1
|
Langer S, Jagdhuhn D, Waterstradt R, Gromoll J, Müller M, Rees MG, Gloyn AL, Baltrusch S. Effects of coding variants in the glucokinase regulatory protein gene on hepatic glucose and triglyceride metabolism suggest a gene regulatory function of glucokinase. Metabolism 2025; 166:156150. [PMID: 39894388 DOI: 10.1016/j.metabol.2025.156150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Regulation of glucose metabolism after a meal is the major task of hepatic glucokinase (GCK). Inhibition and nuclear retention of glucokinase during fasting is achieved by glucokinase regulatory protein (GKRP). Compounds disrupting the GCK-GKRP interaction alter glucose but not triglyceride levels, whilst GKRP coding alleles lower glucose but elevate triglycerides. The aim of this study was to identify yet unknown functions of GKRP by examining human variants both rare (p.Q234P, p.H438Y) and common (p.P446L). METHODS Fluorescently labelled human GKRP variant and GCK proteins were expressed in hepatoma cells or primary mouse hepatocytes to investigate the subcellular localization of both proteins, cellular glucose uptake, and triglyceride levels. Mutational effects on GKRP protein structure were analyzed with PyMOL. Nuclear-to-cytoplasmic distribution of the GCK-GKRP complex was modeled in MATLAB. RESULTS Nuclear localization of the GKRP variants was decreased compared to wild-type. Only H438Y-GKRP still evoked WT-like GCK nuclear accumulation. Nuclear localization of Q234P-GKRP was most impaired and depended on the presence of GCK, which, supported by structural analyses, could stabilize its conformation. Nonetheless, inhibition of glucose uptake was least impaired with Q234P-GKRP. Triglyceride contents related to the glucose uptake of hepatoma cells were disproportionately high for cells expressing wild-type or H438Y-GKRP, the two variants that induced higher nuclear sequestration of GCK. CONCLUSIONS Our results, supported by a modeling approach, suggest that GKRP-mediated nuclear localization of GCK has a function in liver metabolism beyond GCK inhibition and sequestration. This needs further elucidation given that GKRP disruptors have been proposed for antihyperglycemic therapy.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - David Jagdhuhn
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Jessica Gromoll
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Michael Müller
- Institute for Acoustics and Dynamics, Technical University of Braunschweig, Braunschweig, Germany
| | - Matthew G Rees
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK; Department of Pediatrics & Genetics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Kalwick M, Roth M. A Comprehensive Review of the Genetics of Dyslipidemias and Risk of Atherosclerotic Cardiovascular Disease. Nutrients 2025; 17:659. [PMID: 40004987 PMCID: PMC11858766 DOI: 10.3390/nu17040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Dyslipidemias are often diagnosed based on an individual's lipid panel that may or may not include Lp(a) or apoB. But these values alone omit key information that can underestimate risk and misdiagnose disease, which leads to imprecise medical therapies that reduce efficacy with unnecessary adverse events. For example, knowing whether an individual's dyslipidemia is monogenic can granularly inform risk and create opportunities for precision therapeutics. This review explores the canonical and non-canonical causes of dyslipidemias and how they impact atherosclerotic cardiovascular disease (ASCVD) risk. This review emphasizes the multitude of genetic causes that cause primary hypercholesterolemia, hypertriglyceridemia, and low or elevated high-density lipoprotein (HDL)-cholesterol levels. Within each of these sections, this review will explore the evidence linking these genetic conditions with ASCVD risk. Where applicable, this review will summarize approved therapies for a particular genetic condition.
Collapse
Affiliation(s)
| | - Mendel Roth
- GBinsight, GB Healthwatch, San Diego, CA 92122, USA;
| |
Collapse
|
3
|
Mehra A, Kumar S, Mittal A, Kohli R, Mittal A. Insights to the emerging potential of glucokinase activators as antidiabetic agent. Pharm Pat Anal 2024; 13:53-71. [PMID: 39316577 PMCID: PMC11449038 DOI: 10.1080/20468954.2024.2389762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/02/2024] [Indexed: 09/26/2024]
Abstract
The glucokinase enzyme (belongs to the hexokinase family) is present in liver cells and β-cells of the pancreas. Glucokinase acts as a catalyst in the conversion of glucose-6-phosphate from glucose which is rate-limiting step in glucose metabolism. Glucokinase becomes malfunctional or remains inactivated in diabetes. Glucokinase activators are compounds that bind at the allosteric site of the glucokinase enzyme and activate it. This article highlights the patent and recent research papers history with possible SAR from year 2014-2023. The data comprises the discussion of novel chemotypes (GKAs) that are being targeted for drug development and entered into clinical trials. GK activators have attracted massive interest since successful results have been reported from clinical trials data.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Jalandhar-Delhi G.T. Road, Punjab, 144411, India
| | - Shubham Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Jalandhar-Delhi G.T. Road, Punjab, 144411, India
| | - Anu Mittal
- Department of Chemistry, Guru Nanak Dev University College, Patti, Distt. Tarn Taran, India
| | - Ruchi Kohli
- Department of Chemistry, Guru Nanak Dev University College, Narot Jaimal Singh, 145026, Punjab, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Jalandhar-Delhi G.T. Road, Punjab, 144411, India
| |
Collapse
|
4
|
Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, Abdelalim EM. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cell Mol Biol Lett 2024; 29:120. [PMID: 39245718 PMCID: PMC11382428 DOI: 10.1186/s11658-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic β-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic β-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.
Collapse
Affiliation(s)
- Yasmin Abu Aqel
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aldana Alnesf
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Idil I Aigha
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Adrian Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Singapore
- Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme (PM TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
5
|
Gay C, Watford S, Johnson EB. Comparison of Variants of Uncertain Significance in Three Regions of the Human Glucokinase Protein Using In Vitro and In Silico Analyses. Cureus 2024; 16:e68638. [PMID: 39371753 PMCID: PMC11452361 DOI: 10.7759/cureus.68638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
There is a growing field of research focusing on the bioinformatic analysis of human genetic variation and the associated diseases. To study how well in vitro testing of purified proteins compares to bioinformatic variant prediction, we chose to analyze glucokinase (GCK) missense variations between residues 119-132, 257-262, and 412-427. These regions contained a large number of variants of uncertain significance (VUS) as well as a few pathogenic variants to use for comparison. We compared experimentally produced Vmax values from purified GCK variant proteins to predictive methods such as molecular dynamics simulation, ConSurf, iStable, the evolutionary model of variant effect (EVE), PredictSNP, and calculated binding energy. After determining which variants are pathogenic or benign based on experimental results or previous genetic studies, we found that ConSurf was the best at predicting pathogenicity. Interestingly, one VUS, D262N, showed an increase in activity and thus was difficult to interpret as pathogenic or benign. This study is an attempt to provide a framework for the utility of missense variant predictive programs.
Collapse
Affiliation(s)
- Carter Gay
- Medical School, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Shelby Watford
- Medical School, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Eric B Johnson
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| |
Collapse
|
6
|
Ogire E, Perrin-Cocon L, Figl M, Kundlacz C, Jacquemin C, Hubert S, Aublin-Gex A, Toesca J, Ramière C, Vidalain PO, Mathieu C, Lotteau V, Diaz O. Dengue Virus dependence on glucokinase activity and glycolysis Confers Sensitivity to NAD(H) biosynthesis inhibitors. Antiviral Res 2024; 228:105939. [PMID: 38909960 DOI: 10.1016/j.antiviral.2024.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.
Collapse
Affiliation(s)
- Eva Ogire
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Marianne Figl
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Cindy Kundlacz
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Clémence Jacquemin
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Sophie Hubert
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Anne Aublin-Gex
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Johan Toesca
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Christophe Ramière
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France; Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France; Laboratoire P4-Jean Mérieux, INSERM, Lyon, France
| | - Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, VIRal Infection Metabolism and Immunity Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007, Lyon, France.
| |
Collapse
|
7
|
Li P, Zhu D. Clinical investigation of glucokinase activators for the restoration of glucose homeostasis in diabetes. J Diabetes 2024; 16:e13544. [PMID: 38664885 PMCID: PMC11045918 DOI: 10.1111/1753-0407.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/29/2024] Open
Abstract
As a sensor, glucokinase (GK) controls glucose homeostasis, which progressively declines in patients with diabetes. GK maintains the equilibrium of glucose levels and regulates the homeostatic system set points. Endocrine and hepatic cells can both respond to glucose cooperatively when GK is activated. GK has been under study as a therapeutic target for decades due to the possibility that cellular GK expression and function can be recovered, hence restoring glucose homeostasis in patients with type 2 diabetes. Five therapeutic compounds targeting GK are being investigated globally at the moment. They all have distinctive molecular structures and have been clinically shown to have strong antihyperglycemia effects. The mechanics, classification, and clinical development of GK activators are illustrated in this review. With the recent approval and marketing of the first GK activator (GKA), dorzagliatin, GKA's critical role in treating glucose homeostasis disorder and its long-term benefits in diabetes will eventually become clear.
Collapse
Affiliation(s)
- Ping Li
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| | - Dalong Zhu
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
8
|
Estes SK, Shiota C, O'Brien TP, Printz RL, Shiota M. The impact of glucagon to support postabsorptive glucose flux and glycemia in healthy rats and its attenuation in male Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 2024; 326:E308-E325. [PMID: 38265288 PMCID: PMC11193518 DOI: 10.1152/ajpendo.00192.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Hyperglucagonemia is a hallmark of type 2 diabetes (T2DM), yet the role of elevated plasma glucagon (P-GCG) to promote excessive postabsorptive glucose production and contribute to hyperglycemia in patients with this disease remains debatable. We investigated the acute action of P-GCG to safeguard/support postabsorptive endogenous glucose production (EGP) and euglycemia in healthy Zucker control lean (ZCL) rats. Using male Zucker diabetic fatty (ZDF) rats that exhibit the typical metabolic disorders of human T2DM, such as excessive EGP, hyperglycemia, hyperinsulinemia, and hyperglucagonemia, we examined the ability of hyperglucagonemia to promote greater rates of postabsorptive EGP and hyperglycemia. Euglycemic or hyperglycemic basal insulin (INS-BC) and glucagon (GCG-BC) clamps were performed in the absence or during an acute setting of glucagon deficiency (GCG-DF, ∼10% of basal), either alone or in combination with insulin deficiency (INS-DF, ∼10% of basal). Glucose appearance, disappearance, and cycling rates were measured using [2-3H] and [3-3H]-glucose. In ZCL rats, GCG-DF reduced the levels of hepatic cyclic AMP, EGP, and plasma glucose (PG) by 50%, 32%, and 50%, respectively. EGP fell in the presence GCG-DF and INS-BC, but under GCG-DF and INS-DF, EGP and PG increased two- and threefold, respectively. GCG-DF revealed the hyperglucagonemia present in ZDF rats lacked the ability to regulate hepatic intracellular cyclic AMP levels and glucose flux, since EGP and PG levels fell by only 10%. We conclude that the liver in T2DM suffers from resistance to all three major regulatory factors, glucagon, insulin, and glucose, thus leading to a loss of metabolic flexibility.NEW & NOTEWORTHY In postabsorptive state, basal plasma insulin (P-INS) and plasma glucose (PG) act dominantly to increase hepatic glucose cycling and reduce endogenous glucose production (EGP) and PG in healthy rats, which is only counteracted by the acute action of basal plasma glucagon (P-GCG) to support EGP and euglycemia. Hyperglucagonemia, a hallmark of type 2 diabetes (T2DM) present in Zucker diabetic fatty (ZDF) rats, is not the primary mediator of hyperglycemia and high EGP as commonly thought; instead, the liver is resistant to glucagon as well as insulin and glucose.
Collapse
Affiliation(s)
- Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Richard L Printz
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
9
|
Jafari-Rastegar N, Hosseininia HS, Mousavi-Niri N, Khakpai F, Naseroleslami M. Tyrosol-loaded Nano-niosomes Attenuate Diabetic Injury by TargetingGlucose Metabolism, Inflammation, and Glucose Transfer. Pharm Nanotechnol 2024; 12:351-364. [PMID: 37927074 DOI: 10.2174/0122117385251271231018104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION The increasing prevalence of type 2 diabetes, has become a global concern, making it imperative to control. Chemical drugs commonly recommended for diabetes treatment cause many complications and drug resistance over time. METHODS The polyphenol tyrosol has many health benefits, including anti-diabetes properties. Tyrosol's efficacy can be significantly increased when it is used as a niosome in the treatment of diabetes. In this study, Tyrosol and nano-Tyrosol are examined for their effects on genes implicated in type 2 diabetes in streptozotocin-treated rats. Niosome nanoparticles containing 300 mg surfactant (span60: tween60) and 10 mg cholesterol were hydrated in thin films with equal molar ratios. After 72 hours, nano-niosomal formulas were assessed for their physicochemical properties. MTT assays were conducted on HFF cells to assess the cellular toxicity of the nano niosome contacting optimal Tyrosol. Finally, the expression of PEPCK, GCK, TNF-ɑ, IL6, GLUT2 and GLUT9 was measured by real-time PCR. Physiochemical properties of the SEM images of niosomes loaded with Tyrosol revealed the nanoparticles had a vehicular structure. RESULTS In this study, there were two stages of release: initial release (8 hours) and sustainable release (72 hours). Meanwhile, free-form drugs were considerably more toxic than niosomal drugs in terms of their cellular toxicity. An in vivo comparison of oral Tyrosol gavage with nano-Tyrosol showed a significant increase in GCK (P < 0.001), GLUT2 (P < 0.001), and GLUT9 (P < 0.001). Furthermore, nano-Tyrosol decreased the expression of TNF-ɑ (P < 0.05), PEPCK (P < 0.001), and IL-6 (P < 0.05) which had been increased by diabetes mellitus. The results confirmed nano-Tyrosol's anti-diabetes and anti-inflammatory effects. CONCLUSION These findings suggest that nano-Tyrosol has potential applications in diabetes treatment and associated inflammation. Further research is needed to better understand the mechanism of action.
Collapse
Affiliation(s)
- Nima Jafari-Rastegar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Haniyeh Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Cytotech & Bioinformatics Research Group, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Paliwal A, Paliwal V, Jain S, Paliwal S, Sharma S. Current Insight on the Role of Glucokinase and Glucokinase Regulatory Protein in Diabetes. Mini Rev Med Chem 2024; 24:674-688. [PMID: 37612862 DOI: 10.2174/1389557523666230823151927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023]
Abstract
The glucokinase regulator (GCKR) gene encodes an inhibitor of the glucokinase enzyme (GCK), found only in hepatocytes and responsible for glucose metabolism. A common GCKR coding variation has been linked to various metabolic traits in genome-wide association studies. Rare GCKR polymorphisms influence GKRP activity, expression, and localization. Despite not being the cause, these variations are linked to hypertriglyceridemia. Because of their crystal structures, we now better understand the molecular interactions between GKRP and the GCK. Finally, small molecules that specifically bind to GKRP and decrease blood sugar levels in diabetic models have been identified. GCKR allelic spectrum changes affect lipid and glucose homeostasis. GKRP dysfunction has been linked to a variety of molecular causes, according to functional analysis. Numerous studies have shown that GKRP dysfunction is not the only cause of hypertriglyceridemia, implying that type 2 diabetes could be treated by activating liver-specific GCK via small molecule GKRP inhibition. The review emphasizes current discoveries concerning the characteristic roles of glucokinase and GKRP in hepatic glucose metabolism and diabetes. This information has influenced the growth of directed molecular therapies for diabetes, which has improved our understanding of lipid and glucose physiology.
Collapse
Affiliation(s)
- Ajita Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Vartika Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
11
|
Kenneth C, Anugrah DSB, Julianus J, Junedi S. Molecular insights into the inhibitory potential of anthocyanidins on glucokinase regulatory protein. PLoS One 2023; 18:e0288810. [PMID: 37467274 DOI: 10.1371/journal.pone.0288810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Computational methods were used to investigate six anthocyanidins exhibiting antidiabetic activity by inhibiting glucokinase regulatory protein (GKRP) activity. Density functional theory was used to optimise the geometry of anthocyanidins and calculate their quantum chemical properties. A blind docking method was employed to conduct a molecular docking study, which revealed that delphinidin (Del), cyanidin (Cya), and pelargonidin (Pel) as potential GKRP inhibitors with the lowest binding free energy of -8.7, -8.6, and -8.6 kcal/mol, corresponding to high binding affinity. The molecular dynamics study further verified the blind docking results by showing high GKRP-F1P complex stability and high binding affinity calculated through the MM/GBSA method, upon the binding of pelargonidin. The lower RMSF values of pivotal GK-interacting residues for GKRP-F1P-Pel compared to GKRP-F1P, as a positive control, indicating pelargonidin ability to maintain the inactive conformation of GKRP through the inhibition of GK binding. The key residues that control the binding of the F1P to GKRP and anthocyanidin to GKRP-F1P were also identified in this study. Altogether, pelargonidin is anthocyanidins-derived natural products that have the most potential to act as inhibitors of GKRP and as antidiabetic nutraceuticals.
Collapse
Affiliation(s)
- Christian Kenneth
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Daru Seto Bagus Anugrah
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Jeffry Julianus
- Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Sendy Junedi
- Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Lee CJ, Chen TH, Lim AMW, Chang CC, Sie JJ, Chen PL, Chang SW, Wu SJ, Hsu CL, Hsieh AR, Yang WS, Fann CSJ. Phenome-wide analysis of Taiwan Biobank reveals novel glycemia-related loci and genetic risks for diabetes. Commun Biol 2022; 5:1175. [PMID: 36329257 PMCID: PMC9633758 DOI: 10.1038/s42003-022-04168-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
To explore the complex genetic architecture of common diseases and traits, we conducted comprehensive PheWAS of ten diseases and 34 quantitative traits in the community-based Taiwan Biobank (TWB). We identified 995 significantly associated loci with 135 novel loci specific to Taiwanese population. Further analyses highlighted the genetic pleiotropy of loci related to complex disease and associated quantitative traits. Extensive analysis on glycaemic phenotypes (T2D, fasting glucose and HbA1c) was performed and identified 115 significant loci with four novel genetic variants (HACL1, RAD21, ASH1L and GAK). Transcriptomics data also strengthen the relevancy of the findings to metabolic disorders, thus contributing to better understanding of pathogenesis. In addition, genetic risk scores are constructed and validated for absolute risks prediction of T2D in Taiwanese population. In conclusion, our data-driven approach without a priori hypothesis is useful for novel gene discovery and validation on top of disease risk prediction for unique non-European population.
Collapse
Affiliation(s)
- Chia-Jung Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ting-Huei Chen
- Department of Mathematics and Statistics, Laval University, Quebec, QC, G1V0A6, Canada.,Brain Research Centre (CERVO), Quebec, QC, G1V0A6, Canada
| | - Aylwin Ming Wee Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Jia-Jyun Sie
- Department of Mathematics, National Changhua University of Education, Changhua, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, 100225, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Su-Wei Chang
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, 333, Taiwan.,Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Shang-Jung Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chia-Lin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei City, 251301, Taiwan.
| | - Wei-Shiung Yang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
| | - Cathy S J Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
13
|
Kroon T, Hagstedt T, Alexandersson I, Ferm A, Petersson M, Maurer S, Zarrouki B, Wallenius K, Oakes ND, Boucher J. Chronotherapy with a glucokinase activator profoundly improves metabolism in obese Zucker rats. Sci Transl Med 2022; 14:eabh1316. [DOI: 10.1126/scitranslmed.abh1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Circadian rhythms play a critical role in regulating metabolism, including daily cycles of feeding/fasting. Glucokinase (GCK) is central for whole-body glucose homeostasis and oscillates according to a circadian clock. GCK activators (GKAs) effectively reduce hyperglycemia, but their use is also associated with hypoglycemia, hyperlipidemia, and hepatic steatosis. Given the circadian rhythmicity and natural postprandial activation of GCK, we hypothesized that GKA treatment would benefit from being timed specifically during feeding periods. Acute treatment of obese Zucker rats with the GKA AZD1656 robustly increased flux into all major metabolic pathways of glucose disposal, enhancing glucose elimination. Four weeks of continuous AZD1656 treatment of obese Zucker rats improved glycemic control; however, hepatic steatosis and inflammation manifested. In contrast, timing AZD1656 to feeding periods robustly reduced hepatic steatosis and inflammation in addition to improving glycemia, whereas treatment timed to fasting periods caused overall detrimental metabolic effects. Mechanistically, timing AZD1656 to feeding periods diverted newly synthesized lipid toward direct VLDL secretion rather than intrahepatic storage. In line with increased hepatic insulin signaling, timing AZD1656 to feeding resulted in robust activation of AKT, mTOR, and SREBP-1C after glucose loading, pathways known to regulate VLDL secretion and hepatic de novo lipogenesis. In conclusion, intermittent AZD1656 treatment timed to feeding periods promotes glucose disposal when needed the most, restores metabolic flexibility and hepatic insulin sensitivity, and thereby avoids hepatic steatosis. Thus, chronotherapeutic approaches may benefit the development of GKAs and other drugs acting on metabolic targets.
Collapse
Affiliation(s)
- Tobias Kroon
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
- Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothernburg 41345, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothernburg 40530 Sweden
| | - Therese Hagstedt
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Ida Alexandersson
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Annett Ferm
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Marie Petersson
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Stefanie Maurer
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Bader Zarrouki
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Kristina Wallenius
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Nicholas D. Oakes
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
- Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothernburg 41345, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothernburg 40530 Sweden
| |
Collapse
|
14
|
Targeting human Glucokinase for the treatment of type 2 diabetes: an overview of allosteric Glucokinase activators. J Diabetes Metab Disord 2022; 21:1129-1137. [PMID: 35673438 PMCID: PMC9167346 DOI: 10.1007/s40200-022-01019-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Diabetes mellitus is a worldwide impacting disorder and the ratio through which the number of diabetic patients had increased worldwide, puts medical professionals to serious stress for its effective management. Due to its polygenic origin and involvement of multiple genes to its pathophysiology, leads to understanding of this ailment more complex. It seems that current interventions, such as dietary changes, life style changes and drug therapy such as oral hypoglycaemics and insulin, are unable to halt the trend. There are various novel and emerging targets on which the researchers are paying attention to combat with this ailment successfully. Human glucokinase (GK) enzyme is one of these novel and emerging targets for management of diabetes. Its availability in the pancreas and liver cells makes this target more lucrative. GK's presence in the pancreatic and hepatic cells plays a very important function for the management of glucose homoeostasis. Small molecules that activate GK allosterically provide an alternative strategy for restoring/improving glycaemic regulation, especially in type 2 diabetic patients. Although after enduring many setbacks in the development of the GK activators, interest has been renewed especially due to introduction of novel dual acting GK activator dorzagliatin, and a novel hepato-selective GK activator, TTP399. This review article has been formulated to discuss importance of GK in glucose homeostasis, recent updates on small molecules of GK activators, clinical status of GK activators and challenges in development of GK activators.
Collapse
|
15
|
Ren Y, Li L, Wan L, Huang Y, Cao S. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists. J Enzyme Inhib Med Chem 2022; 37:606-615. [PMID: 35067153 PMCID: PMC8788356 DOI: 10.1080/14756366.2021.2025362] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder with complicated pathogenesis, and mono-target therapy often fails to effectively manage the levels of blood glucose. In recent years, the anti-diabetes target glucokinase (GK) has attracted the attention of researchers. It acts as a glucose sensor, triggering counter regulatory responses following a change in glucose levels to aid restoration of normoglycemia. Activation of GK induces glucose metabolism and reduces glucose levels for the treatment of type 2 diabetes. GK agonists (GKA) are a new class of antidiabetic drugs. Among these agents, dorzagliatin is currently being investigated in phase III clinical trials, while PB-201 and AZD-1656 have reached phase II clinical trials. This article describes the mechanism of action of GK in diabetes and of action of GKA at the protein level, and provides a review of the research, trends, and prospects regarding the use of GKA in this setting.
Collapse
Affiliation(s)
- Yixin Ren
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Li Li
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Li Wan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Yan Huang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Shuang Cao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| |
Collapse
|
16
|
Freitas-Lima LC, Budu A, Estrela GR, da Silva TA, Arruda AC, de Carvalho Araujo R. Metabolic fasting stress is ameliorated in Kinin B1 receptor-deficient mice. Life Sci 2021; 294:120007. [PMID: 34600938 DOI: 10.1016/j.lfs.2021.120007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
The liver has an essential role in responding to metabolic demands under stress conditions. The organ stores, releases, and recycles metabolism-related substrates. However, it is not clear how the Kallikrein-Kinin System modulates metabolic flexibility shift between energetic sources. AIMS To analyze the hepatic metabolism in kinin B1 receptor deficient mice (B1KO mice) under fasting conditions. MAIN METHODS WT and B1KO male mice were allocated in a calorimetric cage for 7 days and 48 h before the euthanasia, half of the animals of both groups were under fasting conditions. Biochemical parameters, ketone bodies (KB), and gene expression involving the liver energetic metabolism genes were evaluated. KEY FINDINGS Kinin B1 receptor (B1R) modulates the metabolic shift under fasting conditions, reducing the VO2 expenditure. A preference for carbohydrates as an energetic source is suggested, as the B1KO group did not display an increase in KB in the serum. Moreover, the B1KO animals displayed higher serum triglycerides concentration compared to WT fasting mice. Interestingly, the lack of B1R induces the increase expression of enzymes from the glycolysis and lipolysis pathways under the fed. However, under fasting, the enzymatic expression of gluconeogenesis, glyceroneogenesis, and ketogenesis of these pathways does not occur, suggesting an absence of the shift metabolism responsivity, and this condition is modulated by PDK4 under FOXO1 control. SIGNIFICANCE B1R has an important role in the hepatic glucose metabolism, which in turn influences the energetic metabolism, and in long-term outcomes, such as in the decrease in hepatic glycogen stores and in the enhancement of hepatic metabolism.
Collapse
Affiliation(s)
| | - Alexandre Budu
- Department of Biophysics, Federal University of São Paulo, 04039032 São Paulo, Brazil.
| | - Gabriel Rufino Estrela
- Department of Medicine, Discipline of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Clinical and Experimental Oncology, Discipline of Hematology and Hematotherapy, Federal University of São Paulo, 04037002 São Paulo, Brazil.
| | - Thais Alves da Silva
- Department of Biophysics, Federal University of São Paulo, 04039032 São Paulo, Brazil.
| | - Adriano Cleis Arruda
- Department of Medicine, Discipline of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | - Ronaldo de Carvalho Araujo
- Department of Biophysics, Federal University of São Paulo, 04039032 São Paulo, Brazil; Department of Medicine, Discipline of Nephrology, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Ramasammy R, Munisammy L, Sweta K, Selvakumar S, Velu K, Rani J, Kajalakshmy S. Association between GCK gene polymorphism and gestational diabetes mellitus and its pregnancy outcomes. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
18
|
Youn DY, Xiaoli AM, Zong H, Okada J, Liu L, Pessin J, Pessin JE, Yang F. The Mediator complex kinase module is necessary for fructose regulation of liver glycogen levels through induction of glucose-6-phosphatase catalytic subunit (G6pc). Mol Metab 2021; 48:101227. [PMID: 33812059 PMCID: PMC8099662 DOI: 10.1016/j.molmet.2021.101227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Liver glycogen levels are dynamic and highly regulated by nutrient availability as the levels decrease during fasting and are restored during the feeding cycle. However, feeding in the presence of fructose in water suppresses glycogen accumulation in the liver by upregulating the expression of the glucose-6-phosphatase catalytic subunit (G6pc) gene, although the exact mechanism is unknown. We generated liver-specific knockout MED13 mice that lacked the transcriptional Mediator complex kinase module to examine its effect on the transcriptional activation of inducible target gene expression, such as the ChREBP- and FOXO1-dependent control of the G6pc gene promoter. METHODS The relative changes in liver expression of lipogenic and gluconeogenic genes as well as glycogen levels were examined in response to feeding standard low-fat laboratory chow supplemented with water or water containing sucrose or fructose in control (Med13fl/fl) and liver-specific MED13 knockout (MED13-LKO) mice. RESULTS Although MED13 deficiency had no significant effect on constitutive gene expression, all the dietary inducible gene transcripts were significantly reduced despite the unchanged insulin sensitivity in the MED13-LKO mice compared to that in the control mice. G6pc gene transcription displayed the most significant difference between the Med13 fl/fl and MED13-LKO mice, particularly when fed fructose. Following fasting that depleted liver glycogen, feeding induced the restoration of glycogen levels except in the presence of fructose. MED13 deficiency rescued the glycogen accumulation defect in the presence of fructose. This resulted from the suppression of G6pc expression and thus G6PC enzymatic activity. Among two transcriptional factors that regulate G6pc gene expression, FOXO1 binding to the G6pc promoter was not affected, whereas ChREBP binding was dramatically reduced in MED13-LKO hepatocytes. In addition, there was a marked suppression of FOXO1 and ChREBP-β transcriptional activities in MED13-LKO hepatocytes. CONCLUSIONS Taken together, our data suggest that the kinase module of the Mediator complex is necessary for the transcriptional activation of metabolic genes such as G6pc and has an important role in regulating glycogen levels in the liver through altering transcription factor binding and activity at the G6pc promoter.
Collapse
Affiliation(s)
- Dou Yeon Youn
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alus M Xiaoli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Haihong Zong
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Junichi Okada
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Li Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jacob Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Fajun Yang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
19
|
Juanola O, Martínez-López S, Francés R, Gómez-Hurtado I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105227. [PMID: 34069012 PMCID: PMC8155932 DOI: 10.3390/ijerph18105227] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of chronic liver disease in the Western world, probably due to the growing prevalence of obesity, metabolic diseases, and exposure to some environmental agents. In certain patients, simple hepatic steatosis can progress to non-alcoholic steatohepatitis (NASH), which can sometimes lead to liver cirrhosis and its complications including hepatocellular carcinoma. Understanding the mechanisms that cause the progression of NAFLD to NASH is crucial to be able to control the advancement of the disease. The main hypothesis considers that it is due to multiple factors that act together on genetically predisposed subjects to suffer from NAFLD including insulin resistance, nutritional factors, gut microbiota, and genetic and epigenetic factors. In this article, we will discuss the epidemiology of NAFLD, and we overview several topics that influence the development of the disease from simple steatosis to liver cirrhosis and its possible complications.
Collapse
Affiliation(s)
- Oriol Juanola
- Gastroenterology and Hepatology, Translational Research Laboratory, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Sebastián Martínez-López
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Rubén Francés
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Isabel Gómez-Hurtado
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Zhou F, Zhang L, Zhu K, Bai M, Zhang Y, Zhu Q, Wang S, Sheng C, Yuan M, Liu Y, Lu J, Shao L, Wang X, Zhou L. SIRT2 ablation inhibits glucose-stimulated insulin secretion through decreasing glycolytic flux. Am J Cancer Res 2021; 11:4825-4838. [PMID: 33754030 PMCID: PMC7978320 DOI: 10.7150/thno.55330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/06/2021] [Indexed: 11/30/2022] Open
Abstract
Rationale: Sirtuins are NAD+-dependent protein deacylases known to have protective effects against age-related diseases such as diabetes, cancer, and neurodegenerative disease. SIRT2 is the only primarily cytoplasmic isoform and its overall role in glucose homeostasis remains uncertain. Methods: SIRT2-knockout (KO) rats were constructed to evaluate the role of SIRT2 in glucose homeostasis. The effect of SIRT2 on β-cell function was detected by investigating the morphology, insulin secretion, and metabolomic state of islets. The deacetylation and stabilization of GKRP in β-cells by SIRT2 were determined by western blot, adenoviral infection, and immunoprecipitation. Results: SIRT2-KO rats exhibited impaired glucose tolerance and glucose-stimulated insulin secretion (GSIS), without change in insulin sensitivity. SIRT2 deficiency or inhibition by AGK2 decreased GSIS in isolated rat islets, with lowered oxygen consumption rate. Adenovirus-mediated overexpression of SIRT2 enhanced insulin secretion from rat islets. Metabolomics analysis revealed a decrease in metabolites of glycolysis and tricarboxylic acid cycle in SIRT2-KO islets compared with control islets. Our study further demonstrated that glucokinase regulatory protein (GKRP), an endogenous inhibitor of glucokinase (GCK), was expressed in rat islets. SIRT2 overexpression deacetylated GKRP in INS-1 β-cells. SIRT2 knockout or inhibition elevated GKRP protein stability in islet β-cells, leading to an increase in the interaction of GKRP and GCK. On the contrary, SIRT2 inhibition promoted the protein degradation of ALDOA, a glycolytic enzyme. Conclusions: SIRT2 ablation inhibits GSIS through blocking GKRP protein degradation and promoting ALDOA protein degradation, resulting in a decrease in glycolytic flux.
Collapse
|
21
|
Sreelekshmi M, Raghu KG. Vanillic acid mitigates the impairments in glucose metabolism in HepG2 cells through BAD-GK interaction during hyperinsulinemia. J Biochem Mol Toxicol 2021; 35:1-8. [PMID: 33651899 DOI: 10.1002/jbt.22750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022]
Abstract
Glucokinase (GK), a key regulator of hepatic glucose metabolism in the liver and glucose sensor and mediator in the secretion of insulin in the pancreas, is not studied in detail for its therapeutic application in diabetes. Herein, we study the alteration in GK activity during hyperinsulinemia-induced insulin resistance in HepG2 cells. We also investigated the link between GK and Bcl-2-associated death receptor (BAD) during hyperinsulinemia. There are emerging demands for GK activators from natural resources, and we selected vanillic acid (VA) to evaluate its potential as GK activators during hyperinsulinemia in HepG2 cells. VA is a phenolic compound and a commonly used food additive in many food industries. We found that VA safeguarded GK inhibition during hyperinsulinemia significantly in HepG2 cells. VA also prevented the depletion of glycogen synthesis during hyperinsulinemia, which is evident from protein expression studies of phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, glycogen synthase, and glycogen synthase kinase-3β. This was associated with activation of BAD activity, which was also confirmed by Western blotting. Molecular docking revealed strong binding between GK active site and VA, supporting their strong interaction. These are the first in vitro data to indicate the beneficial properties of VA with respect to insulin resistance induced by hyperinsulinemia by GK activation. Since it is activated via BAD, the hypoglycemia associated with general GK activation is not expected here and therefore has significant implications for future therapies against diabetes.
Collapse
Affiliation(s)
- Mohan Sreelekshmi
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kozhiparambil Gopalan Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Nasteska D, Fine NHF, Ashford FB, Cuozzo F, Viloria K, Smith G, Dahir A, Dawson PWJ, Lai YC, Bastidas-Ponce A, Bakhti M, Rutter GA, Fiancette R, Nano R, Piemonti L, Lickert H, Zhou Q, Akerman I, Hodson DJ. PDX1 LOW MAFA LOW β-cells contribute to islet function and insulin release. Nat Commun 2021; 12:674. [PMID: 33514698 PMCID: PMC7846747 DOI: 10.1038/s41467-020-20632-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Transcriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Nicholas H F Fine
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Gabrielle Smith
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Aisha Dahir
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Peter W J Dawson
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Edgbaston, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, UK
| | - Yu-Chiang Lai
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Edgbaston, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, UK
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Reproduction, and Digestion, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang, Singapore
| | - Remi Fiancette
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rita Nano
- San Raffaele Diabetes Research Institute, IRCCS Ospedale, San Raffaele, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale, San Raffaele, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Qiao Zhou
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK. .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK. .,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
23
|
Jiang F, Yan J, Zhang R, Ma X, Bao Y, Gu Y, Hu C. Functional Characterization of a Novel Heterozygous Mutation in the Glucokinase Gene That Causes MODY2 in Chinese Pedigrees. Front Endocrinol (Lausanne) 2021; 12:803992. [PMID: 34956103 PMCID: PMC8695754 DOI: 10.3389/fendo.2021.803992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glucokinase (GCK) plays a central role in glucose regulation. The heterozygous mutations of GCK can cause a monogenic form of diabetes, maturity-onset diabetes of the young (MODY) directly. In our study, we aimed to explore the mechanism of the novel mutation GCK p.Ala259Thr leading to glucokinase deficiency and hyperglycemia. METHODS Thirty early-onset diabetes pedigrees were referred to whole exome sequencing for novel mutations identification. Purified wild-type and mutant GCK proteins were obtained from E.coli systems and then subjected to the kinetic and thermal stability analysis to test the effects on GCK activity. RESULTS One novel missense mutation GCK p.Ala259Thr was identified and co-segregated with diabetes in a Chinese MODY2 pedigree. The kinetic analysis showed that this mutation result in a decreased affinity and catalytic capability for glucose. The thermal stability analysis also indicated that the mutant protein presented dramatically decreased activity at the same temperature. CONCLUSION Our study firstly identified a novel MODY2 mutation p.Ala259Thr in Chinese diabetes pedigrees. The kinetic and thermal stability analysis confirmed that this mutation caused hyperglycemia through severely damaging the enzyme activities and protein stability.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Yan
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Rong Zhang
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yujuan Gu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
- *Correspondence: Cheng Hu, ; Yujuan Gu,
| | - Cheng Hu
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Endocrinology, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
- *Correspondence: Cheng Hu, ; Yujuan Gu,
| |
Collapse
|
24
|
Grewal AS, Lather V, Charaya N, Sharma N, Singh S, Kairys V. Recent Developments in Medicinal Chemistry of Allosteric Activators of Human Glucokinase for Type 2 Diabetes Mellitus Therapeutics. Curr Pharm Des 2020; 26:2510-2552. [PMID: 32286938 DOI: 10.2174/1381612826666200414163148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glucokinase (GK), a cytoplasmic enzyme catalyzes the metabolism of glucose to glucose- 6-phosphate with the help of ATP and aids in the controlling of blood glucose levels within the normal range in humans. In pancreatic β-cells, it plays a chief role by controlling the glucose-stimulated secretion of insulin and in liver hepatocyte cells, it controls the metabolism of carbohydrates. GK acts as a promising drug target for the pharmacological treatment of patients with type 2 diabetes mellitus (T2DM) as it plays an important role in the control of carbohydrate metabolism. METHODS Data used for this review was based on the search from several science databases as well as various patent databases. The main data search terms used were allosteric GK activators, diabetes mellitus, type 2 diabetes, glucokinase, glucokinase activators and human glucokinase. RESULTS This article discusses an overview of T2DM, the biology of GK, the role of GK in T2DM, recent updates in the development of small molecule GK activators reported in recent literature, mechanism of action of GK activators and their clinical status. CONCLUSION GK activators are the novel class of pharmacological agents that enhance the catalytic activity of GK enzyme and display their antihyperglycemic effects. Broad diversity of chemical entities including benzamide analogues, carboxamides, acrylamides, benzimidazoles, quinazolines, thiazoles, pyrimidines, pyridines, orotic acid amides, amino acid derivatives, amino phosphates and urea derivatives have been synthesized in past two decades as potent allosteric activators of GK. Presently, the pharmaceutical companies and researchers are focusing on the design and development of liver-selective GK activators for preventing the possible adverse effects associated with GK activators for the long-term treatment of T2DM.
Collapse
Affiliation(s)
- Ajmer S Grewal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Neha Charaya
- Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Haryana, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
25
|
Vincent O, Gutierrez-Nogués A, Trejo-Herrero A, Navas MA. A novel reverse two-hybrid method for the identification of missense mutations that disrupt protein-protein binding. Sci Rep 2020; 10:21043. [PMID: 33273586 PMCID: PMC7713115 DOI: 10.1038/s41598-020-77992-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/19/2020] [Indexed: 01/26/2023] Open
Abstract
The reverse two-hybrid system is a powerful method to select mutations that disrupt the interaction between two proteins and therefore to identify the residues involved in this interaction. However, the usefulness of this technique has been limited by its relative complexity when compared to the classical two-hybrid system, since an additional selection step is required to eliminate the high background of uninformative truncation mutants. We have developed a new method that combines the classical and reverse two-hybrid systems to select loss-of-binding missense mutations in a single step. The strategy used to select against truncation mutants is based on the two-hybrid interaction between a C-terminal fusion peptide and the Tsg101 protein. We have applied this method to identify mutations in human glucokinase (GK) that disrupt glucokinase regulatory protein (GKRP) binding. Our results indicate that this method is very efficient and eliminates all the truncation mutants and false positives. The mutated residues identified in GK are involved in the GKRP binding interface or in stabilizing the super-open conformation of GK that binds GKRP. This technique offers an improvement over existing methods in terms of speed, efficiency and simplicity and can be used to study any detectable protein interaction in the two-hybrid system.
Collapse
Affiliation(s)
- Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, 28029, Madrid, Spain.
| | - Angel Gutierrez-Nogués
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Adrían Trejo-Herrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - María-Angeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
26
|
Buziau AM, Schalkwijk CG, Stehouwer CDA, Tolan DR, Brouwers MCGJ. Recent advances in the pathogenesis of hereditary fructose intolerance: implications for its treatment and the understanding of fructose-induced non-alcoholic fatty liver disease. Cell Mol Life Sci 2020; 77:1709-1719. [PMID: 31713637 PMCID: PMC11105038 DOI: 10.1007/s00018-019-03348-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
Hereditary fructose intolerance (HFI) is a rare inborn disease characterized by a deficiency in aldolase B, which catalyzes the cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate (Fru 1P) to triose molecules. In patients with HFI, ingestion of fructose results in accumulation of Fru 1P and depletion of ATP, which are believed to cause symptoms, such as nausea, vomiting, hypoglycemia, and liver and kidney failure. These sequelae can be prevented by a fructose-restricted diet. Recent studies in aldolase B-deficient mice and HFI patients have provided more insight into the pathogenesis of HFI, in particular the liver phenotype. Both aldolase B-deficient mice (fed a very low fructose diet) and HFI patients (treated with a fructose-restricted diet) displayed greater intrahepatic fat content when compared to controls. The liver phenotype in aldolase B-deficient mice was prevented by reduction in intrahepatic Fru 1P concentrations by crossing these mice with mice deficient for ketohexokinase, the enzyme that catalyzes the synthesis of Fru 1P. These new findings not only provide a potential novel treatment for HFI, but lend insight into the pathogenesis of fructose-induced non-alcoholic fatty liver disease (NAFLD), which has raised to epidemic proportions in Western society. This narrative review summarizes the most recent advances in the pathogenesis of HFI and discusses the implications for the understanding and treatment of fructose-induced NAFLD.
Collapse
Affiliation(s)
- Amée M Buziau
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, MA, USA.
| | - Martijn C G J Brouwers
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.
| |
Collapse
|
27
|
|
28
|
Biggar KK, Zhang J, Storey KB. Navigating oxygen deprivation: liver transcriptomic responses of the red eared slider turtle to environmental anoxia. PeerJ 2019; 7:e8144. [PMID: 31788367 PMCID: PMC6883951 DOI: 10.7717/peerj.8144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023] Open
Abstract
The best facultative anaerobes among vertebrates are members of the genera Trachemys (pond slider turtles) and Chrysemys (painted turtles), and are able to survive without oxygen for up to 12 to 18 weeks at ∼3 °C. In this study, we utilized RNAseq to profile the transcriptomic changes that take place in response to 20 hrs of anoxia at 5 °C in the liver of the red eared slide turtle (Trachemys scripta elegans). Sequencing reads were obtained from at least 18,169 different genes and represented a minimum 49x coverage of the C. picta bellii exome. A total of 3,105 genes showed statistically significant changes in gene expression between the two animal groups, of which 971 also exhibited a fold change equal to or greater than 50% of control normoxic values. This study also highlights a number of anoxia-responsive molecular pathways that are may be important to navigating anoxia survival. These pathways were enriched in mRNA found to significantly increase in response to anoxia and included molecular processes such as DNA damage repair and metabolic reprogramming. For example, our results indicate that the anoxic turtle may utilize succinate metabolism to yield a molecule of GTP in addition to the two molecules that results from lactate production, and agrees with other established models of anoxia tolerance. Collectively, our analysis provides a snapshot of the molecular landscape of the anoxic turtle and may provide hints into the how this animal is capable of surviving this extreme environmental stress.
Collapse
Affiliation(s)
- Kyle K. Biggar
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jing Zhang
- The hospital for sick children, Neuroscience and Mental Health, Toronto, Ontario, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Obafemi TO, Olaleye MT, Akinmoladun AC. Antidiabetic property of miracle fruit plant (Synsepalum dulcificum Shumach. & Thonn. Daniell) leaf extracts in fructose-fed streptozotocin-injected rats via anti-inflammatory activity and inhibition of carbohydrate metabolizing enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112124. [PMID: 31374224 DOI: 10.1016/j.jep.2019.112124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/04/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Miracle fruit plant (Synsepalum dulcificum) has many applications in folk medicine. The leaves are used traditionally to treat diabetes and other diseases. The antidiabetic potential of Synsepalum dulcificum leaves in rats has been studied but the mechanisms involved are yet to be elucidated. AIM The present study aimed to provide insight into the antidiabetic mechanisms of methanol and flavonoid-rich leaf extracts of Synsepalum dulcificum (MSD and FSD, respectively). METHODS In vivo effects of administering 30 mg/kg or 60 mg/kg MSD and FSD for 21 consecutive days to rats after type II diabetes was induced through 14 days of fructose feeding and injection of one dose of streptozotocin, were assessed. Glibenclamide (5 mg/kg) served as the reference drug. In addition, in vitro inhibitory activity of MSD and FSD on the carbohydrate metabolizing enzymes, α-amylase and glucokinase, were evaluated, with acarbose as the reference drug. Moreover, in silico analyses to elucidate the contribution of key polyphenolics to the antidiabetic activity of the extracts through docking with glucokinase were performed. RESULTS MSD and FSD significantly reduced HbA1c and serum levels of interleukin-6 and TNF-α (p < 0.05) in diabetic animals. Conversely, serum level of insulin and hepatic hexokinase activity were increased (p < 0.05) in extract treated groups. Both extracts showed α-amylase and α-glucosidase inhibitory activities. Quercetin, caffeic acid and chlorogenic acid in extracts showed strong binding affinities with glucokinase in the molecular docking analyses. CONCLUSION Results from this study indicate that increased insulin synthesis, reduction of inflammation and inhibition of carbohydrate metabolizing enzymes are likely mechanisms by which MSD and FSD exert antidiabetic action in type II diabetic rats.
Collapse
Affiliation(s)
- T Olabisi Obafemi
- Phytomedicine, Biochemical Pharmacology and Toxicology Unit, Department of Biochemistry, The Federal University of Technology, PMB 704, Akure, Nigeria; Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, PMB 5454 Ado Ekiti, Nigeria.
| | - M Tolulope Olaleye
- Phytomedicine, Biochemical Pharmacology and Toxicology Unit, Department of Biochemistry, The Federal University of Technology, PMB 704, Akure, Nigeria.
| | - Afolabi C Akinmoladun
- Phytomedicine, Biochemical Pharmacology and Toxicology Unit, Department of Biochemistry, The Federal University of Technology, PMB 704, Akure, Nigeria.
| |
Collapse
|
30
|
Kroemer G, López-Otín C, Madeo F, de Cabo R. Carbotoxicity-Noxious Effects of Carbohydrates. Cell 2019; 175:605-614. [PMID: 30340032 DOI: 10.1016/j.cell.2018.07.044] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/18/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Modern nutrition is often characterized by the excessive intake of different types of carbohydrates ranging from digestible polysaccharides to refined sugars that collectively mediate noxious effects on human health, a phenomenon that we refer to as "carbotoxicity." Epidemiological and experimental evidence combined with clinical intervention trials underscore the negative impact of excessive carbohydrate uptake, as well as the beneficial effects of reducing carbs in the diet. We discuss the molecular, cellular, and neuroendocrine mechanisms that link exaggerated carbohydrate intake to disease and accelerated aging as we outline dietary and pharmacologic strategies to combat carbotoxicity.
Collapse
Affiliation(s)
- Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
31
|
Wang Z, Diao C, Liu Y, Li M, Zheng J, Zhang Q, Yu M, Zhang H, Ping F, Li M, Xiao X. Identification and functional analysis of GCK gene mutations in 12 Chinese families with hyperglycemia. J Diabetes Investig 2019; 10:963-971. [PMID: 30592380 PMCID: PMC6626954 DOI: 10.1111/jdi.13001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION To investigate the clinical and genetic characteristics of Chinese patients with a phenotype consistent with maturity-onset diabetes of the young type 2 and explore the pathogenic mechanism of their hyperglycemia. MATERIALS AND METHODS We studied 12 probands and their extended families referred to our center for screening mutations in the glucokinase gene (GCK). Clinical data were collected and genetic analysis was carried out. The recombinant wild-type and mutant glucokinase were generated in Escherichia coli. The kinetic parameters and thermal stability of the enzymes were determined in vitro. RESULTS In the 12 families, 11 GCK mutations (R43C, T168A, K169N, R191W, Y215X, E221K, M235T, R250H, W257X, G261R and A379E) and one variant of uncertain significance (R275H) were identified. R191W was detected in two unrelated families. Of the 11 GCK mutations, three mutations (c.507G>C, K169N; c.645C>A, Y215X; c.771G>A, W257X; NM_000162.3, NP_000153.1) are novel. Basic kinetics analysis explained the pathogenicity of the five mutants (R43C, K169N, R191W, E221K and A379E), which showed reduced enzyme activity with relative activity indexes between ~0.001 and 0.5 compared with the wild-type (1.0). In addition, the thermal stabilities of these five mutants were also decreased to varying degrees. However, for R250H and R275H, there was no significant difference in the enzyme activity and thermal stability between the mutants and the wild type. CONCLUSIONS We have identified 11 GCK mutations and one variant of uncertain significance in 12 Chinese families with hyperglycemia. For five GCK mutations (R43C, K169N, R191W, E221K and A379E), the changes in enzyme kinetics and thermostability might be the pathogenic mechanisms by which mutations cause hyperglycemia.
Collapse
Affiliation(s)
- Zhixin Wang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Present address:
Department of EndocrinologyBeijing Jishuitan HospitalBeijingChina
| | - Chengming Diao
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yijing Liu
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Mingmin Li
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jia Zheng
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Qian Zhang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Miao Yu
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Huabing Zhang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fan Ping
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ming Li
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xinhua Xiao
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
32
|
Salgado M, Ordenes P, Villagra M, Uribe E, García-Robles MDLA, Tarifeño-Saldivia E. When a Little Bit More Makes the Difference: Expression Levels of GKRP Determines the Subcellular Localization of GK in Tanycytes. Front Neurosci 2019; 13:275. [PMID: 30983961 PMCID: PMC6449865 DOI: 10.3389/fnins.2019.00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
Glucose homeostasis is performed by specialized cells types that detect and respond to changes in systemic glucose concentration. Hepatocytes, β-cells and hypothalamic tanycytes are part of the glucosensor cell types, which express several proteins involved in the glucose sensing mechanism such as GLUT2, Glucokinase (GK) and Glucokinase regulatory protein (GKRP). GK catalyzes the phosphorylation of glucose to glucose-6-phosphate (G-6P), and its activity and subcellular localization are regulated by GKRP. In liver, when glucose concentration is low, GKRP binds to GK holding it in the nucleus, while the rise in glucose concentration induces a rapid export of GK from the nucleus to the cytoplasm. In contrast, hypothalamic tanycytes display inverse compartmentalization dynamic in response to glucose: a rise in the glucose concentration drives nuclear compartmentalization of GK. The underlying mechanism responsible for differential GK subcellular localization in tanycytes has not been described yet. However, it has been suggested that relative expression between GK and GKRP might play a role. To study the effects of GKRP expression levels in the subcellular localization of GK, we used insulinoma 832/13 cells and hypothalamic tanycytes to overexpress the tanycytic sequences of Gckr. By immunocytochemistry and Western blot analysis, we observed that overexpression of GKRP, independently of the cellular context, turns GK localization to a liver-like fashion, as GK is mainly localized in the nucleus in response to low glucose. Evaluating the expression levels of GKRP in relation to GK through RT-qPCR, suggest that excess of GKRP might influence the pattern of GK subcellular localization. In this sense, we propose that the low expression of GKRP (in relation to GK) observed in tanycytes is responsible, at least in part, for the compartmentalization pattern observed in this cell type. Since GKRP behaves as a GK inhibitor, the regulation of GKRP expression levels or activity in tanycytes could be used as a therapeutic target to regulate the glucosensing activity of these cells and consequently to regulate feeding behavior.
Collapse
Affiliation(s)
- Magdiel Salgado
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Patricio Ordenes
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Marcos Villagra
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Elena Uribe
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | | | - Estefanía Tarifeño-Saldivia
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| |
Collapse
|
33
|
Lu B, Munoz-Gomez M, Ikeda Y. The two major glucokinase isoforms show conserved functionality in β-cells despite different subcellular distribution. Biol Chem 2019; 399:565-576. [PMID: 29573377 DOI: 10.1515/hsz-2018-0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
Abstract
Glucokinase (GCK) is crucial to regulating glucose metabolism in the liver and in pancreatic β-cells. There are two major GCK isoforms, hepatic and pancreatic GCKs, which differ only in exon 1. However, the functional differences between the two GCK isoforms remain poorly understood. Here, we used a β-cell-targeted gene transfer vector to determine the impact of isoform-specific GCK overexpression on β-cells in vitro and in vivo. We showed that pancreatic GCK had a nuclear localization signal unique to the pancreatic isoform, facilitating its nuclear distribution in β-cells. Despite the difference in subcellular distribution, overexpression of GCK isoforms similarly enhanced glucose uptake and β-cell proliferation in vitro. Overexpression of hepatic or pancreatic GCK also similarly enhanced β-cell proliferation in normal diet mice without affecting fasting glucose and intraperitoneal glucose tolerance tests (IPGTT). Our further study on human GCK sequences identified disproportional GCK amino acid variants in exon 1, while mutations linked to maturity onset diabetes of the young type 2 (MODY2) were disproportionally found in exons 2 through 10. Our results therefore indicate functional conservation between the two major GCK isoforms despite their distinct subcellular distribution.
Collapse
Affiliation(s)
- Brian Lu
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.,Virology and Gene Therapy Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Miguel Munoz-Gomez
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.,Virology and Gene Therapy Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Sternisha SM, Miller BG. Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys 2019; 663:199-213. [PMID: 30641049 DOI: 10.1016/j.abb.2019.01.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
Glucose metabolism in humans is tightly controlled by the activity of glucokinase (GCK). GCK is predominantly produced in the pancreas, where it catalyzes the rate-limiting step of insulin secretion, and in the liver, where it participates in glycogen synthesis. A multitude of disease-causing mutations within the gck gene have been identified. Activating mutations manifest themselves in the clinic as congenital hyperinsulinism, while loss-of-function mutations produce several diabetic conditions. Indeed, pharmaceutical companies have shown great interest in developing GCK-associated treatments for diabetic patients. Due to its essential role in maintaining whole-body glucose homeostasis, GCK activity is extensively regulated at multiple levels. GCK possesses a unique ability to self-regulate its own activity via slow conformational dynamics, which allows for a cooperative response to glucose. GCK is also subject to a number of protein-protein interactions and post-translational modification events that produce a broad range of physiological consequences. While significant advances in our understanding of these individual regulatory mechanisms have been recently achieved, how these strategies are integrated and coordinated within the cell is less clear. This review serves to synthesize the relevant findings and offer insights into the connections between molecular and cellular control of GCK.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
35
|
Abstract
Carbohydrate kinases activate a wide variety of monosaccharides by adding a phosphate group, usually from ATP. This modification is fundamental to saccharide utilization, and it is likely a very ancient reaction. Modern organisms contain carbohydrate kinases from at least five main protein families. These range from the highly specialized inositol kinases, to the ribokinases and galactokinases, which belong to families that phosphorylate a wide range of substrates. The carbohydrate kinases utilize a common strategy to drive the reaction between the sugar hydroxyl and the donor phosphate. Each sugar is held in position by a network of hydrogen bonds to the non-reactive hydroxyls (and other functional groups). The reactive hydroxyl is deprotonated, usually by an aspartic acid side chain acting as a catalytic base. The deprotonated hydroxyl then attacks the donor phosphate. The resulting pentacoordinate transition state is stabilized by an adjacent divalent cation, and sometimes by a positively charged protein side chain or the presence of an anion hole. Many carbohydrate kinases are allosterically regulated using a wide variety of strategies, due to their roles at critical control points in carbohydrate metabolism. The evolution of a similar mechanism in several folds highlights the elegance and simplicity of the catalytic scheme.
Collapse
|
36
|
Pirola CJ, Flichman D, Dopazo H, Fernández Gianotti T, San Martino J, Rohr C, Garaycoechea M, Gazzi C, Castaño GO, Sookoian S. A Rare Nonsense Mutation in the Glucokinase Regulator Gene Is Associated With a Rapidly Progressive Clinical Form of Nonalcoholic Steatohepatitis. Hepatol Commun 2018; 2:1030-1036. [PMID: 30202818 PMCID: PMC6128235 DOI: 10.1002/hep4.1235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/20/2018] [Indexed: 12/23/2022] Open
Abstract
We report on the presence of a rare nonsense mutation (rs149847328, p.Arg227Ter) in the glucokinase regulator (GCKR) gene in an adult patient with nonalcoholic fatty liver disease (NAFLD), morbid obesity, and type 2 diabetes; this patient developed a progressive histological form of the disease. Analysis of paired (5 years apart) liver biopsies (at baseline and follow‐up) showed progression of simple steatosis to severe nonalcoholic steatohepatitis and cirrhosis. Study design involved an initial exploration that consisted of deep sequencing of 14 chromosomal regions in 96 individuals (64 of whom were patients with NAFLD who were diagnosed by liver biopsy that showed the full spectrum of histological severity). We further performed a replication study to explore the presence of rs149847328 that included a sample of 517 unrelated individuals in a case‐control study (n = 390), including patients who were morbidly obese (n = 127). Exploration of sequence variation by next‐generation sequencing of exons, exon–intron boundaries, and 5′ and 3′ untranslated regions of 14 genomic loci that encode metabolic enzymes of the tricarboxylic acid cycle revealed the presence of heterozygosity for the p.Arg227Ter mutation, the frequency of which is 0.0003963 (4:10,000; Exome Aggregation Consortium database). GCKR protein expression was markedly decreased in the liver of the affected patient compared with patients with NAFLD who carry the wild‐type allele. Sequencing of the same 14 genomic loci in 95 individuals failed to reveal the rare mutation. The rarity of p.Arg227Ter was confirmed in a more extensive screening. Conclusion: While rare variants/mutations are difficult to detect in even reasonably large samples (frequency of the mutant allele of p.Arg227Ter was ~1:1,000 in our data set), the presence of this mutation should be suspected as potentially associated with NAFLD, particularly in young adults at the extreme of histological phenotypes. Hepatology Communications 2018;0:0‐0)
Collapse
Affiliation(s)
- Carlos J Pirola
- Institute of Medical Research A. Lanari University of Buenos Aires Buenos Aires Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research National Scientific and Technical Research Council-University of Buenos Aires Buenos Aires Argentina
| | - Diego Flichman
- Department of Virology, School of Pharmacy and Biochemistry University of Buenos Aires Buenos Aires Argentina
| | - Hernán Dopazo
- Biomedical Genomics and Evolution Laboratory, Ecology, Genetics, and Evolution Department, Faculty of Science Institute of Ecology, Genetics, and Evolution of Buenos Aires, National Scientific and Technical Research Council-University of Buenos Aires Buenos Aires Argentina
| | - Tomas Fernández Gianotti
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research National Scientific and Technical Research Council-University of Buenos Aires Buenos Aires Argentina
| | - Julio San Martino
- Department of Pathology, Hospital Diego Thompson, San Martin Buenos Aires Argentina
| | - Cristian Rohr
- Biomedical Genomics and Evolution Laboratory, Ecology, Genetics, and Evolution Department, Faculty of Science Institute of Ecology, Genetics, and Evolution of Buenos Aires, National Scientific and Technical Research Council-University of Buenos Aires Buenos Aires Argentina
| | - Martin Garaycoechea
- Deparment of Surgery and the Center for Translational Medicine Excellence Hospital de Alta Complejidad en Red "El Cruce," Florencio Varela Buenos Aires Argentina
| | - Carla Gazzi
- Pathology Department, Institute of Medical Research A. Lanari University of Buenos Aires Buenos Aires Argentina
| | - Gustavo O Castaño
- Liver Unit, Medicine and Surgery Department Hospital Abel Zubizarreta Buenos Aires Argentina
| | - Silvia Sookoian
- Institute of Medical Research A. Lanari University of Buenos Aires Buenos Aires Argentina.,Department of Clinical and Molecular Hepatology, Institute of Medical Research National Scientific and Technical Research Council-University of Buenos Aires Buenos Aires Argentina
| |
Collapse
|
37
|
Li X, Chen L. Non-alcoholic fatty liver disease concerns with glucokinase activators - Authors' reply. Lancet Diabetes Endocrinol 2018; 6:685. [PMID: 30143186 DOI: 10.1016/s2213-8587(18)30201-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/23/2022]
Affiliation(s)
- Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Chen
- Hua Medicine, Shanghai 201203, China.
| |
Collapse
|
38
|
Mirtschink P, Jang C, Arany Z, Krek W. Fructose metabolism, cardiometabolic risk, and the epidemic of coronary artery disease. Eur Heart J 2018; 39:2497-2505. [PMID: 29020416 PMCID: PMC6037111 DOI: 10.1093/eurheartj/ehx518] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/16/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023] Open
Abstract
Despite strong indications that increased consumption of added sugars correlates with greater risks of developing cardiometabolic syndrome (CMS) and cardiovascular disease (CVD), independent of the caloric intake, the worldwide sugar consumption remains high. In considering the negative health impact of overconsumption of dietary sugars, increased attention is recently being given to the role of the fructose component of high-sugar foods in driving CMS. The primary organs capable of metabolizing fructose include liver, small intestine, and kidneys. In these organs, fructose metabolism is initiated by ketohexokinase (KHK) isoform C of the central fructose-metabolizing enzyme KHK. Emerging data suggest that this tissue restriction of fructose metabolism can be rescinded in oxygen-deprived environments. In this review, we highlight recent progress in understanding how fructose metabolism contributes to the development of major systemic pathologies that cooperatively promote CMS and CVD, reference recent insights into microenvironmental control of fructose metabolism under stress conditions and discuss how this understanding is shaping preventive actions and therapeutic approaches.
Collapse
Affiliation(s)
- Peter Mirtschink
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, Zurich, Switzerland
- Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Fetscherstr. 74, Dresden, Germany
| | - Cholsoon Jang
- Department of Medicine, Cardiovascular Institute and Institute Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, 11th floor, Civic Blvd, Philadelphia, 19104 PA, USA
| | - Zoltan Arany
- Department of Medicine, Cardiovascular Institute and Institute Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, 11th floor, Civic Blvd, Philadelphia, 19104 PA, USA
| | - Wilhelm Krek
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|
39
|
Gutierrez-Nogués A, García-Herrero CM, Oriola J, Vincent O, Navas MA. Functional characterization of MODY2 mutations in the nuclear export signal of glucokinase. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2385-2394. [PMID: 29704611 DOI: 10.1016/j.bbadis.2018.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022]
Abstract
Glucokinase (GCK) plays a key role in glucose homeostasis. Heterozygous inactivating mutations in the GCK gene cause the familial, mild fasting hyperglycaemia named MODY2. Besides its particular kinetic characteristics, glucokinase is regulated by subcellular compartmentation in hepatocytes. Glucokinase regulatory protein (GKRP) binds to GCK, leading to enzyme inhibition and import into the nucleus at fasting. When glucose concentration increases, GCK-GKRP dissociates and GCK is exported to the cytosol due to a nuclear export signal (NES). With the aim to characterize the GCK-NES, we have functionally analysed nine MODY2 mutations located within the NES sequence. Recombinant GCK mutants showed reduced catalytic activity and, in most cases, protein instability. Most of the mutants interact normally with GKRP, although mutations L306R and L309P impair GCK nuclear import in cotransfected cells. We demonstrated that GCK-NES function depends on exportin 1. We further showed that none of the mutations fully inactivate the NES, with the exception of mutation L304P, which likely destabilizes its α-helicoidal structure. Finally, we found that residue Glu300 negatively modulates the NES activity, whereas other residues have the opposite effect, thus suggesting that some of the NES spacer residues contribute to the low affinity of the NES for exportin 1, which is required for its proper functioning. In conclusion, our results have provided functional and structural insights regarding the GCK-NES and contributed to a better knowledge of the molecular mechanisms involved in the nucleo-cytoplasmic shuttling of glucokinase. Impairment of this regulatory mechanism by some MODY2 mutations might contribute to the hyperglycaemia in the patients.
Collapse
Affiliation(s)
- Angel Gutierrez-Nogués
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen-María García-Herrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Josep Oriola
- Servicio de Bioquímica y Genética Molecular, Hospital Clínic, Departamento de Ciencias Fisiológicas I, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María-Angeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), www.ciberdem.net, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
40
|
Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat Commun 2018; 9:30. [PMID: 29296001 PMCID: PMC5750207 DOI: 10.1038/s41467-017-02537-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/07/2017] [Indexed: 12/26/2022] Open
Abstract
Impaired hepatic glucose uptake (HGU) causes postprandial hyperglycemia in type 2 diabetes. Here, we show that diminished hepatic Sirt2 activity impairs HGU in obese diabetic mice. Hepatic Sirt2 overexpression increases HGU in high-fat diet (HFD)-fed obese diabetic mice and mitigates their impaired glucose tolerance. Hepatic Sirt2 knockdown in non-diabetic mice reduces HGU and causes impaired glucose tolerance. Sirt2 promotes glucose-dependent HGU by deacetylating K126 of glucokinase regulatory protein (GKRP). Glucokinase and GKRP glucose-dependent dissociation is necessary for HGU but is inhibited in hepatocytes derived from obese diabetic mice, depleted of Sirt2 or transfected with GKRP acetylation-mimicking mutants. GKRP deacetylation-mimicking mutants dissociate from glucokinase in a glucose concentration-dependent manner in obese diabetic mouse-derived hepatocytes and increase HGU and glucose tolerance in HFD-induced or db/db obese diabetic mice. We demonstrate that Sirt2-dependent GKRP deacetylation improves impaired HGU and suggest that it may be a therapeutic target for type 2 diabetes. During diabetes, postprandial hyperglycemia is caused by impaired glucose uptake. Here, Watanabe and colleagues show that impaired hepatic glucose uptake during obesity is caused by a reduction in Sirt2 activity, which promotes glucokinase regulatory protein acetylation and its dissociation from glucokinase.
Collapse
|
41
|
Martinez JA, Xiao Q, Zakarian A, Miller BG. Antidiabetic Disruptors of the Glucokinase-Glucokinase Regulatory Protein Complex Reorganize a Coulombic Interface. Biochemistry 2017; 56:3150-3157. [PMID: 28516783 DOI: 10.1021/acs.biochem.7b00377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The glucokinase regulatory protein (GKRP) plays an essential role in glucose homeostasis by acting as a competitive inhibitor of glucokinase (GCK) and triggering its localization to the hepatocyte nucleus upon glucose deprivation. Metabolites such as fructose 6-phosphate and sorbitol 6-phosphate promote assembly of the GCK-GKRP complex, whereas fructose 1-phosphate and functionalized piperazines with potent in vivo antidiabetic activity disrupt the complex. Here, we establish the molecular basis by which these natural and synthetic ligands modulate the GCK-GKRP interaction. We demonstrate that a small-molecule disruptor of the protein-protein interaction utilizes a two-step conformational selection mechanism to associate with a rare GKRP conformation constituting 3% of the total population. Conformational heterogeneity of GKRP is localized to the N-terminus and deleting this region eliminates the ability of sorbitol 6-phosphate to promote the GCK-GKRP interaction. Stabilizing ligands favor an extended N-terminus, which sterically positions two arginine residues for optimal Coulombic interaction with a pair of carboxylate side chains from GCK. Conversely, disruptors promote a more compact N-terminus in which an interfacial arginine residue is stabilized in an unproductive orientation through a cation-π interaction with tyrosine 75. Eliminating the ability to sample this binding impaired conformation enhances the intrinsic inhibitory activity of GKRP. Elucidating the molecular basis of ligand-mediated control over the GCK-GKRP interaction is expected to impact the development and future refinement of therapeutic agents for diabetes and cardiovascular disease, which result from improper GKRP regulation of GCK.
Collapse
Affiliation(s)
- Juliana A Martinez
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32303, United States
| | - Qing Xiao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32303, United States
| |
Collapse
|
42
|
Rieusset J. Endoplasmic reticulum-mitochondria calcium signaling in hepatic metabolic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:865-876. [PMID: 28064001 DOI: 10.1016/j.bbamcr.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
The liver plays a central role in glucose homeostasis, and both metabolic inflexibility and insulin resistance predispose to the development of hepatic metabolic diseases. Mitochondria and endoplasmic reticulum (ER), which play a key role in the control of hepatic metabolism, also interact at contact points defined as mitochondria-associated membranes (MAM), in order to exchange metabolites and calcium (Ca2+) and regulate cellular homeostasis and signaling. Here, we overview the role of the liver in the control of glucose homeostasis, mainly focusing on the independent involvement of mitochondria, ER and Ca2+ signaling in both healthy and pathological contexts. Then we focus on recent data highlighting MAM as important hubs for hormone and nutrient signaling in the liver, thus adapting mitochondria physiology and cellular metabolism to energy availability. Lastly, we discuss how chronic ER-mitochondria miscommunication could participate to hepatic metabolic diseases, pointing MAM interface as a potential therapeutic target for metabolic disorders. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Jennifer Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1397, F-69921 Oullins, France.
| |
Collapse
|
43
|
Affiliation(s)
- Loranne Agius
- Institutes of Cellular Medicine and Ageing and Health, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH United Kingdom;
| |
Collapse
|
44
|
Casey AK, Miller BG. Kinetic Basis of Carbohydrate-Mediated Inhibition of Human Glucokinase by the Glucokinase Regulatory Protein. Biochemistry 2016; 55:2899-902. [PMID: 27174229 DOI: 10.1021/acs.biochem.6b00349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The glucokinase regulatory protein (GKRP) is a competitive inhibitor of glucokinase (GCK), triggering its localization to the hepatocyte nucleus upon glucose deprivation. Here we establish the kinetic mechanism of GKRP action by analyzing its association with a genetically encoded, fluorescent variant of human GCK. Our results demonstrate that binding of GKRP to GCK involves two steps, formation of an initial encounter complex followed by conformational equilibration between two GKRP-GCK states. Fructose 6-phosphate, a known enhancer of GKRP action, promotes formation of the initial encounter complex via a 2.6-fold increase in kon and stabilizes the complex through a 60-fold decrease in koff.
Collapse
Affiliation(s)
- Ashley K Casey
- Department of Chemistry and Biochemistry, Florida State University , 4005 Chemical Sciences Laboratory, Tallahassee, Florida 32303, United States
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University , 4005 Chemical Sciences Laboratory, Tallahassee, Florida 32303, United States
| |
Collapse
|
45
|
Ou Y, Ren Z, Wang J, Yang X. Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice: Involved in insulin signaling pathway and GK expression. Chem Biol Interact 2016; 247:49-54. [DOI: 10.1016/j.cbi.2016.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 11/16/2022]
|
46
|
Theurey P, Tubbs E, Vial G, Jacquemetton J, Bendridi N, Chauvin MA, Alam MR, Le Romancer M, Vidal H, Rieusset J. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J Mol Cell Biol 2016; 8:129-43. [DOI: 10.1093/jmcb/mjw004] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/01/2015] [Indexed: 12/20/2022] Open
|
47
|
Kahali B, Halligan B, Speliotes EK. Insights from Genome-Wide Association Analyses of Nonalcoholic Fatty Liver Disease. Semin Liver Dis 2015; 35:375-91. [PMID: 26676813 PMCID: PMC4941959 DOI: 10.1055/s-0035-1567870] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by hepatic steatosis, which can progress to nonalcoholic steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma in the absence of excessive alcohol consumption. Nonalcoholic fatty liver disease will become the number one cause of liver disease worldwide by 2020. Nonalcoholic fatty liver disease is correlated albeit imperfectly with obesity and other metabolic diseases such as diabetes, hyperlipidemia, and cardiovascular disease, but exactly how having one of these diseases contributes to the development of other metabolic diseases is only now being elucidated. Development of NAFLD and related metabolic diseases is genetically influenced in the population, and recent genome-wide association studies (GWASs) have discovered genetic variants that associate with these diseases. These GWAS-associated variants cannot only help us to identify individuals at high risk of developing NAFLD, but also to better understand its pathophysiology so that we can develop more effective treatments for this disease and related metabolic diseases in the future.
Collapse
Affiliation(s)
- Bratati Kahali
- Division of Gastroenterology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Brian Halligan
- Division of Gastroenterology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Elizabeth K. Speliotes
- Division of Gastroenterology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
48
|
Rubtsov PM, Igudin EL, Tiulpakov AN. Glucokinase and glucokinase regulatory proteins as molecular targets for novel antidiabetic drugs. Mol Biol 2015. [DOI: 10.1134/s0026893315040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Raimondo A, Rees MG, Gloyn AL. Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism. Curr Opin Lipidol 2015; 26:88-95. [PMID: 25692341 PMCID: PMC4422901 DOI: 10.1097/mol.0000000000000155] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW Glucokinase regulator (GCKR) encodes glucokinase regulatory protein (GKRP), a hepatocyte-specific inhibitor of the glucose-metabolizing enzyme glucokinase (GCK). Genome-wide association studies have identified a common coding variant within GCKR associated with multiple metabolic traits. This review focuses on recent insights into the critical role of GKRP in hepatic glucose metabolism that have stemmed from the study of human genetics. This knowledge has improved our understanding of glucose and lipid physiology and informed the development of targeted molecular therapeutics for diabetes. RECENT FINDINGS Rare GCKR variants have effects on GKRP expression, localization, and activity. These variants are collectively associated with hypertriglyceridaemia but are not causal. Crystal structures of GKRP and the GCK-GKRP complex have been solved, providing greater insight into the molecular interactions between these proteins. Finally, small molecules have been identified that directly bind GKRP and reduce blood glucose levels in rodent models of diabetes. SUMMARY GCKR variants across the allelic spectrum have effects on glucose and lipid homeostasis. Functional analysis has highlighted numerous molecular mechanisms for GKRP dysfunction. Hepatocyte-specific GCK activation via small molecule GKRP inhibition may be a new avenue for type 2 diabetes treatment, particularly considering evidence indicating GKRP loss-of-function alone does not cause hypertriglyceridaemia.
Collapse
Affiliation(s)
- Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Matthew G. Rees
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Broad Institute, Cambridge, Massachusetts, USA
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, ORH Trust, OCDEM, Churchill Hospital, Oxford, UK
| |
Collapse
|
50
|
Feng J, Zhao S, Chen X, Wang W, Dong W, Chen J, Shen JR, Liu L, Kuang T. Biochemical and structural study of Arabidopsis hexokinase 1. ACTA ACUST UNITED AC 2015; 71:367-75. [PMID: 25664748 DOI: 10.1107/s1399004714026091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/27/2014] [Indexed: 01/11/2023]
Abstract
Hexokinase 1 from Arabidopsis thaliana (AtHXK1) plays a dual role in glycolysis and sugar sensing for vital metabolic and physiological processes. The uncoupling of glucose signalling from glucose metabolism was demonstrated by the analysis of two mutants (AtHXK1(G104D) and AtHXK1(S177A)) that are catalytically inactive but still functional in signalling. In this study, substrate-binding experiments indicate that the two catalytically inactive mutants have a high affinity for glucose, and an ordered substrate-binding mechanism has been observed for wild-type AtHXK1. The structure of AtHXK1 was determined both in its inactive unliganded form and in its active glucose-bound form at resolutions of 1.8 and 2.0 Å, respectively. These structures reveal a domain rearrangement of AtHXK1 upon glucose binding. The 2.1 Å resolution structure of AtHXK1(S177A) in the glucose-bound form shows similar glucose-binding interactions as the wild type. A glucose-sensing network has been proposed based on these structures. Taken together, the results provide a structural explanation for the dual functions of AtHXK1.
Collapse
Affiliation(s)
- Juan Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Shun Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Xuemin Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Wei Dong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Jinghua Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Lin Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093, People's Republic of China
| |
Collapse
|