1
|
Chevalier Q, Huchelmann A, Debié P, Mercier P, Hartmann M, Vonthron-Sénécheau C, Bach TJ, Schaller H, Hemmerlin A. Methyl-Jasmonate Functions as a Molecular Switch Promoting Cross-Talk between Pathways for the Biosynthesis of Isoprenoid Backbones Used to Modify Proteins in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1110. [PMID: 38674519 PMCID: PMC11055089 DOI: 10.3390/plants13081110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
In plants, the plastidial mevalonate (MVA)-independent pathway is required for the modification with geranylgeranyl groups of CaaL-motif proteins, which are substrates of protein geranylgeranyltransferase type-I (PGGT-I). As a consequence, fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose (DX)-5 phosphate reductoisomerase/DXR, the second enzyme in this so-called methylerythritol phosphate (MEP) pathway, also acts as an effective inhibitor of protein prenylation. This can be visualized in plant cells by confocal microscopy by expressing GFP-CaM-CVIL, a prenylation sensor protein. After treatment with fosmidomycin, the plasma membrane localization of this GFP-based sensor is altered, and a nuclear distribution of fluorescence is observed instead. In tobacco cells, a visual screen of conditions allowing membrane localization in the presence of fosmidomycin identified jasmonic acid methyl esther (MeJA) as a chemical capable of gradually overcoming inhibition. Using Arabidopsis protein prenyltransferase loss-of-function mutant lines expressing GFP-CaM-CVIL proteins, we demonstrated that in the presence of MeJA, protein farnesyltransferase (PFT) can modify the GFP-CaM-CVIL sensor, a substrate the enzyme does not recognize under standard conditions. Similar to MeJA, farnesol and MVA also alter the protein substrate specificity of PFT, whereas DX and geranylgeraniol have limited or no effect. Our data suggest that MeJA adjusts the protein substrate specificity of PFT by promoting a metabolic cross-talk directing the origin of the prenyl group used to modify the protein. MVA, or an MVA-derived metabolite, appears to be a key metabolic intermediate for this change in substrate specificity.
Collapse
Affiliation(s)
- Quentin Chevalier
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France;
| | - Alexandre Huchelmann
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Pauline Debié
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Pierre Mercier
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Michael Hartmann
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Catherine Vonthron-Sénécheau
- Centre National de la Recherche Scientifique, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CEDEX, F-67401 Illkirch, France;
| | - Thomas J. Bach
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Hubert Schaller
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| | - Andréa Hemmerlin
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France; (Q.C.); (P.D.); (P.M.); (M.H.); (T.J.B.); (H.S.)
| |
Collapse
|
2
|
Wu JR, Zohra R, Duong NKT, Yeh CH, Lu CA, Wu SJ. A plant protein farnesylation system in prokaryotic cells reveals Arabidopsis AtJ3 produced and farnesylated in E. coli maintains its function of protecting proteins from heat inactivation. PLANT METHODS 2023; 19:113. [PMID: 37884965 PMCID: PMC10604809 DOI: 10.1186/s13007-023-01087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Protein farnesylation involves the addition of a 15-carbon polyunsaturated farnesyl group to proteins whose C-terminus ends with a CaaX motif. This post-translational protein modification is catalyzed by a heterodimeric protein, i.e., farnesyltransferase (PFT), which is composed of an α and a β subunit. Protein farnesylation in plants is of great interest because of its important roles in the regulation of plant development, responses to environmental stresses, and defense against pathogens. The methods traditionally used to verify whether a protein is farnesylated often require a specific antibody and involve isotope labeling, a tedious and time-consuming process that poses hazardous risks. RESULTS Since protein farnesylation does not occur in prokaryotic cells, we co-expressed a known PFT substrate (i.e., AtJ3) and both the α and β subunits of Arabidopsis PFT in E. coli in this study. Farnesylation of AtJ3 was detected using electrophoretic mobility using SDS-PAGE and confirmed using mass spectrometry. AtJ3 is a member of the heat shock protein 40 family and interacts with Arabidopsis HSP70 to protect plant proteins from heat-stress-induced denaturation. A luciferase-based protein denaturation assay demonstrated that farnesylated AtJ3 isolated from E. coli maintained this ability. Interestingly, farnesylated AtJ3 interacted with E. coli HSP70 as well and enhanced the thermotolerance of E. coli. Meanwhile, AtFP3, another known PFT substrate, was farnesylated when co-expressed with AtPFTα and AtPFTβ in E. coli. Moreover, using the same strategy to co-express rice PFT α and β subunit and a potential PFT target, it was confirmed that OsDjA4, a homolog of AtJ3, was farnesylated. CONCLUSION We developed a protein farnesylation system for E. coli and demonstrated its applicability and practicality in producing functional farnesylated proteins from both mono- and dicotyledonous plants.
Collapse
Affiliation(s)
- Jia-Rong Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan, 32001, Taiwan
| | - Rida Zohra
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan, 32001, Taiwan
| | - Ngoc Kieu Thi Duong
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan, 32001, Taiwan
| | - Ching-Hui Yeh
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan, 32001, Taiwan
| | - Chung-An Lu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan, 32001, Taiwan.
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan, 32001, Taiwan.
| |
Collapse
|
3
|
Feng Z, Shi H, Lv M, Ma Y, Li J. Protein farnesylation negatively regulates brassinosteroid signaling via reducing BES1 stability in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1353-1366. [PMID: 33764637 PMCID: PMC8360029 DOI: 10.1111/jipb.13093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) are a group of steroidal phytohormones, playing critical roles in almost all physiological aspects during the life span of a plant. In Arabidopsis, BRs are perceived at the cell surface, triggering a reversible phosphorylation-based signaling cascade that leads to the activation and nuclear accumulation of a family of transcription factors, represented by BES1 and BZR1. Protein farnesylation is a type of post-translational modification, functioning in many important cellular processes. Previous studies demonstrated a role of farnesylation in BR biosynthesis via regulating the endoplasmic reticulum localization of a key bassinolide (BL) biosynthetic enzyme BR6ox2. Whether such a process is also involved in BR signaling is not understood. Here, we demonstrate that protein farnesylation is involved in mediating BR signaling in Arabidopsis. A loss-of-function mutant of ENHANCED RESPONSE TO ABA 1 (ERA1), encoding a β subunit of the protein farnesyl transferase holoenzyme, can alter the BL sensitivity of bak1-4 from a reduced to a hypersensitive level. era1 can partially rescue the BR defective phenotype of a heterozygous mutant of bin2-1, a gain-of-function mutant of BIN2 which encodes a negative regulator in the BR signaling. Our genetic and biochemical analyses revealed that ERA1 plays a significant role in regulating the protein stability of BES1.
Collapse
Affiliation(s)
- Zengxiu Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hongyong Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Minghui Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuang Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Yin X. Phyllotaxis: from classical knowledge to molecular genetics. JOURNAL OF PLANT RESEARCH 2021; 134:373-401. [PMID: 33550488 DOI: 10.1007/s10265-020-01247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Plant organs are repetitively generated at the shoot apical meristem (SAM) in recognizable patterns. This phenomenon, known as phyllotaxis, has long fascinated scientists from different disciplines. While we have an enriched body of knowledge on phyllotactic patterns, parameters, and transitions, only in the past 20 years, however, have we started to identify genes and elucidate genetic pathways that involved in phyllotaxis. In this review, I first summarize the classical knowledge of phyllotaxis from a morphological perspective. I then discuss recent advances in the regulation of phyllotaxis, from a molecular genetics perspective. I show that the morphological beauty of phyllotaxis we appreciate is the manifestation of many regulators, in addition to the critical role of auxin as a patterning signal, exerting their respective effects in a coordinated fashion either directly or indirectly in the SAM.
Collapse
Affiliation(s)
- Xiaofeng Yin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| |
Collapse
|
5
|
Vergès V, Dutilleul C, Godin B, Collet B, Lecureuil A, Rajjou L, Guimaraes C, Pinault M, Chevalier S, Giglioli-Guivarc’h N, Ducos E. Protein Farnesylation Takes Part in Arabidopsis Seed Development. FRONTIERS IN PLANT SCIENCE 2021; 12:620325. [PMID: 33584774 PMCID: PMC7876099 DOI: 10.3389/fpls.2021.620325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 05/25/2023]
Abstract
Protein farnesylation is a post-translational modification regulated by the ERA1 (Enhanced Response to ABA 1) gene encoding the β-subunit of the protein farnesyltransferase in Arabidopsis. The era1 mutants have been described for over two decades and exhibit severe pleiotropic phenotypes, affecting vegetative and flower development. We further investigated the development and quality of era1 seeds. While the era1 ovary contains numerous ovules, the plant produces fewer seeds but larger and heavier, with higher protein contents and a modified fatty acid distribution. Furthermore, era1 pollen grains show lower germination rates and, at flower opening, the pistils are immature and the ovules require one additional day to complete the embryo sac. Hand pollinated flowers confirmed that pollination is a major obstacle to era1 seed phenotypes, and a near wild-type seed morphology was thus restored. Still, era1 seeds conserved peculiar storage protein contents and altered fatty acid distributions. The multiplicity of era1 phenotypes reflects the diversity of proteins targeted by the farnesyltransferase. Our work highlights the involvement of protein farnesylation in seed development and in the control of traits of agronomic interest.
Collapse
Affiliation(s)
- Valentin Vergès
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| | - Christelle Dutilleul
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| | - Béatrice Godin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Boris Collet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alain Lecureuil
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Cyrille Guimaraes
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | - Michelle Pinault
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | - Stéphane Chevalier
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | | | - Eric Ducos
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| |
Collapse
|
6
|
Ogata T, Ishizaki T, Fujita M, Fujita Y. CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS One 2020; 15:e0243376. [PMID: 33270810 PMCID: PMC7714338 DOI: 10.1371/journal.pone.0243376] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 01/10/2023] Open
Abstract
Abscisic acid (ABA) signaling components play an important role in the drought stress response in plants. Arabidopsis thaliana ENHANCED RESPONSE TO ABA1 (ERA1) encodes the β-subunit of farnesyltransferase and regulates ABA signaling and the dehydration response. Therefore, ERA1 is an important candidate gene for enhancing drought tolerance in numerous crops. However, a rice (Oryza sativa) ERA1 homolog has not been characterized previously. Here, we show that rice osera1 mutant lines, harboring CRISPR/Cas9-induced frameshift mutations, exhibit similar leaf growth as control plants but increased primary root growth. The osera1 mutant lines also display increased sensitivity to ABA and an enhanced response to drought stress through stomatal regulation. These results illustrate that OsERA1 is a negative regulator of primary root growth under nonstressed conditions and also of responses to ABA and drought stress in rice. These findings improve our understanding of the role of ABA signaling in the drought stress response in rice and suggest a strategy to genetically improve rice.
Collapse
Affiliation(s)
- Takuya Ogata
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Takuma Ishizaki
- Tropical Agriculture Research Front (TARF), Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa, Japan
| | - Miki Fujita
- RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, Japan
| | - Yasunari Fujita
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
7
|
Cui F, Wu W, Wang K, Zhang Y, Hu Z, Brosché M, Liu S, Overmyer K. Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5971-5984. [PMID: 31328223 PMCID: PMC6812726 DOI: 10.1093/jxb/erz345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 05/21/2023]
Abstract
Prevailing evidence indicates that abscisic acid (ABA) negatively influences immunity to the fungal pathogen Botrytis cinerea in most but not all cases. ABA is required for cuticle biosynthesis, and cuticle permeability enhances immunity to Botrytis via unknown mechanisms. This complex web of responses obscures the role of ABA in Botrytis immunity. Here, we addressed the relationships between ABA sensitivity, cuticle permeability, and Botrytis immunity in the Arabidopsis thaliana ABA-hypersensitive mutants protein phosphatase2c quadruple mutant (pp2c-q) and enhanced response to aba1 (era1-2). Neither pp2c-q nor era1-2 exhibited phenotypes predicted by the known roles of ABA; conversely, era1-2 had a permeable cuticle and was Botrytis resistant. We employed RNA-seq analysis in cuticle-permeable mutants of differing ABA sensitivities and identified a core set of constitutively activated genes involved in Botrytis immunity and susceptibility to biotrophs, independent of ABA signaling. Furthermore, botrytis susceptible1 (bos1), a mutant with deregulated cell death and enhanced ABA sensitivity, suppressed the Botrytis immunity of cuticle permeable mutants, and this effect was linearly correlated with the extent of spread of wound-induced cell death in bos1. Overall, our data demonstrate that Botrytis immunity conferred by cuticle permeability can be genetically uncoupled from PP2C-regulated ABA sensitivity, but requires negative regulation of a parallel ABA-dependent cell-death pathway.
Collapse
Affiliation(s)
- Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Correspondence: or
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Kai Wang
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Yuan Zhang
- Library of Donghu Campus, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Correspondence: or
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Barghetti A, Sjögren L, Floris M, Paredes EB, Wenkel S, Brodersen P. Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Genes Dev 2017; 31:2282-2295. [PMID: 29269486 PMCID: PMC5769771 DOI: 10.1101/gad.301242.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
In this study, Barghetti et al. investigate the functions of protein farnesylation in plants. They show that defective farnesylation of a single factor—heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes—is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. Protein farnesylation is central to molecular cell biology. In plants, protein farnesyl transferase mutants are pleiotropic and exhibit defective meristem organization, hypersensitivity to the hormone abscisic acid, and increased drought resistance. The precise functions of protein farnesylation in plants remain incompletely understood because few relevant farnesylated targets have been identified. Here, we show that defective farnesylation of a single factor—heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes—is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. We also show that expression of an abiotic stress-related microRNA (miRNA) regulon controlled by the transcription factor SPL7 requires HSP40 farnesylation. Expression of a truncated SPL7 form mimicking its activated proteolysis fragment of the membrane-bound SPL7 precursor partially restores accumulation of SPL7-dependent miRNAs in farnesyl transferase mutants. These results implicate the pathway directing SPL7 activation from its membrane-bound precursor as an important target of farnesylated HSP40, consistent with our demonstration that HSP40 farnesylation facilitates its membrane association. The results also suggest that altered gene regulation via select miRNAs contributes to abiotic stress-related phenotypes of farnesyl transferase mutants.
Collapse
Affiliation(s)
- Andrea Barghetti
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lars Sjögren
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Maïna Floris
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Esther Botterweg Paredes
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Stephan Wenkel
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
9
|
Ogata T, Nagatoshi Y, Yamagishi N, Yoshikawa N, Fujita Y. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean. PLoS One 2017; 12:e0175650. [PMID: 28419130 PMCID: PMC5395220 DOI: 10.1371/journal.pone.0175650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/29/2017] [Indexed: 01/01/2023] Open
Abstract
Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA) and drought tolerance. We therefore used virus-induced gene silencing (VIGS) to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B), as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV)-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.
Collapse
Affiliation(s)
- Takuya Ogata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Yukari Nagatoshi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Noriko Yamagishi
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Yasunari Fujita
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Xu W, Tao J, Chen M, Dreni L, Luo Z, Hu Y, Liang W, Zhang D. Interactions between FLORAL ORGAN NUMBER4 and floral homeotic genes in regulating rice flower development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:483-498. [PMID: 28204535 PMCID: PMC6055531 DOI: 10.1093/jxb/erw459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/03/2016] [Indexed: 05/21/2023]
Abstract
The floral meristem (FM) is self-maintaining at the early stages of flower development, but it is terminated when a fixed number of floral organs are produced. The FLORAL ORGAN NUMBER4 (FON4; also known as FON2) gene, an ortholog of Arabidopsis CLAVATA3 (CLV3), is required for regulating FM size and determinacy in rice. However, its interactions with floral homeotic genes remain unknown. Here, we report the genetic interactions between FON4 and floral homeotic genes OsMADS15 (an A-class gene), OsMADS16 (also called SUPERWOMAN1, SPW1, a B-class gene), OsMADS3 and OsMADS58 (C-class genes), OsMADS13 (a D-class gene), and OsMADS1 (an E-class gene) during flower development. We observed an additive phenotype in the fon4 double mutant with the OsMADS15 mutant allele dep (degenerative palea). The effect on the organ number of whorl 2 was enhanced in fon4 spw1. Double mutant combinations of fon4 with osmads3, osmads58, osmads13, and osmads1 displayed enhanced defects in FM determinacy and identity, respectively, indicating that FON4 and these genes synergistically control FM activity. In addition, the expression patterns of all the genes besides OsMADS13 had no obvious change in the fon4 mutant. This work reveals how the meristem maintenance gene FON4 genetically interacts with C, D, and E floral homeotic genes in specifying FM activity in monocot rice.
Collapse
Affiliation(s)
- Wei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Juhong Tao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Correspondence:
| |
Collapse
|
11
|
Chai S, Ge FR, Feng QN, Li S, Zhang Y. PLURIPETALA mediates ROP2 localization and stability in parallel to SCN1 but synergistically with TIP1 in root hairs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:413-25. [PMID: 27037800 DOI: 10.1111/tpj.13179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 05/10/2023]
Abstract
Prenylation, the post-translational attachment of prenyl groups to substrate proteins, can affect their distribution and interactomes. Arabidopsis PLURIPETALA (PLP) encodes the shared α subunit of two heterodimeric protein isoprenyltransferases, whose functional loss provides a unique opportunity to study developmental and cellular processes mediated by its prenylated substrates, such as ROP GTPases. As molecular switches, the distribution and activation of ROPs are mediated by various factors, including guanine nucleotide exchange factors, GTPase activating proteins, guanine nucleotide dissociation inhibitors (RhoGDIs), prenylation, and S-acylation. However, how these factors together ensure that dynamic ROP signalling is still obscure. We report here that a loss-of-function allele of PLP resulted in cytoplasmic accumulation of ROP2 in root hairs and reduced its stability. Consequently, two downstream events of ROP signalling, i.e. actin microfilament (MF) organization and the production of reactive oxygen species (ROS), were compromised. Genetic, cytological and biochemical evidence supports an additive interaction between prenylation and RhoGDI1/SCN1 in ROP2 distribution and stability whereas PLP acts synergistically with the protein S-acyl transferase TIP GROWTH DEFECTIVE1 during root hair growth. By using root hair growth as a model system, we uncovered complex interactions among prenylation, RhoGDIs, and S-acylation in dynamic ROP signalling.
Collapse
Affiliation(s)
- Sen Chai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
12
|
Dutilleul C, Ribeiro I, Blanc N, Nezames CD, Deng XW, Zglobicki P, Palacio Barrera AM, Atehortùa L, Courtois M, Labas V, Giglioli-Guivarc'h N, Ducos E. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:185-98. [PMID: 26147561 DOI: 10.1111/pce.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 05/12/2023]
Abstract
The tagging-via-substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide-modified farnesyl moiety and captured thanks to biotin alkyne Click-iT® chemistry with further streptavidin-affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C-terminal CaaX-box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes.
Collapse
Affiliation(s)
- Christelle Dutilleul
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Iliana Ribeiro
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Nathalie Blanc
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Cynthia D Nezames
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Piotr Zglobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Ana María Palacio Barrera
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia
| | - Lucia Atehortùa
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia
| | - Martine Courtois
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Valérie Labas
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, UMR CNRS 7247, UFR, IFC, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, Nouzilly, F-37380, France
| | - Nathalie Giglioli-Guivarc'h
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Eric Ducos
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| |
Collapse
|
13
|
Landau U, Asis L, Eshed Williams L. The ERECTA, CLAVATA and class III HD-ZIP Pathways Display Synergistic Interactions in Regulating Floral Meristem Activities. PLoS One 2015; 10:e0125408. [PMID: 25946150 PMCID: PMC4422654 DOI: 10.1371/journal.pone.0125408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/23/2015] [Indexed: 11/18/2022] Open
Abstract
In angiosperms, the production of flowers marks the beginning of the reproductive phase. At the emergence of flower primordia on the flanks of the inflorescence meristem, the WUSCHEL (WUS) gene, which encodes a homeodomain transcription factor starts to be expressed and establishes de novo stem cell population, founder of the floral meristem (FM). Similarly to the shoot apical meristem a precise spatial and temporal expression pattern of WUS is required and maintained through strict regulation by multiple regulatory inputs to maintain stem cell homeostasis. However, following the formation of a genetically determined fixed number of floral organs, this homeostasis is shifted towards organogenesis and the FM is terminated. In here we performed a genetic study to test how a reduction in ERECTA, CLAVATA and class III HD-ZIP pathways affects floral meristem activity and flower development. We revealed strong synergistic phenotypes of extra flower number, supernumerary whorls, total loss of determinacy and extreme enlargement of the meristem as compared to any double mutant combination indicating that the three pathways, CLV3, ER and HD-ZIPIII distinctively regulate meristem activity and that they act in parallel. Our findings yield several new insights into stem cell-driven development. We demonstrate the crucial requirement for coupling floral meristem termination with carpel formation to ensure successful reproduction in plants. We also show how regulation of meristem size and alternation in spatial structure of the meristem serve as a mechanism to determine flower organogenesis. We propose that the loss of FM determinacy due to the reduction in CLV3, ER and HD-ZIPIII activity is genetically separable from the AGAMOUS core mechanism of meristem termination.
Collapse
Affiliation(s)
- Udi Landau
- The Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Asis
- The Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
14
|
Thole JM, Perroud PF, Quatrano RS, Running MP. Prenylation is required for polar cell elongation, cell adhesion, and differentiation in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:441-451. [PMID: 24634995 DOI: 10.1111/tpj.12484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/16/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
Protein prenylation is required for a variety of growth and developmental processes in flowering plants. Here we report the consequences of loss of function of all known prenylation subunits in the moss Physcomitrella patens. As in Arabidopsis, protein farnesyltransferase and protein geranylgeranyltransferase type I are not required for viability. However, protein geranylgeranyltransferase type I activity is required for cell adhesion, polar cell elongation, and cell differentiation. Loss of protein geranylgeranyltransferase activity results in colonies of round, single-celled organisms that resemble unicellular algae. The loss of protein farnesylation is not as severe but also results in polar cell elongation and differentiation defects. The complete loss of Rab geranylgeranyltransferase activity appears to be lethal in P. patens. Labeling with antibodies to cell wall components support the lack of polarity establishment and the undifferentiated state of geranylgeranyltransferase type I mutant plants. Our results show that prenylated proteins play key roles in P. patens development and differentiation processes.
Collapse
Affiliation(s)
- Julie M Thole
- Donald Danforth Plant Science Center, 975 N Warson Road, Saint Louis, MO, 63132, USA
| | | | | | | |
Collapse
|
15
|
Li D, Dreher K, Knee E, Brkljacic J, Grotewold E, Berardini TZ, Lamesch P, Garcia-Hernandez M, Reiser L, Huala E. Arabidopsis database and stock resources. Methods Mol Biol 2014; 1062:65-96. [PMID: 24057361 DOI: 10.1007/978-1-62703-580-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The volume of Arabidopsis information has increased enormously in recent years as a result of the sequencing of the reference genome and other large-scale functional genomics projects. Much of the data is stored in public databases, where data are organized, analyzed, and made freely accessible to the research community. These databases are resources that researchers can utilize for making predictions and developing testable hypotheses. The methods in this chapter describe ways to access and utilize Arabidopsis data and genomic resources found in databases and stock centers.
Collapse
Affiliation(s)
- Donghui Li
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Running MP. The role of lipid post-translational modification in plant developmental processes. FRONTIERS IN PLANT SCIENCE 2014; 5:50. [PMID: 24600462 PMCID: PMC3927097 DOI: 10.3389/fpls.2014.00050] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/01/2014] [Indexed: 05/06/2023]
Abstract
Most eukaryotic proteins are post-translationally modified, and modification has profound effects on protein function. One key modification is the attachment of a lipid group to certain amino acids; this typically facilitates subcellular targeting (association with a membrane) and protein-protein interactions (by virtue of the large hydrophobic moiety). Most widely recognized are lipid modifications of proteins involved in developmental signaling, but proteins with structural roles are also lipid-modified. The three known types of intracellular protein lipid modifications are S-acylation, N-myristoylation, and prenylation. In plants, genetic analysis of the enzymes involved, along with molecular analysis of select target proteins, has recently shed light on the roles of lipid modification in key developmental processes, such as meristem function, flower development, polar cell elongation, cell differentiation, and hormone responses. In addition, while lipid post-translational mechanisms are generally conserved among eukaryotes, plants differ in the nature and function of target proteins, the effects of lipid modification on target proteins, and the roles of lipid modification in developmental processes.
Collapse
Affiliation(s)
- Mark P. Running
- *Correspondence: Mark P. Running, Department of Biology, University of Louisville, Louisville, KY 40292, USA e-mail:
| |
Collapse
|
17
|
Antimisiaris MF, Running MP. Turning moss into algae: prenylation targets in Physcomitrella patens. PLANT SIGNALING & BEHAVIOR 2014; 9:e29314. [PMID: 25763501 PMCID: PMC4203643 DOI: 10.4161/psb.29314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 06/04/2023]
Abstract
Prenylation is a series of lipid posttranslational modifications that are involved in several key aspects of plant development. We recently knocked out every prenylation subunit in Physcomitrella patens. Like in Arabidopsis, knockout of protein farnesyltransferase and protein geranylgeranyltransferase in P. patens does not result in lethality; however, effects on development are extensive. In particular, the knockout of protein geranylgeranyltransferase results in small unicellular plants that resemble algae. Here we perform an analysis of predicted geranylgeranyltransferase target proteins in P. patens, and draw attention to those most likely to play a role in the knockout phenotype.
Collapse
|
18
|
Jin H, Song Z, Nikolau BJ. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:1015-32. [PMID: 22332816 DOI: 10.1111/j.1365-313x.2012.04942.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT-encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T-DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol-localized, mevalonate-derived isoprenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Huanan Jin
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, IA 50011, USA
| | | | | |
Collapse
|
19
|
Fitzpatrick AH, Shrestha N, Bhandari J, Crowell DN. Roles for farnesol and ABA in Arabidopsis flower development. PLANT SIGNALING & BEHAVIOR 2011; 6:1189-91. [PMID: 21758018 PMCID: PMC3260718 DOI: 10.4161/psb.6.8.15772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The Arabidopsis FOLK (At5g58560) gene encodes farnesol kinase, which phosphorylates farnesol to farnesyl phosphate. Loss-of-function mutations in the FOLK gene are associated with enhanced sensitivity to abscisic acid (ABA), suggesting that FOLK negatively regulates ABA signaling. Moreover, folk flowers develop supernumerary carpels under water stress, providing evidence for a molecular link between farnesol metabolism, abiotic stress signaling and flower development. Here, we show that farnesol increases ABA sensitivity and that ABA affects flower development in Arabidopsis.
Collapse
|
20
|
Fitzpatrick AH, Bhandari J, Crowell DN. Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:1078-1088. [PMID: 21395888 DOI: 10.1111/j.1365-313x.2011.04572.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Farnesol, which is toxic to plant cells at high concentrations, is sequentially phosphorylated to farnesyl phosphate and farnesyl diphosphate. However, the genes responsible for the sequential phosphorylation of farnesol have not been identified and the physiological role of farnesol phosphorylation has not been fully elucidated. To address these questions, we confirmed the presence of farnesol kinase activity in Arabidopsis (Arabidopsis thaliana) membranes and identified the corresponding gene (At5g58560, FOLK). Heterologous expression in recombinant yeast cells established farnesol as the preferred substrate of the FOLK-encoded kinase. Moreover, loss-of-function mutations in the FOLK gene abolished farnesol kinase activity, caused an abscisic acid-hypersensitive phenotype and promoted the development of supernumerary carpels under water-stress conditions. In wild-type plants, exogenous abscisic acid repressed FOLK gene expression. These observations demonstrate a role for farnesol kinase in negative regulation of abscisic acid signaling, and provide molecular evidence for a link between farnesol metabolism, abiotic stress signaling and flower development.
Collapse
Affiliation(s)
- A Heather Fitzpatrick
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | | | |
Collapse
|
21
|
Sorek N, Gutman O, Bar E, Abu-Abied M, Feng X, Running MP, Lewinsohn E, Ori N, Sadot E, Henis YI, Yalovsky S. Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function. PLANT PHYSIOLOGY 2011; 155:706-20. [PMID: 21139084 PMCID: PMC3032461 DOI: 10.1104/pp.110.166850] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/30/2010] [Indexed: 05/21/2023]
Abstract
Prenylation primarily by geranylgeranylation is required for membrane attachment and function of type I Rho of Plants (ROPs) and Gγ proteins, while type II ROPs are attached to the plasma membrane by S-acylation. Yet, it is not known how prenylation affects ROP membrane interaction dynamics and what are the functional redundancy and specificity of type I and type II ROPs. Here, we have used the expression of ROPs in mammalian cells together with geranylgeranylation and CaaX prenylation-deficient mutants to answer these questions. Our results show that the mechanism of type II ROP S-acylation and membrane attachment is unique to plants and likely responsible for the viability of plants in the absence of CaaX prenylation activity. The prenylation of ROPs determines their steady-state distribution between the plasma membrane and the cytosol but has little effect on membrane interaction dynamics. In addition, the prenyl group type has only minor effects on ROP function. Phenotypic analysis of the CaaX prenylation-deficient pluripetala mutant epidermal cells revealed that type I ROPs affect cell structure primarily on the adaxial side, while type II ROPs are functional and induce a novel cell division phenotype in this genetic background. Taken together, our studies show how prenyl and S-acyl lipid modifications affect ROP subcellular distribution, membrane interaction dynamics, and function.
Collapse
|
22
|
Posttranslational Modifications of Plasma Membrane Proteins and Their Implications for Plant Growth and Development. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Andrews M, Huizinga DH, Crowell DN. The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes. BMC PLANT BIOLOGY 2010; 10:118. [PMID: 20565889 PMCID: PMC3017772 DOI: 10.1186/1471-2229-10-118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/18/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Protein prenylation is a common post-translational modification in metazoans, protozoans, fungi, and plants. This modification, which mediates protein-membrane and protein-protein interactions, is characterized by the covalent attachment of a fifteen-carbon farnesyl or twenty-carbon geranylgeranyl group to the cysteine residue of a carboxyl terminal CaaX motif. In Arabidopsis, era1 mutants lacking protein farnesyltransferase exhibit enlarged meristems, supernumerary floral organs, an enhanced response to abscisic acid (ABA), and drought tolerance. In contrast, ggb mutants lacking protein geranylgeranyltransferase type 1 exhibit subtle changes in ABA and auxin responsiveness, but develop normally. RESULTS We have expressed recombinant Arabidopsis protein farnesyltransferase (PFT) and protein geranylgeranyltransferase type 1 (PGGT1) in E. coli and characterized purified enzymes with respect to kinetic constants and substrate specificities. Our results indicate that, whereas PFT exhibits little specificity for the terminal amino acid of the CaaX motif, PGGT1 exclusively prenylates CaaX proteins with a leucine in the terminal position. Moreover, we found that different substrates exhibit similar K(m) but different k(cat) values in the presence of PFT and PGGT1, indicating that substrate specificities are determined primarily by reactivity rather than binding affinity. CONCLUSIONS The data presented here potentially explain the relatively strong phenotype of era1 mutants and weak phenotype of ggb mutants. Specifically, the substrate specificities of PFT and PGGT1 suggest that PFT can compensate for loss of PGGT1 in ggb mutants more effectively than PGGT1 can compensate for loss of PFT in era1 mutants. Moreover, our results indicate that PFT and PGGT1 substrate specificities are primarily due to differences in catalysis, rather than differences in substrate binding.
Collapse
Affiliation(s)
- Michelle Andrews
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - David H Huizinga
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
- Dow AgroSciences LLC, Indianapolis, IN 46268, USA
| | - Dring N Crowell
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
24
|
Lamesch P, Dreher K, Swarbreck D, Sasidharan R, Reiser L, Huala E. Using The
Arabidopsis
Information Resource (TAIR) to Find Information About
Arabidopsis
Genes. ACTA ACUST UNITED AC 2010; Chapter 1:1.11.1-1.11.51. [DOI: 10.1002/0471250953.bi0111s30] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kate Dreher
- Carnegie Institution for Science Stanford California
| | | | | | | | - Eva Huala
- Carnegie Institution for Science Stanford California
| |
Collapse
|
25
|
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE. Flower development. THE ARABIDOPSIS BOOK 2010; 8:e0127. [PMID: 22303253 PMCID: PMC3244948 DOI: 10.1199/tab.0127] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.
Collapse
Affiliation(s)
- Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Mariana Benítez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Corvera-Poiré
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Álvaro Chaos Cador
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Stefan de Folter
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alicia Gamboa de Buen
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Rigoberto V. Pérez-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Yara E. Sánchez-Corrales
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| |
Collapse
|
26
|
Traas J, Hamant O. From genes to shape: understanding the control of morphogenesis at the shoot meristem in higher plants using systems biology. C R Biol 2010; 332:974-85. [PMID: 19909920 DOI: 10.1016/j.crvi.2009.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The shoot apical meristem is a population of stem cells which controls the initiation of leaves, flowers and branches during the entire life of the plant. Although we have gained significant new insight in the nature of the genetic networks and cellular processes that control meristem function, major questions have remained unsolved. It has been difficult, for instance, to define the precise role of genetic determinants in controlling morphogenesis and the control of shape is currently a major and largely unresolved issue in plant biology. This is a difficult task, notably because it is close to impossible to predict the activity of a single gene, in a context where thousands of genes interact. Systems biology has emerged as a powerful tool to address this type of issue. Systems biology analyses processes such as plant development at different scales, describing not only the properties of individual cells but also their interactions. The complexity of the information involved is such, that it cannot be understood and integrated on a purely intuitive basis. For this reason, building on the acquisition of quantitative data, computer models have become more and more important. The first models have begun to reproduce gene network behaviours and dynamical shape changes, providing new insight in the control of morphogenesis.
Collapse
Affiliation(s)
- Jan Traas
- Laboratoire de reproduction et développement des plantes, INRA, CNRS, ENS, 46, allée d'Italie, 69364 Lyon cedex 07, France.
| | | |
Collapse
|
27
|
Huizinga DH, Denton R, Koehler KG, Tomasello A, Wood L, Sen SE, Crowell DN. Farnesylcysteine lyase is involved in negative regulation of abscisic acid signaling in Arabidopsis. MOLECULAR PLANT 2010; 3:143-55. [PMID: 19969520 PMCID: PMC2807925 DOI: 10.1093/mp/ssp091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/22/2009] [Indexed: 05/21/2023]
Abstract
The Arabidopsis FCLY gene encodes a specific farnesylcysteine (FC) lyase, which is responsible for the oxidative metabolism of FC to farnesal and cysteine. In addition, fcly mutants with quantitative decreases in FC lyase activity exhibit an enhanced response to ABA. However, the enzymological properties of the FCLY-encoded enzyme and its precise role in ABA signaling remain unclear. Here, we show that recombinant Arabidopsis FC lyase expressed in insect cells exhibits high selectivity for FC as a substrate and requires FAD and molecular oxygen for activity. Arabidopsis FC lyase is also shown to undergo post-translational N-glycosylation. FC, which is a competitive inhibitor of isoprenylcysteine methyltransferase (ICMT), accumulates in fcly mutants. Moreover, the enhanced response of fcly mutants to ABA is reversed by ICMT overexpression. These observations support the hypothesis that the ABA hypersensitive phenotype of fcly plants is the result of FC accumulation and inhibition of ICMT.
Collapse
Affiliation(s)
- David H. Huizinga
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Ryan Denton
- Department of Chemistry, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202, USA
| | - Kelly G. Koehler
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Ashley Tomasello
- Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, USA
| | - Lyndsay Wood
- Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, USA
| | - Stephanie E. Sen
- Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, USA
| | - Dring N. Crowell
- Department of Biological Sciences, Idaho State University, 650 Memorial Drive, Pocatello, ID 83209, USA
- To whom correspondence should be addressed. E-mail , fax 208-282-4570, tel. 208-282-3171
| |
Collapse
|
28
|
Gerber E, Hemmerlin A, Bach TJ. Chapter 9 The Role of Plastids in Protein Geranylgeranylation in Tobacco BY-2 Cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-8531-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
29
|
Crowell DN, Huizinga DH. Protein isoprenylation: the fat of the matter. TRENDS IN PLANT SCIENCE 2009; 14:163-70. [PMID: 19201644 DOI: 10.1016/j.tplants.2008.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 05/08/2023]
Abstract
Protein isoprenylation refers to the covalent attachment of a 15-carbon farnesyl or 20-carbon geranylgeranyl moiety to a cysteine residue at or near the carboxyl terminus. This post-translational lipid modification, which mediates protein-membrane and protein-protein interactions, is necessary for normal control of abscisic acid and auxin signaling, meristem development, and other fundamental processes. Recent studies have also revealed roles for protein isoprenylation in cytokinin biosynthesis and innate immunity. Most isoprenylated proteins are further modified by carboxyl terminal proteolysis and methylation and, collectively, these modifications are necessary for the targeting and function of isoprenylated proteins.
Collapse
Affiliation(s)
- Dring N Crowell
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA.
| | | |
Collapse
|
30
|
Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc'h N. Proteins prenylated by type I protein geranylgeranyltransferase act positively on the jasmonate signalling pathway triggering the biosynthesis of monoterpene indole alkaloids in Catharanthus roseus. PLANT CELL REPORTS 2009; 28:83-93. [PMID: 18813931 DOI: 10.1007/s00299-008-0610-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/03/2008] [Accepted: 09/07/2008] [Indexed: 05/26/2023]
Abstract
In Catharanthus roseus, the first step of monoterpenoid indole alkaloids (MIA) biosynthesis results from the condensation of the indole precursor tryptamine with the terpenoid precursor secologanin. Secologanin biosynthesis requires two successive biosynthetic pathways, the plastidial methyl-D: -erythritol 4-phosphate (MEP) pathway and the monoterpene secoiridoid pathway. In C. roseus cell culture, the expression of several genes encoding enzymes of these two pathways is dramatically down-regulated by auxin, while strongly enhanced by cytokinin and methyl-jasmonate. Furthermore, our previous studies have shown that protein prenylation events are also involved in the transcriptional activation of some of these genes. In the present work, we investigate the involvement of protein prenylation in the jasmonate signalling pathway leading to MIA biosynthesis. Inhibition of protein prenyltransferase down-regulates the methyl-jasmonate-induced expression of MEP and monoterpene secoiridoid pathway genes and thus abolishes MIA biosynthesis. Jointly, it also inhibits the methyl-jasmonate-induced expression of the AP2/ERF transcription factor ORCA3 that acts as a central regulator of MIA biosynthesis. Finally, a specific silencing of protein prenyltransferases mediated by RNA interference in C. roseus cells shows that inhibition of type I protein geranylgeranyltransferase (PGGT-I) down-regulates the methyl-jasmonate-induced expression of ORCA3, suggesting that PGGT-I prenylated proteins are part of the early steps of jasmonate signalling leading to MIA biosynthesis.
Collapse
Affiliation(s)
- Vincent Courdavault
- Université François-Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200, Tours, France
| | | | | | | |
Collapse
|
31
|
Gerber E, Hemmerlin A, Hartmann M, Heintz D, Hartmann MA, Mutterer J, Rodríguez-Concepción M, Boronat A, Van Dorsselaer A, Rohmer M, Crowell DN, Bach TJ. The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells. THE PLANT CELL 2009; 21:285-300. [PMID: 19136647 PMCID: PMC2648074 DOI: 10.1105/tpc.108.063248] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/12/2008] [Accepted: 12/19/2008] [Indexed: 05/07/2023]
Abstract
Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation.
Collapse
Affiliation(s)
- Esther Gerber
- Institut de Biologie Moléculaire des Plantes (Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, associated with the Université Louis Pasteur), F-67083 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huizinga DH, Omosegbon O, Omery B, Crowell DN. Isoprenylcysteine methylation and demethylation regulate abscisic acid signaling in Arabidopsis. THE PLANT CELL 2008; 20:2714-28. [PMID: 18957507 PMCID: PMC2590716 DOI: 10.1105/tpc.107.053389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Isoprenylated proteins bear an isoprenylcysteine methyl ester at the C terminus. Although isoprenylated proteins have been implicated in meristem development and negative regulation of abscisic acid (ABA) signaling, the functional role of the terminal methyl group has not been described. Here, we show that transgenic Arabidopsis thaliana plants overproducing isoprenylcysteine methyltransferase (ICMT) exhibit ABA insensitivity in stomatal closure and seed germination assays, establishing ICMT as a negative regulator of ABA signaling. By contrast, transgenic plants overproducing isoprenylcysteine methylesterase (ICME) exhibit ABA hypersensitivity in stomatal closure and seed germination assays. Thus, ICME is a positive regulator of ABA signaling. To test the hypothesis that ABA signaling is under feedback regulation at the level of isoprenylcysteine methylation, we examined the effect of ABA on ICMT and ICME gene expression. Interestingly, ABA induces ICME gene expression, establishing a positive feedback loop whereby ABA promotes ABA responsiveness of plant cells via induction of ICME expression, which presumably results in the demethylation and inactivation of isoprenylated negative regulators of ABA signaling. These results suggest strategies for metabolic engineering of crop species for drought tolerance by targeted alterations in isoprenylcysteine methylation.
Collapse
Affiliation(s)
- David H Huizinga
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5132, USA
| | | | | | | |
Collapse
|
33
|
Goritschnig S, Weihmann T, Zhang Y, Fobert P, McCourt P, Li X. A novel role for protein farnesylation in plant innate immunity. PLANT PHYSIOLOGY 2008; 148:348-57. [PMID: 18599656 PMCID: PMC2528093 DOI: 10.1104/pp.108.117663] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 06/20/2008] [Indexed: 05/18/2023]
Abstract
Plants utilize tightly regulated mechanisms to defend themselves against pathogens. Initial recognition results in activation of specific Resistance (R) proteins that trigger downstream immune responses, in which the signaling networks remain largely unknown. A point mutation in SUPPRESSOR OF NPR1 CONSTITUTIVE1 (SNC1), a RESISTANCE TO PERONOSPORA PARASITICA4 R gene homolog, renders plants constitutively resistant to virulent pathogens. Genetic suppressors of snc1 may carry mutations in genes encoding novel signaling components downstream of activated R proteins. One such suppressor was identified as a novel loss-of-function allele of ENHANCED RESPONSE TO ABSCISIC ACID1 (ERA1), which encodes the beta-subunit of protein farnesyltransferase. Protein farnesylation involves attachment of C15-prenyl residues to the carboxyl termini of specific target proteins. Mutant era1 plants display enhanced susceptibility to virulent bacterial and oomycete pathogens, implying a role for farnesylation in basal defense. In addition to its role in snc1-mediated resistance, era1 affects several other R-protein-mediated resistance responses against bacteria and oomycetes. ERA1 acts partly independent of abscisic acid and additively with the resistance regulator NON-EXPRESSOR OF PR GENES1 in the signaling network. Defects in geranylgeranyl transferase I, a protein modification similar to farnesylation, do not affect resistance responses, indicating that farnesylation is most likely specifically required in plant defense signaling. Taken together, we present a novel role for farnesyltransferase in plant-pathogen interactions, suggesting the importance of protein farnesylation, which contributes to the specificity and efficacy of signal transduction events.
Collapse
Affiliation(s)
- Sandra Goritschnig
- Michael Smith Laboratories , University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | | | |
Collapse
|
34
|
Bracha-Drori K, Shichrur K, Lubetzky TC, Yalovsky S. Functional analysis of Arabidopsis postprenylation CaaX processing enzymes and their function in subcellular protein targeting. PLANT PHYSIOLOGY 2008; 148:119-31. [PMID: 18641086 PMCID: PMC2528099 DOI: 10.1104/pp.108.120477] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 07/16/2008] [Indexed: 05/18/2023]
Abstract
Prenylation is a posttranslational protein modification essential for developmental processes and response to abscisic acid. Following prenylation, the three C-terminal residues are proteoliticaly removed and in turn the free carboxyl group of the isoprenyl cysteine is methylated. The proteolysis and methylation, collectively referred to as CaaX processing, are catalyzed by Ste24 endoprotease or Rce1 endoprotease and by an isoprenyl cysteine methyltransferase (ICMT). Arabidopsis (Arabidopsis thaliana) contains single STE24 and RCE1 and two ICMT homologs. Here we show that in yeast (Saccharomyces cerevisiae) AtRCE1 promoted a-mating factor secretion and membrane localization of a ROP GTPase. Furthermore, green fluorescent protein fusion proteins of AtSTE24, AtRCE1, AtICMTA, and AtICMTB are colocalized in the endoplasmic reticulum, indicating that prenylated proteins reach this compartment and that CaaX processing is likely required for subcellular targeting. AtICMTB can process yeast a-factor more efficiently than AtICMTA. Sequence and mutational analyses revealed that the higher activity AtICMTB is conferred by five residues, which are conserved between yeast Ste14p, human ICMT, and AtICMTB but not in AtICMTA. Quantitative real-time reverse transcription-polymerase chain reaction and microarray data show that AtICMTA expression is significantly lower compared to AtICMTB. AtICMTA null mutants have a wild-type phenotype, indicating that its function is redundant. However, AtICMT RNAi lines had fasciated inflorescence stems, altered phylotaxis, and developed multiple buds without stem elongation. The phenotype of the ICMT RNAi lines is similar to farnesyltransferase beta-subunit mutant enhanced response to abscisic acid2 but is more subtle. Collectively, the data suggest that AtICMTB is likely the major ICMT and that methylation modulates activity of prenylated proteins.
Collapse
Affiliation(s)
- Keren Bracha-Drori
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
35
|
Reiser L, Rhee SY. Using the Arabidopsis Information Resource (TAIR) to find information about Arabidopsis genes. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1.11. [PMID: 18428741 DOI: 10.1002/0471250953.bi0111s9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Arabidopsis Information Resource (TAIR; http://www.arabidopsis.org) is a comprehensive Web resource of Arabidopsis biology for plant scientists. TAIR curates and integrates information about genes, proteins, gene expression, mutant phenotypes, biological materials such as DNA and seed stocks, genetic markers, genetic and physical maps, biochemical pathways, genome organization, images of mutant plants and protein sub-cellular localizations, publications, and the research community Data in TAIR are extensively interconnected and can be accessed through a variety of Web-based search and display tools. This unit primarily focuses on some basic methods for searching, browsing, visualizing, and analyzing information about Arabidopsis genes. Gene expression data from microarrays is a recent addition to the database and methods for accessing these data are also described. Two pattern identification programs are described for mining TAIR's unique Arabidopsis sequence data sets. We also describe how to use AraCyc for mining plant metabolic pathways.
Collapse
Affiliation(s)
- Leonore Reiser
- The Arabidopsis Information Resource, Carnegie Institution, Stanford, California, USA
| | | |
Collapse
|
36
|
Balasubramanian R, Karve A, Kandasamy M, Meagher RB, Moore BD. A role for F-actin in hexokinase-mediated glucose signaling. PLANT PHYSIOLOGY 2007; 145:1423-34. [PMID: 17965176 PMCID: PMC2151701 DOI: 10.1104/pp.107.108704] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/22/2007] [Indexed: 05/17/2023]
Abstract
HEXOKINASE1 (HXK1) from Arabidopsis (Arabidopsis thaliana) has dual roles in glucose (Glc) signaling and in Glc phosphorylation. The cellular context, though, for HXK1 function in either process is not well understood. Here we have shown that within normal experimental detection limits, AtHXK1 is localized continuously to mitochondria. Two mitochondrial porin proteins were identified as capable of binding to overexpressed HXK1 protein, both in vivo and in vitro. We also found that AtHXK1 can be associated with its structural homolog, F-actin, based on their coimmunoprecipitation from transgenic plants that overexpress HXK1-FLAG or from transient expression assays, and based on their localization in leaf cells after cryofixation. This association might be functionally important because Glc signaling in protoplast transient expression assays is compromised by disruption of F-actin. We also demonstrate that Glc treatment of Arabidopsis seedlings rapidly and reversibly disrupts fine mesh actin filaments. The possible roles of actin in HXK-dependent Glc signaling are discussed.
Collapse
|
37
|
Ali GS, Palusa SG, Golovkin M, Prasad J, Manley JL, Reddy AS. Regulation of plant developmental processes by a novel splicing factor. PLoS One 2007; 2:e471. [PMID: 17534421 PMCID: PMC1868597 DOI: 10.1371/journal.pone.0000471] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 04/28/2007] [Indexed: 11/18/2022] Open
Abstract
Serine/arginine-rich (SR) proteins play important roles in constitutive and alternative splicing and other aspects of mRNA metabolism. We have previously isolated a unique plant SR protein (SR45) with atypical domain organization. However, the biological and molecular functions of this novel SR protein are not known. Here, we report biological and molecular functions of this protein. Using an in vitro splicing complementation assay, we showed that SR45 functions as an essential splicing factor. Furthermore, the alternative splicing pattern of transcripts of several other SR genes was altered in a mutant, sr45-1, suggesting that the observed phenotypic abnormalities in sr45-1 are likely due to altered levels of SR protein isoforms, which in turn modulate splicing of other pre-mRNAs. sr45-1 exhibited developmental abnormalities, including delayed flowering, narrow leaves and altered number of petals and stamens. The late flowering phenotype was observed under both long days and short days and was rescued by vernalization. FLC, a key flowering repressor, is up-regulated in sr45-1 demonstrating that SR45 influences the autonomous flowering pathway. Changes in the alternative splicing of SR genes and the phenotypic defects in the mutant were rescued by SR45 cDNA, further confirming that the observed defects in the mutant are due to the lack of SR45. These results indicate that SR45 is a novel plant-specific splicing factor that plays a crucial role in regulating developmental processes.
Collapse
Affiliation(s)
- Gul Shad Ali
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Saiprasad G. Palusa
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maxim Golovkin
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jayendra Prasad
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Anireddy S.N. Reddy
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Zeng Q, Wang X, Running MP. Dual lipid modification of Arabidopsis Ggamma-subunits is required for efficient plasma membrane targeting. PLANT PHYSIOLOGY 2007; 143:1119-31. [PMID: 17220359 PMCID: PMC1820929 DOI: 10.1104/pp.106.093583] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Posttranslational lipid modifications are important for proper localization of many proteins in eukaryotic cells. However, the functional interrelationships between lipid modification processes in plants remain unclear. Here we demonstrate that the two heterotrimeric G-protein gamma-subunits from Arabidopsis (Arabidopsis thaliana), AGG1 and AGG2, are prenylated, and AGG2 is S-acylated. In wild type, enhanced yellow fluorescent protein-fused AGG1 and AGG2 are associated with plasma membranes, with AGG1 associated with internal membranes as well. Both can be prenylated by either protein geranylgeranyltransferase I (PGGT-I) or protein farnesyltransferase (PFT). Their membrane localization is intact in mutants lacking PFT activity and largely intact in mutants lacking PGGT-I activity but is disrupted in mutants lacking both PFT and PGGT-I activity. Unlike in mammals, Arabidopsis Ggammas do not rely on functional Galpha for membrane targeting. Mutation of the sixth to last cysteine, the putative S-acylation acceptor site, causes a dramatic change in AGG2 but not AGG1 localization pattern, suggesting S-acylation serves as an important additional signal for AGG2 to be targeted to the plasma membrane. Domain-swapping experiments suggest that a short charged sequence at the AGG2 C terminus contributes to AGG2's efficient membrane targeting compared to AGG1. Our data show the large degree to which PFT and PGGT-I can compensate for each other in plants and suggest that differential lipid modification plays an important regulatory role in plant protein localization.
Collapse
Affiliation(s)
- Qin Zeng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | | |
Collapse
|
39
|
Jiang L, Zhang W, Xia Z, Jiang G, Qian Q, Li A, Cheng Z, Zhu L, Mao L, Zhai W. A paracentric inversion suppresses genetic recombination at the FON3 locus with breakpoints corresponding to sequence gaps on rice chromosome 11L. Mol Genet Genomics 2006; 277:263-72. [PMID: 17143630 DOI: 10.1007/s00438-006-0196-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Paracentric inversion is known to inhibit genetic recombination between normal and inverted chromosomal segments in heterozygous arrangements. Insect inversion polymorphisms have been studied to reveal adaptive processes for maintaining genetic variation. We report the first paracentric inversion in rice (Oryza sativa), which was discovered in our effort to clone the floral organ number gene FON3. Recombination at the FON3 locus on the long arm of chromosome 11 was severely suppressed over a distance of more than 36 cM. An extensive screening among 8,242 F(2) progeny failed to detect any recombinants. Cytological analysis revealed a loop-like structure on pachytene chromosomes, whereas FISH analysis showed the migration of a BAC clone from a distal location to a position closer to the centromere. Interestingly, the locations where the genetic recombination suppression began were coincided with the positions of two physical gaps on the chromosome 11, suggesting a correlation between the physical gaps, the inversion breakpoints. Transposons and retrotransposons, and tandemly arranged members of gene families were among the sequences immediately flanking the gaps. Taken together, we propose that the genetic suppression at the FON3 locus was caused by a paracentric inversion. The possible genetic mechanism causing such a spontaneous inversion was proposed.
Collapse
Affiliation(s)
- Li Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Barrero LS, Cong B, Wu F, Tanksley SD. Developmental characterization of thefasciatedlocus and mapping ofArabidopsiscandidate genes involved in the control of floral meristem size and carpel number in tomato. Genome 2006; 49:991-1006. [PMID: 17036074 DOI: 10.1139/g06-059] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutation at the fasciated locus was a key step in the production of extreme fruit size during tomato domestication. To shed light on the nature of these changes, near-isogenic lines were used for a comparative developmental study of fasciated and wild-type tomato plants. The fasciated gene directly affects floral meristem size and is expressed before the earliest stages of flower organogenesis. As a result, mature fruit of fasciated mutants have more carpels (locules) and greater fruit diameter and mass. The discovery that fasciated affects floral meristem size led to a search for candidate genes from Arabidopsis known to be involved in floral meristem development. Putative homologs were identified in a large tomato EST database, verified through phylogenetic analyses, and mapped in tomato; none mapped to the fasciated locus; however, putative homologs of WUS and WIG mapped to the locule number locus on chromosome 2, the second major transition to large tomato fruit, with WUS showing the highest association. In other cases, minor QTLs for floral organ number (lcn2.2) and (stn11.2) co-localized with a CLV1 paralog and with the syntenic region containing the CLV3 gene in Arabidopsis, respectively.Key words: fasciated, floral meristem, locule number, Arabidopsis, fruit.
Collapse
Affiliation(s)
- L S Barrero
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853-1902, USA
| | | | | | | |
Collapse
|
41
|
Downes BP, Saracco SA, Lee SS, Crowell DN, Vierstra RD. MUBs, a family of ubiquitin-fold proteins that are plasma membrane-anchored by prenylation. J Biol Chem 2006; 281:27145-57. [PMID: 16831869 DOI: 10.1074/jbc.m602283200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin (Ub)-fold proteins are rapidly emerging as an important class of eukaryotic modifiers, which often exert their influence by post-translational addition to other intracellular proteins. Despite assuming a common beta-grasp three-dimensional structure, their functions are highly diverse because of distinct surface features and targets and include tagging proteins for selective breakdown, nuclear import, autophagic recycling, vesicular trafficking, polarized morphogenesis, and the stress response. Here we describe a novel family of Membrane-anchored Ub-fold (MUB) proteins that are present in animals, filamentous fungi, and plants. Extending from the C terminus of the Ub-fold is typically a cysteine-containing CAAX (where A indicates aliphatic amino acid) sequence that can direct the attachment of either a 15-carbon farnesyl or a 20-carbon geranylgeranyl moiety in vitro. Modified forms of several MUBs were detected in transgenic Arabidopsis thaliana, suggesting that these MUBs are prenylated in vivo. Both cell fractionation and confocal microscopic analyses of Arabidopsis plants expressing GFP-MUB fusions showed that the modified forms are membrane-anchored with a significant enrichment on the plasma membrane. This plasma membrane location was blocked in vivo in prenyltransferase mutants and by mevinolin, which inhibits the synthesis of prenyl groups. In addition to the five MUBs with CAAX boxes, Arabidopsis has one MUB variant with a cysteine-rich C terminus distinct from the CAAX box that is also membrane-anchored, possibly through the attachment of a long chain acyl group. Although the physiological role(s) of MUBs remain unknown, the discovery of these prenylated forms further expands the diversity and potential functions of Ub-fold proteins in eukaryotic biology.
Collapse
Affiliation(s)
- Brian P Downes
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706-1574, USA
| | | | | | | | | |
Collapse
|
42
|
Johnson CD, Chary SN, Chernoff EA, Zeng Q, Running MP, Crowell DN. Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. PLANT PHYSIOLOGY 2005; 139:722-33. [PMID: 16183844 PMCID: PMC1255991 DOI: 10.1104/pp.105.065045] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) mutants lacking a functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects that establish roles for protein prenylation in abscisic acid (ABA) signaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsis GGB gene, which encodes the beta-subunit of protein geranylgeranyltransferase type I (PGGT I). Stomatal apertures of ggb plants were smaller than those of wild-type plants at all concentrations of ABA tested, suggesting that PGGT I negatively regulates ABA signaling in guard cells. However, germination of ggb seeds in response to ABA was similar to the wild type. Lateral root formation in response to exogenous auxin was increased in ggb seedlings compared to the wild type, but no change in auxin inhibition of primary root growth was observed, suggesting that PGGT I is specifically involved in negative regulation of auxin-induced lateral root initiation. Unlike era1 mutants, ggb mutants exhibited no obvious developmental phenotypes. However, era1 ggb double mutants exhibited more severe developmental phenotypes than era1 mutants and were indistinguishable from plp mutants lacking the shared alpha-subunit of PFT and PGGT I. Furthermore, overexpression of GGB in transgenic era1 plants partially suppressed the era1 phenotype, suggesting that the relatively weak phenotype of era1 plants is due to partial redundancy between PFT and PGGT I. These results are discussed in the context of Arabidopsis proteins that are putative substrates of PGGT I.
Collapse
Affiliation(s)
- Cynthia D Johnson
- Department of Biology, Indiana University-Purdue University, Indianapolis, 46202-5132, USA
| | | | | | | | | | | |
Collapse
|
43
|
Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT, McCourt P, Huang Y. Molecular tailoring of farnesylation for plant drought tolerance and yield protection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:413-24. [PMID: 16045476 DOI: 10.1111/j.1365-313x.2005.02463.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Protecting crop yield under drought stress is a major challenge for modern agriculture. One biotechnological target for improving plant drought tolerance is the genetic manipulation of the stress response to the hormone abscisic acid (ABA). Previous genetic studies have implicated the involvement of the beta-subunit of Arabidopsis farnesyltransferase (ERA1) in the regulation of ABA sensing and drought tolerance. Here we show that molecular manipulation of protein farnesylation in Arabidopsis, through downregulation of either the alpha- or beta-subunit of farnesyltransferase enhances the plant's response to ABA and drought tolerance. To test the effectiveness of tailoring farnesylation in a crop plant, transgenic Brassica napus carrying an ERA1 antisense construct driven by a drought-inducible rd29A promoter was examined. In comparison with the non-transgenic control, transgenic canola showed enhanced ABA sensitivity, as well as significant reduction in stomatal conductance and water transpiration under drought stress conditions. The antisense downregulation of canola farnesyltransferase for drought tolerance is a conditional and reversible process, which depends on the amount of available water in the soil. Furthermore, transgenic plants were more resistant to water deficit-induced seed abortion during flowering. Results from three consecutive years of field trial studies suggest that with adequate water, transgenic canola plants produced the same amount of seed as the parental control. However, under moderate drought stress conditions at flowering, the seed yields of transgenic canola were significantly higher than the control. Using protein farnesyltransferase as an effective target, these results represent a successful demonstration of engineered drought tolerance and yield protection in a crop plant under laboratory and field conditions.
Collapse
Affiliation(s)
- Yang Wang
- Performance Plants, Inc., Bioscience Complex, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Katagiri T, Ishiyama K, Kato T, Tabata S, Kobayashi M, Shinozaki K. An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:107-17. [PMID: 15960620 DOI: 10.1111/j.1365-313x.2005.02431.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphatidic acid (PA) functions as a lipid signaling molecule in plants. Physiological analysis showed that PA triggers early signal transduction events that lead to responses to abscisic acid (ABA) during seed germination. We measured PA production during seed germination and found increased PA levels during early germination. To investigate the role of PA during seed germination, we focused on the PA catabolic enzyme lipid phosphate phosphatase (LPP). LPP catalyzes the conversion of PA to diacylglycerol (DAG). There are 4 LPP genes in the Arabidopsis genome. Among them, AtLPP2 and AtLPP3 are expressed during seed germination. Two AtLPP2 T-DNA insertional mutants (lpp2-1 and lpp2-2) showed hypersensitivity to ABA and significant PA accumulation during germination. Furthermore, double-mutant analysis showed that ABA-insensitive 4 (ABI4) is epistatic to AtLPP2 but ABA-insensitive 3 (ABI3) is not. These results suggest that PA is involved in ABA signaling and that AtLPP2 functions as a negative regulator upstream of ABI4, which encodes an AP2-type transcription factor, in ABA signaling during germination.
Collapse
Affiliation(s)
- Takeshi Katagiri
- Plant Molecular Biology Laboratory, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Courdavault V, Thiersault M, Courtois M, Gantet P, Oudin A, Doireau P, St-Pierre B, Giglioli-Guivarc'h N. CaaX-prenyltransferases are essential for expression of genes involvedin the early stages of monoterpenoid biosynthetic pathway in Catharanthus roseus cells. PLANT MOLECULAR BIOLOGY 2005; 57:855-70. [PMID: 15952070 DOI: 10.1007/s11103-005-3095-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 03/03/2005] [Indexed: 05/02/2023]
Abstract
CaaX-prenyltransferases (CaaX-PTases) catalyse the covalent attachment of isoprenyl groups to conserved cysteine residues located at the C-terminal CaaX motif of a protein substrate. This post-translational modification is required for the function and/or subcellular localization of some transcription factors and components of signal transduction and membrane trafficking machinery. CaaX-PTases, including protein farnesyltransferase (PFT) and type-I protein geranylgeranyltransferase (PGGT-I), are heterodimeric enzymes composed of a common alpha subunit and a specific beta subunit. We have established RNA interference cell lines targeting the beta subunits of PFT and PGGT-I, respectively, in the Catharanthus roseus C20D cell line, which synthesizes monoterpenoid indole alkaloids in response to auxin depletion from the culture medium. In both types of RNAi cell lines, expression of a subset of genes involved in the early stage of monoterpenoid biosynthetic pathway (ESMB genes), including the MEP pathway, is strongly decreased. The role of CaaX-PTases in ESMB gene regulation was confirmed by using the general prenyltransferase inhibitor s-perillyl alcohol (SP) and the specific PFT inhibitor Manumycin A on the wild type line. Furthermore, supplementation of SP inhibited cells with monoterpenoid intermediates downstream of the steps encoded by the ESMB genes restores monoterpenoid indole alkaloids biosynthesis. We conclude that protein targets for both PFT and PGGT-I are required for the expression of ESMB genes and monoterpenoid biosynthesis in C. roseus, this represents a non previously described role for protein prenyltransferase in plants.
Collapse
Affiliation(s)
- Vincent Courdavault
- Biomolecules et Biotechnologies Vegetales, Labaratoire de Physiologie Vegetale, UFR Science et Techniques, Universite Francois-Rabelais de Tours, EA2106, 37200 , Parc de Grandmont, Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Courdavault V, Thiersault M, Courtois M, Gantet P, Oudin A, Doireau P, St-Pierre B, Giglioli-Guivarc'h N. CaaX-prenyltransferases are essential for expression of genes involvedin the early stages of monoterpenoid biosynthetic pathway in Catharanthus roseus cells. PLANT MOLECULAR BIOLOGY 2005. [PMID: 15952070 DOI: 10.1016/j.plantsci.2004.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CaaX-prenyltransferases (CaaX-PTases) catalyse the covalent attachment of isoprenyl groups to conserved cysteine residues located at the C-terminal CaaX motif of a protein substrate. This post-translational modification is required for the function and/or subcellular localization of some transcription factors and components of signal transduction and membrane trafficking machinery. CaaX-PTases, including protein farnesyltransferase (PFT) and type-I protein geranylgeranyltransferase (PGGT-I), are heterodimeric enzymes composed of a common alpha subunit and a specific beta subunit. We have established RNA interference cell lines targeting the beta subunits of PFT and PGGT-I, respectively, in the Catharanthus roseus C20D cell line, which synthesizes monoterpenoid indole alkaloids in response to auxin depletion from the culture medium. In both types of RNAi cell lines, expression of a subset of genes involved in the early stage of monoterpenoid biosynthetic pathway (ESMB genes), including the MEP pathway, is strongly decreased. The role of CaaX-PTases in ESMB gene regulation was confirmed by using the general prenyltransferase inhibitor s-perillyl alcohol (SP) and the specific PFT inhibitor Manumycin A on the wild type line. Furthermore, supplementation of SP inhibited cells with monoterpenoid intermediates downstream of the steps encoded by the ESMB genes restores monoterpenoid indole alkaloids biosynthesis. We conclude that protein targets for both PFT and PGGT-I are required for the expression of ESMB genes and monoterpenoid biosynthesis in C. roseus, this represents a non previously described role for protein prenyltransferase in plants.
Collapse
Affiliation(s)
- Vincent Courdavault
- Biomolecules et Biotechnologies Vegetales, Labaratoire de Physiologie Vegetale, UFR Science et Techniques, Universite Francois-Rabelais de Tours, EA2106, 37200 , Parc de Grandmont, Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Carles CC, Choffnes-Inada D, Reville K, Lertpiriyapong K, Fletcher JC. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development 2005; 132:897-911. [PMID: 15673576 DOI: 10.1242/dev.01642] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The higher-plant shoot apical meristem is a dynamic structure continuously producing cells that become incorporated into new leaves, stems and flowers. The maintenance of a constant flow of cells through the meristem depends on coordination of two antagonistic processes: self-renewal of the stem cell population and initiation of the lateral organs. This coordination is stringently controlled by gene networks that contain both positive and negative components. We have previously defined the ULTRAPETALA1(ULT1) gene as a key negative regulator of cell accumulation in Arabidopsis shoot and floral meristems, because mutations in ULT1 cause the enlargement of inflorescence and floral meristems, the production of supernumerary flowers and floral organs, and a delay in floral meristem termination. Here, we show that ULT1 negatively regulates the size of the WUSCHEL (WUS)-expressing organizing center in inflorescence meristems. We have cloned the ULT1 gene and find that it encodes a small protein containing a B-box-like motif and a SAND domain, a DNA-binding motif previously reported only in animal transcription factors. ULT1 and its Arabidopsis paralog ULT2 define a novel small gene family in plants. ULT1 and ULT2 are expressed coordinately in embryonic shoot apical meristems, in inflorescence and floral meristems, and in developing stamens, carpels and ovules. Additionally, ULT1 is expressed in vegetative meristems and leaf primordia. ULT2 protein can compensate for mutant ULT1 protein when overexpressed in an ult1 background, indicating that the two genes may regulate a common set of targets during plant development. Downregulation of both ULT genes can lead to shoot apical meristem arrest shortly after germination, revealing a requirement for ULT activity in early development.
Collapse
MESH Headings
- Alleles
- Amino Acid Motifs
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/biosynthesis
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Proliferation
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cloning, Molecular
- DNA/metabolism
- Down-Regulation
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Dominant
- Genes, Plant
- Genetic Complementation Test
- Green Fluorescent Proteins/metabolism
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- In Situ Hybridization
- Meristem/embryology
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Phenotype
- Plant Shoots
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Subcellular Fractions/metabolism
- Tissue Distribution
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic
- Transgenes
Collapse
Affiliation(s)
- Cristel C Carles
- Plant Gene Expression Center, USDA/UC Berkeley, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | | | | | |
Collapse
|
48
|
Okamoto T, Scholten S, Lörz H, Kranz E. Identification of Genes that are Up- or Down-regulated in the Apical or Basal Cell of Maize Two-celled Embryos and Monitoring their Expression During Zygote Development by a Cell Manipulation- and PCR-based Approach. ACTA ACUST UNITED AC 2005; 46:332-8. [PMID: 15695436 DOI: 10.1093/pcp/pci032] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In higher plants, a zygote generally divides asymmetrically into a two-celled embryo. As in planta, maize zygotes produced by in vitro fertilization of an egg cell with a sperm cell also develop into an asymmetrical two-celled embryo that consists of a small plasma-rich apical cell and a large vacuolized basal cell. Subsequently, via zygotic embryogenesis, a proembryo and a transition phase embryo are formed from the two-celled embryo. In the present study, we focused on identifying genes that were up- or down-regulated only in the apical or basal cell of two-celled maize embryos after fertilization. First, a procedure for isolating the apical and basal cells from two-celled embryos was established, and subsequently cDNAs were synthesized from apical cells, basal cells, egg cells, two-celled embryos and multicellular embryos. These cDNAs were used as templates for polymerase chain reaction (PCR) with randomly amplified polymorphic DNA (RAPD) primers. Genes with specific expression patterns were identified, and these expression patterns were categorized into six groups: (1) up-regulated only in the apical cell after gamete fusion; (2) up-regulated only in the basal cell after gamete fusion; (3) up-regulated in both the apical and basal cells after gamete fusion; (4) down-regulated only in the apical cell after gamete fusion; (5) down-regulated only in the basal cell after gamete fusion; and (6) constitutively expressed in the egg cell and embryos. In addition, it was revealed that the genes up-regulated in the apical or basal cell (genes in groups 1 and 2) were already expressed in the early zygote, providing the possibility that the transcripts from these genes are localized to the putative apical or basal region of the zygote, or that the transcripts are rapidly degraded in one of the daughter cells after zygotic cell division.
Collapse
Affiliation(s)
- Takashi Okamoto
- Biozentrum Klein Flottbek und Botanischer Garten, Entwicklungsbiologie und Biotechnologie, Universität Hamburg, Ohnhorststr 18, D-22609 Hamburg, Germany.
| | | | | | | |
Collapse
|
49
|
Barth O, Zschiesche W, Siersleben S, Humbeck K. Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. PHYSIOLOGIA PLANTARUM 2004; 121:282-293. [PMID: 15153196 DOI: 10.1111/j.0031-9317.2004.00325.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to isolate genes involved in the early acclimation of winter barley (Hordeum vulgare L. cv. Trixi) to a combined cold and light stress of 2 degrees C and 600 micromol m(-2) s(-1) restriction fragment differential display-polymerase chain reaction was performed. Impact of the cold-treatment on the leaves was characterized by measuring chlorophyll content and photosystem II efficiency. By this approach several cDNAs of genes that quickly and transiently up-regulated during early stages of the stress were identified. One of these genes (HvFP1) includes sequence motifs representing a heavy metal associated domain (HMA), nuclear localization signals (NLS) and a farnesylation motif. This gene is also induced at drought stress, during leaf senescence and after exposure to abscisic acid. Analysis of its spatial expression patterns in barley plants either grown at 21 or 2 degrees C showed that in contrast to the situation in leaves transcript level of this gene is high not only in cold-treated plants but also in controls kept at 21 degrees C in plant compartments enriched in meristematic tissues. The nuclear localization of the protein was confirmed by confocal laser scanning microscopy of epidermal onion cells after particle bombardment with chimeric HVFP1-GFP constructs. Using a construct with a modified farnesylation motif yielded a different pattern of nuclear distribution of the chimeric protein.
Collapse
Affiliation(s)
- Olaf Barth
- Institute of Plant Physiology, University of Halle, Weinbergweg 10, D-06120 Halle, Germany
| | | | | | | |
Collapse
|
50
|
Running MP, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N, Yalovsky S. Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci U S A 2004; 101:7815-20. [PMID: 15128936 PMCID: PMC419689 DOI: 10.1073/pnas.0402385101] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Indexed: 11/18/2022] Open
Abstract
Meristems require a myriad of intercellular signaling pathways for coordination of cell division within and between functional zones and clonal cell layers. This control of cell division ensures a constant availability of stem cells throughout the life span of the meristem while limiting overproliferation of meristematic cells and maintaining the meristem structure. We have undertaken a genetic screen to identify additional components of meristem signaling pathways. We identified pluripetala (plp) mutants based on their dramatically larger meristems and increased floral organ number. PLURIPETALA encodes the alpha-subunit shared between protein farnesyltransferase and protein geranylgeranyltransferase-I. plp mutants also have altered abscisic acid responses and overall much slower growth rate. plp is epistatic to mutations in the beta-subunit of farnesyltransferase and shows a synergistic interaction with clavata3 mutants. plp mutants lead to insights into the mechanism of meristem homeostasis and provide a unique in vivo system for studying the functional role of prenylation in eukaryotes.
Collapse
Affiliation(s)
- Mark P Running
- U.S. Department of Agriculture-Agricultural Research Service Plant Gene Expression Center, Albany, CA 94710, USA
| | | | | | | | | | | | | | | |
Collapse
|