top-down proteomics.
Collapse
Affiliation(s)
- Yanting Guo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK 73019, United States
| | - Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK 73019, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK 73019, United States
| | - Xiaowen Liu
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans Bioinnovation Center, Room 422, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK 73019, United States
- Corresponding author.
| |
Collapse
|
22
|
Targeted Bottom-Up Mass Spectrometry Approach for the Relative Quantification of Post-Translational Modification of Bovine κ-Casein during Milk Fermentation. Molecules 2022; 27:molecules27185834. [PMID: 36144569 PMCID: PMC9506521 DOI: 10.3390/molecules27185834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
κ-casein (κ-CN) is one of the key components in bovine milk, playing a unique role in the structuration of casein micelles. It contains in its chemical structure up to sixteen amino acid residues (mainly serine and threonine) susceptible to modifications, including glycosylation and phosphorylation, which may further be formed during milk processing. In this study, changes in post-translational modification (PTM) of κ-CN during bovine milk fermentation were investigated. One-to-five-day fermented milk samples were produced. A traditional bottom−up proteomics approach was used to establish a multiple-reaction monitoring (MRM) method for relative quantification of κ-CN PTM. Endoproteinase Glu-C was found to efficiently digest the κ-CN molecule. The developed LC-MS method was validated by performing assessments of linearity, precision, repeatability, reproducibility, limit of detection (LOD), and limit of quantification (LOQ). Among the yielded peptides, four of them containing serine and threonine residues were identified and the unmodified as well as the modified variants of each of them were relatively quantified. These peptides were (1) IPTINTIASGEPTSTTE [140, 158], (2) STVATLE [162, 168], (3) DSPE [169, 172], and (4) INTVQVTSTAV [180, 190]. Distribution analysis between unmodified and modified peptides revealed that over 50% of κ-CN was found in one of its modified forms in milk. The fermentation process further significantly altered the composition between unmodified/modified κ-CN, with glycoslaytion being predominant compared to phosphorylation (p < 0.01). Further method development towards α and β-CN fractions and their PTM behavior would be an asset to better understand the changes undergone by milk proteins and the micellar structure during fermentation.
Collapse
|
23
|
Guo Y, Yu D, Cupp-Sutton KA, Liu X, Wu S. Optimization of protein-level tandem mass tag (TMT) labeling conditions in complex samples with top-down proteomics. Anal Chim Acta 2022; 1221:340037. [PMID: 35934336 PMCID: PMC9371347 DOI: 10.1016/j.aca.2022.340037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022]
Abstract
Isobaric chemical tag labels (e.g., iTRAQ and TMT) have been extensively utilized as a standard quantification approach in bottom-up proteomics, which provides high multiplexing capacity and enables MS2-level quantification while not complicating the MS1 scans. We recently demonstrated the feasibility of intact protein TMT labeling for the identification and quantification with top-down proteomics of smaller intact proteoforms (<35 kDa) in complex biological samples through the removal of large proteins prior to labeling. Still, the production of side products during TMT labeling (i.e., incomplete labeling or labeling of unintended residues) complicated the analysis of complex protein samples. In this study, we systematically evaluated the protein-level TMT labeling reaction parameters, including TMT-to-protein mass ratio, pH/concentration of quenching buffer, protein concentration, reaction time, and reaction buffer. Our results indicated that: (1) high TMT-to-protein mass ratio (e.g., 8:1, 4:1), (2) high pH/concentration of quenching buffer (pH > 9.1, final hydroxylamine concentration >0.3%), and (3) high protein concentration (e.g., > 1.0 μg/μL) resulted in optimal labeling efficiency and minimized production of over/underlabeled side products. >90% labeling efficiency was achieved for E. coli cell lysate after optimization of protein-level TMT labeling conditions. In addition, a double labeling approach was developed for efficiently labeling limited biological samples with low concentrations. This research provides practical guidance for efficient TMT labeling of complex intact protein samples, which can be readily adopted in the high-throughput quantification top-down proteomics.
Collapse
Affiliation(s)
- Yanting Guo
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Xiaowen Liu
- John W. Deming Department of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
24
|
Tucholski T, Ge Y. Fourier-transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. MASS SPECTROMETRY REVIEWS 2022; 41:158-177. [PMID: 32894796 PMCID: PMC7936991 DOI: 10.1002/mas.21653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Proteoforms contribute functional diversity to the proteome and aberrant proteoforms levels have been implicated in biological dysfunction and disease. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with its ultrahigh mass-resolving power, mass accuracy, and versatile tandem MS capabilities, has empowered top-down, middle-down, and native MS-based approaches for characterizing proteoforms and their complexes in biological systems. Herein, we review the features which make FT-ICR MS uniquely suited for measuring proteoform mass with ultrahigh resolution and mass accuracy; obtaining in-depth proteoform sequence coverage with expansive tandem MS capabilities; and unambiguously identifying and localizing post-translational and noncovalent modifications. We highlight examples from our body of work in which we have quantified and comprehensively characterized proteoforms from cardiac and skeletal muscle to better understand conditions such as chronic heart failure, acute myocardial infarction, and sarcopenia. Structural characterization of monoclonal antibodies and their proteoforms by FT-ICR MS and emerging applications, such as native top-down FT-ICR MS and high-throughput top-down FT-ICR MS-based proteomics at 21 T, are also covered. Historically, the information gleaned from FT-ICR MS analyses have helped provide biological insights. We predict FT-ICR MS will continue to enable the study of proteoforms of increasing size from increasingly complex endogenous mixtures and facilitate the benchmarking of sensitive and specific assays for clinical diagnostics. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705
| |
Collapse
|
25
|
Abstract
Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.
Collapse
|
26
|
Abstract
Top-down proteomics methods have a distinct advantage over bottom-up methods in that they analyze intact proteins rather than digested peptides which can result in loss of information regarding the intact protein. However, the analysis of intact proteins using top-down proteomics methods has been impeded by the low resolution of typical separation approaches applied in bottom-up proteomics studies. To increase the coverage of intact proteomes, orthogonal, two-dimensional separation techniques have been developed to improve the separation efficiency; in this chapter, we describe a two-dimensional HPLC separation technique that utilizes a high-pH mobile phase in the first dimension followed by a low-pH mobile phase in the second dimension. This two-dimensional pH-based HPLC approach demonstrates increased separation efficiency of intact proteins and increased proteome coverage when compared to one-dimensional HPLC in the analysis of larger and lower abundance proteoforms.
Collapse
Affiliation(s)
- Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
27
|
Yang Z, Sun L. Membrane Ultrafiltration-Based Sample Preparation Method and Sheath-Flow CZE-MS/MS for Top-Down Proteomics. Methods Mol Biol 2022; 2500:5-14. [PMID: 35657583 DOI: 10.1007/978-1-0716-2325-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based denaturing top-down proteomics (dTDP) identify proteoforms without pretreatment of enzyme proteolysis. A universal sample preparation method that can efficiently extract protein, reduce sample loss, maintain protein solubility, and be compatible with following up liquid-phase separation, MS, and tandem MS (MS/MS) is vital for large-scale proteoform characterization. Membrane ultrafiltration (MU) was employed here for buffer exchange to efficiently remove the sodium dodecyl sulfate (SDS) detergent in protein samples used for protein extraction and solubilization, followed by capillary zone electrophoresis (CZE)-MS/MS analysis. The MU method showed good protein recovery, minimum protein bias, and nice compatibility with CZE-MS/MS. Single-shot CZE-MS/MS analysis of an Escherichia coli sample prepared by the MU method identified over 800 proteoforms.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
28
|
Cline EN, Alvarez C, Duan J, Patrie SM. Online μSEC 2-nRPLC-MS for Improved Sensitivity of Intact Protein Detection of IEF-Separated Nonhuman Primate Cerebrospinal Fluid Proteins. Anal Chem 2021; 93:16741-16750. [PMID: 34881887 PMCID: PMC10476446 DOI: 10.1021/acs.analchem.1c00396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteoform-resolved information, obtained by top-down (TD) "intact protein" proteomics, is expected to contribute substantially to the understanding of molecular pathogenic mechanisms and, in turn, identify novel therapeutic and diagnostic targets. However, the robustness of mass spectrometry (MS) analysis of intact proteins in complex biological samples is hindered by the high dynamic range in protein concentration and mass, protein instability, and buffer complexity. Here, we describe an evolutionary step for intact protein investigations through the online implementation of tandem microflow size-exclusion chromatography with nanoflow reversed-phase liquid chromatography and MS (μSEC2-nRPLC-MS). Online serial high-/low-pass SEC filtration overcomes the aforementioned hurdles to intact proteomic analysis through automated sample desalting/cleanup and enrichment of target mass ranges (5-155 kDa) prior to nRPLC-MS. The coupling of μSEC to nRPLC is achieved through a novel injection volume control (IVC) strategy of inserting protein trap columns, pre- and post-μSEC columns, to enable injection of dilute samples in high volumes without loss of sensitivity or resolution. Critical characteristics of the approach are tested via rigorous investigations on samples of varied complexity and chemical background. Application of the platform to cerebrospinal fluid (CSF) prefractionated by OFFGEL isoelectric focusing drastically increases the number of intact mass tags (IMTs) detected within the target mass range (5-30 kDa) in comparison to one-dimensional nRPLC-MS with approximately 100× less CSF than previous OFFGEL studies. Furthermore, the modular design of the μSEC2-nRPLC-MS platform is robust and promises significant flexibility for large-scale TDMS analysis of diverse samples either directly or in concert with other multidimensional fractionation steps.
Collapse
Affiliation(s)
- Erika N Cline
- Department of Chemistry and the Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Carina Alvarez
- Department of Chemistry and the Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Jiana Duan
- Department of Chemistry and the Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Department of Chemistry and the Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| |
Collapse
|
29
|
Fagerquist CK, Dodd CE. Top-down proteomic identification of plasmid and host proteins produced by pathogenic Escherichia coli using MALDI-TOF-TOF tandem mass spectrometry. PLoS One 2021; 16:e0260650. [PMID: 34843608 PMCID: PMC8629258 DOI: 10.1371/journal.pone.0260650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Fourteen proteins produced by three pathogenic Escherichia coli strains were identified using antibiotic induction, MALDI-TOF-TOF tandem mass spectrometry (MS/MS) and top-down proteomic analysis using software developed in-house. Host proteins as well as plasmid proteins were identified. Mature, intact protein ions were fragmented by post-source decay (PSD), and prominent fragment ions resulted from the aspartic acid effect fragmentation mechanism wherein polypeptide backbone cleavage (PBC) occurs on the C-terminal side of aspartic acid (D), glutamic acid (E) and asparagine (N) residues. These highly specific MS/MS-PSD fragment ions were compared to b- and y-type fragment ions on the C-terminal side of D-, E- and N-residues of in silico protein sequences derived from whole genome sequencing. Nine proteins were found to be post-translationally modified with either removal of an N-terminal methionine or a signal peptide. The protein sequence truncation algorithm of our software correctly identified all full and truncated protein sequences. Truncated sequences were compared to those predicted by SignalP. Nearly complete concurrence was obtained except for one protein where SignalP mis-identified the cleavage site by one residue. Two proteins had intramolecular disulfide bonds that were inferred by the absence of PBC on the C-terminal side of a D-residue located within the disulfide loop. These results demonstrate the utility of MALDI-TOF-TOF for identification of full and truncated bacterial proteins.
Collapse
Affiliation(s)
- Clifton K. Fagerquist
- Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Claire E. Dodd
- Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| |
Collapse
|
30
|
Khalid MF, Iman K, Ghafoor A, Saboor M, Ali A, Muaz U, Basharat AR, Tahir T, Abubakar M, Akhter MA, Nabi W, Vanderbauwhede W, Ahmad F, Wajid B, Chaudhary SU. PERCEPTRON: an open-source GPU-accelerated proteoform identification pipeline for top-down proteomics. Nucleic Acids Res 2021; 49:W510-W515. [PMID: 33999207 PMCID: PMC8262694 DOI: 10.1093/nar/gkab368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 11/12/2022] Open
Abstract
PERCEPTRON is a next-generation freely available web-based proteoform identification and characterization platform for top-down proteomics (TDP). PERCEPTRON search pipeline brings together algorithms for (i) intact protein mass tuning, (ii) de novo sequence tags-based filtering, (iii) characterization of terminal as well as post-translational modifications, (iv) identification of truncated proteoforms, (v) in silico spectral comparison, and (vi) weight-based candidate protein scoring. High-throughput performance is achieved through the execution of optimized code via multiple threads in parallel, on graphics processing units (GPUs) using NVidia Compute Unified Device Architecture (CUDA) framework. An intuitive graphical web interface allows for setting up of search parameters as well as for visualization of results. The accuracy and performance of the tool have been validated on several TDP datasets and against available TDP software. Specifically, results obtained from searching two published TDP datasets demonstrate that PERCEPTRON outperforms all other tools by up to 135% in terms of reported proteins and 10-fold in terms of runtime. In conclusion, the proposed tool significantly enhances the state-of-the-art in TDP search software and is publicly available at https://perceptron.lums.edu.pk. Users can also create in-house deployments of the tool by building code available on the GitHub repository (http://github.com/BIRL/Perceptron).
Collapse
Affiliation(s)
- Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amna Ghafoor
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Mujtaba Saboor
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ahsan Ali
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Urwa Muaz
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Abdul Rehman Basharat
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Taha Tahir
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Abubakar
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Momina Amer Akhter
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Waqar Nabi
- School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wim Vanderbauwhede
- School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Bilal Wajid
- Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
- Division of Research and Development, Sabz-Qalam, Lahore, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
31
|
Pham TK, Buczek WA, Mead RJ, Shaw PJ, Collins MO. Proteomic Approaches to Study Cysteine Oxidation: Applications in Neurodegenerative Diseases. Front Mol Neurosci 2021; 14:678837. [PMID: 34177463 PMCID: PMC8219902 DOI: 10.3389/fnmol.2021.678837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Oxidative stress appears to be a key feature of many neurodegenerative diseases either as a cause or consequence of disease. A range of molecules are subject to oxidation, but in particular, proteins are an important target and measure of oxidative stress. Proteins are subject to a range of oxidative modifications at reactive cysteine residues, and depending on the level of oxidative stress, these modifications may be reversible or irreversible. A range of experimental approaches has been developed to characterize cysteine oxidation of proteins. In particular, mass spectrometry-based proteomic methods have emerged as a powerful means to identify and quantify cysteine oxidation sites on a proteome scale; however, their application to study neurodegenerative diseases is limited to date. Here we provide a guide to these approaches and highlight the under-exploited utility of these methods to measure oxidative stress in neurodegenerative diseases for biomarker discovery, target engagement and to understand disease mechanisms.
Collapse
Affiliation(s)
- Trong Khoa Pham
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Weronika A. Buczek
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Richard J. Mead
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Mark O. Collins
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
32
|
Choi IK, Jiang T, Kankara SR, Wu S, Liu X. TopMSV: A Web-Based Tool for Top-Down Mass Spectrometry Data Visualization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1312-1318. [PMID: 33780241 PMCID: PMC8172439 DOI: 10.1021/jasms.0c00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Top-down mass spectrometry (MS) investigates intact proteoforms for proteoform identification, characterization, and quantification. Data visualization plays an essential role in top-down MS data analysis because proteoform identification and characterization often involve manual data inspection to determine the molecular masses of highly charged ions and validate unexpected alterations in identified proteoforms. While many software tools have been developed for MS data visualization, there is still a lack of web-based visualization software designed for top-down MS. Here, we present TopMSV, a web-based tool for top-down MS data processing and visualization. TopMSV provides interactive views of top-down MS data using a web browser. It integrates software tools for spectral deconvolution and proteoform identification and uses analysis results of the tools to annotate top-down MS data.
Collapse
Affiliation(s)
- In Kwon Choi
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Tianze Jiang
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Sreekanth Reddy Kankara
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
Yu D, Wang Z, Cupp-Sutton KA, Guo Y, Kou Q, Smith K, Liu X, Wu S. Quantitative Top-Down Proteomics in Complex Samples Using Protein-Level Tandem Mass Tag Labeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1336-1344. [PMID: 33725447 PMCID: PMC8323476 DOI: 10.1021/jasms.0c00464] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Labeling approaches using isobaric chemical tags (e.g., isobaric tagging for relative and absolute quantification, iTRAQ and tandem mass tag, TMT) have been widely applied for the quantification of peptides and proteins in bottom-up MS. However, until recently, successful applications of these approaches to top-down proteomics have been limited because proteins tend to precipitate and "crash" out of solution during TMT labeling of complex samples making the quantification of such samples difficult. In this study, we report a top-down TMT MS platform for confidently identifying and quantifying low molecular weight intact proteoforms in complex biological samples. To reduce the sample complexity and remove large proteins from complex samples, we developed a filter-SEC technique that combines a molecular weight cutoff filtration step with high-performance size exclusion chromatography (SEC) separation. No protein precipitation was observed in filtered samples under the intact protein-level TMT labeling conditions. The proposed top-down TMT MS platform enables high-throughput analysis of intact proteoforms, allowing for the identification and quantification of hundreds of intact proteoforms from Escherichia coli cell lysates. To our knowledge, this represents the first high-throughput TMT labeling-based, quantitative, top-down MS analysis suitable for complex biological samples.
Collapse
Affiliation(s)
- Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Yanting Guo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Qiang Kou
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Xiaowen Liu
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
34
|
Shen X, Xu T, Hakkila B, Hare M, Wang Q, Wang Q, Beckman JS, Sun L. Capillary Zone Electrophoresis-Electron-Capture Collision-Induced Dissociation on a Quadrupole Time-of-Flight Mass Spectrometer for Top-Down Characterization of Intact Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1361-1369. [PMID: 33749270 PMCID: PMC8576897 DOI: 10.1021/jasms.0c00484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mass spectrometry (MS)-based denaturing top-down proteomics (dTDP) requires high-capacity separation and extensive gas-phase fragmentation of proteoforms. Herein, we coupled capillary zone electrophoresis (CZE) to electron-capture collision-induced dissociation (ECciD) on an Agilent 6545 XT quadrupole time-of-flight (Q-TOF) mass spectrometer for dTDP for the first time. During ECciD, the protein ions were first fragmented using ECD, followed by further activation and fragmentation by applying a CID potential. In this pilot study, we optimized the CZE-ECciD method for small proteins (lower than 20 kDa) regarding the charge state of protein parent ions for fragmentation and the CID potential applied to maximize the protein backbone cleavage coverage and the number of sequence-informative fragment ions. The CZE-ECciD Q-TOF platform provided extensive backbone cleavage coverage for three standard proteins lower than 20 kDa from only single charge states in a single CZE-MS/MS run in the targeted MS/MS mode, including ubiquitin (97%, +7, 8.6 kDa), superoxide dismutase (SOD, 87%, +17, 16 kDa), and myoglobin (90%, +16, 17 kDa). The CZE-ECciD method produced comparable cleavage coverage of small proteins (i.e., myoglobin) with direct-infusion MS studies using electron transfer dissociation (ETD), activated ion-ETD, and combinations of ETD and collision-based fragmentation on high-end orbitrap mass spectrometers. The results render CZE-ECciD a new tool for dTDP to enhance both separation and gas-phase fragmentation of proteoforms.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Blake Hakkila
- e-MSion, Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
| | - Mike Hare
- e-MSion, Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Joseph S Beckman
- e-MSion, Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
35
|
Melby JA, Roberts DS, Larson EJ, Brown KA, Bayne EF, Jin S, Ge Y. Novel Strategies to Address the Challenges in Top-Down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1278-1294. [PMID: 33983025 PMCID: PMC8310706 DOI: 10.1021/jasms.1c00099] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Top-down mass spectrometry (MS)-based proteomics is a powerful technology for comprehensively characterizing proteoforms to decipher post-translational modifications (PTMs) together with genetic variations and alternative splicing isoforms toward a proteome-wide understanding of protein functions. In the past decade, top-down proteomics has experienced rapid growth benefiting from groundbreaking technological advances, which have begun to reveal the potential of top-down proteomics for understanding basic biological functions, unraveling disease mechanisms, and discovering new biomarkers. However, many challenges remain to be comprehensively addressed. In this Account & Perspective, we discuss the major challenges currently facing the top-down proteomics field, particularly in protein solubility, proteome dynamic range, proteome complexity, data analysis, proteoform-function relationship, and analytical throughput for precision medicine. We specifically review the major technology developments addressing these challenges with an emphasis on our research group's efforts, including the development of top-down MS-compatible surfactants for protein solubilization, functionalized nanoparticles for the enrichment of low-abundance proteoforms, strategies for multidimensional chromatography separation of proteins, and a new comprehensive user-friendly software package for top-down proteomics. We have also made efforts to connect proteoforms with biological functions and provide our visions on what the future holds for top-down proteomics.
Collapse
Affiliation(s)
- Jake A Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eli J Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
36
|
Dupré M, Duchateau M, Malosse C, Borges-Lima D, Calvaresi V, Podglajen I, Clermont D, Rey M, Chamot-Rooke J. Optimization of a Top-Down Proteomics Platform for Closely Related Pathogenic Bacterial Discrimination. J Proteome Res 2020; 20:202-211. [PMID: 32929970 DOI: 10.1021/acs.jproteome.0c00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current technique used for microbial identification in hospitals is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). However, it suffers from important limitations, in particular, for closely related species or when the database used for the identification lacks the appropriate reference. In this work, we set up a liquid chromatography (LC)-MS/MS top-down proteomics platform, which aims at discriminating closely related pathogenic bacteria through the identification of specific proteoforms. Using Escherichia coli as a model, all steps of the workflow were optimized: protein extraction, on-line LC separation, MS method, and data analysis. Using optimized parameters, about 220 proteins, corresponding to more than 500 proteoforms, could be identified in a single run. We then used this platform for the discrimination of enterobacterial pathogens undistinguishable by MALDI-TOF, although leading to very different clinical outcomes. For each pathogen, we identified specific proteoforms that could potentially be used as biomarkers. We also improved the characterization of poorly described bacterial strains. Our results highlight the advantage of addressing proteoforms rather than peptides for accurate bacterial characterization and qualify top-down proteomics as a promising tool in clinical microbiology. Data are available via ProteomeXchange with the identifier PXD019247.
Collapse
Affiliation(s)
- Mathieu Dupré
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Christian Malosse
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Diogo Borges-Lima
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Valeria Calvaresi
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Isabelle Podglajen
- Microbiology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Dominique Clermont
- Collection of the Institut Pasteur (CIP), Institut Pasteur, Paris 75015, France
| | - Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| |
Collapse
|
37
|
Li Z, Zhang C, Li C, Zhou J, Xu X, Peng X, Zhou X. S-glutathionylation proteome profiling reveals a crucial role of a thioredoxin-like protein in interspecies competition and cariogenecity of Streptococcus mutans. PLoS Pathog 2020; 16:e1008774. [PMID: 32716974 PMCID: PMC7410335 DOI: 10.1371/journal.ppat.1008774] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/06/2020] [Accepted: 07/01/2020] [Indexed: 02/05/2023] Open
Abstract
S-glutathionylation is an important post-translational modification (PTM) process that targets protein cysteine thiols by the addition of glutathione (GSH). This modification can prevent proteolysis caused by the excessive oxidation of protein cysteine residues under oxidative or nitrosative stress conditions. Recent studies have suggested that protein S-glutathionylation plays an essential role in the control of cell-signaling pathways by affecting the protein function in bacteria and even humans. In this study, we investigated the effects of S-glutathionylation on physiological regulation within Streptococcus mutans, the primary etiological agent of human dental caries. To determine the S-glutathionylated proteins in bacteria, the Cys reactive isobaric reagent iodoacetyl Tandem Mass Tag (iodoTMT) was used to label the S-glutathionylated Cys site, and an anti-TMT antibody-conjugated resin was used to enrich the modified peptides. Proteome profiling identified a total of 357 glutathionylated cysteine residues on 239 proteins. Functional enrichment analysis indicated that these S-glutathionylated proteins were involved in diverse important biological processes, such as pyruvate metabolism and glycolysis. Furthermore, we studied a thioredoxin-like protein (Tlp) to explore the effect of S-glutathionylation on interspecies competition between oral streptococcal biofilms. Through site mutagenesis, it was proved that glutathionylation on Cys41 residue of Tlp is crucial to protect S. mutans from oxidative stress and compete with S. sanguinis and S. gordonii. An addition rat caries model showed that the loss of S-glutathionylation attenuated the cariogenicity of S. mutans. Taken together, our study provides an insight into the S-glutathionylation of bacterial proteins and the regulation of oxidative stress resistance and interspecies competition.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenzi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Ahuie GK, Gagnon H, Pace PE, Peskin AV, Wagner RJ, Naylor S, Klarskov K. Investigating protein thiol chemistry associated with dehydroascorbate, homocysteine and glutathione using mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8774. [PMID: 32119756 DOI: 10.1002/rcm.8774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/05/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Oxidative stress is an imbalance between reactive free radical oxygen species and antioxidant defenses. Its consequences can lead to numerous pathologies. Regulating oxidative stress is the complex interplay between antioxidant recycling and thiol-containing regulatory proteins. Understanding these regulatory mechanisms is important for preventing onset of oxidative stress. The aim of this study was to investigae S-thiol protein chemistry associated with oxidized vitamin C (dehydroascorbate, DHA), homocysteine (HcySH) and glutathione (GSH) using mass spectrometry. METHODS Glutaredoxin-1 (Grx-1) was incubated with DHA, with and without GSH and HcySH. Disulfide formation was followed by electrospray ionization mass spectrometry (ESI-MS) of intact proteins and by LC/ESI-MS/MS of peptides from protein tryptic digestions. The mechanism of DHA-mediated S-thiolation was investigated using two synthetic peptides: AcFHACAAK and AcFHACE. Three proteins, i.e. human hemoglobin (HHb), recombinant peroxiredoxin 2 (Prdx2) and Grx-1, were S-homocysteinylated followed by S-transthiolyation with GSH and investigated by ESI-MS and ESI-MS/MS. RESULTS ESI-MS analysis reveals that DHA mediates disulfide formation and S-thiolation by HcySH as well as GSH of Grx-1. LC/ESI-MS/MS analysis allows identification of Grx-1 S-thiolated cysteine adducts. The mechanism by which DHA mediates S-thiolation of heptapeptide AcFHACAAK is shown to be via initial formation of a thiohemiketal adduct. In addition, ESI-MS of intact proteins shows that GSH can S-transthiolate S-homocysteinylated Grx-1_ HHb and Prdx2. The GS-S-protein adducts over time dominate the ESI-MS spectrum profile. CONCLUSIONS Mass spectrometry is a unique analytical technique for probing complex reaction mechanisms associated with oxidative stress. Using model proteins, ESI-MS reveals the mechanism of DHA-facilitated S-thiolation, which consists of thiohemiketal formation, disulfide formation or S-thiolation. Furthermore, protein S-thiolation by HcySH can be reversed by reversible GSH thiol exchange. The use of mass spectrometry with in vitro models of protein S-thiolation in oxidative stress may provide significant insight into possible mechanisms of action occurring in vivo.
Collapse
Affiliation(s)
- Grace Kouakou Ahuie
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Hugo Gagnon
- PhenoSwitch Bioscience, 975 Rue Léon-Trépanier, Sherbrooke, Quebec, J1G 5J6, Canada
| | - Paul E Pace
- Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, New Zealand
| | - Alexander V Peskin
- Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, New Zealand
| | - Richard J Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Drive, Elm Grove, WI, 53122, USA
| | - Klaus Klarskov
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| |
Collapse
|
39
|
Yang Z, Shen X, Chen D, Sun L. Toward a Universal Sample Preparation Method for Denaturing Top-Down Proteomics of Complex Proteomes. J Proteome Res 2020; 19:3315-3325. [PMID: 32419461 DOI: 10.1021/acs.jproteome.0c00226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A universal and standardized sample preparation method becomes vital for denaturing top-down proteomics (dTDP) to advance the scale and accuracy of proteoform delineation in complex biological systems. It needs to have high protein recovery, minimum bias, good reproducibility, and compatibility with downstream mass spectrometry (MS) analysis. Here, we employed a lysis buffer containing sodium dodecyl sulfate for extracting proteoforms from cells and, for the first time, compared membrane ultrafiltration (MU), chloroform-methanol precipitation (CMP), and single-spot solid-phase sample preparation using magnetic beads (SP3) for proteoform cleanup for dTDP. The MU method outperformed CMP and SP3 methods, resulting in high and reproducible protein recovery from both Escherichia coli cell (59 ± 3%) and human HepG2 cell (86 ± 5%) samples without a significant bias. Single-shot capillary zone electrophoresis (CZE)-MS/MS analyses of the prepared E. coli and HepG2 cell samples using the MU method identified 821 and 516 proteoforms, respectively. Nearly 30 and 50% of the identified E. coli and HepG2 proteins are membrane proteins. CZE-MS/MS identified 94 histone proteoforms from the HepG2 sample with various post-translational modifications, including acetylation, methylation, and phosphorylation. Our results suggest that combining the SDS-based protein extraction and the MU-based protein cleanup could be a universal sample preparation method for dTDP. The MS raw data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD018248.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824 United States
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824 United States
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824 United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824 United States
| |
Collapse
|
40
|
Yang J, Zhang H, Gong W, Liu Z, Wu H, Hu W, Chen X, Wang L, Wu S, Chen C, Perrett S. S-Glutathionylation of human inducible Hsp70 reveals a regulatory mechanism involving the C-terminal α-helical lid. J Biol Chem 2020; 295:8302-8324. [PMID: 32332101 PMCID: PMC7294093 DOI: 10.1074/jbc.ra119.012372] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/13/2020] [Indexed: 12/23/2022] Open
Abstract
Heat shock protein 70 (Hsp70) proteins are a family of ancient and conserved chaperones. Cysteine modifications have been widely detected among different Hsp70 family members in vivo, but their effects on Hsp70 structure and function are unclear. Here, we treated HeLa cells with diamide, which typically induces disulfide bond formation except in the presence of excess GSH, when glutathionylated cysteines predominate. We show that in these cells, HspA1A (hHsp70) undergoes reversible cysteine modifications, including glutathionylation, potentially at all five cysteine residues. In vitro experiments revealed that modification of cysteines in the nucleotide-binding domain of hHsp70 is prevented by nucleotide binding but that Cys-574 and Cys-603, located in the C-terminal α-helical lid of the substrate-binding domain, can undergo glutathionylation in both the presence and absence of nucleotide. We found that glutathionylation of these cysteine residues results in unfolding of the α-helical lid structure. The unfolded region mimics substrate by binding to and blocking the substrate-binding site, thereby promoting intrinsic ATPase activity and competing with binding of external substrates, including heat shock transcription factor 1 (Hsf1). Thus, post-translational modification can alter the structure and regulate the function of hHsp70.
Collapse
Affiliation(s)
- Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China .,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Zhenyan Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Huiwen Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Wanhui Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Xinxin Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China .,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China.,Beijing Institute for Brain Disorders, Youanmen, Beijing, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China .,University of the Chinese Academy of Sciences, Shijingshan District, Beijing, China
| |
Collapse
|
41
|
Abstract
Top-down mass spectrometry (MS) analyzes intact proteins at the proteoform level, which allows researchers to better understand the functions of protein modifications. Recently, top-down proteomics has increased in popularity due to advancements in high-resolution mass spectrometers, increased efficiency in liquid chromatography (LC) separation, and advances in data analysis software. Some unique protein proteoforms, which have been distinguished using top-down MS, have even been shown to exhibit marked variation in biological function compared to similar proteoforms. However, the qualitative identification of a particular proteoform may not be enough to determine the biological relevance of that proteoform. Quantitative top-down MS methods have been notably applied to the study of the differing biological functions of protein proteoforms and have allowed researchers to explore proteomes at the proteoform, rather than the peptide, level. Here, we review the top-down MS methods that have been used to quantitatively identify intact proteins, discuss current applications of quantitative top-down MS analysis, and present new areas where quantitative top-down MS analysis may be implemented.
Collapse
Affiliation(s)
- Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK 73019-5251, USA.
| | | |
Collapse
|
42
|
Janssen KA, Coradin M, Lu C, Sidoli S, Garcia BA. Quantitation of Single and Combinatorial Histone Modifications by Integrated Chromatography of Bottom-up Peptides and Middle-down Polypeptide Tails. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2449-2459. [PMID: 31512222 DOI: 10.1007/s13361-019-02303-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The analysis of histone post-translational modifications (PTMs) by mass spectrometry (MS) has been critical to the advancement of the field of epigenetics. The most sensitive and accurate workflow is similar to the canonical proteomics analysis workflow (bottom-up MS), where histones are digested into short peptides (4-20 aa) and quantitated in extracted ion chromatograms. However, this limits the ability to detect even very common co-occurrences of modifications on histone proteins, preventing biological interpretation of PTM crosstalk. By digesting with GluC rather than trypsin, it is possible to produce long polypeptides corresponding to intact histone N-terminal tails (50-60 aa), where most modifications reside. This middle-down MS approach is used to study distant PTM co-existence. However, the most sensitive middle-down workflow uses weak cation exchange-hydrophilic interaction chromatography (WCX-HILIC), which is less robust than conventional reversed-phase chromatography. Additionally, since the buffer systems for middle-down and bottom-up proteomics differ substantially, it is cumbersome to toggle back and forth between both experimental setups on the same LC system. Here, we present a new workflow using porous graphitic carbon (PGC) as a stationary phase for histone analysis where bottom-up and middle-down sized histone peptides can be analyzed simultaneously using the same reversed-phase buffer setup. By using this protocol for middle-down sized peptides, we identified 406 uniquely modified intact histone tails and achieved a correlation of 0.85 between PGC and WCX-HILIC LC methods. Together, our method facilitates the analysis of single and combinatorial histone PTMs with much simpler applicability for conventional proteomics labs than the state-of-the-art middle-down MS.
Collapse
Affiliation(s)
- Kevin A Janssen
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Congcong Lu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Benjamin A Garcia
- Biochemistry and Molecular Biophysics Graduate Group, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Yu D, Wang Z, Cupp-Sutton KA, Liu X, Wu S. Deep Intact Proteoform Characterization in Human Cell Lysate Using High-pH and Low-pH Reversed-Phase Liquid Chromatography. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2502-2513. [PMID: 31755044 PMCID: PMC7539543 DOI: 10.1007/s13361-019-02315-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/10/2019] [Accepted: 08/10/2019] [Indexed: 05/26/2023]
Abstract
Post-translational modifications (PTMs) play critical roles in biological processes and have significant effects on the structures and dynamics of proteins. Top-down proteomics methods were developed for and applied to the study of intact proteins and their PTMs in human samples. However, the large dynamic range and complexity of human samples makes the study of human proteins challenging. To address these challenges, we developed a 2D pH RP/RPLC-MS/MS technique that fuses high-resolution separation and intact protein characterization to study the human proteins in HeLa cell lysate. Our results provide a deep coverage of soluble proteins in human cancer cells. Compared to 225 proteoforms from 124 proteins identified when 1D separation was used, 2778 proteoforms from 628 proteins were detected and characterized using our 2D separation method. Many proteoforms with critically functional PTMs including phosphorylation were characterized. Additionally, we present the first detection of intact human GcvH proteoforms with rare modifications such as octanoylation and lipoylation. Overall, the increase in the number of proteoforms identified using 2DLC separation is largely due to the reduction in sample complexity through improved separation resolution, which enables the detection of low-abundance PTM-modified proteoforms. We demonstrate here that 2D pH RP/RPLC is an effective technique to analyze complex protein samples using top-down proteomics.
Collapse
Affiliation(s)
- Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Xiaowen Liu
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA.
| |
Collapse
|
44
|
McCool EN, Lodge JM, Basharat AR, Liu X, Coon JJ, Sun L. Capillary Zone Electrophoresis-Tandem Mass Spectrometry with Activated Ion Electron Transfer Dissociation for Large-scale Top-down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2470-2479. [PMID: 31073891 PMCID: PMC6527361 DOI: 10.1007/s13361-019-02206-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 05/21/2023]
Abstract
Capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) has been recognized as an efficient approach for top-down proteomics recently for its high-capacity separation and highly sensitive detection of proteoforms. However, the commonly used collision-based dissociation methods often cannot provide extensive fragmentation of proteoforms for thorough characterization. Activated ion electron transfer dissociation (AI-ETD), that combines infrared photoactivation concurrent with ETD, has shown better performance for proteoform fragmentation than higher energy-collisional dissociation (HCD) and standard ETD. Here, we present the first application of CZE-AI-ETD on an Orbitrap Fusion Lumos mass spectrometer for large-scale top-down proteomics of Escherichia coli (E. coli) cells. CZE-AI-ETD outperformed CZE-ETD regarding proteoform and protein identifications (IDs). CZE-AI-ETD reached comparable proteoform and protein IDs with CZE-HCD. CZE-AI-ETD tended to generate better expectation values (E values) of proteoforms than CZE-HCD and CZE-ETD, indicating a higher quality of MS/MS spectra from AI-ETD respecting the number of sequence-informative fragment ions generated. CZE-AI-ETD showed great reproducibility regarding the proteoform and protein IDs with relative standard deviations less than 4% and 2% (n = 3). Coupling size exclusion chromatography (SEC) to CZE-AI-ETD identified 3028 proteoforms and 387 proteins from E. coli cells with 1% spectrum level and 5% proteoform-level false discovery rates. The data represents the largest top-down proteomics dataset using the AI-ETD method so far. Single-shot CZE-AI-ETD of one SEC fraction identified 957 proteoforms and 253 proteins. N-terminal truncations, signal peptide cleavage, N-terminal methionine removal, and various post-translational modifications including protein N-terminal acetylation, methylation, S-thiolation, disulfide bonds, and lysine succinylation were detected.
Collapse
Affiliation(s)
- Elijah N McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Jean M Lodge
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Abdul Rehman Basharat
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, 719 Avenue, Indianapolis, IN, 46202, USA
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, 719 Avenue, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410 West 10th Street, Indianapolis, IN, 46202, USA
| | - Joshua J Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
45
|
Huguet R, Mullen C, Srzentić K, Greer JB, Fellers RT, Zabrouskov V, Syka JEP, Kelleher NL, Fornelli L. Proton Transfer Charge Reduction Enables High-Throughput Top-Down Analysis of Large Proteoforms. Anal Chem 2019; 91:15732-15739. [PMID: 31714757 DOI: 10.1021/acs.analchem.9b03925] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the recent technological advances in Fourier transform mass spectrometry (FTMS) instrumentation, top-down proteomics (TDP) is currently mostly applied to the characterization of proteoforms <30 kDa due to the poor performance of high-resolution FTMS for the analysis of larger proteoforms and the high complexity of intact proteomes in the 30-60 kDa mass range. Here, we propose a novel data acquisition method based on ion-ion proton transfer, herein termed proton transfer charge reduction (PTCR), to investigate large proteoforms of Pseudomonas aeruginosa in a high-throughput fashion. We designed a targeted data acquisition strategy, named tPTCR, which applies two consecutive gas phase fractionation steps for obtaining intact precursor masses: first, a narrow (1.5 m/z-wide) quadrupole filter m/z transmission window is used to select a subset of charge states from all ionized proteoform cations; second, this aliquot of protein cations is subjected to PTCR in order to reduce their average charge state: upon m/z analysis in an Orbitrap, proteoform mass spectra with minimal m/z peak overlap and easy-to-interpret charge state distributions are obtained, simplifying the proteoform mass calculation. Subsequently, the same quadrupole-selected narrow m/z region of analytes is subjected to collisional dissociation to obtain proteoform sequence information, which used in combination with intact mass information leads to proteoform identification through an off-line database search. The newly proposed method was benchmarked against the previously developed "medium/high" data-dependent acquisition strategy and doubled the number of UniProt entries and proteoforms >30 kDa identified on the liquid chromatography time scale.
Collapse
Affiliation(s)
- Romain Huguet
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Christopher Mullen
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Kristina Srzentić
- Thermo Fisher Scientific , 790 Memorial Drive, Suite 2D , Cambridge , Massachusetts 02139 , United States
| | - Joseph B Greer
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2170 Campus Drive , Evanston , Illinois 60208 , United States
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2170 Campus Drive , Evanston , Illinois 60208 , United States
| | - Vlad Zabrouskov
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - John E P Syka
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2170 Campus Drive , Evanston , Illinois 60208 , United States
| | - Luca Fornelli
- Department of Biology , University of Oklahoma , 730 Van Vleet Oval , Norman , Oklahoma 73071 , United States
| |
Collapse
|
46
|
Shen X, Yang Z, McCool EN, Lubeckyj RA, Chen D, Sun L. Capillary zone electrophoresis-mass spectrometry for top-down proteomics. Trends Analyt Chem 2019; 120:115644. [PMID: 31537953 PMCID: PMC6752746 DOI: 10.1016/j.trac.2019.115644] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry (MS)-based top-down proteomics characterizes complex proteomes at the intact proteoform level and provides an accurate picture of protein isoforms and protein post-translational modifications in the cell. The progress of top-down proteomics requires novel analytical tools with high peak capacity for proteoform separation and high sensitivity for proteoform detection. The requirements have made capillary zone electrophoresis (CZE)-MS an attractive approach for advancing large-scale top-down proteomics. CZE has achieved a peak capacity of 300 for separation of complex proteoform mixtures. CZE-MS has shown drastically better sensitivity than commonly used reversed-phase liquid chromatography (RPLC)-MS for proteoform detection. The advanced CZE-MS identified 6,000 proteoforms of nearly 1,000 proteoform families from a complex proteome sample, which represents one of the largest top-down proteomic datasets so far. In this review, we focus on the recent progress in CZE-MS-based top-down proteomics and provide our perspectives about its future directions.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Elijah N. McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Rachele A. Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
47
|
Abstract
The cardiac troponin complex, composed of three regulatory proteins (cTnI, cTnT, TnC), functions as the critical regulator of cardiac muscle contraction and relaxation. Myofilament protein-protein interactions are regulated by post-translational modifications (PTMs) to the protein constituents of this complex. Dysregulation of troponin PTMs, particularly phosphorylation, results in altered cardiac contractility. Altered PTMs and isoforms have been increasingly recognized as the molecular mechanisms underlying heart diseases. Therefore, it is essential to comprehensively analyze cardiac troponin proteoforms that arise from PTMs, alternative splicing, and sequence variations. In this chapter, we described two detailed protocols for the enrichment and purification of endogenous cardiac troponin proteoforms from cardiac tissue. Subsequently, mass spectrometry (MS)-based top-down proteomics utilizing online liquid chromatography (LC)/quadrupole time-of-flight (Q-TOF) MS for separation, profiling, and quantification of the troponins was demonstrated. Characterization of troponin amino acid sequence and the localization of PTMs were shown using Fourier-transform ion cyclotron resonance (FT-ICR) MS with electron capture dissociation (ECD) and collisionally activated dissociation (CAD). Furthermore, we described the use of MASH software, a comprehensive and free software package developed in our lab, for top-down proteomics data analysis. The methods we described can be applied for the analysis of troponin proteoforms in cardiac tissues, from animal models to human clinical samples, for heart disease.
Collapse
|
48
|
Role of Glutathionylation in Infection and Inflammation. Nutrients 2019; 11:nu11081952. [PMID: 31434242 PMCID: PMC6723385 DOI: 10.3390/nu11081952] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by different cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses.
Collapse
|
49
|
Lubeckyj RA, Basharat AR, Shen X, Liu X, Sun L. Large-Scale Qualitative and Quantitative Top-Down Proteomics Using Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry with Nanograms of Proteome Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1435-1445. [PMID: 30972727 PMCID: PMC6675661 DOI: 10.1007/s13361-019-02167-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) has attracted attention recently for top-down proteomics because it can achieve highly efficient separation and very sensitive detection of proteins. However, separation window and sample loading volume of CZE need to be boosted for a better proteome coverage using CZE-MS/MS. Here, we present an improved CZE-MS/MS system that achieved a 180-min separation window and a 2-μL sample loading volume for top-down characterization of protein mixtures. The system obtained highly efficient separation of proteins with nearly one million theoretical plates for myoglobin and enabled baseline separation of three different proteoforms of myoglobin. The CZE-MS/MS system identified 797 ± 21 proteoforms and 258 ± 7 proteins (n = 2) from an Escherichia coli (E. coli) proteome sample in a single run with only 250 ng of proteins injected. The system still identified 449 ± 40 proteoforms and 173 ± 6 proteins (n = 2) from the E. coli sample when only 25 ng of proteins were injected per run. Single-shot CZE-MS/MS analyses of zebrafish brain cerebellum (Cb) and optic tectum (Teo) regions identified 1730 ± 196 proteoforms (n = 3) and 2024 ± 255 proteoforms (n = 3), respectively, with only 500-ng proteins loaded per run. Label-free quantitative top-down proteomics of zebrafish brain Cb and Teo regions revealed significant differences between Cb and Teo regarding the proteoform abundance. Over 700 proteoforms from 131 proteins had significantly higher abundance in Cb compared to Teo, and these proteins were highly enriched in several biological processes, including muscle contraction, glycolytic process, and mesenchyme migration. Graphical Abstract.
Collapse
Affiliation(s)
- Rachele A Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, 48824, USA
| | - Abdul Rehman Basharat
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, 48824, USA
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, 48824, USA.
| |
Collapse
|
50
|
Donnelly DP, Rawlins CM, DeHart CJ, Fornelli L, Schachner LF, Lin Z, Lippens JL, Aluri KC, Sarin R, Chen B, Lantz C, Jung W, Johnson KR, Koller A, Wolff JJ, Campuzano IDG, Auclair JR, Ivanov AR, Whitelegge JP, Paša-Tolić L, Chamot-Rooke J, Danis PO, Smith LM, Tsybin YO, Loo JA, Ge Y, Kelleher NL, Agar JN. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat Methods 2019; 16:587-594. [PMID: 31249407 PMCID: PMC6719561 DOI: 10.1038/s41592-019-0457-0] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.
Collapse
Affiliation(s)
- Daniel P Donnelly
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Catherine M Rawlins
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Caroline J DeHart
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Luca Fornelli
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Luis F Schachner
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer L Lippens
- Amgen Research, Discovery Attribute Sciences, Amgen, Thousand Oaks, CA, USA
| | - Krishna C Aluri
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Richa Sarin
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Biogen, Cambridge, MA, USA
| | - Bifan Chen
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, and UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wonhyeuk Jung
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, and UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kendall R Johnson
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Antonius Koller
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Iain D G Campuzano
- Amgen Research, Discovery Attribute Sciences, Amgen, Thousand Oaks, CA, USA
| | - Jared R Auclair
- Biopharmaceutical Analysis Training Laboratory, Northeastern University, Burlington, MA, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Institut Pasteur, USR 2000, CNRS, Paris, France
| | | | - Lloyd M Smith
- Department of Chemistry, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, and UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Jeffrey N Agar
- Barnett Institute of Chemical and Biological Analysis and Departments of Chemistry & Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|