1
|
Lee J, Jha K, Harper CE, Zhang W, Ramsukh M, Bouklas N, Dörr T, Chen P, Hernandez CJ. Determining the Young's Modulus of the Bacterial Cell Envelope. ACS Biomater Sci Eng 2024; 10:2956-2966. [PMID: 38593061 DOI: 10.1021/acsbiomaterials.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Bacteria experience substantial physical forces in their natural environment, including forces caused by osmotic pressure, growth in constrained spaces, and fluid shear. The cell envelope is the primary load-carrying structure of bacteria, but the mechanical properties of the cell envelope are poorly understood; reports of Young's modulus of the cell envelope of Escherichia coli range from 2 to 18 MPa. We developed a microfluidic system to apply mechanical loads to hundreds of bacteria at once and demonstrated the utility of the approach for evaluating whole-cell stiffness. Here, we extend this technique to determine Young's modulus of the cell envelope of E. coli and of the pathogens Vibrio cholerae and Staphylococcus aureus. An optimization-based inverse finite element analysis was used to determine the cell envelope Young's modulus from observed deformations. The Young's modulus values of the cell envelope were 2.06 ± 0.04 MPa for E. coli, 0.84 ± 0.02 MPa for E. coli treated with a chemical (A22) known to reduce cell stiffness, 0.12 ± 0.03 MPa for V. cholerae, and 1.52 ± 0.06 MPa for S. aureus (mean ± SD). The microfluidic approach allows examination of hundreds of cells at once and is readily applied to Gram-negative and Gram-positive organisms as well as rod-shaped and cocci cells, allowing further examination of the structural causes behind differences in cell envelope Young's modulus among bacterial species and strains.
Collapse
Affiliation(s)
- Junsung Lee
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Karan Jha
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Christine E Harper
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenyao Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Malissa Ramsukh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York 14853, United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher J Hernandez
- Departments of Bioengineering and Therapeutic Sciences and Orthopaedic Surgery, UC San Francisco, California 94143, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
2
|
Singh MK, Kenney LJ. Visualizing the invisible: novel approaches to visualizing bacterial proteins and host-pathogen interactions. Front Bioeng Biotechnol 2024; 12:1334503. [PMID: 38415188 PMCID: PMC10898356 DOI: 10.3389/fbioe.2024.1334503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Host-pathogen interactions play a critical role in infectious diseases, and understanding the underlying mechanisms is vital for developing effective therapeutic strategies. The visualization and characterization of bacterial proteins within host cells is key to unraveling the dynamics of these interactions. Various protein labeling strategies have emerged as powerful tools for studying host-pathogen interactions, enabling the tracking, localization, and functional analysis of bacterial proteins in real-time. However, the labeling and localization of Salmonella secreted type III secretion system (T3SS) effectors in host cells poses technical challenges. Conventional methods disrupt effector stoichiometry and often result in non-specific staining. Bulky fluorescent protein fusions interfere with effector secretion, while other tagging systems such as 4Cys-FLaSH/Split-GFP suffer from low labeling specificity and a poor signal-to-noise ratio. Recent advances in state-of-the-art techniques have augmented the existing toolkit for monitoring the translocation and dynamics of bacterial effectors. This comprehensive review delves into the bacterial protein labeling strategies and their application in imaging host-pathogen interactions. Lastly, we explore the obstacles faced and potential pathways forward in the realm of protein labeling strategies for visualizing interactions between hosts and pathogens.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Vashistha H, Jammal-Touma J, Singh K, Rabin Y, Salman H. Bacterial cell-size changes resulting from altering the relative expression of Min proteins. Nat Commun 2023; 14:5710. [PMID: 37714867 PMCID: PMC10504268 DOI: 10.1038/s41467-023-41487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
The timing of cell division, and thus cell size in bacteria, is determined in part by the accumulation dynamics of the protein FtsZ, which forms the septal ring. FtsZ localization depends on membrane-associated Min proteins, which inhibit FtsZ binding to the cell pole membrane. Changes in the relative concentrations of Min proteins can disrupt FtsZ binding to the membrane, which in turn can delay cell division until a certain cell size is reached, in which the dynamics of Min proteins frees the cell membrane long enough to allow FtsZ ring formation. Here, we study the effect of Min proteins relative expression on the dynamics of FtsZ ring formation and cell size in individual Escherichia coli bacteria. Upon inducing overexpression of minE, cell size increases gradually to a new steady-state value. Concurrently, the time required to initiate FtsZ ring formation grows as the size approaches the new steady-state, at which point the ring formation initiates as early as before induction. These results highlight the contribution of Min proteins to cell size control, which may be partially responsible for the size fluctuations observed in bacterial populations, and may clarify how the size difference acquired during asymmetric cell division is offset.
Collapse
Affiliation(s)
- Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Joanna Jammal-Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kulveer Singh
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Yitzhak Rabin
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Nanninga N. Molecular Cytology of 'Little Animals': Personal Recollections of Escherichia coli (and Bacillus subtilis). Life (Basel) 2023; 13:1782. [PMID: 37629639 PMCID: PMC10455606 DOI: 10.3390/life13081782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
This article relates personal recollections and starts with the origin of electron microscopy in the sixties of the previous century at the University of Amsterdam. Novel fixation and embedding techniques marked the discovery of the internal bacterial structures not visible by light microscopy. A special status became reserved for the freeze-fracture technique. By freeze-fracturing chemically fixed cells, it proved possible to examine the morphological effects of fixation. From there on, the focus switched from bacterial structure as such to their cell cycle. This invoked bacterial physiology and steady-state growth combined with electron microscopy. Electron-microscopic autoradiography with pulses of [3H] Dap revealed that segregation of replicating DNA cannot proceed according to a model of zonal growth (with envelope-attached DNA). This stimulated us to further investigate the sacculus, the peptidoglycan macromolecule. In particular, we focused on the involvement of penicillin-binding proteins such as PBP2 and PBP3, and their role in division. Adding aztreonam (an inhibitor of PBP3) blocked ongoing divisions but not the initiation of new ones. A PBP3-independent peptidoglycan synthesis (PIPS) appeared to precede a PBP3-dependent step. The possible chemical nature of PIPS is discussed.
Collapse
Affiliation(s)
- Nanne Nanninga
- Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
Schäfer AB, Steenhuis M, Jim KK, Neef J, O’Keefe S, Whitehead RC, Swanton E, Wang B, Halbedel S, High S, van Dijl JM, Luirink J, Wenzel M. Dual Action of Eeyarestatin 24 on Sec-Dependent Protein Secretion and Bacterial DNA. ACS Infect Dis 2023; 9:253-269. [PMID: 36637435 PMCID: PMC9926488 DOI: 10.1021/acsinfecdis.2c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Eeyarestatin 24 (ES24) is a promising new antibiotic with broad-spectrum activity. It shares structural similarity with nitrofurantoin (NFT), yet appears to have a distinct and novel mechanism: ES24 was found to inhibit SecYEG-mediated protein transport and membrane insertion in Gram-negative bacteria. However, possible additional targets have not yet been explored. Moreover, its activity was notably better against Gram-positive bacteria, for which its mechanism of action had not yet been investigated. We have used transcriptomic stress response profiling, phenotypic assays, and protein secretion analyses to investigate the mode of action of ES24 in comparison with NFT using the Gram-positive model bacterium Bacillus subtilis and have compared our findings to Gram-negative Escherichia coli. Here, we show the inhibition of Sec-dependent protein secretion in B. subtilis and additionally provide evidence for DNA damage, probably caused by the generation of reactive derivatives of ES24. Interestingly, ES24 caused a gradual dissipation of the membrane potential, which led to delocalization of cytokinetic proteins and subsequent cell elongation in E. coli. However, none of those effects were observed in B. subtilis, thereby suggesting that ES24 displays distinct mechanistic differences with respect to Gram-positive and Gram-negative bacteria. Despite its structural similarity to NFT, ES24 profoundly differed in our phenotypic analysis, which implies that it does not share the NFT mechanism of generalized macromolecule and structural damage. Importantly, ES24 outperformed NFT in vivo in a zebrafish embryo pneumococcal infection model. Our results suggest that ES24 not only inhibits the Sec translocon, but also targets bacterial DNA and, in Gram-negative bacteria, the cell membrane.
Collapse
Affiliation(s)
- Ann-Britt Schäfer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Maurice Steenhuis
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers - Location Vrije Universiteit
Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Amsterdam
University Medical Centers, 1081 HZ Amsterdam, The Netherlands
| | - Jolanda Neef
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Sarah O’Keefe
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Roger C. Whitehead
- School
of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Eileithyia Swanton
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Biwen Wang
- Bacterial
Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sven Halbedel
- FG11
Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
- Institute
for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephen High
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Joen Luirink
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Michaela Wenzel
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
6
|
Choudhury SP, Bano S, Sen S, Suchal K, Kumar S, Nikolajeff F, Dey SK, Sharma V. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:66. [PMID: 35650269 PMCID: PMC9160246 DOI: 10.1038/s41531-022-00324-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurological disorder that affects the movement of the human body. It is primarily characterized by reduced dopamine levels in the brain. The causative agent of PD is still unclear but it is generally accepted that α-synuclein has a central role to play. It is also known that gap-junctions and associated connexins are complicated structures that play critical roles in nervous system signaling and associated misfunctioning. Thus, our current article emphasizes how, alongside α-synuclein, ion-channels, gap-junctions, and related connexins, all play vital roles in influencing multiple metabolic activities of the brain during PD. It also highlights that ion-channel and gap-junction disruptions, which are primarily mediated by their structural-functional changes and alterations, have a role in PD. Furthermore, we discussed available drugs and advanced therapeutic interventions that target Parkinson's pathogenesis. In conclusion, it warrants creating better treatments for PD patients. Although, dopaminergic replenishment therapy is useful in treating neurological problems, such therapies are, however, unable to control the degeneration that underpins the disease, thereby declining their overall efficacy. This creates an additional challenge and an untapped scope for neurologists to adopt treatments for PD by targeting the ion-channels and gap-junctions, which is well-reviewed in the present article.
Collapse
Affiliation(s)
- Saptamita Paul Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sarika Bano
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Srijon Sen
- Indian Institute of Technology-Kharagpur, Kharagpur, 721302, India
| | - Kapil Suchal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| | - Saroj Kumar
- Deparment of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| |
Collapse
|
7
|
Masson F, Pierrat X, Lemaitre B, Persat A. The wall-less bacterium Spiroplasma poulsonii builds a polymeric cytoskeleton composed of interacting MreB isoforms. iScience 2021; 24:103458. [PMID: 34888500 PMCID: PMC8634037 DOI: 10.1016/j.isci.2021.103458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
A rigid cell wall defines the morphology of most bacteria. MreB, a bacterial homologue of actin, plays a major role in coordinating cell wall biogenesis and defining cell shape. Spiroplasma are wall-less bacteria that robustly grow with a characteristic helical shape. Paradoxal to their lack of cell wall, the Spiroplasma genome contains five homologs of MreB (SpMreBs). Here, we investigate the function of SpMreBs in forming a polymeric cytoskeleton. We found that, in vivo, Spiroplasma maintain a high concentration of all MreB isoforms. By leveraging a heterologous expression system that bypasses the poor genetic tractability of Spiroplasma, we found that SpMreBs produced polymeric filaments of various morphologies. We characterized an interaction network between isoforms that regulate filament formation and patterning. Therefore, our results support the hypothesis where combined SpMreB isoforms would form an inner polymeric cytoskeleton in vivo that shapes the cell in a wall-independent manner. The five Spiroplasma MreB isoforms are extremely abundant proteins in vivo Each isoform produces filaments when expressed in a heterologous system SpMreBs form an interaction network that regulates filament length and shape
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Corresponding author
| | - Xavier Pierrat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
8
|
Singh MK, Kenney LJ. Super-resolution imaging of bacterial pathogens and visualization of their secreted effectors. FEMS Microbiol Rev 2021; 45:5911101. [PMID: 32970796 DOI: 10.1093/femsre/fuaa050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in super-resolution imaging techniques, together with new fluorescent probes have enhanced our understanding of bacterial pathogenesis and their interplay within the host. In this review, we provide an overview of what these techniques have taught us about the bacterial lifestyle, the nucleoid organization, its complex protein secretion systems, as well as the secreted virulence factors.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Linda J Kenney
- Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Garner EC. Toward a Mechanistic Understanding of Bacterial Rod Shape Formation and Regulation. Annu Rev Cell Dev Biol 2021; 37:1-21. [PMID: 34186006 DOI: 10.1146/annurev-cellbio-010521-010834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most common bacterial shapes is a rod, yet we have a limited understanding of how this simple shape is constructed. While only six proteins are required for rod shape, we are just beginning to understand how they self-organize to build the micron-sized enveloping structures that define bacterial shape out of nanometer-sized glycan strains. Here, we detail and summarize the insights gained over the last 20 years into this complex problem that have been achieved with a wide variety of different approaches. We also explain and compare both current and past models of rod shape formation and maintenance and then highlight recent insights into how the Rod complex might be regulated. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
10
|
A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. Proc Natl Acad Sci U S A 2020; 117:32086-32097. [PMID: 33257551 DOI: 10.1073/pnas.2014659117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Magnetotactic bacteria maneuver within the geomagnetic field by means of intracellular magnetic organelles, magnetosomes, which are aligned into a chain and positioned at midcell by a dedicated magnetosome-specific cytoskeleton, the "magnetoskeleton." However, how magnetosome chain organization and resulting magnetotaxis is linked to cell shape has remained elusive. Here, we describe the cytoskeletal determinant CcfM (curvature-inducing coiled-coil filament interacting with the magnetoskeleton), which links the magnetoskeleton to cell morphology regulation in Magnetospirillum gryphiswaldense Membrane-anchored CcfM localizes in a filamentous pattern along regions of inner positive-cell curvature by its coiled-coil motifs, and independent of the magnetoskeleton. CcfM overexpression causes additional circumferential localization patterns, associated with a dramatic increase in cell curvature, and magnetosome chain mislocalization or complete chain disruption. In contrast, deletion of ccfM results in decreased cell curvature, impaired cell division, and predominant formation of shorter, doubled chains of magnetosomes. Pleiotropic effects of CcfM on magnetosome chain organization and cell morphology are supported by the finding that CcfM interacts with the magnetoskeleton-related MamY and the actin-like MamK via distinct motifs, and with the cell shape-related cytoskeleton via MreB. We further demonstrate that CcfM promotes motility and magnetic alignment in structured environments, and thus likely confers a selective advantage in natural habitats of magnetotactic bacteria, such as aquatic sediments. Overall, we unravel the function of a prokaryotic cytoskeletal constituent that is widespread in magnetic and nonmagnetic spirilla-shaped Alphaproteobacteria.
Collapse
|
11
|
Eddenden A, Kitova EN, Klassen JS, Nitz M. An Inactive Dispersin B Probe for Monitoring PNAG Production in Biofilm Formation. ACS Chem Biol 2020; 15:1204-1211. [PMID: 31917539 DOI: 10.1021/acschembio.9b00907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial exopolysaccharide poly-β-1,6-N-acetylglucosamine is a major extracellular matrix component in biofilms of both Gram-positive and Gram-negative organisms. We have leveraged the specificity of the biofilm-dispersing glycoside hydrolase Dispersin B (DspB) to generate a probe (Dispersin B PNAG probe, DiPP) for monitoring PNAG production and localization during biofilm formation. Mutation of the active site of Dispersin B gave DiPP, which was an effective probe despite its low affinity for PNAG oligosaccharides (KD ∼ 1-10 mM). Imaging of PNAG-dependent and -independent biofilms stained with a fluorescent-protein fusion of DiPP (GFP-DiPP) demonstrated the specificity of the probe for the structure of PNAG on both single-cell and biofilm levels, indicating a high local concentration of PNAG at the bacterial cell surface. Through quantitative bacterial cell binding assays and confocal microscopy analysis using GFP-DiPP, discrete areas of local high concentrations of PNAG were detected on the surface of early log phase cells. These distinct areas were seen to grow, slough from cells, and accumulate in interbacterial regions over the course of several cell divisions, showing the development of a PNAG-dependent biofilm. A potential helical distribution of staining was also noted, suggesting some degree of organization of PNAG production at the cell surface prior to cell aggregation. Together, these experiments shed light on the early stages of PNAG-dependent biofilm formation and demonstrate the value of a low-affinity-high-specificity probe for monitoring the production of bacterial exopolysaccharides.
Collapse
Affiliation(s)
- Alexander Eddenden
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, Canada M5S 3H6
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr. Edmonton, Alberta, Canada T6G 2G2
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr. Edmonton, Alberta, Canada T6G 2G2
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
12
|
Regulation of filamentation by bacteria and its impact on the productivity of compounds in biotechnological processes. Appl Microbiol Biotechnol 2020; 104:4631-4642. [DOI: 10.1007/s00253-020-10590-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022]
|
13
|
Petersen I, Schlüter R, Hoff KJ, Liebscher V, Bange G, Riedel K, Pané-Farré J. Non-invasive and label-free 3D-visualization shows in vivo oligomerization of the staphylococcal alkaline shock protein 23 (Asp23). Sci Rep 2020; 10:125. [PMID: 31924851 PMCID: PMC6954212 DOI: 10.1038/s41598-019-56907-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022] Open
Abstract
Fluorescence-tags, commonly used to visualize the spatial distribution of proteins within cells, can influence the localization of the tagged proteins by affecting their stability, interaction with other proteins or the induction of oligomerization artifacts. To circumvent these obstacles, a protocol was developed to generate 50 nm thick serial sections suitable for immunogold labeling and subsequent reconstruction of the spatial distribution of immuno-labeled native proteins within individual bacterial cells. Applying this method, we show a cellular distribution of the staphylococcal alkaline shock protein 23 (Asp23), which is compatible with filament formation, a property of Asp23 that we also demonstrate in vitro.
Collapse
Affiliation(s)
- Inga Petersen
- University of Greifswald, Institute of Microbiology, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany.,Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Rabea Schlüter
- University of Greifswald, Imaging Center of the Department of Biology, Friedrich-Ludwig-Jahn-Str. 15, 17489, Greifswald, Germany
| | - Katharina J Hoff
- University of Greifswald, Institute of Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany.,Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Volkmar Liebscher
- University of Greifswald, Institute of Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany
| | - Gert Bange
- Philipps-University Marburg, SYNMIKRO Research Center and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - Katharina Riedel
- University of Greifswald, Institute of Microbiology, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany.,Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Jan Pané-Farré
- University of Greifswald, Institute of Microbiology, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany. .,Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany. .,Philipps-University Marburg, SYNMIKRO Research Center and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany.
| |
Collapse
|
14
|
Ago R, Shiomi D. RodZ: a key-player in cell elongation and cell division in Escherichia coli. AIMS Microbiol 2019; 5:358-367. [PMID: 31915748 PMCID: PMC6946637 DOI: 10.3934/microbiol.2019.4.358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/06/2019] [Indexed: 01/08/2023] Open
Abstract
RodZ is required for determination of cell shape in rod-shaped bacterium, such as Escherichia coli. RodZ is a transmembrane protein and forms a supramolecular complex called the Rod complex with other proteins, such as MreB-actin and peptidoglycan synthesis enzymes (for e.g., PBP2). Deletion of the rodZ gene changes the cell shape from rod to round or ovoid. Another supramolecular complex called divisome that controls cell division mainly consists of FtsZ-tubulin. MreB directly interacts with FtsZ and this interaction is critical to trigger a transition from cell elongation to cell division. Recently, we found that RodZ also directly interacts with FtsZ, and RodZ recruits MreB to the divisome. Formation of the division ring, called Z ring, is delayed if RodZ does not interact with FtsZ, indicating that RodZ might facilitate the formation of the Z ring during the cell division process. In this mini-review, we have summarized the roles of RodZ in cell elongation and cell division, especially based on our recent study.
Collapse
Affiliation(s)
- Risa Ago
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
15
|
Mechanical property of the helical configuration for a twisted intrinsically straight biopolymer. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:329-340. [PMID: 30918999 DOI: 10.1007/s00249-019-01357-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
We explore the effects of two typical torques on the mechanical property of the helical configuration for an intrinsically straight filament or biopolymer either in three-dimensional space or on a cylinder. One torque is parallel to the direction of a uniaxial applied force, and is coupled to the cross section of the filament. We obtain some algebraic equations for the helical configuration and find that the boundary conditions are crucial. In three-dimensional space, we show that the extension is always a monotonic function of the applied force. On the other hand, for a filament confined on a cylinder, the twisting rigidity and torque coupled to the cross section are irrelevant in forming a helix if the filament is isotropic and under free boundary condition. However, the twisting rigidity and the torque coupled to the cross section become crucial when the Euler angle at two ends of the filament are fixed. Particularly, the extension of a helix can subject to a first-order transition so that in such a condition a biopolymer can act as a switch or sensor in some biological processes. We also present several phase diagrams to provide the conditions to form a helix.
Collapse
|
16
|
Wettmann L, Kruse K. The Min-protein oscillations in Escherichia coli: an example of self-organized cellular protein waves. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0111. [PMID: 29632263 DOI: 10.1098/rstb.2017.0111] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
In the rod-shaped bacterium Escherichia coli, selection of the cell centre as the division site involves pole-to-pole oscillations of the proteins MinC, MinD and MinE. This spatio-temporal pattern emerges from interactions among the Min proteins and with the cytoplasmic membrane. Combining experimental studies in vivo and in vitro together with theoretical analysis has led to a fairly good understanding of Min-protein self-organization. In different geometries, the system can, in addition to standing waves, also produce travelling planar and spiral waves as well as coexisting stable stationary distributions. Today it stands as one of the best-studied examples of cellular self-organization of proteins.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Lukas Wettmann
- Theoretische Physik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
| | - Karsten Kruse
- Departments of Biochemistry and Theoretical Physics, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
17
|
Abstract
The construction of the bacterial cell envelope is a fundamental topic, as it confers its integrity to bacteria and is consequently the target of numerous antibiotics. MreB is an essential protein suspected to regulate the cell wall synthetic machineries. Despite two decades of study, its localization remains the subject of controversies, its description ranging from helical filaments spanning the entire cell to small discrete entities. The true structure of these filaments is important because it impacts the model describing how the machineries building the cell wall are associated, how they are coordinated at the scale of the entire cell, and how MreB mediates this regulation. Our results shed light on this debate, revealing the size of native filaments in B. subtilis during growth. They argue against models where MreB filament size directly affects the speed of synthesis of the cell wall and where MreB would coordinate distant machineries along the side wall. The actin-like MreB protein is a key player of the machinery controlling the elongation and maintenance of the cell shape of most rod-shaped bacteria. This protein is known to be highly dynamic, moving along the short axis of cells, presumably reflecting the movement of cell wall synthetic machineries during the enzymatic assembly of the peptidoglycan mesh. The ability of MreB proteins to form polymers is not debated, but their structure, length, and conditions of establishment have remained unclear and the subject of conflicting reports. Here we analyze various strains of Bacillus subtilis, the model for Gram-positive bacteria, and we show that MreB forms subdiffraction-limited, less than 200 nm-long nanofilaments on average during active growth, while micron-long filaments are a consequence of artificial overaccumulation of the protein. Our results also show the absence of impact of the size of the filaments on their speed, orientation, and other dynamic properties conferring a large tolerance to B. subtilis toward the levels and consequently the lengths of MreB polymers. Our data indicate that the density of mobile filaments remains constant in various strains regardless of their MreB levels, suggesting that another factor determines this constant.
Collapse
|
18
|
Shi H, Bratton BP, Gitai Z, Huang KC. How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction. Cell 2019. [PMID: 29522748 DOI: 10.1016/j.cell.2018.02.050] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell shape matters across the kingdoms of life, and cells have the remarkable capacity to define and maintain specific shapes and sizes. But how are the shapes of micron-sized cells determined from the coordinated activities of nanometer-sized proteins? Here, we review general principles that have surfaced through the study of rod-shaped bacterial growth. Imaging approaches have revealed that polymers of the actin homolog MreB play a central role. MreB both senses and changes cell shape, thereby generating a self-organizing feedback system for shape maintenance. At the molecular level, structural and computational studies indicate that MreB filaments exhibit tunable mechanical properties that explain their preference for certain geometries and orientations along the cylindrical cell body. We illustrate the regulatory landscape of rod-shape formation and the connectivity between cell shape, cell growth, and other aspects of cell physiology. These discoveries provide a framework for future investigations into the architecture and construction of microbes.
Collapse
Affiliation(s)
- Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin P Bratton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Queiroz RML, Smith T, Villanueva E, Marti-Solano M, Monti M, Pizzinga M, Mirea DM, Ramakrishna M, Harvey RF, Dezi V, Thomas GH, Willis AE, Lilley KS. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat Biotechnol 2019; 37:169-178. [PMID: 30607034 DOI: 10.1038/s41587-018-0001-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Abstract
Existing high-throughput methods to identify RNA-binding proteins (RBPs) are based on capture of polyadenylated RNAs and cannot recover proteins that interact with nonadenylated RNAs, including long noncoding RNA, pre-mRNAs and bacterial RNAs. We present orthogonal organic phase separation (OOPS), which does not require molecular tagging or capture of polyadenylated RNA, and apply it to recover cross-linked protein-RNA and free protein, or protein-bound RNA and free RNA, in an unbiased way. We validated OOPS in HEK293, U2OS and MCF10A human cell lines, and show that 96% of proteins recovered were bound to RNA. We show that all long RNAs can be cross-linked to proteins, and recovered 1,838 RBPs, including 926 putative novel RBPs. OOPS is approximately 100-fold more efficient than existing methods and can enable analyses of dynamic RNA-protein interactions. We also characterize dynamic changes in RNA-protein interactions in mammalian cells following nocodazole arrest, and present a bacterial RNA-interactome for Escherichia coli. OOPS is compatible with downstream proteomics and RNA sequencing, and can be applied in any organism.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Smith
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | | - Mie Monti
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Dan-Mircea Mirea
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | | | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Barák I, Muchová K. The positioning of the asymmetric septum during sporulation in Bacillus subtilis. PLoS One 2018; 13:e0201979. [PMID: 30092000 PMCID: PMC6084994 DOI: 10.1371/journal.pone.0201979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/25/2018] [Indexed: 11/28/2022] Open
Abstract
Probably one of the most controversial questions about the cell division of Bacillus subtilis, a rod-shaped bacterium, concerns the mechanism that ensures correct division septum placement-at mid-cell during vegetative growth but closer to one end during sporulation. In general, bacteria multiply by binary fission, in which the division septum forms almost exactly at the cell centre. How the division machinery achieves such accuracy is a question of continuing interest. We understand in some detail how this is achieved during vegetative growth in Escherichia coli and B. subtilis, where two main negative regulators, nucleoid occlusion and the Min system, help to determine the division site, but we still do not know exactly how the asymmetric septation site is determined during sporulation in B. subtilis. Clearly, the inhibitory effects of the nucleoid occlusion and Min system on polar division have to be overcome. We evaluated the positioning of the asymmetric septum and its accuracy by statistical analysis of the site of septation. We also clarified the role of SpoIIE, RefZ and MinCD on the accuracy of this process. We determined that the sporulation septum forms approximately 1/6 of a cell length from one of the cell poles with high precision and that SpoIIE, RefZ and MinCD have a crucial role in precisely localizing the sporulation septum. Our results strongly support the idea that asymmetric septum formation is a very precise and highly controlled process regulated by a still unknown mechanism.
Collapse
Affiliation(s)
- Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
21
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
22
|
|
23
|
Xiao-Ran J, Jin Y, Xiangbin C, Guo-Qiang C. Halomonas and Pathway Engineering for Bioplastics Production. Methods Enzymol 2018; 608:309-328. [PMID: 30173767 DOI: 10.1016/bs.mie.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional microbial chassis, including Escherichia coli, Bacillus subtilis, Ralstonia eutropha, and Pseudomonas putida, are grown under neutral pH and mild osmotic pressure for production of chemicals and materials. They tend to be contaminated easily by many microorganisms. To address this issue, next-generation industrial biotechnology employing halophilic Halomonas spp. has been developed for production of bioplastics polyhydroxyalkanoates (PHAs) and other chemicals. Halomonas spp. that can be grown contamination free under open and unsterile condition at alkali pH and high NaCl have been engineered to produce several PHA polymers in elongated or enlarged cells. New pathways can also be constructed both in plasmids and on chromosomes for Halomonas spp. Synthetic biology approaches and parts have been developed for Halomonas spp., allowing better control of their growth and product formation as well as morphology adjustment. Halomonas spp. and their synthetic biology will play an increasingly important role for industrial production of large volume chemicals.
Collapse
Affiliation(s)
- Jiang Xiao-Ran
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yin Jin
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chen Xiangbin
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chen Guo-Qiang
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; Manchester Institute of Biotechnology, Centre for Synthetic Biology, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
24
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
25
|
Zhao H, Patel V, Helmann JD, Dörr T. Don't let sleeping dogmas lie: new views of peptidoglycan synthesis and its regulation. Mol Microbiol 2017; 106:847-860. [PMID: 28975672 DOI: 10.1111/mmi.13853] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
Abstract
Bacterial cell wall synthesis is the target for some of our most powerful antibiotics and has thus been the subject of intense research focus for more than 50 years. Surprisingly, we still lack a fundamental understanding of how bacteria build, maintain and expand their cell wall. Due to technical limitations, directly testing hypotheses about the coordination and biochemistry of cell wall synthesis enzymes or architecture has been challenging, and interpretation of data has therefore often relied on circumstantial evidence and implicit assumptions. A number of recent papers have exploited new technologies, like single molecule tracking and real-time, high resolution temporal mapping of cell wall synthesis processes, to address fundamental questions of bacterial cell wall biogenesis. The results have challenged established dogmas and it is therefore timely to integrate new data and old observations into a new model of cell wall biogenesis in rod-shaped bacteria.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Vaidehi Patel
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Uncharacterized Bacterial Structures Revealed by Electron Cryotomography. J Bacteriol 2017; 199:JB.00100-17. [PMID: 28607161 DOI: 10.1128/jb.00100-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/27/2017] [Indexed: 01/06/2023] Open
Abstract
Electron cryotomography (ECT) can reveal the native structure and arrangement of macromolecular complexes inside intact cells. This technique has greatly advanced our understanding of the ultrastructure of bacterial cells. We now view bacteria as structurally complex assemblies of macromolecular machines rather than as undifferentiated bags of enzymes. To date, our group has applied ECT to nearly 90 different bacterial species, collecting more than 15,000 cryotomograms. In addition to known structures, we have observed, to our knowledge, several uncharacterized features in these tomograms. Some are completely novel structures; others expand the features or species range of known structure types. Here, we present a survey of these uncharacterized bacterial structures in the hopes of accelerating their identification and study, and furthering our understanding of the structural complexity of bacterial cells.IMPORTANCE Bacteria are more structurally complex than is commonly appreciated. Here we present a survey of previously uncharacterized structures that we observed in bacterial cells by electron cryotomography, structures that will initiate new lines of research investigating their identities and roles.
Collapse
|
27
|
Shiomi D. Polar localization of MreB actin is inhibited by anionic phospholipids in the rod-shaped bacterium Escherichia coli. Curr Genet 2017; 63:845-848. [PMID: 28439631 DOI: 10.1007/s00294-017-0696-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022]
Abstract
Bacterial actin MreB is required for the maintenance of cell polarity. MreB is located underneath the cell membrane and mainly localizes at a central cylindrical part of the cell. In addition, it has recently been found that anionic phospholipids (aPLs: phosphatidylglycerol and cardiolipin) play a crucial role in excluding MreB from the cell poles. Subcellular localization of MreB is positively and negatively regulated by membrane curvature and aPLs, respectively.
Collapse
Affiliation(s)
- Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.
| |
Collapse
|
28
|
Kawazura T, Matsumoto K, Kojima K, Kato F, Kanai T, Niki H, Shiomi D. Exclusion of assembled MreB by anionic phospholipids at cell poles confers cell polarity for bidirectional growth. Mol Microbiol 2017; 104:472-486. [PMID: 28164388 DOI: 10.1111/mmi.13639] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2017] [Indexed: 12/21/2022]
Abstract
Cell polarity determines the direction of cell growth in bacteria. MreB actin spatially regulates peptidoglycan synthesis to enable cells to elongate bidirectionally. MreB densely localizes in the cylindrical part of the rod cell and not in polar regions in Escherichia coli. When treated with A22, which inhibits MreB polymerization, rod-shaped cells became round and MreB was diffusely distributed throughout the cytoplasmic membrane. A22 removal resulted in restoration of the rod shape. Initially, diffuse MreB started to re-assemble, and MreB-free zones were subsequently observed in the cytoplasmic membrane. These MreB-free zones finally became cell poles, allowing the cells to elongate bidirectionally. When MreB was artificially located at the cell poles, an additional pole was created, indicating that artificial localization of MreB at the cell pole induced local peptidoglycan synthesis. It was found that the anionic phospholipids (aPLs), phosphatidylglycerol and cardiolipin, which were enriched in cell poles preferentially interact with monomeric MreB compared with assembled MreB in vitro. MreB tended to localize to cell poles in cells lacking both aPLs, resulting in production of Y-shaped cells. Their findings indicated that aPLs exclude assembled MreB from cell poles to establish cell polarity, thereby allowing cells to elongate in a particular direction.
Collapse
Affiliation(s)
- Takuma Kawazura
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Kanon Matsumoto
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Koki Kojima
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Fumiya Kato
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Tomomi Kanai
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| |
Collapse
|
29
|
Schumacher MA. Bacterial Nucleoid Occlusion: Multiple Mechanisms for Preventing Chromosome Bisection During Cell Division. Subcell Biochem 2017; 84:267-298. [PMID: 28500529 DOI: 10.1007/978-3-319-53047-5_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In most bacteria cell division is driven by the prokaryotic tubulin homolog, FtsZ, which forms the cytokinetic Z ring. Cell survival demands both the spatial and temporal accuracy of this process to ensure that equal progeny are produced with intact genomes. While mechanisms preventing septum formation at the cell poles have been known for decades, the means by which the bacterial nucleoid is spared from bisection during cell division, called nucleoid exclusion (NO), have only recently been deduced. The NO theory was originally posited decades ago based on the key observation that the cell division machinery appeared to be inhibited from forming near the bacterial nucleoid. However, what might drive the NO process was unclear. Within the last 10 years specific proteins have been identified as important mediators of NO. Arguably the best studied NO mechanisms are those employed by the Escherichia coli SlmA and Bacillus subtilis Noc proteins. Both proteins bind specific DNA sequences within selected chromosomal regions to act as timing devices. However, Noc and SlmA contain completely different structural folds and utilize distinct NO mechanisms. Recent studies have identified additional processes and factors that participate in preventing nucleoid septation during cell division. These combined data show multiple levels of redundancy as well as a striking diversity of mechanisms have evolved to protect cells against catastrophic bisection of the nucleoid. Here we discuss these recent findings with particular emphasis on what is known about the molecular underpinnings of specific NO machinery and processes.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Durham, NC, 27710, USA.
| |
Collapse
|
30
|
Jiang XR, Chen GQ. Morphology engineering of bacteria for bio-production. Biotechnol Adv 2016; 34:435-440. [DOI: 10.1016/j.biotechadv.2015.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 01/19/2023]
|
31
|
Broughton CE, Van Den Berg HA, Wemyss AM, Roper DI, Rodger A. Beyond the Discovery Void: New targets for antibacterial compounds. Sci Prog 2016; 99:153-182. [PMID: 28742471 PMCID: PMC10365418 DOI: 10.3184/003685016x14616130512308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibiotics save many lives, but their efficacy is under threat: overprescription, population growth, and global travel all contribute to the rapid origination and spread of resistant strains. Exacerbating this threat is the fact that no new major classes of antibiotics have been discovered in the last 30 years: this is the "discovery void." We discuss the traditional molecular targets of antibiotics as well as putative novel targets.
Collapse
Affiliation(s)
| | | | - Alan M. Wemyss
- Molecular Organisation and Assembly in Cells Doctoral Training Centre
| | | | | |
Collapse
|
32
|
Lin TY, Weibel DB. Organization and function of anionic phospholipids in bacteria. Appl Microbiol Biotechnol 2016; 100:4255-67. [PMID: 27026177 DOI: 10.1007/s00253-016-7468-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/25/2022]
Abstract
In addition to playing a central role as a permeability barrier for controlling the diffusion of molecules and ions in and out of bacterial cells, phospholipid (PL) membranes regulate the spatial and temporal position and function of membrane proteins that play an essential role in a variety of cellular functions. Based on the very large number of membrane-associated proteins encoded in genomes, an understanding of the role of PLs may be central to understanding bacterial cell biology. This area of microbiology has received considerable attention over the past two decades, and the local enrichment of anionic PLs has emerged as a candidate mechanism for biomolecular organization in bacterial cells. In this review, we summarize the current understanding of anionic PLs in bacteria, including their biosynthesis, subcellular localization, and physiological relevance, discuss evidence and mechanisms for enriching anionic PLs in membranes, and conclude with an assessment of future directions for this area of bacterial biochemistry, biophysics, and cell biology.
Collapse
Affiliation(s)
- Ti-Yu Lin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas B Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
33
|
Vedyaykin AD, Vishnyakov IE, Polinovskaya VS, Khodorkovskii MA, Sabantsev AV. New insights into FtsZ rearrangements during the cell division of Escherichia coli from single-molecule localization microscopy of fixed cells. Microbiologyopen 2016; 5:378-86. [PMID: 26840800 PMCID: PMC4905991 DOI: 10.1002/mbo3.336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
FtsZ - a prokaryotic tubulin homolog - is one of the central components of bacterial division machinery. At the early stage of cytokinesis FtsZ forms the so-called Z-ring at mid-cell that guides septum formation. Many approaches were used to resolve the structure of the Z-ring, however, researchers are still far from consensus on this question. We utilized single-molecule localization microscopy (SMLM) in combination with immunofluorescence staining to visualize FtsZ in Esherichia coli fixed cells that were grown under slow and fast growth conditions. This approach allowed us to obtain images of FtsZ structures at different stages of cell division and accurately measure Z-ring dimensions. Analysis of these images demonstrated that Z-ring thickness increases during constriction, starting at about 70 nm at the beginning of division and increasing by approximately 25% half-way through constriction.
Collapse
Affiliation(s)
- Alexey D Vedyaykin
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, Saint Petersburg, 195251, Russia
| | - Innokentii E Vishnyakov
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, Saint Petersburg, 195251, Russia.,Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, Saint Petersburg, 194064, Russia
| | - Vasilisa S Polinovskaya
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, Saint Petersburg, 195251, Russia
| | - Mikhail A Khodorkovskii
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, Saint Petersburg, 195251, Russia
| | - Anton V Sabantsev
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, Saint Petersburg, 195251, Russia
| |
Collapse
|
34
|
Abstract
Understanding mechanisms of bacterial sacculus growth is challenging due to the time and length scales involved. Enzymes three orders of magnitude smaller than the sacculus somehow coordinate and regulate their processes to double the length of the sacculus while preserving its shape and integrity, all over a period of tens of minutes to hours. Decades of effort using techniques ranging from biochemical analysis to microscopy have produced vast amounts of data on the structural and chemical properties of the cell wall, remodeling enzymes and regulatory proteins. The overall mechanism of cell wall synthesis, however, remains elusive. To approach this problem differently, we have developed a coarse-grained simulation method in which, for the first time to our knowledge, the activities of individual enzymes involved are modeled explicitly. We have already used this method to explore many potential molecular mechanisms governing cell wall synthesis, and anticipate applying the same method to other, related questions of bacterial morphogenesis. In this chapter, we present the details of our method, from coarse-graining the cell wall and modeling enzymatic activities to characterizing shape and visualizing sacculus growth.
Collapse
|
35
|
Oikonomou C, Swulius M, Briegel A, Beeby M, Yao Q, Chang YW, Jensen G. Electron cryotomography. METHODS IN MICROBIOLOGY 2016. [DOI: 10.1016/bs.mim.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Park KT, Du S, Lutkenhaus J. MinC/MinD copolymers are not required for Min function. Mol Microbiol 2015; 98:895-909. [PMID: 26268537 DOI: 10.1111/mmi.13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 11/27/2022]
Abstract
In Escherichia coli, precise placement of the cytokinetic Z ring at midcell requires the concerted action of the three Min proteins. MinD activates MinC, an inhibitor of FtsZ, at least in part, by recruiting it to the membrane and targeting it to the Z ring, while MinE stimulates the MinD ATPase inducing an oscillation that directs MinC/MinD activity away from midcell. Recently, MinC and MinD were shown to form copolymers of alternating dimers of MinC and MinD, and it was suggested that these copolymers are the active form of MinC/MinD. Here, we use MinD mutants defective in binding MinC to generate heterodimers with wild-type MinD that are unable to form MinC/MinD copolymers. Similarly, MinC mutants defective in binding to MinD were used to generate heterodimers with wild-type MinC that are unable to form copolymers. Such heterodimers are active and in the case of MinC were shown to mediate spatial regulation of the Z ring demonstrating that MinC/MinD copolymer formation is not required. Our results are consistent with a model in which a membrane anchored MinC/MinD complex is targeted to the Z ring through the conserved carboxy tail of FtsZ leading to breakage of FtsZ filaments.
Collapse
Affiliation(s)
- Kyung-Tae Park
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
37
|
Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape. Proc Natl Acad Sci U S A 2015; 112:E3689-98. [PMID: 26130803 DOI: 10.1073/pnas.1504281112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria are surrounded by a peptidoglycan (PG) cell wall that must be remodeled to allow cell growth. While many structural details and properties of PG and the individual enzymes involved are known, how the process is coordinated to maintain cell integrity and rod shape is not understood. We have developed a coarse-grained method to simulate how individual transglycosylases, transpeptidases, and endopeptidases could introduce new material into an existing unilayer PG network. We find that a simple model with no enzyme coordination fails to maintain cell wall integrity and rod shape. We then iteratively analyze failure modes and explore different mechanistic hypotheses about how each problem might be overcome by the macromolecules involved. In contrast to a current theory, which posits that long MreB filaments are needed to coordinate PG insertion sites, we find that local coordination of enzyme activities in individual complexes can be sufficient to maintain cell integrity and rod shape. We also present possible molecular explanations for the existence of monofunctional transpeptidases and glycosidases (glycoside hydrolases), trimeric peptide crosslinks, cell twisting during growth, and synthesis of new strands in pairs.
Collapse
|
38
|
Walsh JC, Angstmann CN, Duggin IG, Curmi PMG. Molecular Interactions of the Min Protein System Reproduce Spatiotemporal Patterning in Growing and Dividing Escherichia coli Cells. PLoS One 2015; 10:e0128148. [PMID: 26018614 PMCID: PMC4446092 DOI: 10.1371/journal.pone.0128148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/22/2015] [Indexed: 11/24/2022] Open
Abstract
Oscillations of the Min protein system are involved in the correct midcell placement of the divisome during Escherichia coli cell division. Based on molecular interactions of the Min system, we formulated a mathematical model that reproduces Min patterning during cell growth and division. Specifically, the increase in the residence time of MinD attached to the membrane as its own concentration increases, is accounted for by dimerisation of membrane-bound MinD and its interaction with MinE. Simulation of this system generates unparalleled correlation between the waveshape of experimental and theoretical MinD distributions, suggesting that the dominant interactions of the physical system have been successfully incorporated into the model. For cells where MinD is fully-labelled with GFP, the model reproduces the stationary localization of MinD-GFP for short cells, followed by oscillations from pole to pole in larger cells, and the transition to the symmetric distribution during cell filamentation. Cells containing a secondary, GFP-labelled MinD display a contrasting pattern. The model is able to account for these differences, including temporary midcell localization just prior to division, by increasing the rate constant controlling MinD ATPase and heterotetramer dissociation. For both experimental conditions, the model can explain how cell division results in an equal distribution of MinD and MinE in the two daughter cells, and accounts for the temperature dependence of the period of Min oscillations. Thus, we show that while other interactions may be present, they are not needed to reproduce the main characteristics of the Min system in vivo.
Collapse
Affiliation(s)
- James C. Walsh
- School of Physics, University of New South Wales, Sydney NSW 2052, Australia
- The ithree institute, University of Technology, Sydney NSW 2007, Australia
| | | | - Iain G. Duggin
- The ithree institute, University of Technology, Sydney NSW 2007, Australia
| | - Paul M. G. Curmi
- School of Physics, University of New South Wales, Sydney NSW 2052, Australia
- * E-mail:
| |
Collapse
|
39
|
Jin J, Wu R, Zhu J, Yang S, Lei Z, Wang N, Singh VK, Zheng J, Jia Z. Insights into the cellular function of YhdE, a nucleotide pyrophosphatase from Escherichia coli. PLoS One 2015; 10:e0117823. [PMID: 25658941 PMCID: PMC4319933 DOI: 10.1371/journal.pone.0117823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022] Open
Abstract
YhdE, a Maf-like protein in Escherichia coli, exhibits nucleotide pyrophosphatase (PPase) activity, yet its cellular function remains unknown. Here, we characterized the PPase activity of YhdE on dTTP, UTP and TTP and determined two crystal structures of YhdE, revealing ‘closed’ and ‘open’ conformations of an adaptive active site. Our functional studies demonstrated that YhdE retards cell growth by prolonging the lag and log phases, particularly under stress conditions. Morphology studies showed that yhdE-knockout cells transformed the normal rod shape of wild-type cells to a more spherical form, and the cell wall appeared to become more flexible. In contrast, YhdE overexpression resulted in filamentous cells. This study reveals the previously unknown involvement of YhdE in cell growth inhibition under stress conditions, cell-division arrest and cell-shape maintenance, highlighting YhdE’s important role in E. coli cell-cycle checkpoints.
Collapse
Affiliation(s)
- Jin Jin
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ruijuan Wu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Jia Zhu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Shaoyuan Yang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhen Lei
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Nan Wang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Vinay K. Singh
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, China
- * E-mail: (JZ); (ZJ)
| | - Zongchao Jia
- College of Chemistry, Beijing Normal University, Beijing, China
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail: (JZ); (ZJ)
| |
Collapse
|
40
|
Abstract
Work over the past decade has highlighted the pivotal role of the actin-like MreB family of proteins in the determination and maintenance of rod cell shape in bacteria. Early images of MreB localization revealed long helical filaments, which were suggestive of a direct role in governing cell wall architecture. However, several more recent, higher-resolution studies have questioned the existence or importance of the helical structures. In this Opinion article, I navigate a path through these conflicting reports, revive the helix model and summarize the key questions that remain to be answered.
Collapse
Affiliation(s)
- Jeff Errington
- Centre for Bacterial Cell Biology, Medical Faculty, Newcastle University, Richardson Road, Newcastle-upon-Tyne NE2 4AX, UK
| |
Collapse
|
41
|
Tuson HH, Biteen JS. Unveiling the inner workings of live bacteria using super-resolution microscopy. Anal Chem 2014; 87:42-63. [PMID: 25380480 DOI: 10.1021/ac5041346] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hannah H Tuson
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
42
|
Chen P, Xu L, Liu J, Hol FJH, Keymer JE, Taddei F, Han D, Lindner AB. Nanoscale probing the kinetics of oriented bacterial cell growth using atomic force microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3018-3025. [PMID: 24706390 DOI: 10.1002/smll.201303724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Probing oriented bacterial cell growth on the nanoscale: A novel open-top micro-channel is developed to facilitate the AFM imaging of physically trapped but freely growing bacteria. The growth curves of individual Escherichia coli cells with nanometer resolution and their kinetic nano-mechanical properties are quantitatively measured.
Collapse
Affiliation(s)
- Peipei Chen
- Institut National de la Santé et de la Recherche Medicale, U1001; Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Effect of the Min system on timing of cell division in Escherichia coli. PLoS One 2014; 9:e103863. [PMID: 25090009 PMCID: PMC4121188 DOI: 10.1371/journal.pone.0103863] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
In Escherichia coli the Min protein system plays an important role in positioning the division site. We show that this system also has an effect on timing of cell division. We do this in a quantitative way by measuring the cell division waiting time (defined as time difference between appearance of a division site and the division event) and the Z-ring existence time. Both quantities are found to be different in WT and cells without functional Min system. We develop a series of theoretical models whose predictions are compared with the experimental findings. Continuous improvement leads to a final model that is able to explain all relevant experimental observations. In particular, it shows that the chromosome segregation defect caused by the absence of Min proteins has an important influence on timing of cell division. Our results indicate that the Min system affects the septum formation rate. In the absence of the Min proteins this rate is reduced, leading to the observed strongly randomized cell division events and the longer division waiting times.
Collapse
|
44
|
Zheng M, Chiang YL, Lee HL, Kong LR, Hsu STD, Hwang IS, Rothfield LI, Shih YL. Self-assembly of MinE on the membrane underlies formation of the MinE ring to sustain function of the Escherichia coli Min system. J Biol Chem 2014; 289:21252-66. [PMID: 24914211 DOI: 10.1074/jbc.m114.571976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pole-to-pole oscillation of the Min proteins in Escherichia coli results in the inhibition of aberrant polar division, thus facilitating placement of the division septum at the midcell. MinE of the Min system forms a ring-like structure that plays a critical role in triggering the oscillation cycle. However, the mechanism underlying the formation of the MinE ring remains unclear. This study demonstrates that MinE self-assembles into fibrillar structures on the supported lipid bilayer. The MinD-interacting domain of MinE shows amyloidogenic properties, providing a possible mechanism for self-assembly of MinE. Supporting the idea, mutations in residues Ile-24 and Ile-25 of the MinD-interacting domain affect fibril formation, membrane binding ability of MinE and MinD, and subcellular localization of three Min proteins. Additional mutations in residues Ile-72 and Ile-74 suggest a role of the C-terminal domain of MinE in regulating the folding propensity of the MinD-interacting domain for different molecular interactions. The study suggests a self-assembly mechanism that may underlie the ring-like structure formed by MinE-GFP observed in vivo.
Collapse
Affiliation(s)
- Min Zheng
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Ling Chiang
- Department of Material Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 013, Taiwan
| | - Hsiao-Lin Lee
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Lih-Ren Kong
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shang-Te Danny Hsu
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Ing-Shouh Hwang
- Department of Material Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 013, Taiwan, Institute of Physics, Academia Sinica, 128, Sec. 2, Academia Road, Taipei 115, Taiwan, and
| | - Lawrence I Rothfield
- Department of Structural, Microbial, and Molecular Biology, University of Connecticut Health Center, Farmington, Connecticut 06032
| | - Yu-Ling Shih
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan,
| |
Collapse
|
45
|
Tyler SEB. The Work Surfaces of Morphogenesis: The Role of the Morphogenetic Field. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13752-014-0177-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
The Escherichia coli RNA processing and degradation machinery is compartmentalized within an organized cellular network. Biochem J 2014; 458:11-22. [DOI: 10.1042/bj20131287] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have shown that the multiprotein network of the bacterial RNA processing and degradation is organized within high-order cellular structures. Macromolecular assembly of protein networks could provide a general mechanism to streamline specific pathways within the seemingly non-compartmentalized prokaryotic cytoplasm.
Collapse
|
47
|
Barák I. Open questions about the function and evolution of bacterial Min systems. Front Microbiol 2013; 4:378. [PMID: 24367361 PMCID: PMC3856364 DOI: 10.3389/fmicb.2013.00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/22/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Science Bratislava, Slovakia
| |
Collapse
|
48
|
Bonny M, Fischer-Friedrich E, Loose M, Schwille P, Kruse K. Membrane binding of MinE allows for a comprehensive description of Min-protein pattern formation. PLoS Comput Biol 2013; 9:e1003347. [PMID: 24339757 PMCID: PMC3854456 DOI: 10.1371/journal.pcbi.1003347] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/03/2013] [Indexed: 11/23/2022] Open
Abstract
The rod-shaped bacterium Escherichia coli selects the cell center as site of division with the help of the proteins MinC, MinD, and MinE. This protein system collectively oscillates between the two cell poles by alternately binding to the membrane in one of the two cell halves. This dynamic behavior, which emerges from the interaction of the ATPase MinD and its activator MinE on the cell membrane, has become a paradigm for protein self-organization. Recently, it has been found that not only the binding of MinD to the membrane, but also interactions of MinE with the membrane contribute to Min-protein self-organization. Here, we show that by accounting for this finding in a computational model, we can comprehensively describe all observed Min-protein patterns in vivo and in vitro. Furthermore, by varying the system's geometry, our computations predict patterns that have not yet been reported. We confirm these predictions experimentally. Cellular protein structures have long been suggested to form by protein self-organization. A particularly clear example is provided by the proteins MinC, MinD, and MinE selecting the center as site of cell division in the rod-shaped bacterium Escherichia coli. Based on binding of MinD to the cytoplasmic membrane and an antagonistic action of MinE, which induces the release of MinD into the cytoplasm, these proteins oscillate from pole to pole, where they inhibit cell division. Supporting the idea of self-organization being the cause of the Min oscillations, purified Min proteins were found to spontaneously form traveling waves on supported lipid bilayers. A comprehensive understanding of the Min patterns formed under various conditions remains elusive. We have performed a computational analysis of Min-protein dynamics taking into account the recently discovered persistent action of MinE. We show that this property allows to reproduce all observed Min-protein patterns in a unified framework. Furthermore, our analysis predicts new structures, which we observed experimentally. Our study highlights that mechanisms underlying the spontaneous formation of protein patterns under purified in vitro conditions can also generate patterns inside complex intracellular environments.
Collapse
Affiliation(s)
- Mike Bonny
- Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany
| | - Elisabeth Fischer-Friedrich
- Max-Planck-Institut für Zellbiologie und Genetik, Dresden, Germany
- Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany
| | - Martin Loose
- Department of Systems Biology, Harvard Medical School, Boston, Massachussetts, United States of America
| | | | - Karsten Kruse
- Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
49
|
An JY, Kim TG, Park KR, Lee JG, Youn HS, Lee Y, Kang JY, Kang GB, Eom SH. Crystal structure of the N-terminal domain of MinC dimerized via domain swapping. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:984-8. [PMID: 24121353 PMCID: PMC3795569 DOI: 10.1107/s0909049513022760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Proper cell division at the mid-site of gram-negative bacteria reflects critical regulation by the min system (MinC, MinD and MinE) of the cytokinetic Z ring, which is a polymer composed of FtsZ subunits. MinC and MinD act together to inhibit aberrantly positioned Z-ring formation. MinC consists of two domains: an N-terminal domain (MinCNTD), which interacts with FtsZ and inhibits FtsZ polymerization, and a C-terminal domain (MinCCTD), which interacts with MinD and inhibits the bundling of FtsZ filaments. These two domains reportedly function together, and both are essential for normal cell division. The full-length dimeric structure of MinC from Thermotoga maritima has been reported, and shows that MinC dimerization occurs via MinCCTD; MinCNTD is not involved in dimerization. Here the crystal structure of Escherichia coli MinCNTD (EcoMinCNTD) is reported. EcoMinCNTD forms a dimer via domain swapping between the first β strands in each subunit. It is therefore suggested that the dimerization of full-length EcoMinC occurs via both MinCCTD and MinCNTD, and that the dimerized EcoMinCNTD likely plays an important role in inhibiting aberrant Z-ring localization.
Collapse
Affiliation(s)
- Jun Yop An
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Tae Gyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Kyoung Ryoung Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Jung-Gyu Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hyung-Seop Youn
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Youngjin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Jung Youn Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Gil Bu Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| |
Collapse
|
50
|
Vijayan S, Mallick S, Dutta M, Narayani M, Ghosh AS. PBP deletion mutants of Escherichia coli exhibit irregular distribution of MreB at the deformed zones. Curr Microbiol 2013; 68:174-9. [PMID: 24057063 DOI: 10.1007/s00284-013-0453-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
MreB is a cytoskeletal protein, which is responsible for maintaining proper cellular morphology and is essential for cell survival. Likewise, penicillin-binding protein 5 (PBP5) helps in maintaining cell shape, though non-essential for survival. The contradicting feature of these two proteins paves the way for this study, wherein we attempt to draw a relation on the nature of distribution of MreB in PBP deletion mutants. The study revealed that the uniform MreB helices/patches were destabilized/disturbed at the zone of deformities of the PBP mutants, whereas the helical patterns were retained at the regions maintaining a rod shape. We interpret that MreB remains functional irrespective of its distribution being misguided by the aberrant shapes of PBP mutants.
Collapse
Affiliation(s)
- Saptha Vijayan
- Department of Biotechnology, Indian Institute of Technology Kharagpur (IIT Kgp), Kharagpur, 721302, India,
| | | | | | | | | |
Collapse
|